1*150812a8SEvalZero /*
2*150812a8SEvalZero * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
3*150812a8SEvalZero * All rights reserved.
4*150812a8SEvalZero *
5*150812a8SEvalZero * Redistribution and use in source and binary forms, with or without
6*150812a8SEvalZero * modification, are permitted provided that the following conditions are met:
7*150812a8SEvalZero *
8*150812a8SEvalZero * 1. Redistributions of source code must retain the above copyright notice, this
9*150812a8SEvalZero * list of conditions and the following disclaimer.
10*150812a8SEvalZero *
11*150812a8SEvalZero * 2. Redistributions in binary form must reproduce the above copyright
12*150812a8SEvalZero * notice, this list of conditions and the following disclaimer in the
13*150812a8SEvalZero * documentation and/or other materials provided with the distribution.
14*150812a8SEvalZero *
15*150812a8SEvalZero * 3. Neither the name of the copyright holder nor the names of its
16*150812a8SEvalZero * contributors may be used to endorse or promote products derived from this
17*150812a8SEvalZero * software without specific prior written permission.
18*150812a8SEvalZero *
19*150812a8SEvalZero * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20*150812a8SEvalZero * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21*150812a8SEvalZero * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22*150812a8SEvalZero * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23*150812a8SEvalZero * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24*150812a8SEvalZero * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25*150812a8SEvalZero * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26*150812a8SEvalZero * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27*150812a8SEvalZero * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28*150812a8SEvalZero * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29*150812a8SEvalZero * POSSIBILITY OF SUCH DAMAGE.
30*150812a8SEvalZero */
31*150812a8SEvalZero
32*150812a8SEvalZero #ifndef NRF_SPI_H__
33*150812a8SEvalZero #define NRF_SPI_H__
34*150812a8SEvalZero
35*150812a8SEvalZero #include <nrfx.h>
36*150812a8SEvalZero
37*150812a8SEvalZero #ifdef __cplusplus
38*150812a8SEvalZero extern "C" {
39*150812a8SEvalZero #endif
40*150812a8SEvalZero
41*150812a8SEvalZero /**
42*150812a8SEvalZero * @defgroup nrf_spi_hal SPI HAL
43*150812a8SEvalZero * @{
44*150812a8SEvalZero * @ingroup nrf_spi
45*150812a8SEvalZero * @brief Hardware access layer for managing the SPI peripheral.
46*150812a8SEvalZero */
47*150812a8SEvalZero
48*150812a8SEvalZero /**
49*150812a8SEvalZero * @brief This value can be used as a parameter for the @ref nrf_spi_pins_set
50*150812a8SEvalZero * function to specify that a given SPI signal (SCK, MOSI, or MISO)
51*150812a8SEvalZero * shall not be connected to a physical pin.
52*150812a8SEvalZero */
53*150812a8SEvalZero #define NRF_SPI_PIN_NOT_CONNECTED 0xFFFFFFFF
54*150812a8SEvalZero
55*150812a8SEvalZero
56*150812a8SEvalZero /**
57*150812a8SEvalZero * @brief SPI events.
58*150812a8SEvalZero */
59*150812a8SEvalZero typedef enum
60*150812a8SEvalZero {
61*150812a8SEvalZero /*lint -save -e30*/
62*150812a8SEvalZero NRF_SPI_EVENT_READY = offsetof(NRF_SPI_Type, EVENTS_READY) ///< TXD byte sent and RXD byte received.
63*150812a8SEvalZero /*lint -restore*/
64*150812a8SEvalZero } nrf_spi_event_t;
65*150812a8SEvalZero
66*150812a8SEvalZero /**
67*150812a8SEvalZero * @brief SPI interrupts.
68*150812a8SEvalZero */
69*150812a8SEvalZero typedef enum
70*150812a8SEvalZero {
71*150812a8SEvalZero NRF_SPI_INT_READY_MASK = SPI_INTENSET_READY_Msk, ///< Interrupt on READY event.
