xref: /nrf52832-nimble/rt-thread/components/net/lwip-1.4.1/doc/rawapi.txt (revision 104654410c56c573564690304ae786df310c91fc)
1*10465441SEvalZeroRaw TCP/IP interface for lwIP
2*10465441SEvalZero
3*10465441SEvalZeroAuthors: Adam Dunkels, Leon Woestenberg, Christiaan Simons
4*10465441SEvalZero
5*10465441SEvalZerolwIP provides three Application Program's Interfaces (APIs) for programs
6*10465441SEvalZeroto use for communication with the TCP/IP code:
7*10465441SEvalZero* low-level "core" / "callback" or "raw" API.
8*10465441SEvalZero* higher-level "sequential" API.
9*10465441SEvalZero* BSD-style socket API.
10*10465441SEvalZero
11*10465441SEvalZeroThe sequential API provides a way for ordinary, sequential, programs
12*10465441SEvalZeroto use the lwIP stack. It is quite similar to the BSD socket API. The
13*10465441SEvalZeromodel of execution is based on the blocking open-read-write-close
14*10465441SEvalZeroparadigm. Since the TCP/IP stack is event based by nature, the TCP/IP
15*10465441SEvalZerocode and the application program must reside in different execution
16*10465441SEvalZerocontexts (threads).
17*10465441SEvalZero
18*10465441SEvalZeroThe socket API is a compatibility API for existing applications,
19*10465441SEvalZerocurrently it is built on top of the sequential API. It is meant to
20*10465441SEvalZeroprovide all functions needed to run socket API applications running
21*10465441SEvalZeroon other platforms (e.g. unix / windows etc.). However, due to limitations
22*10465441SEvalZeroin the specification of this API, there might be incompatibilities
23*10465441SEvalZerothat require small modifications of existing programs.
24*10465441SEvalZero
25*10465441SEvalZero** Threading
26*10465441SEvalZero
27*10465441SEvalZerolwIP started targeting single-threaded environments. When adding multi-
28*10465441SEvalZerothreading support, instead of making the core thread-safe, another
29*10465441SEvalZeroapproach was chosen: there is one main thread running the lwIP core
30*10465441SEvalZero(also known as the "tcpip_thread"). The raw API may only be used from
31*10465441SEvalZerothis thread! Application threads using the sequential- or socket API
32*10465441SEvalZerocommunicate with this main thread through message passing.
33*10465441SEvalZero
34*10465441SEvalZero      As such, the list of functions that may be called from
35*10465441SEvalZero      other threads or an ISR is very limited! Only functions
36*10465441SEvalZero      from these API header files are thread-safe:
37*10465441SEvalZero      - api.h
38*10465441SEvalZero      - netbuf.h
39*10465441SEvalZero      - netdb.h
40*10465441SEvalZero      - netifapi.h
41*10465441SEvalZero      - sockets.h
42*10465441SEvalZero      - sys.h
43*10465441SEvalZero
44*10465441SEvalZero      Additionaly, memory (de-)allocation functions may be
45*10465441SEvalZero      called from multiple threads (not ISR!) with NO_SYS=0
46*10465441SEvalZero      since they are protected by SYS_LIGHTWEIGHT_PROT and/or
47*10465441SEvalZero      semaphores.
48*10465441SEvalZero
49*10465441SEvalZero      Only since 1.3.0, if SYS_LIGHTWEIGHT_PROT is set to 1
50*10465441SEvalZero      and LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT is set to 1,
51*10465441SEvalZero      pbuf_free() may also be called from another thread or
52*10465441SEvalZero      an ISR (since only then, mem_free - for PBUF_RAM - may
53*10465441SEvalZero      be called from an ISR: otherwise, the HEAP is only
54*10465441SEvalZero      protected by semaphores).
55*10465441SEvalZero
56*10465441SEvalZero
57*10465441SEvalZero** The remainder of this document discusses the "raw" API. **
58*10465441SEvalZero
59*10465441SEvalZeroThe raw TCP/IP interface allows the application program to integrate
60*10465441SEvalZerobetter with the TCP/IP code. Program execution is event based by
61*10465441SEvalZerohaving callback functions being called from within the TCP/IP
62*10465441SEvalZerocode. The TCP/IP code and the application program both run in the same
63*10465441SEvalZerothread. The sequential API has a much higher overhead and is not very
64*10465441SEvalZerowell suited for small systems since it forces a multithreaded paradigm
65*10465441SEvalZeroon the application.
