1 /*
2 * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice, this
9 * list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its
16 * contributors may be used to endorse or promote products derived from this
17 * software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #ifndef NRF_RTC_H
33 #define NRF_RTC_H
34
35 #include <nrfx.h>
36
37 #ifdef __cplusplus
38 extern "C" {
39 #endif
40
41 /**
42 * @defgroup nrf_rtc_hal RTC HAL
43 * @{
44 * @ingroup nrf_rtc
45 * @brief Hardware access layer for managing the Real Time Counter (RTC) peripheral.
46 */
47
48 /** @brief Macro for getting the number of compare channels available in a given RTC instance. */
49 #define NRF_RTC_CC_CHANNEL_COUNT(id) NRFX_CONCAT_3(RTC, id, _CC_NUM)
50
51 #define RTC_INPUT_FREQ 32768 /**< Input frequency of the RTC instance. */
52
53 /** @brief Macro for converting expected frequency to prescaler setting. */
54 #define RTC_FREQ_TO_PRESCALER(FREQ) (uint16_t)(((RTC_INPUT_FREQ) / (FREQ)) - 1)
55
56 /**< Macro for wrapping values to RTC capacity. */
57 #define RTC_WRAP(val) ((val) & RTC_COUNTER_COUNTER_Msk)
58
59 #define RTC_CHANNEL_INT_MASK(ch) \
60 ((uint32_t)(NRF_RTC_INT_COMPARE0_MASK) << (ch))
61
62 #define RTC_CHANNEL_EVENT_ADDR(ch) \
63 (nrf_rtc_event_t)((NRF_RTC_EVENT_COMPARE_0) + (ch) * sizeof(uint32_t))
64
65 /** @brief RTC tasks. */
66 typedef enum
67 {
68 /*lint -save -e30*/
69 NRF_RTC_TASK_START = offsetof(NRF_RTC_Type,TASKS_START), /**< Start. */
70 NRF_RTC_TASK_STOP = offsetof(NRF_RTC_Type,TASKS_STOP), /**< Stop. */
71 NRF_RTC_TASK_CLEAR = offsetof(NRF_RTC_Type,TASKS_CLEAR), /**< Clear. */
72 NRF_RTC_TASK_TRIGGER_OVERFLOW = offsetof(NRF_RTC_Type,TASKS_TRIGOVRFLW),/**< Trigger overflow. */
73 /*lint -restore*/
74 } nrf_rtc_task_t;
75
76 /** @brief RTC events. */
77 typedef enum
78 {
79 /*lint -save -e30*/
80 NRF_RTC_EVENT_TICK = offsetof(NRF_RTC_Type,EVENTS_TICK), /**< Tick event. */
81 NRF_RTC_EVENT_OVERFLOW = offsetof(NRF_RTC_Type,EVENTS_OVRFLW), /**< Overflow event. */
82 NRF_RTC_EVENT_COMPARE_0 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[0]), /**< Compare 0 event. */
83 NRF_RTC_EVENT_COMPARE_1 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[1]), /**< Compare 1 event. */
84 NRF_RTC_EVENT_COMPARE_2 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[2]), /**< Compare 2 event. */
85 NRF_RTC_EVENT_COMPARE_3 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[3]) /**< Compare 3 event. */
86 /*lint -restore*/
87 } nrf_rtc_event_t;
88
89 /** @brief RTC interrupts. */
90 typedef enum
91 {
92 NRF_RTC_INT_TICK_MASK = RTC_INTENSET_TICK_Msk, /**< RTC interrupt from tick event. */
93 NRF_RTC_INT_OVERFLOW_MASK = RTC_INTENSET_OVRFLW_Msk, /**< RTC interrupt from overflow event. */
94 NRF_RTC_INT_COMPARE0_MASK = RTC_INTENSET_COMPARE0_Msk, /**< RTC interrupt from compare event on channel 0. */
95 NRF_RTC_INT_COMPARE1_MASK = RTC_INTENSET_COMPARE1_Msk, /**< RTC interrupt from compare event on channel 1. */
96 NRF_RTC_INT_COMPARE2_MASK = RTC_INTENSET_COMPARE2_Msk, /**< RTC interrupt from compare event on channel 2. */
97 NRF_RTC_INT_COMPARE3_MASK = RTC_INTENSET_COMPARE3_Msk /**< RTC interrupt from compare event on channel 3. */
98 } nrf_rtc_int_t;
99
100 /**
101 * @brief Function for setting a compare value for a channel.
