1 /* infblock.c -- interpret and process block types to last block 2 * Copyright (C) 1995-2002 Mark Adler 3 * For conditions of distribution and use, see copyright notice in zlib.h 4 */ 5 6 #include "zutil.h" 7 #include "infblock.h" 8 #include "inftrees.h" 9 //#include "infcodes.h" //no such file! 10 #include "infutil.h" 11 12 struct inflate_codes_state {int dummy;}; /* for buggy compilers */ 13 14 /* simplify the use of the inflate_huft type with some defines */ 15 #define exop word.what.Exop 16 #define bits word.what.Bits 17 18 /* Table for deflate from PKZIP's appnote.txt. */ 19 local const uInt border[] = { /* Order of the bit length code lengths */ 20 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; 21 22 /* 23 Notes beyond the 1.93a appnote.txt: 24 25 1. Distance pointers never point before the beginning of the output 26 stream. 27 2. Distance pointers can point back across blocks, up to 32k away. 28 3. There is an implied maximum of 7 bits for the bit length table and 29 15 bits for the actual data. 30 4. If only one code exists, then it is encoded using one bit. (Zero 31 would be more efficient, but perhaps a little confusing.) If two 32 codes exist, they are coded using one bit each (0 and 1). 33 5. There is no way of sending zero distance codes--a dummy must be 34 sent if there are none. (History: a pre 2.0 version of PKZIP would 35 store blocks with no distance codes, but this was discovered to be 36 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow 37 zero distance codes, which is sent as one code of zero bits in 38 length. 39 6. There are up to 286 literal/length codes. Code 256 represents the 40 end-of-block. Note however that the static length tree defines 41 288 codes just to fill out the Huffman codes. Codes 286 and 287 42 cannot be used though, since there is no length base or extra bits 43 defined for them. Similarily, there are up to 30 distance codes. 44 However, static trees define 32 codes (all 5 bits) to fill out the 45 Huffman codes, but the last two had better not show up in the data. 46 7. Unzip can check dynamic Huffman blocks for complete code sets. 47 The exception is that a single code would not be complete (see #4). 48 8. The five bits following the block type is really the number of 49 literal codes sent minus 257. 50 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits 51 (1+6+6). Therefore, to output three times the length, you output 52 three codes (1+1+1), whereas to output four times the same length, 53 you only need two codes (1+3). Hmm. 54 10. In the tree reconstruction algorithm, Code = Code + Increment 55 only if BitLength(i) is not zero. (Pretty obvious.) 56 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) 57 12. Note: length code 284 can represent 227-258, but length code 285 58 really is 258. The last length deserves its own, short code 59 since it gets used a lot in very redundant files. The length 60 258 is special since 258 - 3 (the min match length) is 255. 61 13. The literal/length and distance code bit lengths are read as a 62 single stream of lengths. It is possible (and advantageous) for 63 a repeat code (16, 17, or 18) to go across the boundary between 64 the two sets of lengths. 