66*10465441SEvalZero
67*10465441SEvalZeroThe raw TCP/IP interface is not only faster in terms of code execution
68*10465441SEvalZerotime but is also less memory intensive. The drawback is that program
69*10465441SEvalZerodevelopment is somewhat harder and application programs written for
70*10465441SEvalZerothe raw TCP/IP interface are more difficult to understand. Still, this
71*10465441SEvalZerois the preferred way of writing applications that should be small in
72*10465441SEvalZerocode size and memory usage.
73*10465441SEvalZero
74*10465441SEvalZeroBoth APIs can be used simultaneously by different application
75*10465441SEvalZeroprograms. In fact, the sequential API is implemented as an application
76*10465441SEvalZeroprogram using the raw TCP/IP interface.
77*10465441SEvalZero
78*10465441SEvalZero--- Callbacks
79*10465441SEvalZero
80*10465441SEvalZeroProgram execution is driven by callbacks. Each callback is an ordinary
81*10465441SEvalZeroC function that is called from within the TCP/IP code. Every callback
82*10465441SEvalZerofunction is passed the current TCP or UDP connection state as an
83*10465441SEvalZeroargument. Also, in order to be able to keep program specific state,
84*10465441SEvalZerothe callback functions are called with a program specified argument
85*10465441SEvalZerothat is independent of the TCP/IP state.
86*10465441SEvalZero
87*10465441SEvalZeroThe function for setting the application connection state is:
88*10465441SEvalZero
89*10465441SEvalZero- void tcp_arg(struct tcp_pcb *pcb, void *arg)
90*10465441SEvalZero
91*10465441SEvalZero  Specifies the program specific state that should be passed to all
92*10465441SEvalZero  other callback functions. The "pcb" argument is the current TCP
93*10465441SEvalZero  connection control block, and the "arg" argument is the argument
94*10465441SEvalZero  that will be passed to the callbacks.
95*10465441SEvalZero
96*10465441SEvalZero
97*10465441SEvalZero--- TCP connection setup
98*10465441SEvalZero
99*10465441SEvalZeroThe functions used for setting up connections is similar to that of
100*10465441SEvalZerothe sequential API and of the BSD socket API. A new TCP connection
101*10465441SEvalZeroidentifier (i.e., a protocol control block - PCB) is created with the
102*10465441SEvalZerotcp_new() function. This PCB can then be either set to listen for new
103*10465441SEvalZeroincoming connections or be explicitly connected to another host.
104*10465441SEvalZero
105*10465441SEvalZero- struct tcp_pcb *tcp_new(void)
106*10465441SEvalZero
107*10465441SEvalZero  Creates a new connection identifier (PCB). If memory is not
108*10465441SEvalZero  available for creating the new pcb, NULL is returned.
109*10465441SEvalZero
110*10465441SEvalZero- err_t tcp_bind(struct tcp_pcb *pcb, ip_addr_t *ipaddr,
111*10465441SEvalZero                 u16_t port)
112*10465441SEvalZero
113*10465441SEvalZero  Binds the pcb to a local IP address and port number. The IP address
114*10465441SEvalZero  can be specified as IP_ADDR_ANY in order to bind the connection to
115*10465441SEvalZero  all local IP addresses.
116*10465441SEvalZero
117*10465441SEvalZero  If another connection is bound to the same port, the function will
118*10465441SEvalZero  return ERR_USE, otherwise ERR_OK is returned.
119*10465441SEvalZero
120*10465441SEvalZero- struct tcp_pcb *tcp_listen(struct tcp_pcb *pcb)
121*10465441SEvalZero
122*10465441SEvalZero  Commands a pcb to start listening for incoming connections. When an
123*10465441SEvalZero  incoming connection is accepted, the function specified with the
124*10465441SEvalZero  tcp_accept() function will be called. The pcb will have to be bound
125*10465441SEvalZero  to a local port with the tcp_bind() function.
