1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <[email protected]>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <[email protected]>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 enum event_type_t {
159 	EVENT_FLEXIBLE	= 0x01,
160 	EVENT_PINNED	= 0x02,
161 	EVENT_TIME	= 0x04,
162 	EVENT_FROZEN	= 0x08,
163 	/* see ctx_resched() for details */
164 	EVENT_CPU	= 0x10,
165 	EVENT_CGROUP	= 0x20,
166 
167 	/* compound helpers */
168 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
169 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171 
__perf_ctx_lock(struct perf_event_context * ctx)172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174 	raw_spin_lock(&ctx->lock);
175 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 			  struct perf_event_context *ctx)
180 {
181 	__perf_ctx_lock(&cpuctx->ctx);
182 	if (ctx)
183 		__perf_ctx_lock(ctx);
184 }
185 
__perf_ctx_unlock(struct perf_event_context * ctx)186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188 	/*
189 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 	 * after ctx_sched_out() by clearing is_active.
191 	 */
192 	if (ctx->is_active & EVENT_FROZEN) {
193 		if (!(ctx->is_active & EVENT_ALL))
194 			ctx->is_active = 0;
195 		else
196 			ctx->is_active &= ~EVENT_FROZEN;
197 	}
198 	raw_spin_unlock(&ctx->lock);
199 }
200 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 			    struct perf_event_context *ctx)
203 {
204 	if (ctx)
205 		__perf_ctx_unlock(ctx);
206 	__perf_ctx_unlock(&cpuctx->ctx);
207 }
208 
209 #define TASK_TOMBSTONE ((void *)-1L)
210 
is_kernel_event(struct perf_event * event)211 static bool is_kernel_event(struct perf_event *event)
212 {
213 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215 
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217 
perf_cpu_task_ctx(void)218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220 	lockdep_assert_irqs_disabled();
221 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223 
224 /*
225  * On task ctx scheduling...
226  *
227  * When !ctx->nr_events a task context will not be scheduled. This means
228  * we can disable the scheduler hooks (for performance) without leaving
229  * pending task ctx state.
230  *
231  * This however results in two special cases:
232  *
233  *  - removing the last event from a task ctx; this is relatively straight
234  *    forward and is done in __perf_remove_from_context.
235  *
236  *  - adding the first event to a task ctx; this is tricky because we cannot
237  *    rely on ctx->is_active and therefore cannot use event_function_call().
238  *    See perf_install_in_context().
239  *
240  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241  */
242 
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 			struct perf_event_context *, void *);
245 
246 struct event_function_struct {
247 	struct perf_event *event;
248 	event_f func;
249 	void *data;
250 };
251 
event_function(void * info)252 static int event_function(void *info)
253 {
254 	struct event_function_struct *efs = info;
255 	struct perf_event *event = efs->event;
256 	struct perf_event_context *ctx = event->ctx;
257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 	int ret = 0;
260 
261 	lockdep_assert_irqs_disabled();
262 
263 	perf_ctx_lock(cpuctx, task_ctx);
264 	/*
265 	 * Since we do the IPI call without holding ctx->lock things can have
266 	 * changed, double check we hit the task we set out to hit.
267 	 */
268 	if (ctx->task) {
269 		if (ctx->task != current) {
270 			ret = -ESRCH;
271 			goto unlock;
272 		}
273 
274 		/*
275 		 * We only use event_function_call() on established contexts,
276 		 * and event_function() is only ever called when active (or
277 		 * rather, we'll have bailed in task_function_call() or the
278 		 * above ctx->task != current test), therefore we must have
279 		 * ctx->is_active here.
280 		 */
281 		WARN_ON_ONCE(!ctx->is_active);
282 		/*
283 		 * And since we have ctx->is_active, cpuctx->task_ctx must
284 		 * match.
285 		 */
286 		WARN_ON_ONCE(task_ctx != ctx);
287 	} else {
288 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
289 	}
290 
291 	efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 	perf_ctx_unlock(cpuctx, task_ctx);
294 
295 	return ret;
296 }
297 
event_function_call(struct perf_event * event,event_f func,void * data)298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 	struct perf_cpu_context *cpuctx;
303 	struct event_function_struct efs = {
304 		.event = event,
305 		.func = func,
306 		.data = data,
307 	};
308 
309 	if (!event->parent) {
310 		/*
311 		 * If this is a !child event, we must hold ctx::mutex to
312 		 * stabilize the event->ctx relation. See
313 		 * perf_event_ctx_lock().
314 		 */
315 		lockdep_assert_held(&ctx->mutex);
316 	}
317 
318 	if (!task) {
319 		cpu_function_call(event->cpu, event_function, &efs);
320 		return;
321 	}
322 
323 	if (task == TASK_TOMBSTONE)
324 		return;
325 
326 again:
327 	if (!task_function_call(task, event_function, &efs))
328 		return;
329 
330 	local_irq_disable();
331 	cpuctx = this_cpu_ptr(&perf_cpu_context);
332 	perf_ctx_lock(cpuctx, ctx);
333 	/*
334 	 * Reload the task pointer, it might have been changed by
335 	 * a concurrent perf_event_context_sched_out().
336 	 */
337 	task = ctx->task;
338 	if (task == TASK_TOMBSTONE)
339 		goto unlock;
340 	if (ctx->is_active) {
341 		perf_ctx_unlock(cpuctx, ctx);
342 		local_irq_enable();
343 		goto again;
344 	}
345 	func(event, NULL, ctx, data);
346 unlock:
347 	perf_ctx_unlock(cpuctx, ctx);
348 	local_irq_enable();
349 }
350 
351 /*
352  * Similar to event_function_call() + event_function(), but hard assumes IRQs
353  * are already disabled and we're on the right CPU.