102 *
103 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
104 * @param[in] ch Channel.
105 * @param[in] cc_val Compare value to set.
106 */
107 __STATIC_INLINE void nrf_rtc_cc_set(NRF_RTC_Type * p_reg, uint32_t ch, uint32_t cc_val);
108
109 /**
110 * @brief Function for returning the compare value for a channel.
111 *
112 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
113 * @param[in] ch Channel.
114 *
115 * @return COMPARE[ch] value.
116 */
117 __STATIC_INLINE uint32_t nrf_rtc_cc_get(NRF_RTC_Type * p_reg, uint32_t ch);
118
119 /**
120 * @brief Function for enabling interrupts.
121 *
122 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
123 * @param[in] mask Interrupt mask to be enabled.
124 */
125 __STATIC_INLINE void nrf_rtc_int_enable(NRF_RTC_Type * p_reg, uint32_t mask);
126
127 /**
128 * @brief Function for disabling interrupts.
129 *
130 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
131 * @param[in] mask Interrupt mask to be disabled.
132 */
133 __STATIC_INLINE void nrf_rtc_int_disable(NRF_RTC_Type * p_reg, uint32_t mask);
134
135 /**
136 * @brief Function for checking if interrupts are enabled.
137 *
138 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
139 * @param[in] mask Mask of interrupt flags to check.
140 *
141 * @return Mask with enabled interrupts.
142 */
143 __STATIC_INLINE uint32_t nrf_rtc_int_is_enabled(NRF_RTC_Type * p_reg, uint32_t mask);
144
145 /**
146 * @brief Function for returning the status of currently enabled interrupts.
147 *
148 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
149 *
150 * @return Value in INTEN register.
151 */
152 __STATIC_INLINE uint32_t nrf_rtc_int_get(NRF_RTC_Type * p_reg);
153
154 #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
155 /**
156 * @brief Function for setting the subscribe configuration for a given
157 * RTC task.
158 *
159 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
160 * @param[in] task Task for which to set the configuration.
161 * @param[in] channel Channel through which to subscribe events.
162 */
163 __STATIC_INLINE void nrf_rtc_subscribe_set(NRF_RTC_Type * p_reg,
164 nrf_rtc_task_t task,
165 uint8_t channel);
166
167 /**
168 * @brief Function for clearing the subscribe configuration for a given
169 * RTC task.
170 *
171 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
172 * @param[in] task Task for which to clear the configuration.
173 */
174 __STATIC_INLINE void nrf_rtc_subscribe_clear(NRF_RTC_Type * p_reg,
175 nrf_rtc_task_t task);
176
177 /**
178 * @brief Function for setting the publish configuration for a given
179 * RTC event.
180 *
181 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
182 * @param[in] event Event for which to set the configuration.
183 * @param[in] channel Channel through which to publish the event.
184 */
185 __STATIC_INLINE void nrf_rtc_publish_set(NRF_RTC_Type * p_reg,
186 nrf_rtc_event_t event,
187 uint8_t channel);
188
189 /**
190 * @brief Function for clearing the publish configuration for a given
191 * RTC event.
192 *
193 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
194 * @param[in] event Event for which to clear the configuration.
195 */
196 __STATIC_INLINE void nrf_rtc_publish_clear(NRF_RTC_Type * p_reg,
197 nrf_rtc_event_t event);
198 #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
199
200 /**
201 * @brief Function for checking if an event is pending.
202 *
203 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
204 * @param[in] event Address of the event.
205 *
206 * @return Mask of pending events.
207 */
208 __STATIC_INLINE uint32_t nrf_rtc_event_pending(NRF_RTC_Type * p_reg, nrf_rtc_event_t event);
209
210 /**
211 * @brief Function for clearing an event.
212 *
213 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
214 * @param[in] event Event to clear.
215 */
216 __STATIC_INLINE void nrf_rtc_event_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event);
217
218 /**
219 * @brief Function for returning a counter value.
220 *
221 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
222 *
223 * @return Counter value.
224 */
225 __STATIC_INLINE uint32_t nrf_rtc_counter_get(NRF_RTC_Type * p_reg);
226
227 /**
228 * @brief Function for setting a prescaler value.