126*10465441SEvalZero
127*10465441SEvalZero  The tcp_listen() function returns a new connection identifier, and
128*10465441SEvalZero  the one passed as an argument to the function will be
129*10465441SEvalZero  deallocated. The reason for this behavior is that less memory is
130*10465441SEvalZero  needed for a connection that is listening, so tcp_listen() will
131*10465441SEvalZero  reclaim the memory needed for the original connection and allocate a
132*10465441SEvalZero  new smaller memory block for the listening connection.
133*10465441SEvalZero
134*10465441SEvalZero  tcp_listen() may return NULL if no memory was available for the
135*10465441SEvalZero  listening connection. If so, the memory associated with the pcb
136*10465441SEvalZero  passed as an argument to tcp_listen() will not be deallocated.
137*10465441SEvalZero
138*10465441SEvalZero- struct tcp_pcb *tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog)
139*10465441SEvalZero
140*10465441SEvalZero  Same as tcp_listen, but limits the number of outstanding connections
141*10465441SEvalZero  in the listen queue to the value specified by the backlog argument.
142*10465441SEvalZero  To use it, your need to set TCP_LISTEN_BACKLOG=1 in your lwipopts.h.
143*10465441SEvalZero
144*10465441SEvalZero- void tcp_accepted(struct tcp_pcb *pcb)
145*10465441SEvalZero
146*10465441SEvalZero  Inform lwIP that an incoming connection has been accepted. This would
147*10465441SEvalZero  usually be called from the accept callback. This allows lwIP to perform
148*10465441SEvalZero  housekeeping tasks, such as allowing further incoming connections to be
149*10465441SEvalZero  queued in the listen backlog.
150*10465441SEvalZero  ATTENTION: the PCB passed in must be the listening pcb, not the pcb passed
151*10465441SEvalZero  into the accept callback!
152*10465441SEvalZero
153*10465441SEvalZero- void tcp_accept(struct tcp_pcb *pcb,
154*10465441SEvalZero                  err_t (* accept)(void *arg, struct tcp_pcb *newpcb,
155*10465441SEvalZero                                   err_t err))
156*10465441SEvalZero
157*10465441SEvalZero  Specified the callback function that should be called when a new
158*10465441SEvalZero  connection arrives on a listening connection.
159*10465441SEvalZero
160*10465441SEvalZero- err_t tcp_connect(struct tcp_pcb *pcb, ip_addr_t *ipaddr,
161*10465441SEvalZero                    u16_t port, err_t (* connected)(void *arg,
162*10465441SEvalZero                                                    struct tcp_pcb *tpcb,
163*10465441SEvalZero                                                    err_t err));
164*10465441SEvalZero
165*10465441SEvalZero  Sets up the pcb to connect to the remote host and sends the
166*10465441SEvalZero  initial SYN segment which opens the connection.
167*10465441SEvalZero
168*10465441SEvalZero  The tcp_connect() function returns immediately; it does not wait for
169*10465441SEvalZero  the connection to be properly setup. Instead, it will call the
170*10465441SEvalZero  function specified as the fourth argument (the "connected" argument)
171*10465441SEvalZero  when the connection is established. If the connection could not be
172*10465441SEvalZero  properly established, either because the other host refused the
173*10465441SEvalZero  connection or because the other host didn't answer, the "err"
174*10465441SEvalZero  callback function of this pcb (registered with tcp_err, see below)
175*10465441SEvalZero  will be called.
176*10465441SEvalZero
177*10465441SEvalZero  The tcp_connect() function can return ERR_MEM if no memory is
178*10465441SEvalZero  available for enqueueing the SYN segment. If the SYN indeed was
179*10465441SEvalZero  enqueued successfully, the tcp_connect() function returns ERR_OK.
180*10465441SEvalZero
181*10465441SEvalZero
182*10465441SEvalZero--- Sending TCP data
183*10465441SEvalZero
184*10465441SEvalZeroTCP data is sent by enqueueing the data with a call to
185*10465441SEvalZerotcp_write(). When the data is successfully transmitted to the remote
186*10465441SEvalZerohost, the application will be notified with a call to a specified
187*10465441SEvalZerocallback function.
