xref: /nrf52832-nimble/rt-thread/components/drivers/wlan/wlan_lwip.c (revision 167494296f0543431a51b6b1b83e957045294e05)
1 /*
2  * Copyright (c) 2006-2018, RT-Thread Development Team
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Change Logs:
7  * Date           Author       Notes
8  * 2018-08-14     tyx          the first version
9  */
10 
11 #include <rthw.h>
12 #include <rtthread.h>
13 #include <wlan_dev.h>
14 #include <wlan_prot.h>
15 #include <wlan_workqueue.h>
16 
17 #ifdef RT_USING_LWIP
18 #include <netif/ethernetif.h>
19 #include <lwip/netifapi.h>
20 #ifdef LWIP_USING_DHCPD
21 #include <dhcp_server.h>
22 #endif
23 
24 #define DBG_ENABLE
25 #ifdef RT_WLAN_LWIP_DEBUG
26 #define DBG_LEVEL DBG_LOG
27 #else
28 #define DBG_LEVEL DBG_INFO
29 #endif
30 #define DBG_SECTION_NAME  "WLAN.lwip"
31 #define DBG_COLOR
32 #include <rtdbg.h>
33 
34 #ifndef IPADDR_STRLEN_MAX
35 #define IPADDR_STRLEN_MAX    (32)
36 #endif
37 
38 struct lwip_prot_des
39 {
40     struct rt_wlan_prot prot;
41     struct eth_device eth;
42     rt_int8_t connected_flag;
43     struct rt_timer timer;
44     struct rt_work work;
45 };
46 
47 static void netif_is_ready(struct rt_work *work, void *parameter)
48 {
49     ip_addr_t ip_addr_zero = { 0 };
50     struct rt_wlan_device *wlan = parameter;
51     struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot;
52     struct eth_device *eth_dev = &lwip_prot->eth;
53     rt_base_t level;
54     struct rt_wlan_buff buff;
55     rt_uint32_t ip_addr[4];
56     char str[IPADDR_STRLEN_MAX];
57 
58     rt_timer_stop(&lwip_prot->timer);
59     if (ip_addr_cmp(&(eth_dev->netif->ip_addr), &ip_addr_zero) != 0)
60     {
61         rt_timer_start(&lwip_prot->timer);
62         goto exit;
63     }
64     rt_memset(&ip_addr, 0, sizeof(ip_addr));
65 #if LWIP_IPV4 && LWIP_IPV6
66     if (eth_dev->netif->ip_addr.type == IPADDR_TYPE_V4)
67     {
68         ip_addr[0] = ip4_addr_get_u32(&eth_dev->netif->ip_addr.u_addr.ip4);
69         buff.data = &ip_addr[0];
70         buff.len = sizeof(ip_addr[0]);
71     }
72     else if (eth_dev->netif->ip_addr.type == IPADDR_TYPE_V6)
73     {
74         *(ip6_addr_t *)(&ip_addr[0]) = eth_dev->netif->ip_addr.u_addr.ip6;
75         buff.data = ip_addr;
76         buff.len = sizeof(ip_addr);
77     }
78     else
79     {
80         LOG_W("F:%s L:%d ip addr type not support", __FUNCTION__, __LINE__);
81     }
82 #else
83 #if LWIP_IPV4
84     ip_addr[0] = ip4_addr_get_u32(&eth_dev->netif->ip_addr);
85     buff.data = &ip_addr[0];
86     buff.len = sizeof(ip_addr[0]);
87 #else
88     *(ip_addr_t *)(&ip_addr[0]) = eth_dev->netif->ip_addr;
89     buff.data = ip_addr;
90     buff.len = sizeof(ip_addr);
91 #endif
92 #endif
93     if (rt_wlan_prot_ready(wlan, &buff) != 0)
94     {
95         rt_timer_start(&lwip_prot->timer);
96         goto exit;
97     }
98     rt_memset(str, 0, IPADDR_STRLEN_MAX);
99     rt_enter_critical();
100     rt_memcpy(str, ipaddr_ntoa(&(eth_dev->netif->ip_addr)), IPADDR_STRLEN_MAX);
101     rt_exit_critical();
102     LOG_I("Got IP address : %s", str);
103 exit:
104     level = rt_hw_interrupt_disable();
105     rt_memset(work, 0, sizeof(struct rt_work));
