xref: /nrf52832-nimble/nordic/nrfx/hal/nrf_spis.h (revision 150812a83cab50279bd772ef6db1bfaf255f2c5b)
1 /*
2  * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice, this
9  *    list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its
16  *    contributors may be used to endorse or promote products derived from this
17  *    software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #ifndef NRF_SPIS_H__
33 #define NRF_SPIS_H__
34 
35 #include <nrfx.h>
36 
37 #ifdef __cplusplus
38 extern "C" {
39 #endif
40 
41 /**
42  * @defgroup nrf_spis_hal SPIS HAL
43  * @{
44  * @ingroup nrf_spis
45  * @brief   Hardware access layer for managing the SPIS peripheral.
46  */
47 
48 /**
49  * @brief This value can be used as a parameter for the @ref nrf_spis_pins_set
50  *        function to specify that a given SPI signal (SCK, MOSI, or MISO)
51  *        shall not be connected to a physical pin.
52  */
53 #define NRF_SPIS_PIN_NOT_CONNECTED  0xFFFFFFFF
54 
55 
56 /**
57  * @brief SPIS tasks.
58  */
59 typedef enum
60 {
61     /*lint -save -e30*/
62     NRF_SPIS_TASK_ACQUIRE = offsetof(NRF_SPIS_Type, TASKS_ACQUIRE), ///< Acquire SPI semaphore.
63     NRF_SPIS_TASK_RELEASE = offsetof(NRF_SPIS_Type, TASKS_RELEASE), ///< Release SPI semaphore, enabling the SPI slave to acquire it.
64     /*lint -restore*/
65 } nrf_spis_task_t;
66 
67 /**
68  * @brief SPIS events.
69  */
70 typedef enum
71 {
72     /*lint -save -e30*/
73     NRF_SPIS_EVENT_END      = offsetof(NRF_SPIS_Type, EVENTS_END),     ///< Granted transaction completed.
74     NRF_SPIS_EVENT_ACQUIRED = offsetof(NRF_SPIS_Type, EVENTS_ACQUIRED) ///< Semaphore acquired.
75     /*lint -restore*/
76 } nrf_spis_event_t;
77 
78 /**
79  * @brief SPIS shortcuts.
80  */
81 typedef enum
82 {
83     NRF_SPIS_SHORT_END_ACQUIRE = SPIS_SHORTS_END_ACQUIRE_Msk ///< Shortcut between END event and ACQUIRE task.
84 } nrf_spis_short_mask_t;
85 
86 /**
87  * @brief SPIS interrupts.
88  */
89 typedef enum
90 {
91     NRF_SPIS_INT_END_MASK      = SPIS_INTENSET_END_Msk,     ///< Interrupt on END event.
92     NRF_SPIS_INT_ACQUIRED_MASK = SPIS_INTENSET_ACQUIRED_Msk ///< Interrupt on ACQUIRED event.
93 } nrf_spis_int_mask_t;
94 
95 /**
96  * @brief SPI modes.
97  */
98 typedef enum
99 {
100     NRF_SPIS_MODE_0, ///< SCK active high, sample on leading edge of clock.
101     NRF_SPIS_MODE_1, ///< SCK active high, sample on trailing edge of clock.
102     NRF_SPIS_MODE_2, ///< SCK active low, sample on leading edge of clock.
103     NRF_SPIS_MODE_3  ///< SCK active low, sample on trailing edge of clock.
104 } nrf_spis_mode_t;
105 
106 /**
107  * @brief SPI bit orders.
108  */
109 typedef enum
110 {
111     NRF_SPIS_BIT_ORDER_MSB_FIRST = SPIS_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first.
112     NRF_SPIS_BIT_ORDER_LSB_FIRST = SPIS_CONFIG_ORDER_LsbFirst  ///< Least significant bit shifted out first.
113 } nrf_spis_bit_order_t;
114 
115 /**
116  * @brief SPI semaphore status.
117  */
118 typedef enum
119 {
120     NRF_SPIS_SEMSTAT_FREE       = 0, ///< Semaphore is free.
121     NRF_SPIS_SEMSTAT_CPU        = 1, ///< Semaphore is assigned to the CPU.
122     NRF_SPIS_SEMSTAT_SPIS       = 2, ///< Semaphore is assigned to the SPI slave.
123     NRF_SPIS_SEMSTAT_CPUPENDING = 3  ///< Semaphore is assigned to the SPI, but a handover to the CPU is pending.
124 } nrf_spis_semstat_t;
125 
126 /**
127  * @brief SPIS status.