72*150812a8SEvalZero NRF_SPI_ALL_INTS_MASK = SPI_INTENSET_READY_Msk ///< All SPI interrupts.
73*150812a8SEvalZero } nrf_spi_int_mask_t;
74*150812a8SEvalZero
75*150812a8SEvalZero /**
76*150812a8SEvalZero * @brief SPI data rates.
77*150812a8SEvalZero */
78*150812a8SEvalZero typedef enum
79*150812a8SEvalZero {
80*150812a8SEvalZero NRF_SPI_FREQ_125K = SPI_FREQUENCY_FREQUENCY_K125, ///< 125 kbps.
81*150812a8SEvalZero NRF_SPI_FREQ_250K = SPI_FREQUENCY_FREQUENCY_K250, ///< 250 kbps.
82*150812a8SEvalZero NRF_SPI_FREQ_500K = SPI_FREQUENCY_FREQUENCY_K500, ///< 500 kbps.
83*150812a8SEvalZero NRF_SPI_FREQ_1M = SPI_FREQUENCY_FREQUENCY_M1, ///< 1 Mbps.
84*150812a8SEvalZero NRF_SPI_FREQ_2M = SPI_FREQUENCY_FREQUENCY_M2, ///< 2 Mbps.
85*150812a8SEvalZero NRF_SPI_FREQ_4M = SPI_FREQUENCY_FREQUENCY_M4, ///< 4 Mbps.
86*150812a8SEvalZero // [conversion to 'int' needed to prevent compilers from complaining
87*150812a8SEvalZero // that the provided value (0x80000000UL) is out of range of "int"]
88*150812a8SEvalZero NRF_SPI_FREQ_8M = (int)SPI_FREQUENCY_FREQUENCY_M8 ///< 8 Mbps.
89*150812a8SEvalZero } nrf_spi_frequency_t;
90*150812a8SEvalZero
91*150812a8SEvalZero /**
92*150812a8SEvalZero * @brief SPI modes.
93*150812a8SEvalZero */
94*150812a8SEvalZero typedef enum
95*150812a8SEvalZero {
96*150812a8SEvalZero NRF_SPI_MODE_0, ///< SCK active high, sample on leading edge of clock.
97*150812a8SEvalZero NRF_SPI_MODE_1, ///< SCK active high, sample on trailing edge of clock.
98*150812a8SEvalZero NRF_SPI_MODE_2, ///< SCK active low, sample on leading edge of clock.
99*150812a8SEvalZero NRF_SPI_MODE_3 ///< SCK active low, sample on trailing edge of clock.
100*150812a8SEvalZero } nrf_spi_mode_t;
101*150812a8SEvalZero
102*150812a8SEvalZero /**
103*150812a8SEvalZero * @brief SPI bit orders.
104*150812a8SEvalZero */
105*150812a8SEvalZero typedef enum
106*150812a8SEvalZero {
107*150812a8SEvalZero NRF_SPI_BIT_ORDER_MSB_FIRST = SPI_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first.
108*150812a8SEvalZero NRF_SPI_BIT_ORDER_LSB_FIRST = SPI_CONFIG_ORDER_LsbFirst ///< Least significant bit shifted out first.
109*150812a8SEvalZero } nrf_spi_bit_order_t;
110*150812a8SEvalZero
111*150812a8SEvalZero
112*150812a8SEvalZero /**
113*150812a8SEvalZero * @brief Function for clearing a specific SPI event.
114*150812a8SEvalZero *
115*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
116*150812a8SEvalZero * @param[in] spi_event Event to clear.
117*150812a8SEvalZero */
118*150812a8SEvalZero __STATIC_INLINE void nrf_spi_event_clear(NRF_SPI_Type * p_reg,
119*150812a8SEvalZero nrf_spi_event_t spi_event);
120*150812a8SEvalZero
121*150812a8SEvalZero /**
122*150812a8SEvalZero * @brief Function for checking the state of a specific SPI event.
