1*10465441SEvalZero /*
2*10465441SEvalZero * Copyright (c) 2006-2018, RT-Thread Development Team
3*10465441SEvalZero *
4*10465441SEvalZero * SPDX-License-Identifier: Apache-2.0
5*10465441SEvalZero *
6*10465441SEvalZero * Change Logs:
7*10465441SEvalZero * Date Author Notes
8*10465441SEvalZero */
9*10465441SEvalZero #include <time.h>
10*10465441SEvalZero #include <rtthread.h>
11*10465441SEvalZero
12*10465441SEvalZero /* days per month -- nonleap! */
13*10465441SEvalZero const short __spm[13] =
14*10465441SEvalZero { 0,
15*10465441SEvalZero (31),
16*10465441SEvalZero (31+28),
17*10465441SEvalZero (31+28+31),
18*10465441SEvalZero (31+28+31+30),
19*10465441SEvalZero (31+28+31+30+31),
20*10465441SEvalZero (31+28+31+30+31+30),
21*10465441SEvalZero (31+28+31+30+31+30+31),
22*10465441SEvalZero (31+28+31+30+31+30+31+31),
23*10465441SEvalZero (31+28+31+30+31+30+31+31+30),
24*10465441SEvalZero (31+28+31+30+31+30+31+31+30+31),
25*10465441SEvalZero (31+28+31+30+31+30+31+31+30+31+30),
26*10465441SEvalZero (31+28+31+30+31+30+31+31+30+31+30+31),
27*10465441SEvalZero };
28*10465441SEvalZero static long int timezone;
29*10465441SEvalZero static const char days[] = "Sun Mon Tue Wed Thu Fri Sat ";
30*10465441SEvalZero static const char months[] = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ";
31*10465441SEvalZero
32*10465441SEvalZero /* seconds per day */
33*10465441SEvalZero #define SPD 24*60*60
34*10465441SEvalZero
__isleap(int year)35*10465441SEvalZero int __isleap(int year)
36*10465441SEvalZero {
37*10465441SEvalZero /* every fourth year is a leap year except for century years that are
38*10465441SEvalZero * not divisible by 400. */
39*10465441SEvalZero /* return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); */
40*10465441SEvalZero return (!(year % 4) && ((year % 100) || !(year % 400)));
41*10465441SEvalZero }
42*10465441SEvalZero
gmtime_r(const time_t * timep,struct tm * r)43*10465441SEvalZero struct tm *gmtime_r(const time_t *timep, struct tm *r)
44*10465441SEvalZero {
45*10465441SEvalZero time_t i;
46*10465441SEvalZero register time_t work = *timep % (SPD);
47*10465441SEvalZero r->tm_sec = work % 60;
48*10465441SEvalZero work /= 60;
49*10465441SEvalZero r->tm_min = work % 60;
50*10465441SEvalZero r->tm_hour = work / 60;
51*10465441SEvalZero work = *timep / (SPD);
52*10465441SEvalZero r->tm_wday = (4 + work) % 7;
53*10465441SEvalZero for (i = 1970;; ++i)
54*10465441SEvalZero {
55*10465441SEvalZero register time_t k = __isleap(i) ? 366 : 365;
56*10465441SEvalZero if (work >= k)
57*10465441SEvalZero work -= k;
58*10465441SEvalZero else
59*10465441SEvalZero break;
60*10465441SEvalZero }
61*10465441SEvalZero r->tm_year = i - 1900;
62*10465441SEvalZero r->tm_yday = work;
63*10465441SEvalZero
64*10465441SEvalZero r->tm_mday = 1;
65*10465441SEvalZero if (__isleap(i) && (work > 58))
66*10465441SEvalZero {
67*10465441SEvalZero if (work == 59)
68*10465441SEvalZero r->tm_mday = 2; /* 29.2. */
69*10465441SEvalZero work -= 1;
70*10465441SEvalZero }
71*10465441SEvalZero
72*10465441SEvalZero for (i = 11; i && (__spm[i] > work); --i)