354  */
event_function_local(struct perf_event * event,event_f func,void * data)355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357 	struct perf_event_context *ctx = event->ctx;
358 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 	struct task_struct *task = READ_ONCE(ctx->task);
360 	struct perf_event_context *task_ctx = NULL;
361 
362 	lockdep_assert_irqs_disabled();
363 
364 	if (task) {
365 		if (task == TASK_TOMBSTONE)
366 			return;
367 
368 		task_ctx = ctx;
369 	}
370 
371 	perf_ctx_lock(cpuctx, task_ctx);
372 
373 	task = ctx->task;
374 	if (task == TASK_TOMBSTONE)
375 		goto unlock;
376 
377 	if (task) {
378 		/*
379 		 * We must be either inactive or active and the right task,
380 		 * otherwise we're screwed, since we cannot IPI to somewhere
381 		 * else.
382 		 */
383 		if (ctx->is_active) {
384 			if (WARN_ON_ONCE(task != current))
385 				goto unlock;
386 
387 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 				goto unlock;
389 		}
390 	} else {
391 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
392 	}
393 
394 	func(event, cpuctx, ctx, data);
395 unlock:
396 	perf_ctx_unlock(cpuctx, task_ctx);
397 }
398 
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 		       PERF_FLAG_FD_OUTPUT  |\
401 		       PERF_FLAG_PID_CGROUP |\
402 		       PERF_FLAG_FD_CLOEXEC)
403 
404 /*
405  * branch priv levels that need permission checks
406  */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 	(PERF_SAMPLE_BRANCH_KERNEL |\
409 	 PERF_SAMPLE_BRANCH_HV)
410 
411 /*
412  * perf_sched_events : >0 events exist
413  */
414 
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420 
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422 
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434 
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445 
446 /*
447  * perf event paranoia level:
448  *  -1 - not paranoid at all
449  *   0 - disallow raw tracepoint access for unpriv
450  *   1 - disallow cpu events for unpriv
451  *   2 - disallow kernel profiling for unpriv
452  */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454 
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457 
458 /*
459  * max perf event sample rate
460  */
461 #define DEFAULT_MAX_SAMPLE_RATE		100000
462 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
464 
465 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
466 
467 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
469 
470 static int perf_sample_allowed_ns __read_mostly =
471 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472 
update_perf_cpu_limits(void)473 static void update_perf_cpu_limits(void)
474 {
475 	u64 tmp = perf_sample_period_ns;
476 
477 	tmp *= sysctl_perf_cpu_time_max_percent;
478 	tmp = div_u64(tmp, 100);
479 	if (!tmp)
480 		tmp = 1;
481 
482 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
483 }
484 
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486 
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488 				       void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 	int ret;
491 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
492 	/*
493 	 * If throttling is disabled don't allow the write:
494 	 */
495 	if (write && (perf_cpu == 100 || perf_cpu == 0))
496 		return -EINVAL;
497 
498 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499 	if (ret || !write)
500 		return ret;
501 
502 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 	update_perf_cpu_limits();
505 
506 	return 0;
507 }
508 
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510 
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 /*
532  * perf samples are done in some very critical code paths (NMIs).
533  * If they take too much CPU time, the system can lock up and not
534  * get any real work done.  This will drop the sample rate when
535  * we detect that events are taking too long.
536  */
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
539 
540 static u64 __report_avg;
541 static u64 __report_allowed;
542 
perf_duration_warn(struct irq_work * w)543 static void perf_duration_warn(struct irq_work *w)
544 {
545 	printk_ratelimited(KERN_INFO
546 		"perf: interrupt took too long (%lld > %lld), lowering "
547 		"kernel.perf_event_max_sample_rate to %d\n",
548 		__report_avg, __report_allowed,
549 		sysctl_perf_event_sample_rate);
550 }
551 
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553 
perf_sample_event_took(u64 sample_len_ns)554 void perf_sample_event_took(u64 sample_len_ns)
555 {
556 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557 	u64 running_len;
558 	u64 avg_len;
559 	u32 max;
560 
561 	if (max_len == 0)
562 		return;
563 
564 	/* Decay the counter by 1 average sample. */
565 	running_len = __this_cpu_read(running_sample_length);
566 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567 	running_len += sample_len_ns;
568 	__this_cpu_write(running_sample_length, running_len);
569 
570 	/*
571 	 * Note: this will be biased artificially low until we have
572 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 	 * from having to maintain a count.
574 	 */
575 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576 	if (avg_len <= max_len)
577 		return;
578 
579 	__report_avg = avg_len;
580 	__report_allowed = max_len;
581 
582 	/*
583 	 * Compute a throttle threshold 25% below the current duration.
584 	 */
585 	avg_len += avg_len / 4;
586 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587 	if (avg_len < max)
588 		max /= (u32)avg_len;
589 	else
590 		max = 1;
591 
592 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593 	WRITE_ONCE(max_samples_per_tick, max);
594 
595 	sysctl_perf_event_sample_rate = max * HZ;
596 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597 
598 	if (!irq_work_queue(&perf_duration_work)) {
599 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 			     "kernel.perf_event_max_sample_rate to %d\n",
601 			     __report_avg, __report_allowed,
602 			     sysctl_perf_event_sample_rate);
603 	}
604 }
605 
606 static atomic64_t perf_event_id;
607 
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
610 
perf_event_print_debug(void)611 void __weak perf_event_print_debug(void)	{ }
612 
perf_clock(void)613 static inline u64 perf_clock(void)
614 {
615 	return local_clock();
616 }
617 
perf_event_clock(struct perf_event * event)618 static inline u64 perf_event_clock(struct perf_event *event)
619 {
620 	return event->clock();
621 }
622 
623 /*
624  * State based event timekeeping...
625  *
626  * The basic idea is to use event->state to determine which (if any) time
627  * fields to increment with the current delta. This means we only need to
628  * update timestamps when we change state or when they are explicitly requested
629  * (read).
630  *
631  * Event groups make things a little more complicated, but not terribly so. The
632  * rules for a group are that if the group leader is OFF the entire group is
633  * OFF, irrespective of what the group member states are. This results in
634  * __perf_effective_state().
635  *
636  * A further ramification is that when a group leader flips between OFF and
637  * !OFF, we need to update all group member times.