229 *
230 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
231 * @param[in] val Value to set the prescaler to.
232 */
233 __STATIC_INLINE void nrf_rtc_prescaler_set(NRF_RTC_Type * p_reg, uint32_t val);
234
235 /**
236 * @brief Function for returning the address of an event.
237 *
238 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
239 * @param[in] event Requested event.
240 *
241 * @return Address of the requested event register.
242 */
243 __STATIC_INLINE uint32_t nrf_rtc_event_address_get(NRF_RTC_Type * p_reg, nrf_rtc_event_t event);
244
245 /**
246 * @brief Function for returning the address of a task.
247 *
248 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
249 * @param[in] task Requested task.
250 *
251 * @return Address of the requested task register.
252 */
253 __STATIC_INLINE uint32_t nrf_rtc_task_address_get(NRF_RTC_Type * p_reg, nrf_rtc_task_t task);
254
255 /**
256 * @brief Function for starting a task.
257 *
258 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
259 * @param[in] task Requested task.
260 */
261 __STATIC_INLINE void nrf_rtc_task_trigger(NRF_RTC_Type * p_reg, nrf_rtc_task_t task);
262
263 /**
264 * @brief Function for enabling events.
265 *
266 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
267 * @param[in] mask Mask of event flags to enable.
268 */
269 __STATIC_INLINE void nrf_rtc_event_enable(NRF_RTC_Type * p_reg, uint32_t mask);
270
271 /**
272 * @brief Function for disabling an event.
273 *
274 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
275 * @param[in] event Requested event.
276 */
277 __STATIC_INLINE void nrf_rtc_event_disable(NRF_RTC_Type * p_reg, uint32_t event);
278
279
280 #ifndef SUPPRESS_INLINE_IMPLEMENTATION
281
nrf_rtc_cc_set(NRF_RTC_Type * p_reg,uint32_t ch,uint32_t cc_val)282 __STATIC_INLINE void nrf_rtc_cc_set(NRF_RTC_Type * p_reg, uint32_t ch, uint32_t cc_val)
283 {
284 p_reg->CC[ch] = cc_val;
285 }
286
nrf_rtc_cc_get(NRF_RTC_Type * p_reg,uint32_t ch)287 __STATIC_INLINE uint32_t nrf_rtc_cc_get(NRF_RTC_Type * p_reg, uint32_t ch)
288 {
289 return p_reg->CC[ch];
290 }
291
nrf_rtc_int_enable(NRF_RTC_Type * p_reg,uint32_t mask)292 __STATIC_INLINE void nrf_rtc_int_enable(NRF_RTC_Type * p_reg, uint32_t mask)
293 {
294 p_reg->INTENSET = mask;
295 }
296
nrf_rtc_int_disable(NRF_RTC_Type * p_reg,uint32_t mask)297 __STATIC_INLINE void nrf_rtc_int_disable(NRF_RTC_Type * p_reg, uint32_t mask)
298 {
299 p_reg->INTENCLR = mask;
300 }
301
nrf_rtc_int_is_enabled(NRF_RTC_Type * p_reg,uint32_t mask)302 __STATIC_INLINE uint32_t nrf_rtc_int_is_enabled(NRF_RTC_Type * p_reg, uint32_t mask)
303 {
304 return (p_reg->INTENSET & mask);
305 }
306
nrf_rtc_int_get(NRF_RTC_Type * p_reg)307 __STATIC_INLINE uint32_t nrf_rtc_int_get(NRF_RTC_Type * p_reg)
308 {
309 return p_reg->INTENSET;
310 }
311
312 #if defined(DPPI_PRESENT)
nrf_rtc_subscribe_set(NRF_RTC_Type * p_reg,nrf_rtc_task_t task,uint8_t channel)313 __STATIC_INLINE void nrf_rtc_subscribe_set(NRF_RTC_Type * p_reg,
314 nrf_rtc_task_t task,
315 uint8_t channel)
316 {
317 *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) =
318 ((uint32_t)channel | RTC_SUBSCRIBE_START_EN_Msk);