106     rt_hw_interrupt_enable(level);
107 }
108 
109 static void timer_callback(void *parameter)
110 {
111     struct rt_workqueue *workqueue;
112     struct rt_wlan_device *wlan = parameter;
113     struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot;
114     struct rt_work *work = &lwip_prot->work;
115     rt_base_t level;
116 
117     workqueue = rt_wlan_get_workqueue();
118     if (workqueue != RT_NULL)
119     {
120         level = rt_hw_interrupt_disable();
121         rt_work_init(work, netif_is_ready, parameter);
122         rt_hw_interrupt_enable(level);
123         if (rt_workqueue_dowork(workqueue, work) != RT_EOK)
124         {
125             level = rt_hw_interrupt_disable();
126             rt_memset(work, 0, sizeof(struct rt_work));
127             rt_hw_interrupt_enable(level);
128         }
129     }
130 }
131 
132 static void netif_set_connected(void *parameter)
133 {
134     struct rt_wlan_device *wlan = parameter;
135     struct lwip_prot_des *lwip_prot = wlan->prot;
136     struct eth_device *eth_dev = &lwip_prot->eth;
137 
138     if (lwip_prot->connected_flag)
139     {
140         if (wlan->mode == RT_WLAN_STATION)
141         {
142             LOG_D("F:%s L:%d dhcp start run", __FUNCTION__, __LINE__);
143             netifapi_netif_common(eth_dev->netif, netif_set_link_up, NULL);
144 #ifdef RT_LWIP_DHCP
145             dhcp_start(eth_dev->netif);
146 #endif
147             rt_timer_start(&lwip_prot->timer);
148         }
149         else if (wlan->mode == RT_WLAN_AP)
150         {
151             LOG_D("F:%s L:%d dhcpd start run", __FUNCTION__, __LINE__);
152 
153             netifapi_netif_common(eth_dev->netif, netif_set_link_up, NULL);
154 #ifdef LWIP_USING_DHCPD
155             {
156                 char netif_name[8];
157                 int i;
158 
159                 rt_memset(netif_name, 0, sizeof(netif_name));
160                 for (i = 0; i < sizeof(eth_dev->netif->name); i++)
161                 {
162                     netif_name[i] = eth_dev->netif->name[i];
163                 }
164                 dhcpd_start(netif_name);
165             }
166 #endif
167         }
168     }
169     else
170     {
171         if (wlan->mode == RT_WLAN_STATION)
172         {
173             LOG_D("F:%s L:%d dhcp stop run", __FUNCTION__, __LINE__);
174             netifapi_netif_common(eth_dev->netif, netif_set_link_down, NULL);
175 #ifdef RT_LWIP_DHCP
176             {
177                 ip_addr_t ip_addr = { 0 };
178                 dhcp_stop(eth_dev->netif);
179                 netif_set_addr(eth_dev->netif, &ip_addr, &ip_addr, &ip_addr);
180             }
181 #endif
182             rt_timer_stop(&lwip_prot->timer);
183         }
184         else if (wlan->mode == RT_WLAN_AP)
185         {
186             LOG_D("F:%s L:%d dhcpd stop run", __FUNCTION__, __LINE__);
187             netifapi_netif_common(eth_dev->netif, netif_set_link_down, NULL);
188         }
189     }
190 }
191 
192 static void rt_wlan_lwip_event_handle(struct rt_wlan_prot *port, struct rt_wlan_device *wlan, int event)
193 {
194     struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot;
195     rt_bool_t flag_old;
196 