638  *
639  *
640  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641  * need to make sure the relevant context time is updated before we try and
642  * update our timestamps.
643  */
644 
645 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)646 __perf_effective_state(struct perf_event *event)
647 {
648 	struct perf_event *leader = event->group_leader;
649 
650 	if (leader->state <= PERF_EVENT_STATE_OFF)
651 		return leader->state;
652 
653 	return event->state;
654 }
655 
656 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658 {
659 	enum perf_event_state state = __perf_effective_state(event);
660 	u64 delta = now - event->tstamp;
661 
662 	*enabled = event->total_time_enabled;
663 	if (state >= PERF_EVENT_STATE_INACTIVE)
664 		*enabled += delta;
665 
666 	*running = event->total_time_running;
667 	if (state >= PERF_EVENT_STATE_ACTIVE)
668 		*running += delta;
669 }
670 
perf_event_update_time(struct perf_event * event)671 static void perf_event_update_time(struct perf_event *event)
672 {
673 	u64 now = perf_event_time(event);
674 
675 	__perf_update_times(event, now, &event->total_time_enabled,
676 					&event->total_time_running);
677 	event->tstamp = now;
678 }
679 
perf_event_update_sibling_time(struct perf_event * leader)680 static void perf_event_update_sibling_time(struct perf_event *leader)
681 {
682 	struct perf_event *sibling;
683 
684 	for_each_sibling_event(sibling, leader)
685 		perf_event_update_time(sibling);
686 }
687 
688 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690 {
691 	if (event->state == state)
692 		return;
693 
694 	perf_event_update_time(event);
695 	/*
696 	 * If a group leader gets enabled/disabled all its siblings
697 	 * are affected too.
698 	 */
699 	if ((event->state < 0) ^ (state < 0))
700 		perf_event_update_sibling_time(event);
701 
702 	WRITE_ONCE(event->state, state);
703 }
704 
705 /*
706  * UP store-release, load-acquire
707  */
708 
709 #define __store_release(ptr, val)					\
710 do {									\
711 	barrier();							\
712 	WRITE_ONCE(*(ptr), (val));					\
713 } while (0)
714 
715 #define __load_acquire(ptr)						\
716 ({									\
717 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
718 	barrier();							\
719 	___p;								\
720 })
721 
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
723 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 		if (_cgroup && !_epc->nr_cgroups)			\
725 			continue;					\
726 		else if (_pmu && _epc->pmu != _pmu)			\
727 			continue;					\
728 		else
729 
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731 {
732 	struct perf_event_pmu_context *pmu_ctx;
733 
734 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735 		perf_pmu_disable(pmu_ctx->pmu);
736 }
737 
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739 {
740 	struct perf_event_pmu_context *pmu_ctx;
741 
742 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743 		perf_pmu_enable(pmu_ctx->pmu);
744 }
745 
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748 
749 #ifdef CONFIG_CGROUP_PERF
750 
751 static inline bool
perf_cgroup_match(struct perf_event * event)752 perf_cgroup_match(struct perf_event *event)
753 {
754 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755 
756 	/* @event doesn't care about cgroup */
757 	if (!event->cgrp)
758 		return true;
759 
760 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
761 	if (!cpuctx->cgrp)
762 		return false;
763 
764 	/*
765 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
766 	 * also enabled for all its descendant cgroups.  If @cpuctx's
767 	 * cgroup is a descendant of @event's (the test covers identity
768 	 * case), it's a match.
769 	 */
770 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771 				    event->cgrp->css.cgroup);
772 }
773 
perf_detach_cgroup(struct perf_event * event)774 static inline void perf_detach_cgroup(struct perf_event *event)
775 {
776 	css_put(&event->cgrp->css);
777 	event->cgrp = NULL;
778 }
779 
is_cgroup_event(struct perf_event * event)780 static inline int is_cgroup_event(struct perf_event *event)
781 {
782 	return event->cgrp != NULL;
783 }
784 
perf_cgroup_event_time(struct perf_event * event)785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
786 {
787 	struct perf_cgroup_info *t;
788 
789 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
790 	return t->time;
791 }
792 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794 {
795 	struct perf_cgroup_info *t;
796 
797 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
798 	if (!__load_acquire(&t->active))
799 		return t->time;
800 	now += READ_ONCE(t->timeoffset);
801 	return now;
802 }
803 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805 {
806 	if (adv)
807 		info->time += now - info->timestamp;
808 	info->timestamp = now;
809 	/*
810 	 * see update_context_time()
811 	 */
812 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813 }
814 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816 {
817 	struct perf_cgroup *cgrp = cpuctx->cgrp;
818 	struct cgroup_subsys_state *css;
819 	struct perf_cgroup_info *info;
820 
821 	if (cgrp) {
822 		u64 now = perf_clock();
823 
824 		for (css = &cgrp->css; css; css = css->parent) {
825 			cgrp = container_of(css, struct perf_cgroup, css);
826 			info = this_cpu_ptr(cgrp->info);
827 
828 			__update_cgrp_time(info, now, true);
829 			if (final)
830 				__store_release(&info->active, 0);
831 		}
832 	}
833 }
834 
update_cgrp_time_from_event(struct perf_event * event)835 static inline void update_cgrp_time_from_event(struct perf_event *event)
836 {
837 	struct perf_cgroup_info *info;
838 
839 	/*
840 	 * ensure we access cgroup data only when needed and
841 	 * when we know the cgroup is pinned (css_get)
842 	 */
843 	if (!is_cgroup_event(event))
844 		return;
845 
846 	info = this_cpu_ptr(event->cgrp->info);
847 	/*
848 	 * Do not update time when cgroup is not active
849 	 */
850 	if (info->active)
851 		__update_cgrp_time(info, perf_clock(), true);
852 }
853 
854 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856 {
857 	struct perf_event_context *ctx = &cpuctx->ctx;
858 	struct perf_cgroup *cgrp = cpuctx->cgrp;
859 	struct perf_cgroup_info *info;
860 	struct cgroup_subsys_state *css;
861 
862 	/*
863 	 * ctx->lock held by caller
864 	 * ensure we do not access cgroup data
865 	 * unless we have the cgroup pinned (css_get)
866 	 */
867 	if (!cgrp)
868 		return;
869 
870 	WARN_ON_ONCE(!ctx->nr_cgroups);
871 
872 	for (css = &cgrp->css; css; css = css->parent) {
873 		cgrp = container_of(css, struct perf_cgroup, css);
874 		info = this_cpu_ptr(cgrp->info);
875 		__update_cgrp_time(info, ctx->timestamp, false);
876 		__store_release(&info->active, 1);
877 	}
878 }
879 
880 /*
881  * reschedule events based on the cgroup constraint of task.
