1*150812a8SEvalZero /*
2*150812a8SEvalZero * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
3*150812a8SEvalZero * All rights reserved.
4*150812a8SEvalZero *
5*150812a8SEvalZero * Redistribution and use in source and binary forms, with or without
6*150812a8SEvalZero * modification, are permitted provided that the following conditions are met:
7*150812a8SEvalZero *
8*150812a8SEvalZero * 1. Redistributions of source code must retain the above copyright notice, this
9*150812a8SEvalZero * list of conditions and the following disclaimer.
10*150812a8SEvalZero *
11*150812a8SEvalZero * 2. Redistributions in binary form must reproduce the above copyright
12*150812a8SEvalZero * notice, this list of conditions and the following disclaimer in the
13*150812a8SEvalZero * documentation and/or other materials provided with the distribution.
14*150812a8SEvalZero *
15*150812a8SEvalZero * 3. Neither the name of the copyright holder nor the names of its
16*150812a8SEvalZero * contributors may be used to endorse or promote products derived from this
17*150812a8SEvalZero * software without specific prior written permission.
18*150812a8SEvalZero *
19*150812a8SEvalZero * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20*150812a8SEvalZero * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21*150812a8SEvalZero * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22*150812a8SEvalZero * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23*150812a8SEvalZero * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24*150812a8SEvalZero * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25*150812a8SEvalZero * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26*150812a8SEvalZero * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27*150812a8SEvalZero * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28*150812a8SEvalZero * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29*150812a8SEvalZero * POSSIBILITY OF SUCH DAMAGE.
30*150812a8SEvalZero */
31*150812a8SEvalZero
32*150812a8SEvalZero #include <nrfx.h>
33*150812a8SEvalZero
34*150812a8SEvalZero #if NRFX_CHECK(NRFX_SPI_ENABLED)
35*150812a8SEvalZero
36*150812a8SEvalZero #if !(NRFX_CHECK(NRFX_SPI0_ENABLED) || NRFX_CHECK(NRFX_SPI1_ENABLED) || \
37*150812a8SEvalZero NRFX_CHECK(NRFX_SPI2_ENABLED))
38*150812a8SEvalZero #error "No enabled SPI instances. Check <nrfx_config.h>."
39*150812a8SEvalZero #endif
40*150812a8SEvalZero
41*150812a8SEvalZero #include <nrfx_spi.h>
42*150812a8SEvalZero #include "prs/nrfx_prs.h"
43*150812a8SEvalZero #include <hal/nrf_gpio.h>
44*150812a8SEvalZero
45*150812a8SEvalZero #define NRFX_LOG_MODULE SPI
46*150812a8SEvalZero #include <nrfx_log.h>
47*150812a8SEvalZero
48*150812a8SEvalZero // Control block - driver instance local data.
49*150812a8SEvalZero typedef struct
50*150812a8SEvalZero {
51*150812a8SEvalZero nrfx_spi_evt_handler_t handler;
52*150812a8SEvalZero void * p_context;
53*150812a8SEvalZero nrfx_spi_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy.