197     flag_old = lwip_prot->connected_flag;
198 
199     switch (event)
200     {
201     case RT_WLAN_PROT_EVT_CONNECT:
202     {
203         LOG_D("event: CONNECT");
204         lwip_prot->connected_flag = RT_TRUE;
205         break;
206     }
207     case RT_WLAN_PROT_EVT_DISCONNECT:
208     {
209         LOG_D("event: DISCONNECT");
210         lwip_prot->connected_flag = RT_FALSE;
211         break;
212     }
213     case RT_WLAN_PROT_EVT_AP_START:
214     {
215         LOG_D("event: AP_START");
216         lwip_prot->connected_flag = RT_TRUE;
217         break;
218     }
219     case RT_WLAN_PROT_EVT_AP_STOP:
220     {
221         LOG_D("event: AP_STOP");
222         lwip_prot->connected_flag = RT_FALSE;
223         break;
224     }
225     case RT_WLAN_PROT_EVT_AP_ASSOCIATED:
226     {
227         LOG_D("event: ASSOCIATED");
228         break;
229     }
230     case RT_WLAN_PROT_EVT_AP_DISASSOCIATED:
231     {
232         LOG_D("event: DISASSOCIATED");
233         break;
234     }
235     default :
236     {
237         LOG_D("event: UNKNOWN");
238         break;
239     }
240     }
241     if (flag_old != lwip_prot->connected_flag)
242     {
243         rt_wlan_workqueue_dowork(netif_set_connected, wlan);
244         // netif_set_connected(wlan);
245     }
246 }
247 
248 static rt_err_t rt_wlan_lwip_protocol_control(rt_device_t device, int cmd, void *args)
249 {
250     struct eth_device *eth_dev = (struct eth_device *)device;
251     struct rt_wlan_device *wlan;
252     rt_err_t err = RT_EOK;
253 
254     RT_ASSERT(eth_dev != RT_NULL);
255 
256     LOG_D("F:%s L:%d device:0x%08x user_data:0x%08x", __FUNCTION__, __LINE__, eth_dev, eth_dev->parent.user_data);
257 
258     switch (cmd)
259     {
260     case NIOCTL_GADDR:
261         /* get MAC address */
262         wlan = eth_dev->parent.user_data;
263         err = rt_device_control((rt_device_t)wlan, RT_WLAN_CMD_GET_MAC, args);
264         break;
265     default :
266         break;
267     }
268     return err;
269 }
270 
271 static rt_err_t rt_wlan_lwip_protocol_recv(struct rt_wlan_device *wlan, void *buff, int len)
272 {
273     struct eth_device *eth_dev = &((struct lwip_prot_des *)wlan->prot)->eth;
274     struct pbuf *p = RT_NULL;
275 
276     LOG_D("F:%s L:%d run", __FUNCTION__, __LINE__);
277 
278     if (eth_dev == RT_NULL)
279     {
280         return -RT_ERROR;
281     }
282 #ifdef RT_WLAN_PROT_LWIP_PBUF_FORCE
283     {
284         p = buff;
285         if ((eth_dev->netif->input(p, eth_dev->netif)) != ERR_OK)
286         {
287             return -RT_ERROR;
288         }
289         return RT_EOK;
290     }
291 #else
292     {
293         int count = 0;
294 
295         while (p == RT_NULL)
296         {
297             p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
298             if (p != RT_NULL)
299                 break;
300 
301             p = pbuf_alloc(PBUF_RAW, len, PBUF_RAM);
302             if (p != RT_NULL)
303                 break;
304 
305             LOG_D("F:%s L:%d wait for pbuf_alloc!", __FUNCTION__, __LINE__);
306             rt_thread_delay(1);
307             count++;
308 
309             //wait for 10ms or give up!!