188*10465441SEvalZero
189*10465441SEvalZero- err_t tcp_write(struct tcp_pcb *pcb, const void *dataptr, u16_t len,
190*10465441SEvalZero                  u8_t apiflags)
191*10465441SEvalZero
192*10465441SEvalZero  Enqueues the data pointed to by the argument dataptr. The length of
193*10465441SEvalZero  the data is passed as the len parameter. The apiflags can be one or more of:
194*10465441SEvalZero  - TCP_WRITE_FLAG_COPY: indicates whether the new memory should be allocated
195*10465441SEvalZero    for the data to be copied into. If this flag is not given, no new memory
196*10465441SEvalZero    should be allocated and the data should only be referenced by pointer. This
197*10465441SEvalZero    also means that the memory behind dataptr must not change until the data is
198*10465441SEvalZero    ACKed by the remote host
199*10465441SEvalZero  - TCP_WRITE_FLAG_MORE: indicates that more data follows. If this is given,
200*10465441SEvalZero    the PSH flag is set in the last segment created by this call to tcp_write.
201*10465441SEvalZero    If this flag is given, the PSH flag is not set.
202*10465441SEvalZero
203*10465441SEvalZero  The tcp_write() function will fail and return ERR_MEM if the length
204*10465441SEvalZero  of the data exceeds the current send buffer size or if the length of
205*10465441SEvalZero  the queue of outgoing segment is larger than the upper limit defined
206*10465441SEvalZero  in lwipopts.h. The number of bytes available in the output queue can
207*10465441SEvalZero  be retrieved with the tcp_sndbuf() function.
208*10465441SEvalZero
209*10465441SEvalZero  The proper way to use this function is to call the function with at
210*10465441SEvalZero  most tcp_sndbuf() bytes of data. If the function returns ERR_MEM,
211*10465441SEvalZero  the application should wait until some of the currently enqueued
212*10465441SEvalZero  data has been successfully received by the other host and try again.
213*10465441SEvalZero
214*10465441SEvalZero- void tcp_sent(struct tcp_pcb *pcb,
215*10465441SEvalZero                err_t (* sent)(void *arg, struct tcp_pcb *tpcb,
216*10465441SEvalZero                u16_t len))
217*10465441SEvalZero
218*10465441SEvalZero  Specifies the callback function that should be called when data has
219*10465441SEvalZero  successfully been received (i.e., acknowledged) by the remote
220*10465441SEvalZero  host. The len argument passed to the callback function gives the
221*10465441SEvalZero  amount bytes that was acknowledged by the last acknowledgment.
222*10465441SEvalZero
223*10465441SEvalZero
224*10465441SEvalZero--- Receiving TCP data
225*10465441SEvalZero
226*10465441SEvalZeroTCP data reception is callback based - an application specified
227*10465441SEvalZerocallback function is called when new data arrives. When the
228*10465441SEvalZeroapplication has taken the data, it has to call the tcp_recved()
229*10465441SEvalZerofunction to indicate that TCP can advertise increase the receive
230*10465441SEvalZerowindow.
231*10465441SEvalZero
232*10465441SEvalZero- void tcp_recv(struct tcp_pcb *pcb,
233*10465441SEvalZero                err_t (* recv)(void *arg, struct tcp_pcb *tpcb,
234*10465441SEvalZero                               struct pbuf *p, err_t err))
235*10465441SEvalZero
236*10465441SEvalZero  Sets the callback function that will be called when new data
237*10465441SEvalZero  arrives. The callback function will be passed a NULL pbuf to
238*10465441SEvalZero  indicate that the remote host has closed the connection. If
239*10465441SEvalZero  there are no errors and the callback function is to return
240*10465441SEvalZero  ERR_OK, then it must free the pbuf. Otherwise, it must not
241*10465441SEvalZero  free the pbuf so that lwIP core code can store it.
242*10465441SEvalZero
243*10465441SEvalZero- void tcp_recved(struct tcp_pcb *pcb, u16_t len)
244*10465441SEvalZero
245*10465441SEvalZero  Must be called when the application has received the data. The len
246*10465441SEvalZero  argument indicates the length of the received data.