54*150812a8SEvalZero nrfx_drv_state_t state;
55*150812a8SEvalZero volatile bool transfer_in_progress;
56*150812a8SEvalZero
57*150812a8SEvalZero // [no need for 'volatile' attribute for the following members, as they
58*150812a8SEvalZero // are not concurrently used in IRQ handlers and main line code]
59*150812a8SEvalZero uint8_t ss_pin;
60*150812a8SEvalZero uint8_t miso_pin;
61*150812a8SEvalZero uint8_t orc;
62*150812a8SEvalZero size_t bytes_transferred;
63*150812a8SEvalZero
64*150812a8SEvalZero bool abort;
65*150812a8SEvalZero } spi_control_block_t;
66*150812a8SEvalZero static spi_control_block_t m_cb[NRFX_SPI_ENABLED_COUNT];
67*150812a8SEvalZero
68*150812a8SEvalZero
nrfx_spi_init(nrfx_spi_t const * const p_instance,nrfx_spi_config_t const * p_config,nrfx_spi_evt_handler_t handler,void * p_context)69*150812a8SEvalZero nrfx_err_t nrfx_spi_init(nrfx_spi_t const * const p_instance,
70*150812a8SEvalZero nrfx_spi_config_t const * p_config,
71*150812a8SEvalZero nrfx_spi_evt_handler_t handler,
72*150812a8SEvalZero void * p_context)
73*150812a8SEvalZero {
74*150812a8SEvalZero NRFX_ASSERT(p_config);
75*150812a8SEvalZero spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
76*150812a8SEvalZero nrfx_err_t err_code;
77*150812a8SEvalZero
78*150812a8SEvalZero if (p_cb->state != NRFX_DRV_STATE_UNINITIALIZED)
79*150812a8SEvalZero {
80*150812a8SEvalZero err_code = NRFX_ERROR_INVALID_STATE;
81*150812a8SEvalZero NRFX_LOG_WARNING("Function: %s, error code: %s.",
82*150812a8SEvalZero __func__,
83*150812a8SEvalZero NRFX_LOG_ERROR_STRING_GET(err_code));
84*150812a8SEvalZero return err_code;
85*150812a8SEvalZero }
86*150812a8SEvalZero
87*150812a8SEvalZero #if NRFX_CHECK(NRFX_PRS_ENABLED)
88*150812a8SEvalZero static nrfx_irq_handler_t const irq_handlers[NRFX_SPI_ENABLED_COUNT] = {
89*150812a8SEvalZero #if NRFX_CHECK(NRFX_SPI0_ENABLED)
90*150812a8SEvalZero nrfx_spi_0_irq_handler,
91*150812a8SEvalZero #endif
92*150812a8SEvalZero #if NRFX_CHECK(NRFX_SPI1_ENABLED)
93*150812a8SEvalZero nrfx_spi_1_irq_handler,
94*150812a8SEvalZero #endif
95*150812a8SEvalZero #if NRFX_CHECK(NRFX_SPI2_ENABLED)
96*150812a8SEvalZero nrfx_spi_2_irq_handler,
97*150812a8SEvalZero #endif
98*150812a8SEvalZero };
99*150812a8SEvalZero if (nrfx_prs_acquire(p_instance->p_reg,
100*150812a8SEvalZero irq_handlers[p_instance->drv_inst_idx]) != NRFX_SUCCESS)
101*150812a8SEvalZero {
102*150812a8SEvalZero err_code = NRFX_ERROR_BUSY;
103*150812a8SEvalZero NRFX_LOG_WARNING("Function: %s, error code: %s.",
104*150812a8SEvalZero __func__,
105*150812a8SEvalZero NRFX_LOG_ERROR_STRING_GET(err_code));
106*150812a8SEvalZero return err_code;
107*150812a8SEvalZero }
108*150812a8SEvalZero #endif // NRFX_CHECK(NRFX_PRS_ENABLED)
109*150812a8SEvalZero
110*150812a8SEvalZero p_cb->handler = handler;
111*150812a8SEvalZero p_cb->p_context = p_context;
112*150812a8SEvalZero
113*150812a8SEvalZero uint32_t mosi_pin;
114*150812a8SEvalZero uint32_t miso_pin;
115*150812a8SEvalZero // Configure pins used by the peripheral:
116*150812a8SEvalZero // - SCK - output with initial value corresponding with the SPI mode used:
117*150812a8SEvalZero // 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1);
118*150812a8SEvalZero // according to the reference manual guidelines this pin and its input
119*150812a8SEvalZero // buffer must always be connected for the SPI to work.