73*10465441SEvalZero ;
74*10465441SEvalZero r->tm_mon = i;
75*10465441SEvalZero r->tm_mday += work - __spm[i];
76*10465441SEvalZero return r;
77*10465441SEvalZero }
78*10465441SEvalZero
localtime_r(const time_t * t,struct tm * r)79*10465441SEvalZero struct tm* localtime_r(const time_t* t, struct tm* r)
80*10465441SEvalZero {
81*10465441SEvalZero time_t tmp;
82*10465441SEvalZero struct timezone tz = {0};
83*10465441SEvalZero gettimeofday(0, &tz);
84*10465441SEvalZero timezone = tz.tz_minuteswest * 60L;
85*10465441SEvalZero tmp = *t + timezone;
86*10465441SEvalZero return gmtime_r(&tmp, r);
87*10465441SEvalZero }
88*10465441SEvalZero
localtime(const time_t * t)89*10465441SEvalZero struct tm* localtime(const time_t* t)
90*10465441SEvalZero {
91*10465441SEvalZero static struct tm tmp;
92*10465441SEvalZero return localtime_r(t, &tmp);
93*10465441SEvalZero }
94*10465441SEvalZero
mktime(struct tm * const t)95*10465441SEvalZero time_t mktime(struct tm * const t)
96*10465441SEvalZero {
97*10465441SEvalZero register time_t day;
98*10465441SEvalZero register time_t i;
99*10465441SEvalZero register time_t years = t->tm_year - 70;
100*10465441SEvalZero
101*10465441SEvalZero if (t->tm_sec > 60)
102*10465441SEvalZero {
103*10465441SEvalZero t->tm_min += t->tm_sec / 60;
104*10465441SEvalZero t->tm_sec %= 60;
105*10465441SEvalZero }
106*10465441SEvalZero if (t->tm_min > 60)
107*10465441SEvalZero {
108*10465441SEvalZero t->tm_hour += t->tm_min / 60;
109*10465441SEvalZero t->tm_min %= 60;
110*10465441SEvalZero }
111*10465441SEvalZero if (t->tm_hour > 24)
112*10465441SEvalZero {
113*10465441SEvalZero t->tm_mday += t->tm_hour / 24;
114*10465441SEvalZero t->tm_hour %= 24;
115*10465441SEvalZero }
116*10465441SEvalZero if (t->tm_mon > 12)
117*10465441SEvalZero {
118*10465441SEvalZero t->tm_year += t->tm_mon / 12;
119*10465441SEvalZero t->tm_mon %= 12;
120*10465441SEvalZero }
121*10465441SEvalZero while (t->tm_mday > __spm[1 + t->tm_mon])
122*10465441SEvalZero {
123*10465441SEvalZero if (t->tm_mon == 1 && __isleap(t->tm_year + 1900))
124*10465441SEvalZero {
125*10465441SEvalZero --t->tm_mday;
126*10465441SEvalZero }
127*10465441SEvalZero t->tm_mday -= __spm[t->tm_mon];
128*10465441SEvalZero ++t->tm_mon;
129*10465441SEvalZero if (t->tm_mon > 11)
130*10465441SEvalZero {
131*10465441SEvalZero t->tm_mon = 0;
132*10465441SEvalZero ++t->tm_year;
133*10465441SEvalZero }
134*10465441SEvalZero }
135*10465441SEvalZero
136*10465441SEvalZero if (t->tm_year < 70)
137*10465441SEvalZero return (time_t) -1;
138*10465441SEvalZero
139*10465441SEvalZero /* Days since 1970 is 365 * number of years + number of leap years since 1970 */
140*10465441SEvalZero day = years * 365 + (years + 1) / 4;
141*10465441SEvalZero
142*10465441SEvalZero /* After 2100 we have to substract 3 leap years for every 400 years
143*10465441SEvalZero This is not intuitive. Most mktime implementations do not support
144*10465441SEvalZero dates after 2059, anyway, so we might leave this out for it's
145*10465441SEvalZero bloat. */
146*10465441SEvalZero if (years >= 131)