247*10465441SEvalZero
248*10465441SEvalZero
249*10465441SEvalZero--- Application polling
250*10465441SEvalZero
251*10465441SEvalZeroWhen a connection is idle (i.e., no data is either transmitted or
252*10465441SEvalZeroreceived), lwIP will repeatedly poll the application by calling a
253*10465441SEvalZerospecified callback function. This can be used either as a watchdog
254*10465441SEvalZerotimer for killing connections that have stayed idle for too long, or
255*10465441SEvalZeroas a method of waiting for memory to become available. For instance,
256*10465441SEvalZeroif a call to tcp_write() has failed because memory wasn't available,
257*10465441SEvalZerothe application may use the polling functionality to call tcp_write()
258*10465441SEvalZeroagain when the connection has been idle for a while.
259*10465441SEvalZero
260*10465441SEvalZero- void tcp_poll(struct tcp_pcb *pcb,
261*10465441SEvalZero                err_t (* poll)(void *arg, struct tcp_pcb *tpcb),
262*10465441SEvalZero                u8_t interval)
263*10465441SEvalZero
264*10465441SEvalZero  Specifies the polling interval and the callback function that should
265*10465441SEvalZero  be called to poll the application. The interval is specified in
266*10465441SEvalZero  number of TCP coarse grained timer shots, which typically occurs
267*10465441SEvalZero  twice a second. An interval of 10 means that the application would
268*10465441SEvalZero  be polled every 5 seconds.
269*10465441SEvalZero
270*10465441SEvalZero
271*10465441SEvalZero--- Closing and aborting connections
272*10465441SEvalZero
273*10465441SEvalZero- err_t tcp_close(struct tcp_pcb *pcb)
274*10465441SEvalZero
275*10465441SEvalZero  Closes the connection. The function may return ERR_MEM if no memory
276*10465441SEvalZero  was available for closing the connection. If so, the application
277*10465441SEvalZero  should wait and try again either by using the acknowledgment
278*10465441SEvalZero  callback or the polling functionality. If the close succeeds, the
279*10465441SEvalZero  function returns ERR_OK.
280*10465441SEvalZero
281*10465441SEvalZero  The pcb is deallocated by the TCP code after a call to tcp_close().
282*10465441SEvalZero
283*10465441SEvalZero- void tcp_abort(struct tcp_pcb *pcb)
284*10465441SEvalZero
285*10465441SEvalZero  Aborts the connection by sending a RST (reset) segment to the remote
286*10465441SEvalZero  host. The pcb is deallocated. This function never fails.
287*10465441SEvalZero
288*10465441SEvalZero  ATTENTION: When calling this from one of the TCP callbacks, make
289*10465441SEvalZero  sure you always return ERR_ABRT (and never return ERR_ABRT otherwise
290*10465441SEvalZero  or you will risk accessing deallocated memory or memory leaks!
291*10465441SEvalZero
292*10465441SEvalZero
293*10465441SEvalZeroIf a connection is aborted because of an error, the application is
294*10465441SEvalZeroalerted of this event by the err callback. Errors that might abort a
295*10465441SEvalZeroconnection are when there is a shortage of memory. The callback
296*10465441SEvalZerofunction to be called is set using the tcp_err() function.
297*10465441SEvalZero
298*10465441SEvalZero- void tcp_err(struct tcp_pcb *pcb, void (* err)(void *arg,
299*10465441SEvalZero       err_t err))
300*10465441SEvalZero
301*10465441SEvalZero  The error callback function does not get the pcb passed to it as a
302*10465441SEvalZero  parameter since the pcb may already have been deallocated.
303*10465441SEvalZero
304*10465441SEvalZero
305*10465441SEvalZero--- Lower layer TCP interface
306*10465441SEvalZero
307*10465441SEvalZeroTCP provides a simple interface to the lower layers of the
308*10465441SEvalZerosystem. During system initialization, the function tcp_init() has
309*10465441SEvalZeroto be called before any other TCP function is called. When the system
310*10465441SEvalZerois running, the two timer functions tcp_fasttmr() and tcp_slowtmr()
311*10465441SEvalZeromust be called with regular intervals. The tcp_fasttmr() should be
312*10465441SEvalZerocalled every TCP_FAST_INTERVAL milliseconds (defined in tcp.h) and
313*10465441SEvalZerotcp_slowtmr() should be called every TCP_SLOW_INTERVAL milliseconds.