120*150812a8SEvalZero if (p_config->mode <= NRF_SPI_MODE_1)
121*150812a8SEvalZero {
122*150812a8SEvalZero nrf_gpio_pin_clear(p_config->sck_pin);
123*150812a8SEvalZero }
124*150812a8SEvalZero else
125*150812a8SEvalZero {
126*150812a8SEvalZero nrf_gpio_pin_set(p_config->sck_pin);
127*150812a8SEvalZero }
128*150812a8SEvalZero nrf_gpio_cfg(p_config->sck_pin,
129*150812a8SEvalZero NRF_GPIO_PIN_DIR_OUTPUT,
130*150812a8SEvalZero NRF_GPIO_PIN_INPUT_CONNECT,
131*150812a8SEvalZero NRF_GPIO_PIN_NOPULL,
132*150812a8SEvalZero NRF_GPIO_PIN_S0S1,
133*150812a8SEvalZero NRF_GPIO_PIN_NOSENSE);
134*150812a8SEvalZero // - MOSI (optional) - output with initial value 0,
135*150812a8SEvalZero if (p_config->mosi_pin != NRFX_SPI_PIN_NOT_USED)
136*150812a8SEvalZero {
137*150812a8SEvalZero mosi_pin = p_config->mosi_pin;
138*150812a8SEvalZero nrf_gpio_pin_clear(mosi_pin);
139*150812a8SEvalZero nrf_gpio_cfg_output(mosi_pin);
140*150812a8SEvalZero }
141*150812a8SEvalZero else
142*150812a8SEvalZero {
143*150812a8SEvalZero mosi_pin = NRF_SPI_PIN_NOT_CONNECTED;
144*150812a8SEvalZero }
145*150812a8SEvalZero // - MISO (optional) - input,
146*150812a8SEvalZero if (p_config->miso_pin != NRFX_SPI_PIN_NOT_USED)
147*150812a8SEvalZero {
148*150812a8SEvalZero miso_pin = p_config->miso_pin;
149*150812a8SEvalZero nrf_gpio_cfg_input(miso_pin, (nrf_gpio_pin_pull_t)NRFX_SPI_MISO_PULL_CFG);
150*150812a8SEvalZero }
151*150812a8SEvalZero else
152*150812a8SEvalZero {
153*150812a8SEvalZero miso_pin = NRF_SPI_PIN_NOT_CONNECTED;
154*150812a8SEvalZero }
155*150812a8SEvalZero m_cb[p_instance->drv_inst_idx].miso_pin = p_config->miso_pin;
156*150812a8SEvalZero // - Slave Select (optional) - output with initial value 1 (inactive).
157*150812a8SEvalZero if (p_config->ss_pin != NRFX_SPI_PIN_NOT_USED)
158*150812a8SEvalZero {
159*150812a8SEvalZero nrf_gpio_pin_set(p_config->ss_pin);
160*150812a8SEvalZero nrf_gpio_cfg_output(p_config->ss_pin);
161*150812a8SEvalZero }
162*150812a8SEvalZero m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin;
163*150812a8SEvalZero
164*150812a8SEvalZero NRF_SPI_Type * p_spi = p_instance->p_reg;
165*150812a8SEvalZero nrf_spi_pins_set(p_spi, p_config->sck_pin, mosi_pin, miso_pin);
166*150812a8SEvalZero nrf_spi_frequency_set(p_spi, p_config->frequency);
167*150812a8SEvalZero nrf_spi_configure(p_spi, p_config->mode, p_config->bit_order);
168*150812a8SEvalZero
169*150812a8SEvalZero m_cb[p_instance->drv_inst_idx].orc = p_config->orc;
170*150812a8SEvalZero
171*150812a8SEvalZero if (p_cb->handler)
172*150812a8SEvalZero {
173*150812a8SEvalZero nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
174*150812a8SEvalZero }
175*150812a8SEvalZero
176*150812a8SEvalZero nrf_spi_enable(p_spi);
177*150812a8SEvalZero
178*150812a8SEvalZero if (p_cb->handler)
179*150812a8SEvalZero {
180*150812a8SEvalZero NRFX_IRQ_PRIORITY_SET(nrfx_get_irq_number(p_instance->p_reg),
181*150812a8SEvalZero p_config->irq_priority);
182*150812a8SEvalZero NRFX_IRQ_ENABLE(nrfx_get_irq_number(p_instance->p_reg));
183*150812a8SEvalZero }
184*150812a8SEvalZero
185*150812a8SEvalZero p_cb->transfer_in_progress = false;
186*150812a8SEvalZero p_cb->state = NRFX_DRV_STATE_INITIALIZED;
187*150812a8SEvalZero