319 }
320
nrf_rtc_subscribe_clear(NRF_RTC_Type * p_reg,nrf_rtc_task_t task)321 __STATIC_INLINE void nrf_rtc_subscribe_clear(NRF_RTC_Type * p_reg,
322 nrf_rtc_task_t task)
323 {
324 *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0;
325 }
326
nrf_rtc_publish_set(NRF_RTC_Type * p_reg,nrf_rtc_event_t event,uint8_t channel)327 __STATIC_INLINE void nrf_rtc_publish_set(NRF_RTC_Type * p_reg,
328 nrf_rtc_event_t event,
329 uint8_t channel)
330 {
331 *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) =
332 ((uint32_t)channel | RTC_PUBLISH_TICK_EN_Msk);
333 }
334
nrf_rtc_publish_clear(NRF_RTC_Type * p_reg,nrf_rtc_event_t event)335 __STATIC_INLINE void nrf_rtc_publish_clear(NRF_RTC_Type * p_reg,
336 nrf_rtc_event_t event)
337 {
338 *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0;
339 }
340 #endif // defined(DPPI_PRESENT)
341
nrf_rtc_event_pending(NRF_RTC_Type * p_reg,nrf_rtc_event_t event)342 __STATIC_INLINE uint32_t nrf_rtc_event_pending(NRF_RTC_Type * p_reg, nrf_rtc_event_t event)
343 {
344 return *(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
345 }
346
nrf_rtc_event_clear(NRF_RTC_Type * p_reg,nrf_rtc_event_t event)347 __STATIC_INLINE void nrf_rtc_event_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event)
348 {
349 *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0;
350 #if __CORTEX_M == 0x04
351 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event));
352 (void)dummy;
353 #endif
354 }
355
nrf_rtc_counter_get(NRF_RTC_Type * p_reg)356 __STATIC_INLINE uint32_t nrf_rtc_counter_get(NRF_RTC_Type * p_reg)
357 {
358 return p_reg->COUNTER;
359 }
360
nrf_rtc_prescaler_set(NRF_RTC_Type * p_reg,uint32_t val)361 __STATIC_INLINE void nrf_rtc_prescaler_set(NRF_RTC_Type * p_reg, uint32_t val)
362 {
363 NRFX_ASSERT(val <= (RTC_PRESCALER_PRESCALER_Msk >> RTC_PRESCALER_PRESCALER_Pos));
364 p_reg->PRESCALER = val;
365 }
rtc_prescaler_get(NRF_RTC_Type * p_reg)366 __STATIC_INLINE uint32_t rtc_prescaler_get(NRF_RTC_Type * p_reg)
367 {
368 return p_reg->PRESCALER;
369 }
370
nrf_rtc_event_address_get(NRF_RTC_Type * p_reg,nrf_rtc_event_t event)371 __STATIC_INLINE uint32_t nrf_rtc_event_address_get(NRF_RTC_Type * p_reg, nrf_rtc_event_t event)
372 {
373 return (uint32_t)p_reg + event;
374 }
375
nrf_rtc_task_address_get(NRF_RTC_Type * p_reg,nrf_rtc_task_t task)376 __STATIC_INLINE uint32_t nrf_rtc_task_address_get(NRF_RTC_Type * p_reg, nrf_rtc_task_t task)
377 {
378 return (uint32_t)p_reg + task;
379 }
380
nrf_rtc_task_trigger(NRF_RTC_Type * p_reg,nrf_rtc_task_t task)381 __STATIC_INLINE void nrf_rtc_task_trigger(NRF_RTC_Type * p_reg, nrf_rtc_task_t task)
382 {
383 *(__IO uint32_t *)((uint32_t)p_reg + task) = 1;
384 }
385
nrf_rtc_event_enable(NRF_RTC_Type * p_reg,uint32_t mask)386 __STATIC_INLINE void nrf_rtc_event_enable(NRF_RTC_Type * p_reg, uint32_t mask)
387 {
388 p_reg->EVTENSET = mask;
389 }
nrf_rtc_event_disable(NRF_RTC_Type * p_reg,uint32_t mask)390 __STATIC_INLINE void nrf_rtc_event_disable(NRF_RTC_Type * p_reg, uint32_t mask)
391 {
392 p_reg->EVTENCLR = mask;
393 }
394 #endif
395
396 /** @} */
397
398 #ifdef __cplusplus
399 }
400 #endif
401
402 #endif /* NRF_RTC_H */
403