65 */ 66 67 68 void inflate_blocks_reset(s, z, c) 69 inflate_blocks_statef *s; 70 z_streamp z; 71 uLongf *c; 72 { 73 if (c != Z_NULL) 74 *c = s->check; 75 if (s->mode == BTREE || s->mode == DTREE) 76 ZFREE(z, s->sub.trees.blens); 77 if (s->mode == CODES) 78 inflate_codes_free(s->sub.decode.codes, z); 79 s->mode = TYPE; 80 s->bitk = 0; 81 s->bitb = 0; 82 s->read = s->write = s->window; 83 if (s->checkfn != Z_NULL) 84 z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0); 85 Tracev((stderr, "inflate: blocks reset\n")); 86 } 87 88 89 inflate_blocks_statef *inflate_blocks_new(z, c, w) 90 z_streamp z; 91 check_func c; 92 uInt w; 93 { 94 inflate_blocks_statef *s; 95 96 if ((s = (inflate_blocks_statef *)ZALLOC 97 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL) 98 return s; 99 if ((s->hufts = 100 (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL) 101 { 102 ZFREE(z, s); 103 return Z_NULL; 104 } 105 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL) 106 { 107 ZFREE(z, s->hufts); 108 ZFREE(z, s); 109 return Z_NULL; 110 } 111 s->end = s->window + w; 112 s->checkfn = c; 113 s->mode = TYPE; 114 Tracev((stderr, "inflate: blocks allocated\n")); 115 inflate_blocks_reset(s, z, Z_NULL); 116 return s; 117 } 118 119 120 int inflate_blocks(s, z, r) 121 inflate_blocks_statef *s; 122 z_streamp z; 123 int r; 124 { 125 uInt t; /* temporary storage */ 126 uLong b; /* bit buffer */ 127 uInt k; /* bits in bit buffer */ 128 Bytef *p; /* input data pointer */ 129 uInt n; /* bytes available there */ 130 Bytef *q; /* output window write pointer */ 131 uInt m; /* bytes to end of window or read pointer */ 132 133 /* copy input/output information to locals (UPDATE macro restores) */ 134 LOAD 135 136 /* process input based on current state */ 137 while (1) switch (s->mode) 138 { 139 case TYPE: 140 NEEDBITS(3) 141 t = (uInt)b & 7; 142 s->last = t & 1; 143 switch (t >> 1) 144 { 145 case 0: /* stored */ 146 Tracev((stderr, "inflate: stored block%s\n", 147 s->last ? " (last)" : "")); 148 DUMPBITS(3) 149 t = k & 7; /* go to byte boundary */ 150 DUMPBITS(t) 151 s->mode = LENS; /* get length of stored block */ 152 break; 153 case 1: /* fixed */ 154 Tracev((stderr, "inflate: fixed codes block%s\n", 155 s->last ? " (last)" : "")); 156 { 157 uInt bl, bd; 158 inflate_huft *tl, *td; 159 160 inflate_trees_fixed(&bl, &bd, &tl, &td, z); 161 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); 162 if (s->sub.decode.codes == Z_NULL) 163 { 164 r = Z_MEM_ERROR; 165 LEAVE 166 } 167 } 168 DUMPBITS(3) 169 s->mode = CODES; 170 break; 171 case 2: /* dynamic */ 172 Tracev((stderr, "inflate: dynamic codes block%s\n", 173 s->last ? " (last)" : "")); 174 DUMPBITS(3) 175 s->mode = TABLE; 176 break; 177 case 3: /* illegal */ 178 DUMPBITS(3) 179 s->mode = BAD; 180 z->msg = (char*)"invalid block type"; 181 r = Z_DATA_ERROR; 182 LEAVE 183 } 184 break; 185 case LENS: 186 NEEDBITS(32) 187 if ((((~b) >> 16) & 0xffff) != (b & 0xffff)) 188 { 189 s->mode = BAD; 190 z->msg = (char*)"invalid stored block lengths"; 191 r = Z_DATA_ERROR; 192 LEAVE 193 } 194 s->sub.left = (uInt)b & 0xffff; 195 b = k = 0; /* dump bits */ 196 Tracev((stderr, "inflate: stored length %u\n", s->sub.left)); 197 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE); 198 break; 199 case STORED: 200 if (n == 0) 201 LEAVE 202 NEEDOUT 203 t = s->sub.left; 204 if (t > n) t = n; 205 if (t > m) t = m; 206 zmemcpy(q, p, t); 207 p += t; n -= t; 208 q += t; m -= t; 209 if ((s->sub.left -= t) != 0) 210 break; 211 Tracev((stderr, "inflate: stored end, %lu total out\n", 212 z->total_out + (q >= s->read ? q - s->read : 213 (s->end - s->read) + (q - s->window)))); 214 s->mode = s->last ? DRY : TYPE; 215 break; 216 case TABLE: 217 NEEDBITS(14) 218 s->sub.trees.table = t = (uInt)b & 0x3fff; 219 #ifndef PKZIP_BUG_WORKAROUND 220 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) 221 { 222 s->mode = BAD; 223 z->msg = (char*)"too many length or distance symbols"; 224 r = Z_DATA_ERROR; 225 LEAVE 226 } 227 #endif 228 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); 229 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) 230 { 231 r = Z_MEM_ERROR; 232 LEAVE 233 } 234 DUMPBITS(14) 235 s->sub.trees.index = 0; 236 Tracev((stderr, "inflate: table sizes ok\n")); 237 s->mode = BTREE; 238 case BTREE: 239 