123*150812a8SEvalZero *
124*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
125*150812a8SEvalZero * @param[in] spi_event Event to check.
126*150812a8SEvalZero *
127*150812a8SEvalZero * @retval true If the event is set.
128*150812a8SEvalZero * @retval false If the event is not set.
129*150812a8SEvalZero */
130*150812a8SEvalZero __STATIC_INLINE bool nrf_spi_event_check(NRF_SPI_Type * p_reg,
131*150812a8SEvalZero nrf_spi_event_t spi_event);
132*150812a8SEvalZero
133*150812a8SEvalZero /**
134*150812a8SEvalZero * @brief Function for getting the address of a specific SPI event register.
135*150812a8SEvalZero *
136*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
137*150812a8SEvalZero * @param[in] spi_event Requested event.
138*150812a8SEvalZero *
139*150812a8SEvalZero * @return Address of the specified event register.
140*150812a8SEvalZero */
141*150812a8SEvalZero __STATIC_INLINE uint32_t * nrf_spi_event_address_get(NRF_SPI_Type * p_reg,
142*150812a8SEvalZero nrf_spi_event_t spi_event);
143*150812a8SEvalZero
144*150812a8SEvalZero /**
145*150812a8SEvalZero * @brief Function for enabling specified interrupts.
146*150812a8SEvalZero *
147*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
148*150812a8SEvalZero * @param[in] spi_int_mask Interrupts to enable.
149*150812a8SEvalZero */
150*150812a8SEvalZero __STATIC_INLINE void nrf_spi_int_enable(NRF_SPI_Type * p_reg,
151*150812a8SEvalZero uint32_t spi_int_mask);
152*150812a8SEvalZero
153*150812a8SEvalZero /**
154*150812a8SEvalZero * @brief Function for disabling specified interrupts.
155*150812a8SEvalZero *
156*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
157*150812a8SEvalZero * @param[in] spi_int_mask Interrupts to disable.
158*150812a8SEvalZero */
159*150812a8SEvalZero __STATIC_INLINE void nrf_spi_int_disable(NRF_SPI_Type * p_reg,
160*150812a8SEvalZero uint32_t spi_int_mask);
161*150812a8SEvalZero
162*150812a8SEvalZero /**
163*150812a8SEvalZero * @brief Function for retrieving the state of a given interrupt.
164*150812a8SEvalZero *
165*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
166*150812a8SEvalZero * @param[in] spi_int Interrupt to check.
167*150812a8SEvalZero *
168*150812a8SEvalZero * @retval true If the interrupt is enabled.
169*150812a8SEvalZero * @retval false If the interrupt is not enabled.
170*150812a8SEvalZero */
171*150812a8SEvalZero __STATIC_INLINE bool nrf_spi_int_enable_check(NRF_SPI_Type * p_reg,
172*150812a8SEvalZero nrf_spi_int_mask_t spi_int);
173*150812a8SEvalZero
174*150812a8SEvalZero /**
175*150812a8SEvalZero * @brief Function for enabling the SPI peripheral.
176*150812a8SEvalZero *
177*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
178*150812a8SEvalZero */
179*150812a8SEvalZero __STATIC_INLINE void nrf_spi_enable(NRF_SPI_Type * p_reg);
180*150812a8SEvalZero
181*150812a8SEvalZero /**
182*150812a8SEvalZero * @brief Function for disabling the SPI peripheral.
183*150812a8SEvalZero *
184*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
185*150812a8SEvalZero */
186*150812a8SEvalZero __STATIC_INLINE void nrf_spi_disable(NRF_SPI_Type * p_reg);
187*150812a8SEvalZero
188*150812a8SEvalZero /**
189*150812a8SEvalZero * @brief Function for configuring SPI pins.