188*150812a8SEvalZero err_code = NRFX_SUCCESS;
189*150812a8SEvalZero NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
190*150812a8SEvalZero return err_code;
191*150812a8SEvalZero }
192*150812a8SEvalZero
nrfx_spi_uninit(nrfx_spi_t const * const p_instance)193*150812a8SEvalZero void nrfx_spi_uninit(nrfx_spi_t const * const p_instance)
194*150812a8SEvalZero {
195*150812a8SEvalZero spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
196*150812a8SEvalZero NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
197*150812a8SEvalZero
198*150812a8SEvalZero if (p_cb->handler)
199*150812a8SEvalZero {
200*150812a8SEvalZero NRFX_IRQ_DISABLE(nrfx_get_irq_number(p_instance->p_reg));
201*150812a8SEvalZero }
202*150812a8SEvalZero
203*150812a8SEvalZero NRF_SPI_Type * p_spi = p_instance->p_reg;
204*150812a8SEvalZero if (p_cb->handler)
205*150812a8SEvalZero {
206*150812a8SEvalZero nrf_spi_int_disable(p_spi, NRF_SPI_ALL_INTS_MASK);
207*150812a8SEvalZero }
208*150812a8SEvalZero
209*150812a8SEvalZero if (p_cb->miso_pin != NRFX_SPI_PIN_NOT_USED)
210*150812a8SEvalZero {
211*150812a8SEvalZero nrf_gpio_cfg_default(p_cb->miso_pin);
212*150812a8SEvalZero }
213*150812a8SEvalZero nrf_spi_disable(p_spi);
214*150812a8SEvalZero
215*150812a8SEvalZero #if NRFX_CHECK(NRFX_PRS_ENABLED)
216*150812a8SEvalZero nrfx_prs_release(p_instance->p_reg);
217*150812a8SEvalZero #endif
218*150812a8SEvalZero
219*150812a8SEvalZero p_cb->state = NRFX_DRV_STATE_UNINITIALIZED;
220*150812a8SEvalZero }
221*150812a8SEvalZero
finish_transfer(spi_control_block_t * p_cb)222*150812a8SEvalZero static void finish_transfer(spi_control_block_t * p_cb)
223*150812a8SEvalZero {
224*150812a8SEvalZero // If Slave Select signal is used, this is the time to deactivate it.
225*150812a8SEvalZero if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED)
226*150812a8SEvalZero {
227*150812a8SEvalZero nrf_gpio_pin_set(p_cb->ss_pin);
228*150812a8SEvalZero }
229*150812a8SEvalZero
230*150812a8SEvalZero // By clearing this flag before calling the handler we allow subsequent
231*150812a8SEvalZero // transfers to be started directly from the handler function.
232*150812a8SEvalZero p_cb->transfer_in_progress = false;
233*150812a8SEvalZero
234*150812a8SEvalZero p_cb->evt.type = NRFX_SPI_EVENT_DONE;
235*150812a8SEvalZero p_cb->handler(&p_cb->evt, p_cb->p_context);
236*150812a8SEvalZero }
237*150812a8SEvalZero
238*150812a8SEvalZero // This function is called from the IRQ handler or, in blocking mode, directly
239*150812a8SEvalZero // from the 'spi_xfer' function.
240*150812a8SEvalZero // It returns true as long as the transfer should be continued, otherwise (when
241*150812a8SEvalZero // there is nothing more to send/receive) it returns false.
transfer_byte(NRF_SPI_Type * p_spi,spi_control_block_t * p_cb)242*150812a8SEvalZero static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
243*150812a8SEvalZero {
244*150812a8SEvalZero // Read the data byte received in this transfer (always, because no further
245*150812a8SEvalZero // READY event can be generated until the current byte is read out from the
246*150812a8SEvalZero // RXD register), and store it in the RX buffer (only when needed).