314*10465441SEvalZero
315*10465441SEvalZero
316*10465441SEvalZero--- UDP interface
317*10465441SEvalZero
318*10465441SEvalZeroThe UDP interface is similar to that of TCP, but due to the lower
319*10465441SEvalZerolevel of complexity of UDP, the interface is significantly simpler.
320*10465441SEvalZero
321*10465441SEvalZero- struct udp_pcb *udp_new(void)
322*10465441SEvalZero
323*10465441SEvalZero  Creates a new UDP pcb which can be used for UDP communication. The
324*10465441SEvalZero  pcb is not active until it has either been bound to a local address
325*10465441SEvalZero  or connected to a remote address.
326*10465441SEvalZero
327*10465441SEvalZero- void udp_remove(struct udp_pcb *pcb)
328*10465441SEvalZero
329*10465441SEvalZero  Removes and deallocates the pcb.
330*10465441SEvalZero
331*10465441SEvalZero- err_t udp_bind(struct udp_pcb *pcb, ip_addr_t *ipaddr,
332*10465441SEvalZero                 u16_t port)
333*10465441SEvalZero
334*10465441SEvalZero  Binds the pcb to a local address. The IP-address argument "ipaddr"
335*10465441SEvalZero  can be IP_ADDR_ANY to indicate that it should listen to any local IP
336*10465441SEvalZero  address. The function currently always return ERR_OK.
337*10465441SEvalZero
338*10465441SEvalZero- err_t udp_connect(struct udp_pcb *pcb, ip_addr_t *ipaddr,
339*10465441SEvalZero                    u16_t port)
340*10465441SEvalZero
341*10465441SEvalZero  Sets the remote end of the pcb. This function does not generate any
342*10465441SEvalZero  network traffic, but only set the remote address of the pcb.
343*10465441SEvalZero
344*10465441SEvalZero- err_t udp_disconnect(struct udp_pcb *pcb)
345*10465441SEvalZero
346*10465441SEvalZero  Remove the remote end of the pcb. This function does not generate
347*10465441SEvalZero  any network traffic, but only removes the remote address of the pcb.
348*10465441SEvalZero
349*10465441SEvalZero- err_t udp_send(struct udp_pcb *pcb, struct pbuf *p)
350*10465441SEvalZero
351*10465441SEvalZero  Sends the pbuf p. The pbuf is not deallocated.
352*10465441SEvalZero
353*10465441SEvalZero- void udp_recv(struct udp_pcb *pcb,
354*10465441SEvalZero                void (* recv)(void *arg, struct udp_pcb *upcb,
355*10465441SEvalZero                                         struct pbuf *p,
356*10465441SEvalZero                                         ip_addr_t *addr,
357*10465441SEvalZero                                         u16_t port),
358*10465441SEvalZero                              void *recv_arg)
359*10465441SEvalZero
360*10465441SEvalZero  Specifies a callback function that should be called when a UDP
361*10465441SEvalZero  datagram is received.
362*10465441SEvalZero
363*10465441SEvalZero
364*10465441SEvalZero--- System initalization
365*10465441SEvalZero
366*10465441SEvalZeroA truly complete and generic sequence for initializing the lwip stack
367*10465441SEvalZerocannot be given because it depends on the build configuration (lwipopts.h)
368*10465441SEvalZeroand additional initializations for your runtime environment (e.g. timers).
369*10465441SEvalZero
370*10465441SEvalZeroWe can give you some idea on how to proceed when using the raw API.
371*10465441SEvalZeroWe assume a configuration using a single Ethernet netif and the
372*10465441SEvalZeroUDP and TCP transport layers, IPv4 and the DHCP client.
373*10465441SEvalZero
374*10465441SEvalZeroCall these functions in the order of appearance:
375*10465441SEvalZero
376*10465441SEvalZero- stats_init()
377*10465441SEvalZero
378*10465441SEvalZero  Clears the structure where runtime statistics are gathered.