128  */
129 typedef enum
130 {
131     NRF_SPIS_STATUS_OVERREAD = SPIS_STATUS_OVERREAD_Msk, ///< TX buffer over-read detected and prevented.
132     NRF_SPIS_STATUS_OVERFLOW = SPIS_STATUS_OVERFLOW_Msk  ///< RX buffer overflow detected and prevented.
133 } nrf_spis_status_mask_t;
134 
135 /**
136  * @brief Function for activating a specific SPIS task.
137  *
138  * @param[in] p_reg     Pointer to the peripheral registers structure.
139  * @param[in] spis_task Task to activate.
140  */
141 __STATIC_INLINE void nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,
142                                            nrf_spis_task_t spis_task);
143 
144 /**
145  * @brief Function for getting the address of a specific SPIS task register.
146  *
147  * @param[in] p_reg     Pointer to the peripheral registers structure.
148  * @param[in] spis_task Requested task.
149  *
150  * @return Address of the specified task register.
151  */
152 __STATIC_INLINE uint32_t nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,
153                                                    nrf_spis_task_t spis_task);
154 
155 /**
156  * @brief Function for clearing a specific SPIS event.
157  *
158  * @param[in] p_reg      Pointer to the peripheral registers structure.
159  * @param[in] spis_event Event to clear.
160  */
161 __STATIC_INLINE void nrf_spis_event_clear(NRF_SPIS_Type * p_reg,
162                                           nrf_spis_event_t spis_event);
163 
164 /**
165  * @brief Function for checking the state of a specific SPIS event.
166  *
167  * @param[in] p_reg      Pointer to the peripheral registers structure.
168  * @param[in] spis_event Event to check.
169  *
170  * @retval true  If the event is set.
171  * @retval false If the event is not set.
172  */
173 __STATIC_INLINE bool nrf_spis_event_check(NRF_SPIS_Type const * p_reg,
174                                           nrf_spis_event_t spis_event);
175 
176 /**
177  * @brief Function for getting the address of a specific SPIS event register.
178  *
179  * @param[in] p_reg      Pointer to the peripheral registers structure.
180  * @param[in] spis_event Requested event.
181  *
182  * @return Address of the specified event register.
183  */
184 __STATIC_INLINE uint32_t nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,
185                                                     nrf_spis_event_t spis_event);
186 
187 /**
188  * @brief Function for enabling specified shortcuts.
189  *
190  * @param[in] p_reg            Pointer to the peripheral registers structure.
191  * @param[in] spis_shorts_mask Shortcuts to enable.
192  */
193 __STATIC_INLINE void nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,
194                                             uint32_t spis_shorts_mask);
195 
196 /**
197  * @brief Function for disabling specified shortcuts.
198  *
199  * @param[in] p_reg            Pointer to the peripheral registers structure.
200  * @param[in] spis_shorts_mask Shortcuts to disable.
201  */
202 __STATIC_INLINE void nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,
203                                              uint32_t spis_shorts_mask);
204 
205 /**
206  * @brief Function for enabling specified interrupts.
207  *
208  * @param[in] p_reg         Pointer to the peripheral registers structure.
209  * @param[in] spis_int_mask Interrupts to enable.
210  */
211 __STATIC_INLINE void nrf_spis_int_enable(NRF_SPIS_Type * p_reg,
212                                          uint32_t spis_int_mask);
213 
214 /**
215  * @brief Function for disabling specified interrupts.
216  *
217  * @param[in] p_reg         Pointer to the peripheral registers structure.
218  * @param[in] spis_int_mask Interrupts to disable.
219  */
220 __STATIC_INLINE void nrf_spis_int_disable(NRF_SPIS_Type * p_reg,
221                                           uint32_t spis_int_mask);
222 
223 /**
224  * @brief Function for retrieving the state of a given interrupt.
225  *
226  * @param[in] p_reg    Pointer to the peripheral registers structure.
227  * @param[in] spis_int Interrupt to check.
228  *
229  * @retval true  If the interrupt is enabled.
230  * @retval false If the interrupt is not enabled.
231  */
232 __STATIC_INLINE bool nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg,
233                                                nrf_spis_int_mask_t spis_int);
234 
235 #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
236 /**
237  * @brief Function for setting the subscribe configuration for a given
238  *        SPIS task.
239  *
240  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
241  * @param[in] task    Task for which to set the configuration.