247*150812a8SEvalZero volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi);
248*150812a8SEvalZero if (p_cb->bytes_transferred < p_cb->evt.xfer_desc.rx_length)
249*150812a8SEvalZero {
250*150812a8SEvalZero p_cb->evt.xfer_desc.p_rx_buffer[p_cb->bytes_transferred] = rx_data;
251*150812a8SEvalZero }
252*150812a8SEvalZero
253*150812a8SEvalZero ++p_cb->bytes_transferred;
254*150812a8SEvalZero
255*150812a8SEvalZero // Check if there are more bytes to send or receive and write proper data
256*150812a8SEvalZero // byte (next one from TX buffer or over-run character) to the TXD register
257*150812a8SEvalZero // when needed.
258*150812a8SEvalZero // NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our
259*150812a8SEvalZero // buffers, because we take advantage of double buffering of TXD
260*150812a8SEvalZero // register (so in effect one byte is still being transmitted now);
261*150812a8SEvalZero // see how the transfer is started in the 'spi_xfer' function.
262*150812a8SEvalZero size_t bytes_used = p_cb->bytes_transferred + 1;
263*150812a8SEvalZero
264*150812a8SEvalZero if (p_cb->abort)
265*150812a8SEvalZero {
266*150812a8SEvalZero if (bytes_used < p_cb->evt.xfer_desc.tx_length)
267*150812a8SEvalZero {
268*150812a8SEvalZero p_cb->evt.xfer_desc.tx_length = bytes_used;
269*150812a8SEvalZero }
270*150812a8SEvalZero if (bytes_used < p_cb->evt.xfer_desc.rx_length)
271*150812a8SEvalZero {
272*150812a8SEvalZero p_cb->evt.xfer_desc.rx_length = bytes_used;
273*150812a8SEvalZero }
274*150812a8SEvalZero }
275*150812a8SEvalZero
276*150812a8SEvalZero if (bytes_used < p_cb->evt.xfer_desc.tx_length)
277*150812a8SEvalZero {
278*150812a8SEvalZero nrf_spi_txd_set(p_spi, p_cb->evt.xfer_desc.p_tx_buffer[bytes_used]);
279*150812a8SEvalZero return true;
280*150812a8SEvalZero }
281*150812a8SEvalZero else if (bytes_used < p_cb->evt.xfer_desc.rx_length)
282*150812a8SEvalZero {
283*150812a8SEvalZero nrf_spi_txd_set(p_spi, p_cb->orc);
284*150812a8SEvalZero return true;
285*150812a8SEvalZero }
286*150812a8SEvalZero
287*150812a8SEvalZero return (p_cb->bytes_transferred < p_cb->evt.xfer_desc.tx_length ||
288*150812a8SEvalZero p_cb->bytes_transferred < p_cb->evt.xfer_desc.rx_length);
289*150812a8SEvalZero }
290*150812a8SEvalZero
spi_xfer(NRF_SPI_Type * p_spi,spi_control_block_t * p_cb,nrfx_spi_xfer_desc_t const * p_xfer_desc)291*150812a8SEvalZero static void spi_xfer(NRF_SPI_Type * p_spi,
292*150812a8SEvalZero spi_control_block_t * p_cb,
293*150812a8SEvalZero nrfx_spi_xfer_desc_t const * p_xfer_desc)
294*150812a8SEvalZero {
295*150812a8SEvalZero p_cb->bytes_transferred = 0;
296*150812a8SEvalZero nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK);
297*150812a8SEvalZero
298*150812a8SEvalZero nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
299*150812a8SEvalZero
300*150812a8SEvalZero // Start the transfer by writing some byte to the TXD register;
301*150812a8SEvalZero // if TX buffer is not empty, take the first byte from this buffer,
302*150812a8SEvalZero // otherwise - use over-run character.