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) 240 { 241 NEEDBITS(3) 242 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; 243 DUMPBITS(3) 244 } 245 while (s->sub.trees.index < 19) 246 s->sub.trees.blens[border[s->sub.trees.index++]] = 0; 247 s->sub.trees.bb = 7; 248 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, 249 &s->sub.trees.tb, s->hufts, z); 250 if (t != Z_OK) 251 { 252 r = t; 253 if (r == Z_DATA_ERROR) 254 { 255 ZFREE(z, s->sub.trees.blens); 256 s->mode = BAD; 257 } 258 LEAVE 259 } 260 s->sub.trees.index = 0; 261 Tracev((stderr, "inflate: bits tree ok\n")); 262 s->mode = DTREE; 263 case DTREE: 264 while (t = s->sub.trees.table, 265 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) 266 { 267 inflate_huft *h; 268 uInt i, j, c; 269 270 t = s->sub.trees.bb; 271 NEEDBITS(t) 272 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); 273 t = h->bits; 274 c = h->base; 275 if (c < 16) 276 { 277 DUMPBITS(t) 278 s->sub.trees.blens[s->sub.trees.index++] = c; 279 } 280 else /* c == 16..18 */ 281 { 282 i = c == 18 ? 7 : c - 14; 283 j = c == 18 ? 11 : 3; 284 NEEDBITS(t + i) 285 DUMPBITS(t) 286 j += (uInt)b & inflate_mask[i]; 287 DUMPBITS(i) 288 i = s->sub.trees.index; 289 t = s->sub.trees.table; 290 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || 291 (c == 16 && i < 1)) 292 { 293 ZFREE(z, s->sub.trees.blens); 294 s->mode = BAD; 295 z->msg = (char*)"invalid bit length repeat"; 296 r = Z_DATA_ERROR; 297 LEAVE 298 } 299 c = c == 16 ? s->sub.trees.blens[i - 1] : 0; 300 do { 301 s->sub.trees.blens[i++] = c; 302 } while (--j); 303 s->sub.trees.index = i; 304 } 305 } 306 s->sub.trees.tb = Z_NULL; 307 { 308 uInt bl, bd; 309 inflate_huft *tl, *td; 310 inflate_codes_statef *c; 311 312 bl = 9; /* must be <= 9 for lookahead assumptions */ 313 bd = 6; /* must be <= 9 for lookahead assumptions */ 314 t = s->sub.trees.table; 315 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), 316 s->sub.trees.blens, &bl, &bd, &tl, &td, 317 s->hufts, z); 318 if (t != Z_OK) 319 { 320 if (t == (uInt)Z_DATA_ERROR) 321 { 322 ZFREE(z, s->sub.trees.blens); 323 s->mode = BAD; 324 } 325 r = t; 326 LEAVE 327 } 328 Tracev((stderr, "inflate: trees ok\n")); 329 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) 330 { 331 r = Z_MEM_ERROR; 332 LEAVE 333 } 334 s->sub.decode.codes = c; 335 } 336 ZFREE(z, s->sub.trees.blens); 337 s->mode = CODES; 338 case CODES: 339 UPDATE 340 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) 341 return inflate_flush(s, z, r); 342 r = Z_OK; 343 inflate_codes_free(s->sub.decode.codes, z); 344 LOAD 345 Tracev((stderr, "inflate: codes end, %lu total out\n", 346 z->total_out + (q >= s->read ? q - s->read : 347 (s->end - s->read) + (q - s->window)))); 348 if (!s->last) 349 { 350 s->mode = TYPE; 351 break; 352 } 353 s->mode = DRY; 354 case DRY: 355 FLUSH 356 if (s->read != s->write) 357 LEAVE 358 s->mode = DONE; 359 case DONE: 360 r = Z_STREAM_END; 361 LEAVE 362 case BAD: 363 r = Z_DATA_ERROR; 364 LEAVE 365 default: 366 r = Z_STREAM_ERROR; 367 LEAVE 368 } 369 } 370 371 372 int inflate_blocks_free(s, z) 373 inflate_blocks_statef *s; 374 z_streamp z; 375 { 376 inflate_blocks_reset(s, z, Z_NULL); 377 ZFREE(z, s->window); 378 ZFREE(z, s->hufts); 379 ZFREE(z, s); 380 Tracev((stderr, "inflate: blocks freed\n")); 381 return Z_OK; 382 } 383 384 385 void inflate_set_dictionary(s, d, n) 386 inflate_blocks_statef *s; 387 const Bytef *d; 388 uInt n; 389 { 390 zmemcpy(s->window, d, n); 391 s->read = s->write = s->window + n; 392 } 393 394 395 /* Returns true if inflate is currently at the end of a block generated 396 * by Z_SYNC_FLUSH or Z_FULL_FLUSH. 397 * IN assertion: s != Z_NULL 398 */ 399 int inflate_blocks_sync_point(s) 400 inflate_blocks_statef *s; 401 { 402 return s->mode == LENS; 403 } 404