379*10465441SEvalZero
380*10465441SEvalZero- sys_init()
381*10465441SEvalZero
382*10465441SEvalZero  Not of much use since we set the NO_SYS 1 option in lwipopts.h,
383*10465441SEvalZero  to be called for easy configuration changes.
384*10465441SEvalZero
385*10465441SEvalZero- mem_init()
386*10465441SEvalZero
387*10465441SEvalZero  Initializes the dynamic memory heap defined by MEM_SIZE.
388*10465441SEvalZero
389*10465441SEvalZero- memp_init()
390*10465441SEvalZero
391*10465441SEvalZero  Initializes the memory pools defined by MEMP_NUM_x.
392*10465441SEvalZero
393*10465441SEvalZero- pbuf_init()
394*10465441SEvalZero
395*10465441SEvalZero  Initializes the pbuf memory pool defined by PBUF_POOL_SIZE.
396*10465441SEvalZero
397*10465441SEvalZero- etharp_init()
398*10465441SEvalZero
399*10465441SEvalZero  Initializes the ARP table and queue.
400*10465441SEvalZero  Note: you must call etharp_tmr at a ARP_TMR_INTERVAL (5 seconds) regular interval
401*10465441SEvalZero  after this initialization.
402*10465441SEvalZero
403*10465441SEvalZero- ip_init()
404*10465441SEvalZero
405*10465441SEvalZero  Doesn't do much, it should be called to handle future changes.
406*10465441SEvalZero
407*10465441SEvalZero- udp_init()
408*10465441SEvalZero
409*10465441SEvalZero  Clears the UDP PCB list.
410*10465441SEvalZero
411*10465441SEvalZero- tcp_init()
412*10465441SEvalZero
413*10465441SEvalZero  Clears the TCP PCB list and clears some internal TCP timers.
414*10465441SEvalZero  Note: you must call tcp_fasttmr() and tcp_slowtmr() at the
415*10465441SEvalZero  predefined regular intervals after this initialization.
416*10465441SEvalZero
417*10465441SEvalZero- netif_add(struct netif *netif, ip_addr_t *ipaddr,
418*10465441SEvalZero            ip_addr_t *netmask, ip_addr_t *gw,
419*10465441SEvalZero            void *state, err_t (* init)(struct netif *netif),
420*10465441SEvalZero            err_t (* input)(struct pbuf *p, struct netif *netif))
421*10465441SEvalZero
422*10465441SEvalZero  Adds your network interface to the netif_list. Allocate a struct
423*10465441SEvalZero  netif and pass a pointer to this structure as the first argument.
424*10465441SEvalZero  Give pointers to cleared ip_addr structures when using DHCP,
425*10465441SEvalZero  or fill them with sane numbers otherwise. The state pointer may be NULL.
426*10465441SEvalZero
427*10465441SEvalZero  The init function pointer must point to a initialization function for
428*10465441SEvalZero  your ethernet netif interface. The following code illustrates it's use.
429*10465441SEvalZero
430*10465441SEvalZero  err_t netif_if_init(struct netif *netif)
431*10465441SEvalZero  {
432*10465441SEvalZero    u8_t i;
433*10465441SEvalZero
434*10465441SEvalZero    for(i = 0; i < ETHARP_HWADDR_LEN; i++) netif->hwaddr[i] = some_eth_addr[i];
435*10465441SEvalZero    init_my_eth_device();
436*10465441SEvalZero    return ERR_OK;
437*10465441SEvalZero  }
438*10465441SEvalZero
439*10465441SEvalZero  For ethernet drivers, the input function pointer must point to the lwip
440*10465441SEvalZero  function ethernet_input() declared in "netif/etharp.h". Other drivers
441*10465441SEvalZero  must use ip_input() declared in "lwip/ip.h".
442*10465441SEvalZero
443*10465441SEvalZero- netif_set_default(struct netif *netif)
444*10465441SEvalZero
445*10465441SEvalZero  Registers the default network interface.
446*10465441SEvalZero
447*10465441SEvalZero- netif_set_up(struct netif *netif)
448*10465441SEvalZero
449*10465441SEvalZero  When the netif is fully configured this function must be called.