190*150812a8SEvalZero *
191*150812a8SEvalZero * If a given signal is not needed, pass the @ref NRF_SPI_PIN_NOT_CONNECTED
192*150812a8SEvalZero * value instead of its pin number.
193*150812a8SEvalZero *
194*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
195*150812a8SEvalZero * @param[in] sck_pin SCK pin number.
196*150812a8SEvalZero * @param[in] mosi_pin MOSI pin number.
197*150812a8SEvalZero * @param[in] miso_pin MISO pin number.
198*150812a8SEvalZero */
199*150812a8SEvalZero __STATIC_INLINE void nrf_spi_pins_set(NRF_SPI_Type * p_reg,
200*150812a8SEvalZero uint32_t sck_pin,
201*150812a8SEvalZero uint32_t mosi_pin,
202*150812a8SEvalZero uint32_t miso_pin);
203*150812a8SEvalZero
204*150812a8SEvalZero /**
205*150812a8SEvalZero * @brief Function for writing data to the SPI transmitter register.
206*150812a8SEvalZero *
207*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
208*150812a8SEvalZero * @param[in] data TX data to send.
209*150812a8SEvalZero */
210*150812a8SEvalZero __STATIC_INLINE void nrf_spi_txd_set(NRF_SPI_Type * p_reg, uint8_t data);
211*150812a8SEvalZero
212*150812a8SEvalZero /**
213*150812a8SEvalZero * @brief Function for reading data from the SPI receiver register.
214*150812a8SEvalZero *
215*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
216*150812a8SEvalZero *
217*150812a8SEvalZero * @return RX data received.
218*150812a8SEvalZero */
219*150812a8SEvalZero __STATIC_INLINE uint8_t nrf_spi_rxd_get(NRF_SPI_Type * p_reg);
220*150812a8SEvalZero
221*150812a8SEvalZero /**
222*150812a8SEvalZero * @brief Function for setting the SPI master data rate.
223*150812a8SEvalZero *
224*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
225*150812a8SEvalZero * @param[in] frequency SPI frequency.
226*150812a8SEvalZero */
227*150812a8SEvalZero __STATIC_INLINE void nrf_spi_frequency_set(NRF_SPI_Type * p_reg,
228*150812a8SEvalZero nrf_spi_frequency_t frequency);
229*150812a8SEvalZero
230*150812a8SEvalZero /**
231*150812a8SEvalZero * @brief Function for setting the SPI configuration.
232*150812a8SEvalZero *
233*150812a8SEvalZero * @param[in] p_reg Pointer to the peripheral registers structure.
234*150812a8SEvalZero * @param[in] spi_mode SPI mode.
235*150812a8SEvalZero * @param[in] spi_bit_order SPI bit order.
236*150812a8SEvalZero */
237*150812a8SEvalZero __STATIC_INLINE void nrf_spi_configure(NRF_SPI_Type * p_reg,
238*150812a8SEvalZero nrf_spi_mode_t spi_mode,
239*150812a8SEvalZero nrf_spi_bit_order_t spi_bit_order);
240*150812a8SEvalZero
241*150812a8SEvalZero
242*150812a8SEvalZero #ifndef SUPPRESS_INLINE_IMPLEMENTATION
243*150812a8SEvalZero
nrf_spi_event_clear(NRF_SPI_Type * p_reg,nrf_spi_event_t spi_event)244*150812a8SEvalZero __STATIC_INLINE void nrf_spi_event_clear(NRF_SPI_Type * p_reg,
245*150812a8SEvalZero nrf_spi_event_t spi_event)
246*150812a8SEvalZero {
247*150812a8SEvalZero *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spi_event)) = 0x0UL;