882  */
perf_cgroup_switch(struct task_struct * task)883 static void perf_cgroup_switch(struct task_struct *task)
884 {
885 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886 	struct perf_cgroup *cgrp;
887 
888 	/*
889 	 * cpuctx->cgrp is set when the first cgroup event enabled,
890 	 * and is cleared when the last cgroup event disabled.
891 	 */
892 	if (READ_ONCE(cpuctx->cgrp) == NULL)
893 		return;
894 
895 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896 
897 	cgrp = perf_cgroup_from_task(task, NULL);
898 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
899 		return;
900 
901 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902 	perf_ctx_disable(&cpuctx->ctx, true);
903 
904 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905 	/*
906 	 * must not be done before ctxswout due
907 	 * to update_cgrp_time_from_cpuctx() in
908 	 * ctx_sched_out()
909 	 */
910 	cpuctx->cgrp = cgrp;
911 	/*
912 	 * set cgrp before ctxsw in to allow
913 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 	 * to not have to pass task around
915 	 */
916 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917 
918 	perf_ctx_enable(&cpuctx->ctx, true);
919 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920 }
921 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923 				struct cgroup_subsys_state *css)
924 {
925 	struct perf_cpu_context *cpuctx;
926 	struct perf_event **storage;
927 	int cpu, heap_size, ret = 0;
928 
929 	/*
930 	 * Allow storage to have sufficient space for an iterator for each
931 	 * possibly nested cgroup plus an iterator for events with no cgroup.
932 	 */
933 	for (heap_size = 1; css; css = css->parent)
934 		heap_size++;
935 
936 	for_each_possible_cpu(cpu) {
937 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938 		if (heap_size <= cpuctx->heap_size)
939 			continue;
940 
941 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942 				       GFP_KERNEL, cpu_to_node(cpu));
943 		if (!storage) {
944 			ret = -ENOMEM;
945 			break;
946 		}
947 
948 		raw_spin_lock_irq(&cpuctx->ctx.lock);
949 		if (cpuctx->heap_size < heap_size) {
950 			swap(cpuctx->heap, storage);
951 			if (storage == cpuctx->heap_default)
952 				storage = NULL;
953 			cpuctx->heap_size = heap_size;
954 		}
955 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
956 
957 		kfree(storage);
958 	}
959 
960 	return ret;
961 }
962 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964 				      struct perf_event_attr *attr,
965 				      struct perf_event *group_leader)
966 {
967 	struct perf_cgroup *cgrp;
968 	struct cgroup_subsys_state *css;
969 	CLASS(fd, f)(fd);
970 	int ret = 0;
971 
972 	if (fd_empty(f))
973 		return -EBADF;
974 
975 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976 					 &perf_event_cgrp_subsys);
977 	if (IS_ERR(css))
978 		return PTR_ERR(css);
979 
980 	ret = perf_cgroup_ensure_storage(event, css);
981 	if (ret)
982 		return ret;
983 
984 	cgrp = container_of(css, struct perf_cgroup, css);
985 	event->cgrp = cgrp;
986 
987 	/*
988 	 * all events in a group must monitor
989 	 * the same cgroup because a task belongs
990 	 * to only one perf cgroup at a time
991 	 */
992 	if (group_leader && group_leader->cgrp != cgrp) {
993 		perf_detach_cgroup(event);
994 		ret = -EINVAL;
995 	}
996 	return ret;
997 }
998 
999 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 	struct perf_cpu_context *cpuctx;
1003 
1004 	if (!is_cgroup_event(event))
1005 		return;
1006 
1007 	event->pmu_ctx->nr_cgroups++;
1008 
1009 	/*
1010 	 * Because cgroup events are always per-cpu events,
1011 	 * @ctx == &cpuctx->ctx.
1012 	 */
1013 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1014 
1015 	if (ctx->nr_cgroups++)
1016 		return;
1017 
1018 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1019 }
1020 
1021 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	event->pmu_ctx->nr_cgroups--;
1030 
1031 	/*
1032 	 * Because cgroup events are always per-cpu events,
1033 	 * @ctx == &cpuctx->ctx.
