1# 2# openwifi side info receive and display program 3# Xianjun jiao. [email protected]; [email protected] 4# 5import os 6import sys 7import socket 8import numpy as np 9import matplotlib.pyplot as plt 10 11def display_side_info(freq_offset, csi, equalizer, CSI_LEN, EQUALIZER_LEN): 12 if not hasattr(display_side_info, 'freq_offset_store'): 13 display_side_info.freq_offset_store = np.zeros((256,)) 14 15 len_freq_offset = len(freq_offset) 16 display_side_info.freq_offset_store[:(256-len_freq_offset)] = display_side_info.freq_offset_store[len_freq_offset:] 17 display_side_info.freq_offset_store[(256-len_freq_offset):] = freq_offset 18 19 fig_freq_offset = plt.figure(0) 20 fig_freq_offset.clf() 21 plt.xlabel("packet idx") 22 plt.ylabel("Hz") 23 plt.title("freq offset") 24 plt.plot(display_side_info.freq_offset_store) 25 fig_freq_offset.show() 26 plt.pause(0.0001) 27 28 good_row_idx = 0 29 if ( len(equalizer)==0 ): 30 csi_for_plot = csi.T 31 else: 32 equalizer[equalizer == 32767+32767*1j] = 0 33 num_row_equalizer, num_col_equalizer = equalizer.shape 34 equalizer_for_plot = np.zeros((num_row_equalizer, num_col_equalizer)) + 1j*np.zeros((num_row_equalizer, num_col_equalizer)) 35 36 num_row_csi, num_col_csi = csi.shape 37 csi_for_plot = np.zeros((num_row_csi, num_col_csi)) + 1j*np.zeros((num_row_csi, num_col_csi)) 38 39 # only take out the good equalizer result, when output > 2000, it is not good 40 for i in range(num_row_equalizer): 41 if (not (np.any(abs(equalizer[i,:].real)>2000) or np.any(abs(equalizer[i,:].imag)>2000)) ): 42 equalizer_for_plot[good_row_idx,:] = equalizer[i,:] 43 csi_for_plot[good_row_idx,:] = csi[i,:] 44 good_row_idx = good_row_idx + 1 45 46 csi_for_plot = csi_for_plot[0:good_row_idx,:] 47 equalizer_for_plot = equalizer_for_plot[0:good_row_idx,:] 48 csi_for_plot = csi_for_plot.T 49 equalizer_for_plot = equalizer_for_plot.T 50 51 if ( (len(equalizer)==0) or ((len(equalizer)>0)and(good_row_idx>0)) ): 52 fig_csi = plt.figure(1) 53 fig_csi.clf() 54 ax_abs_csi = fig_csi.add_subplot(211) 55 ax_abs_csi.set_xlabel("subcarrier idx") 56 ax_abs_csi.set_ylabel("abs") 57 ax_abs_csi.set_title("CSI") 58 plt.plot(np.abs(csi_for_plot)) 59 ax_phase_csi = fig_csi.add_subplot(212) 60 ax_phase_csi.set_xlabel("subcarrier idx") 61 ax_phase_csi.set_ylabel("phase") 62 plt.plot(np.angle(csi_for_plot)) 63 fig_csi.show() 64 plt.pause(0.0001) 65 66 if ( (len(equalizer)>0) and (good_row_idx>0) ): 67 fig_equalizer = plt.figure(2) 68 fig_equalizer.clf() 69 plt.xlabel("I") 70 plt.ylabel("Q") 71 plt.title("equalizer") 72 plt.scatter(equalizer_for_plot.real, equalizer_for_plot.imag) 73 fig_freq_offset.show() 74 plt.pause(0.0001) 75 76def parse_side_info(side_info, num_eq, CSI_LEN, EQUALIZER_LEN, HEADER_LEN): 77 # print(len(side_info), num_eq, CSI_LEN, EQUALIZER_LEN, HEADER_LEN) 78 CSI_LEN_HALF = round(CSI_LEN/2) 79 num_dma_symbol_per_trans = HEADER_LEN + CSI_LEN + num_eq*EQUALIZER_LEN 80 num_int16_per_trans = num_dma_symbol_per_trans*4 # 64bit per dma symbol 81 num_trans = round(len(side_info)/num_int16_per_trans) 82 # print(len(side_info), side_info.dtype, num_trans) 83 side_info = side_info.reshape([num_trans, num_int16_per_trans]) 84 85 timestamp = side_info[:,0] + pow(2,16)*side_info[:,1] + pow(2,32)*side_info[:,2] + pow(2,48)*side_info[:,3] 86 87 freq_offset = (20e6*side_info[:,4]/512)/(2*3.14159265358979323846) 88 89 csi = np.zeros((num_trans, CSI_LEN), dtype='int16') 90 csi = csi + csi*1j 91 92 equalizer = np.zeros((0,0), dtype='int16') 93 if num_eq>0: 94 equalizer = np.zeros((num_trans, num_eq*EQUALIZER_LEN), dtype='int16') 95 equalizer = equalizer + equalizer*1j 96 97 for i in range(num_trans): 98 tmp_vec_i = side_info[i,8:(num_int16_per_trans-1):4] 99 tmp_vec_q = side_info[i,9:(num_int16_per_trans-1):4] 100 tmp_vec = tmp_vec_i + tmp_vec_q*1j 101 # csi[i,:] = tmp_vec[0:CSI_LEN] 102 csi[i,:CSI_LEN_HALF] = tmp_vec[CSI_LEN_HALF:CSI_LEN] 103 csi[i,CSI_LEN_HALF:] = tmp_vec[0:CSI_LEN_HALF] 104 if num_eq>0: 105 equalizer[i,:] = tmp_vec[CSI_LEN:(CSI_LEN+num_eq*EQUALIZER_LEN)] 106 # print(i, len(tmp_vec), len(tmp_vec[0:CSI_LEN]), len(tmp_vec[CSI_LEN:(CSI_LEN+num_eq*EQUALIZER_LEN)])) 107 108 return timestamp, freq_offset, csi, equalizer 109 110UDP_IP = "192.168.10.1" #Local IP to listen 111UDP_PORT = 4000 #Local port to listen 112 113sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # UDP 114sock.bind((UDP_IP, UDP_PORT)) 115sock.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 464) # for low latency. 464 is the minimum udp length in our case (CSI only) 116 117# align with side_ch_control.v and all related user space, remote files 118MAX_NUM_DMA_SYMBOL = 8192 119CSI_LEN = 56 # length of single CSI 120EQUALIZER_LEN = (56-4) # for non HT, four {32767,32767} will be padded to achieve 52 (non HT should have 48) 121HEADER_LEN = 2 # timestamp and frequency offset 122 123if len(sys.argv)<2: 124 print("Assume num_eq = 8!") 125 num_eq = 8 126else: 127 num_eq = int(sys.argv[1]) 128 print(num_eq) 129 # print(type(num_eq)) 130 131num_dma_symbol_per_trans = HEADER_LEN + CSI_LEN + num_eq*EQUALIZER_LEN 132num_byte_per_trans = 8*num_dma_symbol_per_trans 133 134if os.path.exists("side_info.txt"): 135 os.remove("side_info.txt") 136side_info_fd=open('side_info.txt','a') 137 138while True: 139 try: 140 data, addr = sock.recvfrom(MAX_NUM_DMA_SYMBOL*8) # buffer size 141 # print(addr) 142 print(len(data), num_byte_per_trans) 143 test_residual = len(data)%num_byte_per_trans 144 if (test_residual != 0): 145 print("Abnormal length") 146 147 side_info = np.frombuffer(data, dtype='int16') 148 np.savetxt(side_info_fd, side_info) 149 150 timestamp, freq_offset, csi, equalizer = parse_side_info(side_info, num_eq, CSI_LEN, EQUALIZER_LEN, HEADER_LEN) 151 print(timestamp) 152 # print(freq_offset) 153 # print(csi[0,0:10]) 154 # print(equalizer[0,0:10]) 155 display_side_info(freq_offset, csi, equalizer, CSI_LEN, EQUALIZER_LEN) 156 157 except KeyboardInterrupt: 158 print('User quit') 159 break 160 161print('close()') 162side_info_fd.close() 163sock.close() 164