248*150812a8SEvalZero #if __CORTEX_M == 0x04
249*150812a8SEvalZero volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spi_event));
250*150812a8SEvalZero (void)dummy;
251*150812a8SEvalZero #endif
252*150812a8SEvalZero }
253*150812a8SEvalZero
nrf_spi_event_check(NRF_SPI_Type * p_reg,nrf_spi_event_t spi_event)254*150812a8SEvalZero __STATIC_INLINE bool nrf_spi_event_check(NRF_SPI_Type * p_reg,
255*150812a8SEvalZero nrf_spi_event_t spi_event)
256*150812a8SEvalZero {
257*150812a8SEvalZero return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)spi_event);
258*150812a8SEvalZero }
259*150812a8SEvalZero
nrf_spi_event_address_get(NRF_SPI_Type * p_reg,nrf_spi_event_t spi_event)260*150812a8SEvalZero __STATIC_INLINE uint32_t * nrf_spi_event_address_get(NRF_SPI_Type * p_reg,
261*150812a8SEvalZero nrf_spi_event_t spi_event)
262*150812a8SEvalZero {
263*150812a8SEvalZero return (uint32_t *)((uint8_t *)p_reg + (uint32_t)spi_event);
264*150812a8SEvalZero }
265*150812a8SEvalZero
nrf_spi_int_enable(NRF_SPI_Type * p_reg,uint32_t spi_int_mask)266*150812a8SEvalZero __STATIC_INLINE void nrf_spi_int_enable(NRF_SPI_Type * p_reg,
267*150812a8SEvalZero uint32_t spi_int_mask)
268*150812a8SEvalZero {
269*150812a8SEvalZero p_reg->INTENSET = spi_int_mask;
270*150812a8SEvalZero }
271*150812a8SEvalZero
nrf_spi_int_disable(NRF_SPI_Type * p_reg,uint32_t spi_int_mask)272*150812a8SEvalZero __STATIC_INLINE void nrf_spi_int_disable(NRF_SPI_Type * p_reg,
273*150812a8SEvalZero uint32_t spi_int_mask)
274*150812a8SEvalZero {
275*150812a8SEvalZero p_reg->INTENCLR = spi_int_mask;
276*150812a8SEvalZero }
277*150812a8SEvalZero
nrf_spi_int_enable_check(NRF_SPI_Type * p_reg,nrf_spi_int_mask_t spi_int)278*150812a8SEvalZero __STATIC_INLINE bool nrf_spi_int_enable_check(NRF_SPI_Type * p_reg,
279*150812a8SEvalZero nrf_spi_int_mask_t spi_int)
280*150812a8SEvalZero {
281*150812a8SEvalZero return (bool)(p_reg->INTENSET & spi_int);
282*150812a8SEvalZero }
283*150812a8SEvalZero
nrf_spi_enable(NRF_SPI_Type * p_reg)284*150812a8SEvalZero __STATIC_INLINE void nrf_spi_enable(NRF_SPI_Type * p_reg)
285*150812a8SEvalZero {
286*150812a8SEvalZero p_reg->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos);
287*150812a8SEvalZero }
288*150812a8SEvalZero
nrf_spi_disable(NRF_SPI_Type * p_reg)289*150812a8SEvalZero __STATIC_INLINE void nrf_spi_disable(NRF_SPI_Type * p_reg)
290*150812a8SEvalZero {
291*150812a8SEvalZero p_reg->ENABLE = (SPI_ENABLE_ENABLE_Disabled << SPI_ENABLE_ENABLE_Pos);
292*150812a8SEvalZero }
293*150812a8SEvalZero
nrf_spi_pins_set(NRF_SPI_Type * p_reg,uint32_t sck_pin,uint32_t mosi_pin,uint32_t miso_pin)294*150812a8SEvalZero __STATIC_INLINE void nrf_spi_pins_set(NRF_SPI_Type * p_reg,
295*150812a8SEvalZero uint32_t sck_pin,
296*150812a8SEvalZero uint32_t mosi_pin,
297*150812a8SEvalZero uint32_t miso_pin)
298*150812a8SEvalZero {
299*150812a8SEvalZero p_reg->PSELSCK = sck_pin;
300*150812a8SEvalZero p_reg->PSELMOSI = mosi_pin;