1034 	 */
1035 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1036 
1037 	if (--ctx->nr_cgroups)
1038 		return;
1039 
1040 	cpuctx->cgrp = NULL;
1041 }
1042 
1043 #else /* !CONFIG_CGROUP_PERF */
1044 
1045 static inline bool
perf_cgroup_match(struct perf_event * event)1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048 	return true;
1049 }
1050 
perf_detach_cgroup(struct perf_event * event)1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053 
is_cgroup_event(struct perf_event * event)1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056 	return 0;
1057 }
1058 
update_cgrp_time_from_event(struct perf_event * event)1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1064 						bool final)
1065 {
1066 }
1067 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069 				      struct perf_event_attr *attr,
1070 				      struct perf_event *group_leader)
1071 {
1072 	return -EINVAL;
1073 }
1074 
1075 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1077 {
1078 }
1079 
perf_cgroup_event_time(struct perf_event * event)1080 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1081 {
1082 	return 0;
1083 }
1084 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1086 {
1087 	return 0;
1088 }
1089 
1090 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1092 {
1093 }
1094 
1095 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1097 {
1098 }
1099 
perf_cgroup_switch(struct task_struct * task)1100 static void perf_cgroup_switch(struct task_struct *task)
1101 {
1102 }
1103 #endif
1104 
1105 /*
1106  * set default to be dependent on timer tick just
1107  * like original code
1108  */
1109 #define PERF_CPU_HRTIMER (1000 / HZ)
1110 /*
1111  * function must be called with interrupts disabled
1112  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1114 {
1115 	struct perf_cpu_pmu_context *cpc;
1116 	bool rotations;
1117 
1118 	lockdep_assert_irqs_disabled();
1119 
1120 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1121 	rotations = perf_rotate_context(cpc);
1122 
1123 	raw_spin_lock(&cpc->hrtimer_lock);
1124 	if (rotations)
1125 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1126 	else
1127 		cpc->hrtimer_active = 0;
1128 	raw_spin_unlock(&cpc->hrtimer_lock);
1129 
1130 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1131 }
1132 
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1134 {
1135 	struct hrtimer *timer = &cpc->hrtimer;
1136 	struct pmu *pmu = cpc->epc.pmu;
1137 	u64 interval;
1138 
1139 	/*
1140 	 * check default is sane, if not set then force to
1141 	 * default interval (1/tick)
1142 	 */
1143 	interval = pmu->hrtimer_interval_ms;
1144 	if (interval < 1)
1145 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1146 
1147 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1148 
1149 	raw_spin_lock_init(&cpc->hrtimer_lock);
1150 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1151 	timer->function = perf_mux_hrtimer_handler;
1152 }
1153 
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1155 {
1156 	struct hrtimer *timer = &cpc->hrtimer;
1157 	unsigned long flags;
1158 
1159 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1160 	if (!cpc->hrtimer_active) {
1161 		cpc->hrtimer_active = 1;
1162 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1163 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1164 	}
1165 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1166 
1167 	return 0;
1168 }
1169 
perf_mux_hrtimer_restart_ipi(void * arg)1170 static int perf_mux_hrtimer_restart_ipi(void *arg)
1171 {
1172 	return perf_mux_hrtimer_restart(arg);
1173 }
1174 
perf_pmu_disable(struct pmu * pmu)1175 void perf_pmu_disable(struct pmu *pmu)
1176 {
1177 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1178 	if (!(*count)++)
1179 		pmu->pmu_disable(pmu);
1180 }
1181 
perf_pmu_enable(struct pmu * pmu)1182 void perf_pmu_enable(struct pmu *pmu)
1183 {
1184 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1185 	if (!--(*count))
1186 		pmu->pmu_enable(pmu);
1187 }
1188 
perf_assert_pmu_disabled(struct pmu * pmu)1189 static void perf_assert_pmu_disabled(struct pmu *pmu)
1190 {
1191 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1192 }
1193 
get_ctx(struct perf_event_context * ctx)1194 static void get_ctx(struct perf_event_context *ctx)
1195 {
1196 	refcount_inc(&ctx->refcount);
1197 }
1198 
alloc_task_ctx_data(struct pmu * pmu)1199 static void *alloc_task_ctx_data(struct pmu *pmu)
1200 {
1201 	if (pmu->task_ctx_cache)
1202 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1203 
1204 	return NULL;
1205 }
1206 
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1208 {
1209 	if (pmu->task_ctx_cache && task_ctx_data)
1210 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1211 }
1212 
free_ctx(struct rcu_head * head)1213 static void free_ctx(struct rcu_head *head)
1214 {
1215 	struct perf_event_context *ctx;
1216 
1217 	ctx = container_of(head, struct perf_event_context, rcu_head);
1218 	kfree(ctx);
1219 }
1220 
put_ctx(struct perf_event_context * ctx)1221 static void put_ctx(struct perf_event_context *ctx)
1222 {
1223 	if (refcount_dec_and_test(&ctx->refcount)) {
1224 		if (ctx->parent_ctx)
1225 			put_ctx(ctx->parent_ctx);
1226 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1227 			put_task_struct(ctx->task);
1228 		call_rcu(&ctx->rcu_head, free_ctx);
1229 	}
1230 }
1231 
1232 /*
1233  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1234  * perf_pmu_migrate_context() we need some magic.
1235  *
1236  * Those places that change perf_event::ctx will hold both
1237  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1238  *
1239  * Lock ordering is by mutex address. There are two other sites where
1240  * perf_event_context::mutex nests and those are:
1241  *
1242  *  - perf_event_exit_task_context()	[ child , 0 ]
1243  *      perf_event_exit_event()
1244  *        put_event()			[ parent, 1 ]
1245  *
1246  *  - perf_event_init_context()		[ parent, 0 ]
1247  *      inherit_task_group()
1248  *        inherit_group()
1249  *          inherit_event()
1250  *            perf_event_alloc()
1251  *              perf_init_event()
1252  *                perf_try_init_event()	[ child , 1 ]
1253  *
1254  * While it appears there is an obvious deadlock here -- the parent and child
1255  * nesting levels are inverted between the two. This is in fact safe because
1256  * life-time rules separate them. That is an exiting task cannot fork, and a
1257  * spawning task cannot (yet) exit.
1258  *
1259  * But remember that these are parent<->child context relations, and
1260  * migration does not affect children, therefore these two orderings should not
1261  * interact.
1262  *
1263  * The change in perf_event::ctx does not affect children (as claimed above)
1264  * because the sys_perf_event_open() case will install a new event and break
1265  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1266  * concerned with cpuctx and that doesn't have children.
1267  *
1268  * The places that change perf_event::ctx will issue:
1269  *
1270  *   perf_remove_from_context();
1271  *   synchronize_rcu();
1272  *   perf_install_in_context();
1273  *
1274  * to affect the change. The remove_from_context() + synchronize_rcu() should
1275  * quiesce the event, after which we can install it in the new location. This
1276  * means that only external vectors (perf_fops, prctl) can perturb the event
1277  * while in transit. Therefore all such accessors should also acquire
1278  * perf_event_context::mutex to serialize against this.
1279  *
1280  * However; because event->ctx can change while we're waiting to acquire
1281  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1282  * function.