450*10465441SEvalZero
451*10465441SEvalZero- dhcp_start(struct netif *netif)
452*10465441SEvalZero
453*10465441SEvalZero  Creates a new DHCP client for this interface on the first call.
454*10465441SEvalZero  Note: you must call dhcp_fine_tmr() and dhcp_coarse_tmr() at
455*10465441SEvalZero  the predefined regular intervals after starting the client.
456*10465441SEvalZero
457*10465441SEvalZero  You can peek in the netif->dhcp struct for the actual DHCP status.
458*10465441SEvalZero
459*10465441SEvalZero
460*10465441SEvalZero--- Optimalization hints
461*10465441SEvalZero
462*10465441SEvalZeroThe first thing you want to optimize is the lwip_standard_checksum()
463*10465441SEvalZeroroutine from src/core/inet.c. You can override this standard
464*10465441SEvalZerofunction with the #define LWIP_CHKSUM <your_checksum_routine>.
465*10465441SEvalZero
466*10465441SEvalZeroThere are C examples given in inet.c or you might want to
467*10465441SEvalZerocraft an assembly function for this. RFC1071 is a good
468*10465441SEvalZerointroduction to this subject.
469*10465441SEvalZero
470*10465441SEvalZeroOther significant improvements can be made by supplying
471*10465441SEvalZeroassembly or inline replacements for htons() and htonl()
472*10465441SEvalZeroif you're using a little-endian architecture.
473*10465441SEvalZero#define LWIP_PLATFORM_BYTESWAP 1
474*10465441SEvalZero#define LWIP_PLATFORM_HTONS(x) <your_htons>
475*10465441SEvalZero#define LWIP_PLATFORM_HTONL(x) <your_htonl>
476*10465441SEvalZero
477*10465441SEvalZeroCheck your network interface driver if it reads at
478*10465441SEvalZeroa higher speed than the maximum wire-speed. If the
479*10465441SEvalZerohardware isn't serviced frequently and fast enough
480*10465441SEvalZerobuffer overflows are likely to occur.
481*10465441SEvalZero
482*10465441SEvalZeroE.g. when using the cs8900 driver, call cs8900if_service(ethif)
483*10465441SEvalZeroas frequently as possible. When using an RTOS let the cs8900 interrupt
484*10465441SEvalZerowake a high priority task that services your driver using a binary
485*10465441SEvalZerosemaphore or event flag. Some drivers might allow additional tuning
486*10465441SEvalZeroto match your application and network.
487*10465441SEvalZero
488*10465441SEvalZeroFor a production release it is recommended to set LWIP_STATS to 0.
489*10465441SEvalZeroNote that speed performance isn't influenced much by simply setting
490*10465441SEvalZerohigh values to the memory options.
491*10465441SEvalZero
492*10465441SEvalZeroFor more optimization hints take a look at the lwIP wiki.
493*10465441SEvalZero
494*10465441SEvalZero--- Zero-copy MACs
495*10465441SEvalZero
496*10465441SEvalZeroTo achieve zero-copy on transmit, the data passed to the raw API must
497*10465441SEvalZeroremain unchanged until sent. Because the send- (or write-)functions return
498*10465441SEvalZerowhen the packets have been enqueued for sending, data must be kept stable
499*10465441SEvalZeroafter that, too.
500*10465441SEvalZero
501*10465441SEvalZeroThis implies that PBUF_RAM/PBUF_POOL pbufs passed to raw-API send functions
502*10465441SEvalZeromust *not* be reused by the application unless their ref-count is 1.
503*10465441SEvalZero
504*10465441SEvalZeroFor no-copy pbufs (PBUF_ROM/PBUF_REF), data must be kept unchanged, too,
505*10465441SEvalZerobut the stack/driver will/must copy PBUF_REF'ed data when enqueueing, while
506*10465441SEvalZeroPBUF_ROM-pbufs are just enqueued (as ROM-data is expected to never change).
507*10465441SEvalZero
508*10465441SEvalZeroAlso, data passed to tcp_write without the copy-flag must not be changed!
509*10465441SEvalZero
510*10465441SEvalZeroTherefore, be careful which type of PBUF you use and if you copy TCP data
511*10465441SEvalZeroor not!
512