301*150812a8SEvalZero p_reg->PSELMISO = miso_pin;
302*150812a8SEvalZero }
303*150812a8SEvalZero
nrf_spi_txd_set(NRF_SPI_Type * p_reg,uint8_t data)304*150812a8SEvalZero __STATIC_INLINE void nrf_spi_txd_set(NRF_SPI_Type * p_reg, uint8_t data)
305*150812a8SEvalZero {
306*150812a8SEvalZero p_reg->TXD = data;
307*150812a8SEvalZero }
308*150812a8SEvalZero
nrf_spi_rxd_get(NRF_SPI_Type * p_reg)309*150812a8SEvalZero __STATIC_INLINE uint8_t nrf_spi_rxd_get(NRF_SPI_Type * p_reg)
310*150812a8SEvalZero {
311*150812a8SEvalZero return p_reg->RXD;
312*150812a8SEvalZero }
313*150812a8SEvalZero
nrf_spi_frequency_set(NRF_SPI_Type * p_reg,nrf_spi_frequency_t frequency)314*150812a8SEvalZero __STATIC_INLINE void nrf_spi_frequency_set(NRF_SPI_Type * p_reg,
315*150812a8SEvalZero nrf_spi_frequency_t frequency)
316*150812a8SEvalZero {
317*150812a8SEvalZero p_reg->FREQUENCY = frequency;
318*150812a8SEvalZero }
319*150812a8SEvalZero
nrf_spi_configure(NRF_SPI_Type * p_reg,nrf_spi_mode_t spi_mode,nrf_spi_bit_order_t spi_bit_order)320*150812a8SEvalZero __STATIC_INLINE void nrf_spi_configure(NRF_SPI_Type * p_reg,
321*150812a8SEvalZero nrf_spi_mode_t spi_mode,
322*150812a8SEvalZero nrf_spi_bit_order_t spi_bit_order)
323*150812a8SEvalZero {
324*150812a8SEvalZero uint32_t config = (spi_bit_order == NRF_SPI_BIT_ORDER_MSB_FIRST ?
325*150812a8SEvalZero SPI_CONFIG_ORDER_MsbFirst : SPI_CONFIG_ORDER_LsbFirst);
326*150812a8SEvalZero switch (spi_mode)
327*150812a8SEvalZero {
328*150812a8SEvalZero default:
329*150812a8SEvalZero case NRF_SPI_MODE_0:
330*150812a8SEvalZero config |= (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos) |
331*150812a8SEvalZero (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos);
332*150812a8SEvalZero break;
333*150812a8SEvalZero
334*150812a8SEvalZero case NRF_SPI_MODE_1:
335*150812a8SEvalZero config |= (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos) |
336*150812a8SEvalZero (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos);
337*150812a8SEvalZero break;
338*150812a8SEvalZero
339*150812a8SEvalZero case NRF_SPI_MODE_2:
340*150812a8SEvalZero config |= (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos) |
341*150812a8SEvalZero (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos);
342*150812a8SEvalZero break;
343*150812a8SEvalZero
344*150812a8SEvalZero case NRF_SPI_MODE_3:
345*150812a8SEvalZero config |= (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos) |
346*150812a8SEvalZero (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos);
347*150812a8SEvalZero break;
348*150812a8SEvalZero }
349*150812a8SEvalZero p_reg->CONFIG = config;
350*150812a8SEvalZero }
351*150812a8SEvalZero
352*150812a8SEvalZero #endif // SUPPRESS_INLINE_IMPLEMENTATION
353*150812a8SEvalZero
354*150812a8SEvalZero /** @} */
355*150812a8SEvalZero
356*150812a8SEvalZero #ifdef __cplusplus
357*150812a8SEvalZero }
358*150812a8SEvalZero #endif
359*150812a8SEvalZero
360*150812a8SEvalZero #endif // NRF_SPI_H__
361