1*10465441SEvalZero /*
2*10465441SEvalZero * 程序清单:删除线程
3*10465441SEvalZero *
4*10465441SEvalZero * 这个例子会创建两个线程,在一个线程中删除另外一个线程。
5*10465441SEvalZero */
6*10465441SEvalZero #include <rtthread.h>
7*10465441SEvalZero #include "tc_comm.h"
8*10465441SEvalZero
9*10465441SEvalZero /*
10*10465441SEvalZero * 线程删除(rt_thread_delete)函数仅适合于动态线程,为了在一个线程
11*10465441SEvalZero * 中访问另一个线程的控制块,所以把线程块指针声明成全局类型以供全
12*10465441SEvalZero * 局访问
13*10465441SEvalZero */
14*10465441SEvalZero static rt_thread_t tid1 = RT_NULL, tid2 = RT_NULL;
15*10465441SEvalZero /* 线程1的入口函数 */
thread1_entry(void * parameter)16*10465441SEvalZero static void thread1_entry(void* parameter)
17*10465441SEvalZero {
18*10465441SEvalZero rt_uint32_t count = 0;
19*10465441SEvalZero
20*10465441SEvalZero while (1)
21*10465441SEvalZero {
22*10465441SEvalZero /* 线程1采用低优先级运行,一直打印计数值 */
23*10465441SEvalZero // rt_kprintf("thread count: %d\n", count ++);
24*10465441SEvalZero count ++;
25*10465441SEvalZero }
26*10465441SEvalZero }
thread1_cleanup(struct rt_thread * tid)27*10465441SEvalZero static void thread1_cleanup(struct rt_thread *tid)
28*10465441SEvalZero {
29*10465441SEvalZero if (tid != tid1)
30*10465441SEvalZero {
31*10465441SEvalZero tc_stat(TC_STAT_END | TC_STAT_FAILED);
32*10465441SEvalZero return ;
33*10465441SEvalZero }
34*10465441SEvalZero rt_kprintf("thread1 end\n");
35*10465441SEvalZero tid1 = RT_NULL;
36*10465441SEvalZero }
37*10465441SEvalZero
38*10465441SEvalZero /* 线程2的入口函数 */
thread2_entry(void * parameter)39*10465441SEvalZero static void thread2_entry(void* parameter)
40*10465441SEvalZero {
41*10465441SEvalZero /* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
42*10465441SEvalZero
43*10465441SEvalZero /* 线程2启动后先睡眠10个OS Tick */
44*10465441SEvalZero rt_thread_delay(RT_TICK_PER_SECOND);
45*10465441SEvalZero
46*10465441SEvalZero /*
47*10465441SEvalZero * 线程2唤醒后直接删除线程1,删除线程1后,线程1自动脱离就绪线程
48*10465441SEvalZero * 队列
49*10465441SEvalZero */
50*10465441SEvalZero rt_thread_delete(tid1);
51*10465441SEvalZero
52*10465441SEvalZero /*
53*10465441SEvalZero * 线程2继续休眠10个OS Tick然后退出,线程2休眠后应切换到idle线程
54*10465441SEvalZero * idle线程将执行真正的线程1控制块和线程栈的删除
55*10465441SEvalZero */
56*10465441SEvalZero rt_thread_delay(RT_TICK_PER_SECOND);
57*10465441SEvalZero }
58*10465441SEvalZero
thread2_cleanup(struct rt_thread * tid)59*10465441SEvalZero static void thread2_cleanup(struct rt_thread *tid)
60*10465441SEvalZero {
61*10465441SEvalZero /*
62*10465441SEvalZero * 线程2运行结束后也将自动被删除(线程控制块和线程栈在idle线
63*10465441SEvalZero * 程中释放)
64*10465441SEvalZero */
65*10465441SEvalZero
66*10465441SEvalZero if (tid != tid2)
67*10465441SEvalZero {
68*10465441SEvalZero tc_stat(TC_STAT_END | TC_STAT_FAILED);
69*10465441SEvalZero return ;
70*10465441SEvalZero }
71*10465441SEvalZero rt_kprintf("thread2 end\n");
72*10465441SEvalZero tid2 = RT_NULL;
73*10465441SEvalZero tc_done(TC_STAT_PASSED);
74*10465441SEvalZero }
75*10465441SEvalZero