242  * @param[in] channel Channel through which to subscribe events.
243  */
244 __STATIC_INLINE void nrf_spis_subscribe_set(NRF_SPIS_Type * p_reg,
245                                             nrf_spis_task_t task,
246                                             uint8_t         channel);
247 
248 /**
249  * @brief Function for clearing the subscribe configuration for a given
250  *        SPIS task.
251  *
252  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
253  * @param[in] task  Task for which to clear the configuration.
254  */
255 __STATIC_INLINE void nrf_spis_subscribe_clear(NRF_SPIS_Type * p_reg,
256                                               nrf_spis_task_t task);
257 
258 /**
259  * @brief Function for setting the publish configuration for a given
260  *        SPIS event.
261  *
262  * @param[in] p_reg   Pointer to the structure of registers of the peripheral.
263  * @param[in] event   Event for which to set the configuration.
264  * @param[in] channel Channel through which to publish the event.
265  */
266 __STATIC_INLINE void nrf_spis_publish_set(NRF_SPIS_Type *  p_reg,
267                                           nrf_spis_event_t event,
268                                           uint8_t          channel);
269 
270 /**
271  * @brief Function for clearing the publish configuration for a given
272  *        SPIS event.
273  *
274  * @param[in] p_reg Pointer to the structure of registers of the peripheral.
275  * @param[in] event Event for which to clear the configuration.
276  */
277 __STATIC_INLINE void nrf_spis_publish_clear(NRF_SPIS_Type *  p_reg,
278                                             nrf_spis_event_t event);
279 #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
280 
281 /**
282  * @brief Function for enabling the SPIS peripheral.
283  *
284  * @param[in] p_reg  Pointer to the peripheral registers structure.
285  */
286 __STATIC_INLINE void nrf_spis_enable(NRF_SPIS_Type * p_reg);
287 
288 /**
289  * @brief Function for disabling the SPIS peripheral.
290  *
291  * @param[in] p_reg  Pointer to the peripheral registers structure.
292  */
293 __STATIC_INLINE void nrf_spis_disable(NRF_SPIS_Type * p_reg);
294 
295 /**
296  * @brief Function for retrieving the SPIS semaphore status.
297  *
298  * @param[in] p_reg  Pointer to the peripheral registers structure.
299  *
300  * @returns Current semaphore status.
301  */
302 __STATIC_INLINE nrf_spis_semstat_t nrf_spis_semaphore_status_get(NRF_SPIS_Type * p_reg);
303 
304 /**
305  * @brief Function for retrieving the SPIS status.
306  *
307  * @param[in] p_reg  Pointer to the peripheral registers structure.
308  *
309  * @returns Current SPIS status.
310  */
311 __STATIC_INLINE nrf_spis_status_mask_t nrf_spis_status_get(NRF_SPIS_Type * p_reg);
312 
313 /**
314  * @brief Function for configuring SPIS pins.
315  *
316  * If a given signal is not needed, pass the @ref NRF_SPIS_PIN_NOT_CONNECTED
317  * value instead of its pin number.
318  *
319  * @param[in] p_reg     Pointer to the peripheral registers structure.
320  * @param[in] sck_pin   SCK pin number.
321  * @param[in] mosi_pin  MOSI pin number.
322  * @param[in] miso_pin  MISO pin number.
323  * @param[in] csn_pin   CSN pin number.
324  */
325 __STATIC_INLINE void nrf_spis_pins_set(NRF_SPIS_Type * p_reg,
326                                        uint32_t sck_pin,
327                                        uint32_t mosi_pin,
328                                        uint32_t miso_pin,
329                                        uint32_t csn_pin);
330 
331 /**
332  * @brief Function for setting the transmit buffer.
333  *
334  * @param[in]  p_reg    Pointer to the peripheral registers structure.
335  * @param[in]  p_buffer Pointer to the buffer that contains the data to send.
336  * @param[in]  length   Maximum number of data bytes to transmit.
337  */
338 __STATIC_INLINE void nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,
339                                             uint8_t const * p_buffer,
340                                             size_t          length);
341 
342 /**
343  * @brief Function for setting the receive buffer.
344  *
345  * @param[in] p_reg    Pointer to the peripheral registers structure.
346  * @param[in] p_buffer Pointer to the buffer for received data.
347  * @param[in] length   Maximum number of data bytes to receive.