1283  *
1284  * Lock order:
1285  *    exec_update_lock
1286  *	task_struct::perf_event_mutex
1287  *	  perf_event_context::mutex
1288  *	    perf_event::child_mutex;
1289  *	      perf_event_context::lock
1290  *	    mmap_lock
1291  *	      perf_event::mmap_mutex
1292  *	        perf_buffer::aux_mutex
1293  *	      perf_addr_filters_head::lock
1294  *
1295  *    cpu_hotplug_lock
1296  *      pmus_lock
1297  *	  cpuctx->mutex / perf_event_context::mutex
1298  */
1299 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1301 {
1302 	struct perf_event_context *ctx;
1303 
1304 again:
1305 	rcu_read_lock();
1306 	ctx = READ_ONCE(event->ctx);
1307 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1308 		rcu_read_unlock();
1309 		goto again;
1310 	}
1311 	rcu_read_unlock();
1312 
1313 	mutex_lock_nested(&ctx->mutex, nesting);
1314 	if (event->ctx != ctx) {
1315 		mutex_unlock(&ctx->mutex);
1316 		put_ctx(ctx);
1317 		goto again;
1318 	}
1319 
1320 	return ctx;
1321 }
1322 
1323 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1324 perf_event_ctx_lock(struct perf_event *event)
1325 {
1326 	return perf_event_ctx_lock_nested(event, 0);
1327 }
1328 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1329 static void perf_event_ctx_unlock(struct perf_event *event,
1330 				  struct perf_event_context *ctx)
1331 {
1332 	mutex_unlock(&ctx->mutex);
1333 	put_ctx(ctx);
1334 }
1335 
1336 /*
1337  * This must be done under the ctx->lock, such as to serialize against
1338  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1339  * calling scheduler related locks and ctx->lock nests inside those.
1340  */
1341 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1342 unclone_ctx(struct perf_event_context *ctx)
1343 {
1344 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1345 
1346 	lockdep_assert_held(&ctx->lock);
1347 
1348 	if (parent_ctx)
1349 		ctx->parent_ctx = NULL;
1350 	ctx->generation++;
1351 
1352 	return parent_ctx;
1353 }
1354 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1356 				enum pid_type type)
1357 {
1358 	u32 nr;
1359 	/*
1360 	 * only top level events have the pid namespace they were created in
1361 	 */
1362 	if (event->parent)
1363 		event = event->parent;
1364 
1365 	nr = __task_pid_nr_ns(p, type, event->ns);
1366 	/* avoid -1 if it is idle thread or runs in another ns */
1367 	if (!nr && !pid_alive(p))
1368 		nr = -1;
1369 	return nr;
1370 }
1371 
perf_event_pid(struct perf_event * event,struct task_struct * p)1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1373 {
1374 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1375 }
1376 
perf_event_tid(struct perf_event * event,struct task_struct * p)1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1378 {
1379 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1380 }
1381 
1382 /*
1383  * If we inherit events we want to return the parent event id
1384  * to userspace.
1385  */
primary_event_id(struct perf_event * event)1386 static u64 primary_event_id(struct perf_event *event)
1387 {
1388 	u64 id = event->id;
1389 
1390 	if (event->parent)
1391 		id = event->parent->id;
1392 
1393 	return id;
1394 }
1395 
1396 /*
1397  * Get the perf_event_context for a task and lock it.
1398  *
1399  * This has to cope with the fact that until it is locked,
1400  * the context could get moved to another task.
1401  */
1402 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1404 {
1405 	struct perf_event_context *ctx;
1406 
1407 retry:
1408 	/*
1409 	 * One of the few rules of preemptible RCU is that one cannot do
1410 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1411 	 * part of the read side critical section was irqs-enabled -- see
1412 	 * rcu_read_unlock_special().
1413 	 *
1414 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1415 	 * side critical section has interrupts disabled.
1416 	 */
1417 	local_irq_save(*flags);
1418 	rcu_read_lock();
1419 	ctx = rcu_dereference(task->perf_event_ctxp);
1420 	if (ctx) {
1421 		/*
1422 		 * If this context is a clone of another, it might
1423 		 * get swapped for another underneath us by
1424 		 * perf_event_task_sched_out, though the
1425 		 * rcu_read_lock() protects us from any context
1426 		 * getting freed.  Lock the context and check if it
1427 		 * got swapped before we could get the lock, and retry
1428 		 * if so.  If we locked the right context, then it
1429 		 * can't get swapped on us any more.
1430 		 */
1431 		raw_spin_lock(&ctx->lock);
1432 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1433 			raw_spin_unlock(&ctx->lock);
1434 			rcu_read_unlock();
1435 			local_irq_restore(*flags);
1436 			goto retry;
1437 		}
1438 
1439 		if (ctx->task == TASK_TOMBSTONE ||
1440 		    !refcount_inc_not_zero(&ctx->refcount)) {
1441 			raw_spin_unlock(&ctx->lock);
1442 			ctx = NULL;
1443 		} else {
1444 			WARN_ON_ONCE(ctx->task != task);
1445 		}
1446 	}
1447 	rcu_read_unlock();
1448 	if (!ctx)
1449 		local_irq_restore(*flags);
1450 	return ctx;
1451 }
1452 
1453 /*
1454  * Get the context for a task and increment its pin_count so it
1455  * can't get swapped to another task.  This also increments its
1456  * reference count so that the context can't get freed.
1457  */
1458 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1459 perf_pin_task_context(struct task_struct *task)
1460 {
1461 	struct perf_event_context *ctx;
1462 	unsigned long flags;
1463 
1464 	ctx = perf_lock_task_context(task, &flags);
1465 	if (ctx) {
1466 		++ctx->pin_count;
1467 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1468 	}
1469 	return ctx;
1470 }
1471 
perf_unpin_context(struct perf_event_context * ctx)1472 static void perf_unpin_context(struct perf_event_context *ctx)
1473 {
1474 	unsigned long flags;
1475 
1476 	raw_spin_lock_irqsave(&ctx->lock, flags);
1477 	--ctx->pin_count;
1478 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1479 }
1480 
1481 /*
1482  * Update the record of the current time in a context.