76*10465441SEvalZero /* 线程删除示例的初始化 */
thread_delete_init()77*10465441SEvalZero int thread_delete_init()
78*10465441SEvalZero {
79*10465441SEvalZero /* 创建线程1 */
80*10465441SEvalZero tid1 = rt_thread_create("t1", /* 线程1的名称是t1 */
81*10465441SEvalZero thread1_entry, RT_NULL, /* 入口是thread1_entry,参数是RT_NULL */
82*10465441SEvalZero THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
83*10465441SEvalZero if (tid1 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
84*10465441SEvalZero {
85*10465441SEvalZero tid1->cleanup = thread1_cleanup;
86*10465441SEvalZero rt_thread_startup(tid1);
87*10465441SEvalZero }
88*10465441SEvalZero else
89*10465441SEvalZero tc_stat(TC_STAT_END | TC_STAT_FAILED);
90*10465441SEvalZero
91*10465441SEvalZero /* 创建线程1 */
92*10465441SEvalZero tid2 = rt_thread_create("t2", /* 线程1的名称是t2 */
93*10465441SEvalZero thread2_entry, RT_NULL, /* 入口是thread2_entry,参数是RT_NULL */
94*10465441SEvalZero THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
95*10465441SEvalZero if (tid2 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
96*10465441SEvalZero {
97*10465441SEvalZero tid2->cleanup = thread2_cleanup;
98*10465441SEvalZero rt_thread_startup(tid2);
99*10465441SEvalZero }
100*10465441SEvalZero else
101*10465441SEvalZero tc_stat(TC_STAT_END | TC_STAT_FAILED);
102*10465441SEvalZero
103*10465441SEvalZero return 10 * RT_TICK_PER_SECOND;
104*10465441SEvalZero }
105*10465441SEvalZero
106*10465441SEvalZero #ifdef RT_USING_TC
_tc_cleanup()107*10465441SEvalZero static void _tc_cleanup()
108*10465441SEvalZero {
109*10465441SEvalZero /* lock scheduler */
110*10465441SEvalZero rt_enter_critical();
111*10465441SEvalZero
112*10465441SEvalZero /* delete thread */
113*10465441SEvalZero if (tid1 != RT_NULL)
114*10465441SEvalZero {
115*10465441SEvalZero rt_kprintf("tid1 is %p, should be NULL\n", tid1);
116*10465441SEvalZero tc_stat(TC_STAT_FAILED);
117*10465441SEvalZero }
118*10465441SEvalZero if (tid2 != RT_NULL)
119*10465441SEvalZero {
120*10465441SEvalZero rt_kprintf("tid2 is %p, should be NULL\n", tid2);
121*10465441SEvalZero tc_stat(TC_STAT_FAILED);
122*10465441SEvalZero }
123*10465441SEvalZero
124*10465441SEvalZero /* unlock scheduler */
125*10465441SEvalZero rt_exit_critical();
126*10465441SEvalZero }
127*10465441SEvalZero
_tc_thread_delete()128*10465441SEvalZero int _tc_thread_delete()
129*10465441SEvalZero {
130*10465441SEvalZero /* set tc cleanup */
131*10465441SEvalZero tc_cleanup(_tc_cleanup);
132*10465441SEvalZero return thread_delete_init();
133*10465441SEvalZero }
134*10465441SEvalZero FINSH_FUNCTION_EXPORT(_tc_thread_delete, a thread delete example);
135*10465441SEvalZero #else
rt_application_init()136*10465441SEvalZero int rt_application_init()
137*10465441SEvalZero {
138*10465441SEvalZero thread_delete_init();
139*10465441SEvalZero
140*10465441SEvalZero return 0;
141*10465441SEvalZero }
142*10465441SEvalZero #endif
143