1*10465441SEvalZero /*
2*10465441SEvalZero * Copyright (c) 2006-2018, RT-Thread Development Team
3*10465441SEvalZero *
4*10465441SEvalZero * SPDX-License-Identifier: Apache-2.0
5*10465441SEvalZero *
6*10465441SEvalZero * Change Logs:
7*10465441SEvalZero * Date Author Notes
8*10465441SEvalZero * 2013-07-20 Bernard first version
9*10465441SEvalZero */
10*10465441SEvalZero
11*10465441SEvalZero #include <rtthread.h>
12*10465441SEvalZero #include <rthw.h>
13*10465441SEvalZero #include <board.h>
14*10465441SEvalZero
15*10465441SEvalZero #include "armv7.h"
16*10465441SEvalZero
17*10465441SEvalZero #include "gic.h"
18*10465441SEvalZero
19*10465441SEvalZero extern struct rt_thread *rt_current_thread;
20*10465441SEvalZero #ifdef RT_USING_FINSH
21*10465441SEvalZero extern long list_thread(void);
22*10465441SEvalZero #endif
23*10465441SEvalZero
24*10465441SEvalZero /**
25*10465441SEvalZero * this function will show registers of CPU
26*10465441SEvalZero *
27*10465441SEvalZero * @param regs the registers point
28*10465441SEvalZero */
rt_hw_show_register(struct rt_hw_exp_stack * regs)29*10465441SEvalZero void rt_hw_show_register(struct rt_hw_exp_stack *regs)
30*10465441SEvalZero {
31*10465441SEvalZero rt_kprintf("Execption:\n");
32*10465441SEvalZero rt_kprintf("r00:0x%08x r01:0x%08x r02:0x%08x r03:0x%08x\n", regs->r0, regs->r1, regs->r2, regs->r3);
33*10465441SEvalZero rt_kprintf("r04:0x%08x r05:0x%08x r06:0x%08x r07:0x%08x\n", regs->r4, regs->r5, regs->r6, regs->r7);
34*10465441SEvalZero rt_kprintf("r08:0x%08x r09:0x%08x r10:0x%08x\n", regs->r8, regs->r9, regs->r10);
35*10465441SEvalZero rt_kprintf("fp :0x%08x ip :0x%08x\n", regs->fp, regs->ip);
36*10465441SEvalZero rt_kprintf("sp :0x%08x lr :0x%08x pc :0x%08x\n", regs->sp, regs->lr, regs->pc);
37*10465441SEvalZero rt_kprintf("cpsr:0x%08x\n", regs->cpsr);
38*10465441SEvalZero }
39*10465441SEvalZero
40*10465441SEvalZero /**
41*10465441SEvalZero * When comes across an instruction which it cannot handle,
42*10465441SEvalZero * it takes the undefined instruction trap.
43*10465441SEvalZero *
44*10465441SEvalZero * @param regs system registers
45*10465441SEvalZero *
46*10465441SEvalZero * @note never invoke this function in application
47*10465441SEvalZero */
rt_hw_trap_undef(struct rt_hw_exp_stack * regs)48*10465441SEvalZero void rt_hw_trap_undef(struct rt_hw_exp_stack *regs)
49*10465441SEvalZero {
50*10465441SEvalZero rt_kprintf("undefined instruction:\n");
51*10465441SEvalZero rt_hw_show_register(regs);
52*10465441SEvalZero #ifdef RT_USING_FINSH
53*10465441SEvalZero list_thread();
54*10465441SEvalZero #endif
55*10465441SEvalZero rt_hw_cpu_shutdown();
56*10465441SEvalZero }
57*10465441SEvalZero
58*10465441SEvalZero /**
59*10465441SEvalZero * The software interrupt instruction (SWI) is used for entering
60*10465441SEvalZero * Supervisor mode, usually to request a particular supervisor
61*10465441SEvalZero * function.
62*10465441SEvalZero *
63*10465441SEvalZero * @param regs system registers
64*10465441SEvalZero *
65*10465441SEvalZero * @note never invoke this function in application
66*10465441SEvalZero */
rt_hw_trap_swi(struct rt_hw_exp_stack * regs)67*10465441SEvalZero void rt_hw_trap_swi(struct rt_hw_exp_stack *regs)
68*10465441SEvalZero {
69*10465441SEvalZero rt_kprintf("software interrupt:\n");
70*10465441SEvalZero rt_hw_show_register(regs);
71*10465441SEvalZero #ifdef RT_USING_FINSH
72*10465441SEvalZero list_thread();
73*10465441SEvalZero #endif
74*10465441SEvalZero rt_hw_cpu_shutdown();
75*10465441SEvalZero }
76*10465441SEvalZero
77*10465441SEvalZero /**
78*10465441SEvalZero * An abort indicates that the current memory access cannot be completed,
79*10465441SEvalZero * which occurs during an instruction prefetch.