310             if (count >= 10)
311             {
312                 LOG_W("F:%s L:%d pbuf allocate fail!!!", __FUNCTION__, __LINE__);
313                 return -RT_ENOMEM;
314             }
315         }
316         /*copy data dat -> pbuf*/
317         pbuf_take(p, buff, len);
318         if ((eth_dev->netif->input(p, eth_dev->netif)) != ERR_OK)
319         {
320             LOG_D("F:%s L:%d IP input error", __FUNCTION__, __LINE__);
321             pbuf_free(p);
322             p = RT_NULL;
323         }
324         LOG_D("F:%s L:%d netif iput success! len:%d", __FUNCTION__, __LINE__, len);
325         return RT_EOK;
326     }
327 #endif
328 }
329 
330 static rt_err_t rt_wlan_lwip_protocol_send(rt_device_t device, struct pbuf *p)
331 {
332     struct rt_wlan_device *wlan = ((struct eth_device *)device)->parent.user_data;
333 
334     LOG_D("F:%s L:%d run", __FUNCTION__, __LINE__);
335 
336     if (wlan == RT_NULL)
337     {
338         return RT_EOK;
339     }
340 
341 #ifdef RT_WLAN_PROT_LWIP_PBUF_FORCE
342     {
343         rt_wlan_prot_transfer_dev(wlan, p, p->tot_len);
344         return RT_EOK;
345     }
346 #else
347     {
348         rt_uint8_t *frame;
349 
350         /* sending data directly */
351         if (p->len == p->tot_len)
352         {
353             frame = (rt_uint8_t *)p->payload;
354             rt_wlan_prot_transfer_dev(wlan, frame, p->tot_len);
355             LOG_D("F:%s L:%d run len:%d", __FUNCTION__, __LINE__, p->tot_len);
356             return RT_EOK;
357         }
358         frame = rt_malloc(p->tot_len);
359         if (frame == RT_NULL)
360         {
361             LOG_E("F:%s L:%d malloc out_buf fail\n", __FUNCTION__, __LINE__);
362             return -RT_ENOMEM;
363         }
364         /*copy pbuf -> data dat*/
365         pbuf_copy_partial(p, frame, p->tot_len, 0);
366         /* send data */
367         rt_wlan_prot_transfer_dev(wlan, frame, p->tot_len);
368         LOG_D("F:%s L:%d run len:%d", __FUNCTION__, __LINE__, p->tot_len);
369         rt_free(frame);
370         return RT_EOK;
371     }
372 #endif
373 }
374 
375 #ifdef RT_USING_DEVICE_OPS
376 const static struct rt_device_ops wlan_lwip_ops =
377 {
378     RT_NULL,
379     RT_NULL,
380     RT_NULL,
381     RT_NULL,
382     RT_NULL,
383     rt_wlan_lwip_protocol_control
384 };
385 #endif
386 
387 static struct rt_wlan_prot *rt_wlan_lwip_protocol_register(struct rt_wlan_prot *prot, struct rt_wlan_device *wlan)
388 {
389     struct eth_device *eth = RT_NULL;
390     static rt_uint8_t id = 0;
391     char eth_name[4], timer_name[16];
392     rt_device_t device = RT_NULL;
393     struct lwip_prot_des *lwip_prot;
394 
395     if (wlan == RT_NULL || prot == RT_NULL)
396         return RT_NULL;;
397 
398     LOG_D("F:%s L:%d is run wlan:0x%08x", __FUNCTION__, __LINE__, wlan);
399 
400     do
401     {
402         /* find ETH device name */
403         eth_name[0] = 'w';
404         eth_name[1] = '0' + id++;
405         eth_name[2] = '\0';
406         device = rt_device_find(eth_name);
407     }
408     while (device);
409 
410     if (id > 9)
411     {