147*10465441SEvalZero {
148*10465441SEvalZero years -= 131;
149*10465441SEvalZero years /= 100;
150*10465441SEvalZero day -= (years >> 2) * 3 + 1;
151*10465441SEvalZero if ((years &= 3) == 3)
152*10465441SEvalZero years--;
153*10465441SEvalZero day -= years;
154*10465441SEvalZero }
155*10465441SEvalZero
156*10465441SEvalZero day += t->tm_yday = __spm[t->tm_mon] + t->tm_mday - 1 +
157*10465441SEvalZero (__isleap(t->tm_year + 1900) & (t->tm_mon > 1));
158*10465441SEvalZero
159*10465441SEvalZero /* day is now the number of days since 'Jan 1 1970' */
160*10465441SEvalZero i = 7;
161*10465441SEvalZero t->tm_wday = (day + 4) % i; /* Sunday=0, Monday=1, ..., Saturday=6 */
162*10465441SEvalZero
163*10465441SEvalZero i = 24;
164*10465441SEvalZero day *= i;
165*10465441SEvalZero i = 60;
166*10465441SEvalZero return ((day + t->tm_hour) * i + t->tm_min) * i + t->tm_sec;
167*10465441SEvalZero }
168*10465441SEvalZero
num2str(char * c,int i)169*10465441SEvalZero static void num2str(char *c, int i)
170*10465441SEvalZero {
171*10465441SEvalZero c[0] = i / 10 + '0';
172*10465441SEvalZero c[1] = i % 10 + '0';
173*10465441SEvalZero }
174*10465441SEvalZero
asctime_r(const struct tm * t,char * buf)175*10465441SEvalZero char *asctime_r(const struct tm *t, char *buf)
176*10465441SEvalZero {
177*10465441SEvalZero /* "Wed Jun 30 21:49:08 1993\n" */
178*10465441SEvalZero *(int*) buf = *(int*) (days + (t->tm_wday << 2));
179*10465441SEvalZero *(int*) (buf + 4) = *(int*) (months + (t->tm_mon << 2));
180*10465441SEvalZero num2str(buf + 8, t->tm_mday);
181*10465441SEvalZero if (buf[8] == '0')
182*10465441SEvalZero buf[8] = ' ';
183*10465441SEvalZero buf[10] = ' ';
184*10465441SEvalZero num2str(buf + 11, t->tm_hour);
185*10465441SEvalZero buf[13] = ':';
186*10465441SEvalZero num2str(buf + 14, t->tm_min);
187*10465441SEvalZero buf[16] = ':';
188*10465441SEvalZero num2str(buf + 17, t->tm_sec);
189*10465441SEvalZero buf[19] = ' ';
190*10465441SEvalZero num2str(buf + 20, (t->tm_year + 1900) / 100);
191*10465441SEvalZero num2str(buf + 22, (t->tm_year + 1900) % 100);
192*10465441SEvalZero buf[24] = '\n';
193*10465441SEvalZero return buf;
194*10465441SEvalZero }
195*10465441SEvalZero
asctime(const struct tm * timeptr)196*10465441SEvalZero char *asctime(const struct tm *timeptr)
197*10465441SEvalZero {
198*10465441SEvalZero static char buf[25];
199*10465441SEvalZero return asctime_r(timeptr, buf);
200*10465441SEvalZero }
201*10465441SEvalZero
ctime(const time_t * timep)202*10465441SEvalZero char *ctime(const time_t *timep)
203*10465441SEvalZero {
204*10465441SEvalZero return asctime(localtime(timep));
205*10465441SEvalZero }
206*10465441SEvalZero
207*10465441SEvalZero #ifdef RT_USING_DEVICE
gettimeofday(struct timeval * tp,void * ignore)208*10465441SEvalZero int gettimeofday(struct timeval *tp, void *ignore)
209*10465441SEvalZero {
210*10465441SEvalZero time_t time;
211*10465441SEvalZero rt_device_t device;
212*10465441SEvalZero
213*10465441SEvalZero device = rt_device_find("rtc");
214*10465441SEvalZero if (device != RT_NULL)
215*10465441SEvalZero {