348  */
349 __STATIC_INLINE void nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,
350                                             uint8_t * p_buffer,
351                                             size_t    length);
352 
353 /**
354  * @brief Function for getting the number of bytes transmitted
355  *        in the last granted transaction.
356  *
357  * @param[in]  p_reg    Pointer to the peripheral registers structure.
358  *
359  * @returns Number of bytes transmitted.
360  */
361 __STATIC_INLINE size_t nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg);
362 
363 /**
364  * @brief Function for getting the number of bytes received
365  *        in the last granted transaction.
366  *
367  * @param[in]  p_reg    Pointer to the peripheral registers structure.
368  *
369  * @returns Number of bytes received.
370  */
371 __STATIC_INLINE size_t nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg);
372 
373 /**
374  * @brief Function for setting the SPI configuration.
375  *
376  * @param[in] p_reg         Pointer to the peripheral registers structure.
377  * @param[in] spi_mode      SPI mode.
378  * @param[in] spi_bit_order SPI bit order.
379  */
380 __STATIC_INLINE void nrf_spis_configure(NRF_SPIS_Type * p_reg,
381                                         nrf_spis_mode_t spi_mode,
382                                         nrf_spis_bit_order_t spi_bit_order);
383 
384 /**
385  * @brief Function for setting the default character.
386  *
387  * @param[in] p_reg  Pointer to the peripheral registers structure.
388  * @param[in] def    Default character that is clocked out in case of
389  *                   an overflow of the RXD buffer.
390  */
391 __STATIC_INLINE void nrf_spis_def_set(NRF_SPIS_Type * p_reg,
392                                       uint8_t def);
393 
394 /**
395  * @brief Function for setting the over-read character.
396  *
397  * @param[in] p_reg  Pointer to the peripheral registers structure.
398  * @param[in] orc    Over-read character that is clocked out in case of
399  *                   an over-read of the TXD buffer.
400  */
401 __STATIC_INLINE void nrf_spis_orc_set(NRF_SPIS_Type * p_reg,
402                                       uint8_t orc);
403 
404 
405 #ifndef SUPPRESS_INLINE_IMPLEMENTATION
406 
nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,nrf_spis_task_t spis_task)407 __STATIC_INLINE void nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,
408                                            nrf_spis_task_t spis_task)
409 {
410     *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_task)) = 0x1UL;
411 }
412 
nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,nrf_spis_task_t spis_task)413 __STATIC_INLINE uint32_t nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,
414                                                    nrf_spis_task_t spis_task)
415 {
416     return (uint32_t)p_reg + (uint32_t)spis_task;
417 }
418 
nrf_spis_event_clear(NRF_SPIS_Type * p_reg,nrf_spis_event_t spis_event)419 __STATIC_INLINE void nrf_spis_event_clear(NRF_SPIS_Type *  p_reg,
420                                           nrf_spis_event_t spis_event)
421 {
422     *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event)) = 0x0UL;
423 #if __CORTEX_M == 0x04
424     volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event));
425     (void)dummy;
426 #endif
427 }
428 
nrf_spis_event_check(NRF_SPIS_Type const * p_reg,nrf_spis_event_t spis_event)429 __STATIC_INLINE bool nrf_spis_event_check(NRF_SPIS_Type const * p_reg,
430                                           nrf_spis_event_t spis_event)
431 {
432     return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spis_event);
433 }
434 
nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,nrf_spis_event_t spis_event)435 __STATIC_INLINE uint32_t nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,
436                                                     nrf_spis_event_t spis_event)
437 {
438     return (uint32_t)p_reg + (uint32_t)spis_event;
439 }
440 
nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,uint32_t spis_shorts_mask)441 __STATIC_INLINE void nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,
442                                             uint32_t spis_shorts_mask)
443 {
444     p_reg->SHORTS |= spis_shorts_mask;
445 }
446 
nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,uint32_t spis_shorts_mask)447 __STATIC_INLINE void nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,
448                                              uint32_t spis_shorts_mask)
449 {
450     p_reg->SHORTS &= ~(spis_shorts_mask);
451 }
452 
nrf_spis_int_enable(NRF_SPIS_Type * p_reg,uint32_t spis_int_mask)453 __STATIC_INLINE void nrf_spis_int_enable(NRF_SPIS_Type * p_reg,
454                                          uint32_t spis_int_mask)
455 {
456     p_reg->INTENSET = spis_int_mask;
457 }
458 
nrf_spis_int_disable(NRF_SPIS_Type * p_reg,uint32_t spis_int_mask)459 __STATIC_INLINE void nrf_spis_int_disable(NRF_SPIS_Type * p_reg,
460                                           uint32_t spis_int_mask)
461 {
462     p_reg->INTENCLR = spis_int_mask;
463 }
464 
nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg,nrf_spis_int_mask_t spis_int)465 __STATIC_INLINE bool nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg,
466                                                nrf_spis_int_mask_t spis_int)
467 {
468     return (bool)(p_reg->INTENSET & spis_int);
469 }
470 
471 #if defined(DPPI_PRESENT)
nrf_spis_subscribe_set(NRF_SPIS_Type * p_reg,nrf_spis_task_t task,uint8_t channel)472 __STATIC_INLINE void nrf_spis_subscribe_set(NRF_SPIS_Type * p_reg,
473                                             nrf_spis_task_t task,
474                                             uint8_t        channel)
475 {
476     *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) =
477             ((uint32_t)channel | SPIS_SUBSCRIBE_ACQUIRE_EN_Msk);
478 }
479 
nrf_spis_subscribe_clear(NRF_SPIS_Type * p_reg,nrf_spis_task_t task)480 __STATIC_INLINE void nrf_spis_subscribe_clear(NRF_SPIS_Type * p_reg,
481                                               nrf_spis_task_t task)
482 {
483     *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0;
484 }
485 
nrf_spis_publish_set(NRF_SPIS_Type * p_reg,nrf_spis_event_t event,uint8_t channel)486 __STATIC_INLINE void nrf_spis_publish_set(NRF_SPIS_Type *  p_reg,
487                                           nrf_spis_event_t event,
488                                           uint8_t         channel)
489 {
490     *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) =
491             ((uint32_t)channel | SPIS_PUBLISH_END_EN_Msk);
492 }
493 
nrf_spis_publish_clear(NRF_SPIS_Type * p_reg,nrf_spis_event_t event)494 __STATIC_INLINE void nrf_spis_publish_clear(NRF_SPIS_Type *  p_reg,
495                                             nrf_spis_event_t event)
496 {
497     *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0;
498 }
499 #endif // defined(DPPI_PRESENT)
500 
nrf_spis_enable(NRF_SPIS_Type * p_reg)501 __STATIC_INLINE void nrf_spis_enable(NRF_SPIS_Type * p_reg)
502 {
503     p_reg->ENABLE = (SPIS_ENABLE_ENABLE_Enabled << SPIS_ENABLE_ENABLE_Pos);
504 }
505 
nrf_spis_disable(NRF_SPIS_Type * p_reg)506 __STATIC_INLINE void nrf_spis_disable(NRF_SPIS_Type * p_reg)
507 {
508     p_reg->ENABLE = (SPIS_ENABLE_ENABLE_Disabled << SPIS_ENABLE_ENABLE_Pos);
509 }
510 
nrf_spis_semaphore_status_get(NRF_SPIS_Type * p_reg)511 __STATIC_INLINE nrf_spis_semstat_t nrf_spis_semaphore_status_get(NRF_SPIS_Type * p_reg)
512 {
513     return (nrf_spis_semstat_t) ((p_reg->SEMSTAT & SPIS_SEMSTAT_SEMSTAT_Msk)
514                                  >> SPIS_SEMSTAT_SEMSTAT_Pos);
515 }
516 
nrf_spis_status_get(NRF_SPIS_Type * p_reg)517 __STATIC_INLINE nrf_spis_status_mask_t nrf_spis_status_get(NRF_SPIS_Type * p_reg)
518 {
519     return (nrf_spis_status_mask_t) p_reg->STATUS;
520 }
521 
nrf_spis_pins_set(NRF_SPIS_Type * p_reg,uint32_t sck_pin,uint32_t mosi_pin,uint32_t miso_pin,uint32_t csn_pin)522 __STATIC_INLINE void nrf_spis_pins_set(NRF_SPIS_Type * p_reg,
523                                        uint32_t sck_pin,
524                                        uint32_t mosi_pin,