412         LOG_E("F:%s L:%d not find Empty name", __FUNCTION__, __LINE__, eth_name);
413         return RT_NULL;
414     }
415 
416     if (rt_device_open((rt_device_t)wlan, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
417     {
418         LOG_E("F:%s L:%d open wlan failed", __FUNCTION__, __LINE__);
419         return RT_NULL;
420     }
421 
422     lwip_prot = rt_malloc(sizeof(struct lwip_prot_des));
423     if (lwip_prot == RT_NULL)
424     {
425         LOG_E("F:%s L:%d malloc mem failed", __FUNCTION__, __LINE__);
426         rt_device_close((rt_device_t)wlan);
427         return RT_NULL;
428     }
429     rt_memset(lwip_prot, 0, sizeof(struct lwip_prot_des));
430 
431     eth = &lwip_prot->eth;
432 
433 #ifdef RT_USING_DEVICE_OPS
434     eth->parent.ops        = &wlan_lwip_ops;
435 #else
436     eth->parent.init       = RT_NULL;
437     eth->parent.open       = RT_NULL;
438     eth->parent.close      = RT_NULL;
439     eth->parent.read       = RT_NULL;
440     eth->parent.write      = RT_NULL;
441     eth->parent.control    = rt_wlan_lwip_protocol_control;
442 #endif
443 
444     eth->parent.user_data  = wlan;
445     eth->eth_rx     = RT_NULL;
446     eth->eth_tx     = rt_wlan_lwip_protocol_send;
447 
448     /* register ETH device */
449     if (eth_device_init(eth, eth_name) != RT_EOK)
450     {
451         LOG_E("eth device init failed");
452         rt_device_close((rt_device_t)wlan);
453         rt_free(lwip_prot);
454         return RT_NULL;
455     }
456     rt_memcpy(&lwip_prot->prot, prot, sizeof(struct rt_wlan_prot));
457     if (wlan->mode == RT_WLAN_STATION)
458     {
459         rt_sprintf(timer_name, "timer_%s", eth_name);
460         rt_timer_init(&lwip_prot->timer, timer_name, timer_callback, wlan, rt_tick_from_millisecond(1000),
461                       RT_TIMER_FLAG_SOFT_TIMER | RT_TIMER_FLAG_ONE_SHOT);
462     }
463     netif_set_up(eth->netif);
464     LOG_I("eth device init ok name:%s", eth_name);
465 
466     return &lwip_prot->prot;
467 }
468 
469 static void rt_wlan_lwip_protocol_unregister(struct rt_wlan_prot *prot, struct rt_wlan_device *wlan)
470 {
471     /*TODO*/
472     LOG_D("F:%s L:%d is run wlan:0x%08x", __FUNCTION__, __LINE__, wlan);
473 }
474 
475 static struct rt_wlan_prot_ops ops =
476 {
477     rt_wlan_lwip_protocol_recv,
478     rt_wlan_lwip_protocol_register,
479     rt_wlan_lwip_protocol_unregister
480 };
481 
482 int rt_wlan_lwip_init(void)
483 {
484     static struct rt_wlan_prot prot;
485     rt_wlan_prot_event_t event;
486 
487     rt_memset(&prot, 0, sizeof(prot));
488     rt_strncpy(&prot.name[0], RT_WLAN_PROT_LWIP, RT_WLAN_PROT_NAME_LEN);
489     prot.ops = &ops;
490 
491     if (rt_wlan_prot_regisetr(&prot) != RT_EOK)
492     {
493         LOG_E("F:%s L:%d protocol regisetr failed", __FUNCTION__, __LINE__);
494         return -1;
495     }
496 
497     for (event = RT_WLAN_PROT_EVT_INIT_DONE; event < RT_WLAN_PROT_EVT_MAX; event++)
498     {
499         rt_wlan_prot_event_register(&prot, event, rt_wlan_lwip_event_handle);
500     }
501 
502     return 0;
503 }
504 INIT_PREV_EXPORT(rt_wlan_lwip_init);
505 
506 #endif
507