1*10465441SEvalZero/** 2*10465441SEvalZero\defgroup pt Protothreads 3*10465441SEvalZero 4*10465441SEvalZeroProtothreads are a type of lightweight stackless threads designed for 5*10465441SEvalZeroseverly memory constrained systems such as deeply embedded systems or 6*10465441SEvalZerosensor network nodes. Protothreads provides linear code execution for 7*10465441SEvalZeroevent-driven systems implemented in C. Protothreads can be used with 8*10465441SEvalZeroor without an RTOS. 9*10465441SEvalZero 10*10465441SEvalZeroProtothreads are a extremely lightweight, stackless type of threads 11*10465441SEvalZerothat provides a blocking context on top of an event-driven system, 12*10465441SEvalZerowithout the overhead of per-thread stacks. The purpose of protothreads 13*10465441SEvalZerois to implement sequential flow of control without complex state 14*10465441SEvalZeromachines or full multi-threading. Protothreads provides conditional 15*10465441SEvalZeroblocking inside C functions. 16*10465441SEvalZero 17*10465441SEvalZeroThe advantage of protothreads over a purely event-driven approach is 18*10465441SEvalZerothat protothreads provides a sequential code structure that allows for 19*10465441SEvalZeroblocking functions. In purely event-driven systems, blocking must be 20*10465441SEvalZeroimplemented by manually breaking the function into two pieces - one 21*10465441SEvalZerofor the piece of code before the blocking call and one for the code 22*10465441SEvalZeroafter the blocking call. This makes it hard to use control structures 23*10465441SEvalZerosuch as if() conditionals and while() loops. 24*10465441SEvalZero 25*10465441SEvalZeroThe advantage of protothreads over ordinary threads is that a 26*10465441SEvalZeroprotothread do not require a separate stack. In memory constrained 27*10465441SEvalZerosystems, the overhead of allocating multiple stacks can consume large 28*10465441SEvalZeroamounts of the available memory. In contrast, each protothread only 29*10465441SEvalZerorequires between two and twelve bytes of state, depending on the 30*10465441SEvalZeroarchitecture. 31*10465441SEvalZero 32*10465441SEvalZero\note Because protothreads do not save the stack context across a 33*10465441SEvalZeroblocking call, <b>local variables are not preserved when the 34*10465441SEvalZeroprotothread blocks</b>. This means that local variables should be used 35*10465441SEvalZerowith utmost care - <b>if in doubt, do not use local variables inside a 36*10465441SEvalZeroprotothread!</b> 37*10465441SEvalZero 38*10465441SEvalZero 39*10465441SEvalZeroMain features: 40*10465441SEvalZero 41*10465441SEvalZero - No machine specific code - the protothreads library is pure C 42*10465441SEvalZero 43*10465441SEvalZero - Does not use error-prone functions such as longjmp() 44*10465441SEvalZero 45*10465441SEvalZero - Very small RAM overhead - only two bytes per protothread 46*10465441SEvalZero 47*10465441SEvalZero - Can be used with or without an OS 48*10465441SEvalZero 49*10465441SEvalZero - Provides blocking wait without full multi-threading or 50*10465441SEvalZero stack-switching 51*10465441SEvalZero 52*10465441SEvalZeroExamples applications: 53*10465441SEvalZero 54*10465441SEvalZero - Memory constrained systems 55*10465441SEvalZero 56*10465441SEvalZero - Event-driven protocol stacks 57*10465441SEvalZero 58*10465441SEvalZero - Deeply embedded systems 59*10465441SEvalZero 60*10465441SEvalZero - Sensor network nodes 61*10465441SEvalZero 62*10465441SEvalZeroThe protothreads API consists of four basic operations: 63*10465441SEvalZeroinitialization: PT_INIT(), execution: PT_BEGIN(), conditional 64*10465441SEvalZeroblocking: PT_WAIT_UNTIL() and exit: PT_END(). On top of these, two 65*10465441SEvalZeroconvenience functions are built: reversed condition blocking: 66*10465441SEvalZeroPT_WAIT_WHILE() and protothread blocking: PT_WAIT_THREAD(). 67*10465441SEvalZero 68*10465441SEvalZero\sa \ref pt "Protothreads API documentation" 69*10465441SEvalZero 70*10465441SEvalZeroThe protothreads library is released under a BSD-style license that 71*10465441SEvalZeroallows for both non-commercial and commercial usage. The only 72*10465441SEvalZerorequirement is that credit is given. 73*10465441SEvalZero 74*10465441SEvalZero\section authors Authors 75*10465441SEvalZero 76*10465441SEvalZeroThe protothreads library was written by Adam Dunkels <[email protected]> 77*10465441SEvalZerowith support from Oliver Schmidt <[email protected]>. 78*10465441SEvalZero 79*10465441SEvalZero\section pt-desc Protothreads 80*10465441SEvalZero 81*10465441SEvalZeroProtothreads are a extremely lightweight, stackless threads that 82*10465441SEvalZeroprovides a blocking context on top of an event-driven system, without 83*10465441SEvalZerothe overhead of per-thread stacks. The purpose of protothreads is to 84*10465441SEvalZeroimplement sequential flow of control without using complex state 85*10465441SEvalZeromachines or full multi-threading. Protothreads provides conditional 86*10465441SEvalZeroblocking inside a C function. 87*10465441SEvalZero 88*10465441SEvalZeroIn memory constrained systems, such as deeply embedded systems, 89*10465441SEvalZerotraditional multi-threading may have a too large memory overhead. In 90*10465441SEvalZerotraditional multi-threading, each thread requires its own stack, that 91*10465441SEvalZerotypically is over-provisioned. The stacks may use large parts of the 92*10465441SEvalZeroavailable memory. 