80*10465441SEvalZero *
81*10465441SEvalZero * @param regs system registers
82*10465441SEvalZero *
83*10465441SEvalZero * @note never invoke this function in application
84*10465441SEvalZero */
rt_hw_trap_pabt(struct rt_hw_exp_stack * regs)85*10465441SEvalZero void rt_hw_trap_pabt(struct rt_hw_exp_stack *regs)
86*10465441SEvalZero {
87*10465441SEvalZero rt_kprintf("prefetch abort:\n");
88*10465441SEvalZero rt_hw_show_register(regs);
89*10465441SEvalZero #ifdef RT_USING_FINSH
90*10465441SEvalZero list_thread();
91*10465441SEvalZero #endif
92*10465441SEvalZero rt_hw_cpu_shutdown();
93*10465441SEvalZero }
94*10465441SEvalZero
95*10465441SEvalZero /**
96*10465441SEvalZero * An abort indicates that the current memory access cannot be completed,
97*10465441SEvalZero * which occurs during a data access.
98*10465441SEvalZero *
99*10465441SEvalZero * @param regs system registers
100*10465441SEvalZero *
101*10465441SEvalZero * @note never invoke this function in application
102*10465441SEvalZero */
rt_hw_trap_dabt(struct rt_hw_exp_stack * regs)103*10465441SEvalZero void rt_hw_trap_dabt(struct rt_hw_exp_stack *regs)
104*10465441SEvalZero {
105*10465441SEvalZero rt_kprintf("data abort:");
106*10465441SEvalZero rt_hw_show_register(regs);
107*10465441SEvalZero #ifdef RT_USING_FINSH
108*10465441SEvalZero list_thread();
109*10465441SEvalZero #endif
110*10465441SEvalZero rt_hw_cpu_shutdown();
111*10465441SEvalZero }
112*10465441SEvalZero
113*10465441SEvalZero /**
114*10465441SEvalZero * Normally, system will never reach here
115*10465441SEvalZero *
116*10465441SEvalZero * @param regs system registers
117*10465441SEvalZero *
118*10465441SEvalZero * @note never invoke this function in application
119*10465441SEvalZero */
rt_hw_trap_resv(struct rt_hw_exp_stack * regs)120*10465441SEvalZero void rt_hw_trap_resv(struct rt_hw_exp_stack *regs)
121*10465441SEvalZero {
122*10465441SEvalZero rt_kprintf("reserved trap:\n");
123*10465441SEvalZero rt_hw_show_register(regs);
124*10465441SEvalZero #ifdef RT_USING_FINSH
125*10465441SEvalZero list_thread();
126*10465441SEvalZero #endif
127*10465441SEvalZero rt_hw_cpu_shutdown();
128*10465441SEvalZero }
129*10465441SEvalZero
rt_hw_trap_irq(void)130*10465441SEvalZero void rt_hw_trap_irq(void)
131*10465441SEvalZero {
132*10465441SEvalZero void *param;
133*10465441SEvalZero rt_isr_handler_t isr_func;
134*10465441SEvalZero extern struct rt_irq_desc isr_table[];
135*10465441SEvalZero
136*10465441SEvalZero // vectNum = RESERVED[31:13] | CPUID[12:10] | INTERRUPT_ID[9:0]
137*10465441SEvalZero // send ack and get ID source
138*10465441SEvalZero uint32_t vectNum = gic_read_irq_ack();
139*10465441SEvalZero
140*10465441SEvalZero // Check that INT_ID isn't 1023 or 1022 (spurious interrupt)
141*10465441SEvalZero if (vectNum & 0x0200)
142*10465441SEvalZero {
143*10465441SEvalZero gic_write_end_of_irq(vectNum); // send end of irq
144*10465441SEvalZero }
145*10465441SEvalZero else
146*10465441SEvalZero {
147*10465441SEvalZero // copy the local value to the global image of CPUID
148*10465441SEvalZero unsigned cpu = (vectNum >> 10) & 0x7;
149*10465441SEvalZero unsigned irq = vectNum & 0x1FF;
150*10465441SEvalZero
151*10465441SEvalZero /* skip warning */
152*10465441SEvalZero cpu = cpu;
153*10465441SEvalZero
154*10465441SEvalZero // Call the service routine stored in the handlers array. If there isn't
155*10465441SEvalZero // one for this IRQ, then call the default handler.
156*10465441SEvalZero /* get interrupt service routine */
157*10465441SEvalZero isr_func = isr_table[irq].handler;
158*10465441SEvalZero #ifdef RT_USING_INTERRUPT_INFO
159*10465441SEvalZero isr_table[irq].counter++;
160*10465441SEvalZero #endif
161*10465441SEvalZero if (isr_func)
162*10465441SEvalZero {
163*10465441SEvalZero /* Interrupt for myself. */
164*10465441SEvalZero param = isr_table[irq].param;
165*10465441SEvalZero /* turn to interrupt service routine */
166*10465441SEvalZero isr_func(irq, param);
167*10465441SEvalZero }
168*10465441SEvalZero
169*10465441SEvalZero // Signal the end of the irq.
170*10465441SEvalZero gic_write_end_of_irq(vectNum);
171*10465441SEvalZero }
172*10465441SEvalZero }
173*10465441SEvalZero
rt_hw_trap_fiq(void)174*10465441SEvalZero void rt_hw_trap_fiq(void)
175*10465441SEvalZero {
176*10465441SEvalZero /* TODO */
177*10465441SEvalZero }
178