216*10465441SEvalZero rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time);
217*10465441SEvalZero if (tp != RT_NULL)
218*10465441SEvalZero {
219*10465441SEvalZero tp->tv_sec = time;
220*10465441SEvalZero tp->tv_usec = 0;
221*10465441SEvalZero }
222*10465441SEvalZero
223*10465441SEvalZero return time;
224*10465441SEvalZero }
225*10465441SEvalZero
226*10465441SEvalZero return 0;
227*10465441SEvalZero }
228*10465441SEvalZero #endif
229*10465441SEvalZero
230*10465441SEvalZero #ifndef _gettimeofday
231*10465441SEvalZero /* Dummy function when hardware do not have RTC */
_gettimeofday(struct timeval * tv,void * ignore)232*10465441SEvalZero int _gettimeofday( struct timeval *tv, void *ignore)
233*10465441SEvalZero {
234*10465441SEvalZero tv->tv_sec = 0; // convert to seconds
235*10465441SEvalZero tv->tv_usec = 0; // get remaining microseconds
236*10465441SEvalZero return 0; // return non-zero for error
237*10465441SEvalZero }
238*10465441SEvalZero #endif
239*10465441SEvalZero
240*10465441SEvalZero /**
241*10465441SEvalZero * Returns the current time.
242*10465441SEvalZero *
243*10465441SEvalZero * @param time_t * t the timestamp pointer, if not used, keep NULL.
244*10465441SEvalZero *
245*10465441SEvalZero * @return time_t return timestamp current.
246*10465441SEvalZero *
247*10465441SEvalZero */
248*10465441SEvalZero /* for IAR 6.2 later Compiler */
249*10465441SEvalZero #if defined (__IAR_SYSTEMS_ICC__) && (__VER__) >= 6020000
250*10465441SEvalZero #pragma module_name = "?time"
time_t(__time32)251*10465441SEvalZero time_t (__time32)(time_t *t) /* Only supports 32-bit timestamp */
252*10465441SEvalZero #else
253*10465441SEvalZero time_t time(time_t *t)
254*10465441SEvalZero #endif
255*10465441SEvalZero {
256*10465441SEvalZero time_t time_now = 0;
257*10465441SEvalZero
258*10465441SEvalZero #ifdef RT_USING_RTC
259*10465441SEvalZero static rt_device_t device = RT_NULL;
260*10465441SEvalZero
261*10465441SEvalZero /* optimization: find rtc device only first. */
262*10465441SEvalZero if (device == RT_NULL)
263*10465441SEvalZero {
264*10465441SEvalZero device = rt_device_find("rtc");
265*10465441SEvalZero }
266*10465441SEvalZero
267*10465441SEvalZero /* read timestamp from RTC device. */
268*10465441SEvalZero if (device != RT_NULL)
269*10465441SEvalZero {
270*10465441SEvalZero if (rt_device_open(device, 0) == RT_EOK)
271*10465441SEvalZero {
272*10465441SEvalZero rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time_now);
273*10465441SEvalZero rt_device_close(device);
274*10465441SEvalZero }
275*10465441SEvalZero }
276*10465441SEvalZero #endif /* RT_USING_RTC */
277*10465441SEvalZero
278*10465441SEvalZero /* if t is not NULL, write timestamp to *t */
279*10465441SEvalZero if (t != RT_NULL)
280*10465441SEvalZero {
281*10465441SEvalZero *t = time_now;
282*10465441SEvalZero }
283*10465441SEvalZero
284*10465441SEvalZero return time_now;
285*10465441SEvalZero }
286*10465441SEvalZero
clock(void)287*10465441SEvalZero RT_WEAK clock_t clock(void)
288*10465441SEvalZero {
289*10465441SEvalZero return rt_tick_get();
290*10465441SEvalZero }
291