1483  */
__update_context_time(struct perf_event_context * ctx,bool adv)1484 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1485 {
1486 	u64 now = perf_clock();
1487 
1488 	lockdep_assert_held(&ctx->lock);
1489 
1490 	if (adv)
1491 		ctx->time += now - ctx->timestamp;
1492 	ctx->timestamp = now;
1493 
1494 	/*
1495 	 * The above: time' = time + (now - timestamp), can be re-arranged
1496 	 * into: time` = now + (time - timestamp), which gives a single value
1497 	 * offset to compute future time without locks on.
1498 	 *
1499 	 * See perf_event_time_now(), which can be used from NMI context where
1500 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1501 	 * both the above values in a consistent manner.
1502 	 */
1503 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1504 }
1505 
update_context_time(struct perf_event_context * ctx)1506 static void update_context_time(struct perf_event_context *ctx)
1507 {
1508 	__update_context_time(ctx, true);
1509 }
1510 
perf_event_time(struct perf_event * event)1511 static u64 perf_event_time(struct perf_event *event)
1512 {
1513 	struct perf_event_context *ctx = event->ctx;
1514 
1515 	if (unlikely(!ctx))
1516 		return 0;
1517 
1518 	if (is_cgroup_event(event))
1519 		return perf_cgroup_event_time(event);
1520 
1521 	return ctx->time;
1522 }
1523 
perf_event_time_now(struct perf_event * event,u64 now)1524 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1525 {
1526 	struct perf_event_context *ctx = event->ctx;
1527 
1528 	if (unlikely(!ctx))
1529 		return 0;
1530 
1531 	if (is_cgroup_event(event))
1532 		return perf_cgroup_event_time_now(event, now);
1533 
1534 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1535 		return ctx->time;
1536 
1537 	now += READ_ONCE(ctx->timeoffset);
1538 	return now;
1539 }
1540 
get_event_type(struct perf_event * event)1541 static enum event_type_t get_event_type(struct perf_event *event)
1542 {
1543 	struct perf_event_context *ctx = event->ctx;
1544 	enum event_type_t event_type;
1545 
1546 	lockdep_assert_held(&ctx->lock);
1547 
1548 	/*
1549 	 * It's 'group type', really, because if our group leader is
1550 	 * pinned, so are we.
1551 	 */
1552 	if (event->group_leader != event)
1553 		event = event->group_leader;
1554 
1555 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1556 	if (!ctx->task)
1557 		event_type |= EVENT_CPU;
1558 
1559 	return event_type;
1560 }
1561 
1562 /*
1563  * Helper function to initialize event group nodes.
1564  */
init_event_group(struct perf_event * event)1565 static void init_event_group(struct perf_event *event)
1566 {
1567 	RB_CLEAR_NODE(&event->group_node);
1568 	event->group_index = 0;
1569 }
1570 
1571 /*
1572  * Extract pinned or flexible groups from the context
1573  * based on event attrs bits.
1574  */
1575 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 {
1578 	if (event->attr.pinned)
1579 		return &ctx->pinned_groups;
1580 	else
1581 		return &ctx->flexible_groups;
1582 }
1583 
1584 /*
1585  * Helper function to initializes perf_event_group trees.
1586  */
perf_event_groups_init(struct perf_event_groups * groups)1587 static void perf_event_groups_init(struct perf_event_groups *groups)
1588 {
1589 	groups->tree = RB_ROOT;
1590 	groups->index = 0;
1591 }
1592 
event_cgroup(const struct perf_event * event)1593 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1594 {
1595 	struct cgroup *cgroup = NULL;
1596 
1597 #ifdef CONFIG_CGROUP_PERF
1598 	if (event->cgrp)
1599 		cgroup = event->cgrp->css.cgroup;
1600 #endif
1601 
1602 	return cgroup;
1603 }
1604 
1605 /*
1606  * Compare function for event groups;
1607  *
1608  * Implements complex key that first sorts by CPU and then by virtual index
1609  * which provides ordering when rotating groups for the same CPU.
1610  */
1611 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1613 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1614 		      const struct perf_event *right)
1615 {
1616 	if (left_cpu < right->cpu)
1617 		return -1;
1618 	if (left_cpu > right->cpu)
1619 		return 1;
1620 
1621 	if (left_pmu) {
1622 		if (left_pmu < right->pmu_ctx->pmu)
1623 			return -1;
1624 		if (left_pmu > right->pmu_ctx->pmu)
1625 			return 1;
1626 	}
1627 
1628 #ifdef CONFIG_CGROUP_PERF
1629 	{
1630 		const struct cgroup *right_cgroup = event_cgroup(right);
1631 
1632 		if (left_cgroup != right_cgroup) {
1633 			if (!left_cgroup) {
1634 				/*
1635 				 * Left has no cgroup but right does, no
1636 				 * cgroups come first.
1637 				 */
1638 				return -1;
1639 			}
1640 			if (!right_cgroup) {
1641 				/*
1642 				 * Right has no cgroup but left does, no
1643 				 * cgroups come first.