525                                        uint32_t miso_pin,
526                                        uint32_t csn_pin)
527 {
528 #if defined (NRF51)
529     p_reg->PSELSCK  = sck_pin;
530     p_reg->PSELMOSI = mosi_pin;
531     p_reg->PSELMISO = miso_pin;
532     p_reg->PSELCSN  = csn_pin;
533 #else
534     p_reg->PSEL.SCK  = sck_pin;
535     p_reg->PSEL.MOSI = mosi_pin;
536     p_reg->PSEL.MISO = miso_pin;
537     p_reg->PSEL.CSN  = csn_pin;
538 #endif
539 }
540 
nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,uint8_t const * p_buffer,size_t length)541 __STATIC_INLINE void nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,
542                                             uint8_t const * p_buffer,
543                                             size_t          length)
544 {
545 #if defined (NRF51)
546     p_reg->TXDPTR = (uint32_t)p_buffer;
547     p_reg->MAXTX  = length;
548 #else
549     p_reg->TXD.PTR    = (uint32_t)p_buffer;
550     p_reg->TXD.MAXCNT = length;
551 #endif
552 }
553 
nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,uint8_t * p_buffer,size_t length)554 __STATIC_INLINE void nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,
555                                             uint8_t * p_buffer,
556                                             size_t    length)
557 {
558 #if defined (NRF51)
559     p_reg->RXDPTR = (uint32_t)p_buffer;
560     p_reg->MAXRX  = length;
561 #else
562     p_reg->RXD.PTR    = (uint32_t)p_buffer;
563     p_reg->RXD.MAXCNT = length;
564 #endif
565 }
566 
nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg)567 __STATIC_INLINE size_t nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg)
568 {
569 #if defined (NRF51)
570     return p_reg->AMOUNTTX;
571 #else
572     return p_reg->TXD.AMOUNT;
573 #endif
574 }
575 
nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg)576 __STATIC_INLINE size_t nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg)
577 {
578 #if defined (NRF51)
579     return p_reg->AMOUNTRX;
580 #else
581     return p_reg->RXD.AMOUNT;
582 #endif
583 }
584 
nrf_spis_configure(NRF_SPIS_Type * p_reg,nrf_spis_mode_t spi_mode,nrf_spis_bit_order_t spi_bit_order)585 __STATIC_INLINE void nrf_spis_configure(NRF_SPIS_Type * p_reg,
586                                         nrf_spis_mode_t spi_mode,
587                                         nrf_spis_bit_order_t spi_bit_order)
588 {
589     uint32_t config = (spi_bit_order == NRF_SPIS_BIT_ORDER_MSB_FIRST ?
590         SPIS_CONFIG_ORDER_MsbFirst : SPIS_CONFIG_ORDER_LsbFirst);
591 
592     switch (spi_mode)
593     {
594     default:
595     case NRF_SPIS_MODE_0:
596         config |= (SPIS_CONFIG_CPOL_ActiveHigh << SPIS_CONFIG_CPOL_Pos) |
597                   (SPIS_CONFIG_CPHA_Leading    << SPIS_CONFIG_CPHA_Pos);
598         break;
599 
600     case NRF_SPIS_MODE_1:
601         config |= (SPIS_CONFIG_CPOL_ActiveHigh << SPIS_CONFIG_CPOL_Pos) |
602                   (SPIS_CONFIG_CPHA_Trailing   << SPIS_CONFIG_CPHA_Pos);
603         break;
604 
605     case NRF_SPIS_MODE_2:
606         config |= (SPIS_CONFIG_CPOL_ActiveLow  << SPIS_CONFIG_CPOL_Pos) |
607                   (SPIS_CONFIG_CPHA_Leading    << SPIS_CONFIG_CPHA_Pos);
608         break;
609 
610     case NRF_SPIS_MODE_3:
611         config |= (SPIS_CONFIG_CPOL_ActiveLow  << SPIS_CONFIG_CPOL_Pos) |
612                   (SPIS_CONFIG_CPHA_Trailing   << SPIS_CONFIG_CPHA_Pos);
613         break;
614     }
615     p_reg->CONFIG = config;
616 }
617 
nrf_spis_orc_set(NRF_SPIS_Type * p_reg,uint8_t orc)618 __STATIC_INLINE void nrf_spis_orc_set(NRF_SPIS_Type * p_reg,
619                                       uint8_t orc)
620 {
621     p_reg->ORC = orc;
622 }
623 
nrf_spis_def_set(NRF_SPIS_Type * p_reg,uint8_t def)624 __STATIC_INLINE void nrf_spis_def_set(NRF_SPIS_Type * p_reg,
625                                       uint8_t def)
626 {
627     p_reg->DEF = def;
628 }
629 
630 #endif // SUPPRESS_INLINE_IMPLEMENTATION
631 
632 /** @} */
633 
634 #ifdef __cplusplus
635 }
636 #endif
637 
638 #endif // NRF_SPIS_H__
639