303*150812a8SEvalZero nrf_spi_txd_set(p_spi,
304*150812a8SEvalZero (p_xfer_desc->tx_length > 0 ? p_xfer_desc->p_tx_buffer[0] : p_cb->orc));
305*150812a8SEvalZero
306*150812a8SEvalZero // TXD register is double buffered, so next byte to be transmitted can
307*150812a8SEvalZero // be written immediately, if needed, i.e. if TX or RX transfer is to
308*150812a8SEvalZero // be more that 1 byte long. Again - if there is something more in TX
309*150812a8SEvalZero // buffer send it, otherwise use over-run character.
310*150812a8SEvalZero if (p_xfer_desc->tx_length > 1)
311*150812a8SEvalZero {
312*150812a8SEvalZero nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]);
313*150812a8SEvalZero }
314*150812a8SEvalZero else if (p_xfer_desc->rx_length > 1)
315*150812a8SEvalZero {
316*150812a8SEvalZero nrf_spi_txd_set(p_spi, p_cb->orc);
317*150812a8SEvalZero }
318*150812a8SEvalZero
319*150812a8SEvalZero // For blocking mode (user handler not provided) wait here for READY
320*150812a8SEvalZero // events (indicating that the byte from TXD register was transmitted
321*150812a8SEvalZero // and a new incoming byte was moved to the RXD register) and continue
322*150812a8SEvalZero // transaction until all requested bytes are transferred.
323*150812a8SEvalZero // In non-blocking mode - IRQ service routine will do this stuff.
324*150812a8SEvalZero if (p_cb->handler)
325*150812a8SEvalZero {
326*150812a8SEvalZero nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
327*150812a8SEvalZero }
328*150812a8SEvalZero else
329*150812a8SEvalZero {
330*150812a8SEvalZero do {
331*150812a8SEvalZero while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {}
332*150812a8SEvalZero nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
333*150812a8SEvalZero NRFX_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.");
334*150812a8SEvalZero } while (transfer_byte(p_spi, p_cb));
335*150812a8SEvalZero if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED)
336*150812a8SEvalZero {
337*150812a8SEvalZero nrf_gpio_pin_set(p_cb->ss_pin);
338*150812a8SEvalZero }
339*150812a8SEvalZero }
340*150812a8SEvalZero }
341*150812a8SEvalZero
nrfx_spi_xfer(nrfx_spi_t const * const p_instance,nrfx_spi_xfer_desc_t const * p_xfer_desc,uint32_t flags)342*150812a8SEvalZero nrfx_err_t nrfx_spi_xfer(nrfx_spi_t const * const p_instance,
343*150812a8SEvalZero nrfx_spi_xfer_desc_t const * p_xfer_desc,
344*150812a8SEvalZero uint32_t flags)
345*150812a8SEvalZero {
346*150812a8SEvalZero spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
347*150812a8SEvalZero NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
348*150812a8SEvalZero NRFX_ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0);
349*150812a8SEvalZero NRFX_ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0);
350*150812a8SEvalZero
351*150812a8SEvalZero nrfx_err_t err_code = NRFX_SUCCESS;
352*150812a8SEvalZero
353*150812a8SEvalZero if (p_cb->transfer_in_progress)
354*150812a8SEvalZero {
355*150812a8SEvalZero err_code = NRFX_ERROR_BUSY;
356*150812a8SEvalZero NRFX_LOG_WARNING("Function: %s, error code: %s.",
357*150812a8SEvalZero __func__,
358*150812a8SEvalZero NRFX_LOG_ERROR_STRING_GET(err_code));
359*150812a8SEvalZero return err_code;