93*10465441SEvalZero 94*10465441SEvalZeroThe main advantage of protothreads over ordinary threads is that 95*10465441SEvalZeroprotothreads are very lightweight: a protothread does not require its 96*10465441SEvalZeroown stack. Rather, all protothreads run on the same stack and context 97*10465441SEvalZeroswitching is done by stack rewinding. This is advantageous in memory 98*10465441SEvalZeroconstrained systems, where a stack for a thread might use a large part 99*10465441SEvalZeroof the available memory. A protothread only requires only two bytes of 100*10465441SEvalZeromemory per protothread. Moreover, protothreads are implemented in pure 101*10465441SEvalZeroC and do not require any machine-specific assembler code. 102*10465441SEvalZero 103*10465441SEvalZeroA protothread runs within a single C function and cannot span over 104*10465441SEvalZeroother functions. A protothread may call normal C functions, but cannot 105*10465441SEvalZeroblock inside a called function. Blocking inside nested function calls 106*10465441SEvalZerois instead made by spawning a separate protothread for each 107*10465441SEvalZeropotentially blocking function. The advantage of this approach is that 108*10465441SEvalZeroblocking is explicit: the programmer knows exactly which functions 109*10465441SEvalZerothat block that which functions the never blocks. 110*10465441SEvalZero 111*10465441SEvalZeroProtothreads are similar to asymmetric co-routines. The main 112*10465441SEvalZerodifference is that co-routines uses a separate stack for each 113*10465441SEvalZeroco-routine, whereas protothreads are stackless. The most similar 114*10465441SEvalZeromechanism to protothreads are Python generators. These are also 115*10465441SEvalZerostackless constructs, but have a different purpose. Protothreads 116*10465441SEvalZeroprovides blocking contexts inside a C function, whereas Python 117*10465441SEvalZerogenerators provide multiple exit points from a generator function. 118*10465441SEvalZero 119*10465441SEvalZero\section pt-autovars Local variables 120*10465441SEvalZero 121*10465441SEvalZero\note 122*10465441SEvalZeroBecause protothreads do not save the stack context across a blocking 123*10465441SEvalZerocall, local variables are not preserved when the protothread 124*10465441SEvalZeroblocks. This means that local variables should be used with utmost 125*10465441SEvalZerocare - if in doubt, do not use local variables inside a protothread! 126*10465441SEvalZero 127*10465441SEvalZero\section pt-scheduling Scheduling 128*10465441SEvalZero 129*10465441SEvalZeroA protothread is driven by repeated calls to the function in which the 130*10465441SEvalZeroprotothread is running. Each time the function is called, the 131*10465441SEvalZeroprotothread will run until it blocks or exits. Thus the scheduling of 132*10465441SEvalZeroprotothreads is done by the application that uses protothreads. 133*10465441SEvalZero 134*10465441SEvalZero\section pt-impl Implementation 135*10465441SEvalZero 136*10465441SEvalZeroProtothreads are implemented using \ref lc "local continuations". A 137*10465441SEvalZerolocal continuation represents the current state of execution at a 138*10465441SEvalZeroparticular place in the program, but does not provide any call history 139*10465441SEvalZeroor local variables. A local continuation can be set in a specific 140*10465441SEvalZerofunction to capture the state of the function. After a local 141*10465441SEvalZerocontinuation has been set can be resumed in order to restore the state 142*10465441SEvalZeroof the function at the point where the local continuation was set. 143*10465441SEvalZero 144*10465441SEvalZero 145*10465441SEvalZeroLocal continuations can be implemented in a variety of ways: 146*10465441SEvalZero 147*10465441SEvalZero -# by using machine specific assembler code, 148*10465441SEvalZero -# by using standard C constructs, or 149*10465441SEvalZero -# by using compiler extensions. 150*10465441SEvalZero 151*10465441SEvalZeroThe first way works by saving and restoring the processor state, 152*10465441SEvalZeroexcept for stack pointers, and requires between 16 and 32 bytes of 153*10465441SEvalZeromemory per protothread. The exact amount of memory required depends on 154*10465441SEvalZerothe architecture. 155*10465441SEvalZero 156*10465441SEvalZeroThe standard C implementation requires only two bytes of state per 157*10465441SEvalZeroprotothread and utilizes the C switch() statement in a non-obvious way 158*10465441SEvalZerothat is similar to Duff's device. This implementation does, however, 159*10465441SEvalZeroimpose a slight restriction to the code that uses protothreads in that 160*10465441SEvalZerothe code cannot use switch() statements itself. 161*10465441SEvalZero 162*10465441SEvalZeroCertain compilers has C extensions that can be used to implement 163*10465441SEvalZeroprotothreads. GCC supports label pointers that can be used for this 164*10465441SEvalZeropurpose. With this implementation, protothreads require 4 bytes of RAM 165*10465441SEvalZeroper protothread. 166*10465441SEvalZero 167*10465441SEvalZero@{ 168*10465441SEvalZero 169*10465441SEvalZero 170*10465441SEvalZero*/ 171*10465441SEvalZero 172*10465441SEvalZero/** @} */ 173*10465441SEvalZero 174