360*150812a8SEvalZero }
361*150812a8SEvalZero else
362*150812a8SEvalZero {
363*150812a8SEvalZero if (p_cb->handler)
364*150812a8SEvalZero {
365*150812a8SEvalZero p_cb->transfer_in_progress = true;
366*150812a8SEvalZero }
367*150812a8SEvalZero }
368*150812a8SEvalZero
369*150812a8SEvalZero p_cb->evt.xfer_desc = *p_xfer_desc;
370*150812a8SEvalZero p_cb->abort = false;
371*150812a8SEvalZero
372*150812a8SEvalZero if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED)
373*150812a8SEvalZero {
374*150812a8SEvalZero nrf_gpio_pin_clear(p_cb->ss_pin);
375*150812a8SEvalZero }
376*150812a8SEvalZero if (flags)
377*150812a8SEvalZero {
378*150812a8SEvalZero p_cb->transfer_in_progress = false;
379*150812a8SEvalZero err_code = NRFX_ERROR_NOT_SUPPORTED;
380*150812a8SEvalZero }
381*150812a8SEvalZero else
382*150812a8SEvalZero {
383*150812a8SEvalZero spi_xfer(p_instance->p_reg, p_cb, p_xfer_desc);
384*150812a8SEvalZero }
385*150812a8SEvalZero NRFX_LOG_INFO("Function: %s, error code: %s.",
386*150812a8SEvalZero __func__,
387*150812a8SEvalZero NRFX_LOG_ERROR_STRING_GET(err_code));
388*150812a8SEvalZero return err_code;
389*150812a8SEvalZero }
390*150812a8SEvalZero
nrfx_spi_abort(nrfx_spi_t const * p_instance)391*150812a8SEvalZero void nrfx_spi_abort(nrfx_spi_t const * p_instance)
392*150812a8SEvalZero {
393*150812a8SEvalZero spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
394*150812a8SEvalZero NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
395*150812a8SEvalZero p_cb->abort = true;
396*150812a8SEvalZero }
397*150812a8SEvalZero
irq_handler(NRF_SPI_Type * p_spi,spi_control_block_t * p_cb)398*150812a8SEvalZero static void irq_handler(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
399*150812a8SEvalZero {
400*150812a8SEvalZero NRFX_ASSERT(p_cb->handler);
401*150812a8SEvalZero
402*150812a8SEvalZero nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
403*150812a8SEvalZero NRFX_LOG_DEBUG("Event: NRF_SPI_EVENT_READY.");
404*150812a8SEvalZero
405*150812a8SEvalZero if (!transfer_byte(p_spi, p_cb))
406*150812a8SEvalZero {
407*150812a8SEvalZero finish_transfer(p_cb);
408*150812a8SEvalZero }
409*150812a8SEvalZero }
410*150812a8SEvalZero
411*150812a8SEvalZero #if NRFX_CHECK(NRFX_SPI0_ENABLED)
nrfx_spi_0_irq_handler(void)412*150812a8SEvalZero void nrfx_spi_0_irq_handler(void)
413*150812a8SEvalZero {
414*150812a8SEvalZero irq_handler(NRF_SPI0, &m_cb[NRFX_SPI0_INST_IDX]);
415*150812a8SEvalZero }
416*150812a8SEvalZero #endif
417*150812a8SEvalZero
418*150812a8SEvalZero #if NRFX_CHECK(NRFX_SPI1_ENABLED)
nrfx_spi_1_irq_handler(void)419*150812a8SEvalZero void nrfx_spi_1_irq_handler(void)
420*150812a8SEvalZero {
421*150812a8SEvalZero irq_handler(NRF_SPI1, &m_cb[NRFX_SPI1_INST_IDX]);
422*150812a8SEvalZero }
423*150812a8SEvalZero #endif
424*150812a8SEvalZero
425*150812a8SEvalZero #if NRFX_CHECK(NRFX_SPI2_ENABLED)
nrfx_spi_2_irq_handler(void)426*150812a8SEvalZero void nrfx_spi_2_irq_handler(void)
427*150812a8SEvalZero {
428*150812a8SEvalZero irq_handler(NRF_SPI2, &m_cb[NRFX_SPI2_INST_IDX]);
429*150812a8SEvalZero }
430*150812a8SEvalZero #endif
431*150812a8SEvalZero
432*150812a8SEvalZero #endif // NRFX_CHECK(NRFX_SPI_ENABLED)
433