1644 				 */
1645 				return 1;
1646 			}
1647 			/* Two dissimilar cgroups, order by id. */
1648 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1649 				return -1;
1650 
1651 			return 1;
1652 		}
1653 	}
1654 #endif
1655 
1656 	if (left_group_index < right->group_index)
1657 		return -1;
1658 	if (left_group_index > right->group_index)
1659 		return 1;
1660 
1661 	return 0;
1662 }
1663 
1664 #define __node_2_pe(node) \
1665 	rb_entry((node), struct perf_event, group_node)
1666 
__group_less(struct rb_node * a,const struct rb_node * b)1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1668 {
1669 	struct perf_event *e = __node_2_pe(a);
1670 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1671 				     e->group_index, __node_2_pe(b)) < 0;
1672 }
1673 
1674 struct __group_key {
1675 	int cpu;
1676 	struct pmu *pmu;
1677 	struct cgroup *cgroup;
1678 };
1679 
__group_cmp(const void * key,const struct rb_node * node)1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1681 {
1682 	const struct __group_key *a = key;
1683 	const struct perf_event *b = __node_2_pe(node);
1684 
1685 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1686 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1687 }
1688 
1689 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1691 {
1692 	const struct __group_key *a = key;
1693 	const struct perf_event *b = __node_2_pe(node);
1694 
1695 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1696 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1697 				     b->group_index, b);
1698 }
1699 
1700 /*
1701  * Insert @event into @groups' tree; using
1702  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1703  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1704  */
1705 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1706 perf_event_groups_insert(struct perf_event_groups *groups,
1707 			 struct perf_event *event)
1708 {
1709 	event->group_index = ++groups->index;
1710 
1711 	rb_add(&event->group_node, &groups->tree, __group_less);
1712 }
1713 
1714 /*
1715  * Helper function to insert event into the pinned or flexible groups.
1716  */
1717 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1719 {
1720 	struct perf_event_groups *groups;
1721 
1722 	groups = get_event_groups(event, ctx);
1723 	perf_event_groups_insert(groups, event);
1724 }
1725 
1726 /*
1727  * Delete a group from a tree.
1728  */
1729 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1730 perf_event_groups_delete(struct perf_event_groups *groups,
1731 			 struct perf_event *event)
1732 {
1733 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1734 		     RB_EMPTY_ROOT(&groups->tree));
1735 
1736 	rb_erase(&event->group_node, &groups->tree);
1737 	init_event_group(event);
1738 }
1739 
1740 /*
1741  * Helper function to delete event from its groups.
1742  */
1743 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1745 {
1746 	struct perf_event_groups *groups;
1747 
1748 	groups = get_event_groups(event, ctx);
1749 	perf_event_groups_delete(groups, event);
1750 }
1751 
1752 /*
1753  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1754  */
1755 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1757 			struct pmu *pmu, struct cgroup *cgrp)
1758 {
1759 	struct __group_key key = {
1760 		.cpu = cpu,
1761 		.pmu = pmu,
1762 		.cgroup = cgrp,
1763 	};
1764 	struct rb_node *node;
1765 
1766 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1767 	if (node)
1768 		return __node_2_pe(node);
1769 
1770 	return NULL;
1771 }
1772 
1773 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1775 {
1776 	struct __group_key key = {
1777 		.cpu = event->cpu,
1778 		.pmu = pmu,
1779 		.cgroup = event_cgroup(event),
1780 	};
1781 	struct rb_node *next;
1782 
1783 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1784 	if (next)
1785 		return __node_2_pe(next);
1786 
1787 	return NULL;
1788 }
1789 
1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1791 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1792 	     event; event = perf_event_groups_next(event, pmu))
1793 
1794 /*
1795  * Iterate through the whole groups tree.
1796  */
1797 #define perf_event_groups_for_each(event, groups)			\
1798 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1799 				typeof(*event), group_node); event;	\
1800 		event = rb_entry_safe(rb_next(&event->group_node),	\
1801 				typeof(*event), group_node))
1802 
1803 /*
1804  * Does the event attribute request inherit with PERF_SAMPLE_READ
1805  */
has_inherit_and_sample_read(struct perf_event_attr * attr)1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1807 {
1808 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1809 }
1810 
1811 /*
1812  * Add an event from the lists for its context.
1813  * Must be called with ctx->mutex and ctx->lock held.
1814  */
1815 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1817 {
1818 	lockdep_assert_held(&ctx->lock);
1819 
1820 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1821 	event->attach_state |= PERF_ATTACH_CONTEXT;
1822 
1823 	event->tstamp = perf_event_time(event);
1824 
1825 	/*
1826 	 * If we're a stand alone event or group leader, we go to the context
1827 	 * list, group events are kept attached to the group so that
1828 	 * perf_group_detach can, at all times, locate all siblings.
1829 	 */
1830 	if (event->group_leader == event) {
1831 		event->group_caps = event->event_caps;
1832 		add_event_to_groups(event, ctx);
1833 	}
1834 
1835 	list_add_rcu(&event->event_entry, &ctx->event_list);
1836 	ctx->nr_events++;
1837 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1838 		ctx->nr_user++;
1839 	if (event->attr.inherit_stat)
1840 		ctx->nr_stat++;
1841 	if (has_inherit_and_sample_read(&event->attr))
1842 		local_inc(&ctx->nr_no_switch_fast);
1843 
1844 	if (event->state > PERF_EVENT_STATE_OFF)
1845 		perf_cgroup_event_enable(event, ctx);
1846 
1847 	ctx->generation++;
1848 	event->pmu_ctx->nr_events++;
1849 }
1850 
1851 /*
1852  * Initialize event state based on the perf_event_attr::disabled.
1853  */
perf_event__state_init(struct perf_event * event)1854 static inline void perf_event__state_init(struct perf_event *event)
1855 {
1856 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1857 					      PERF_EVENT_STATE_INACTIVE;
1858 }
1859 
__perf_event_read_size(u64 read_format,int nr_siblings)1860 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1861 {
1862 	int entry = sizeof(u64); /* value */
1863 	int size = 0;
1864 	int nr = 1;
1865 
1866 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1867 		size += sizeof(u64);
1868 
1869 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1870 		size += sizeof(u64);
1871 
1872 	if (read_format & PERF_FORMAT_ID)
1873 		entry += sizeof(u64);
1874 
1875 	if (read_format & PERF_FORMAT_LOST)
1876 		entry += sizeof(u64);
1877 
1878 	if (read_format & PERF_FORMAT_GROUP) {
1879 		nr += nr_siblings;
1880 		size += sizeof(u64);
1881 	}
1882 
1883 	/*
1884 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1885 	 * adding more siblings, this will never overflow.
1886 	 */
1887 	return size + nr * entry;
1888 }
1889 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1891 {
1892 	struct perf_sample_data *data;
1893 	u16 size = 0;
1894 
1895 	if (sample_type & PERF_SAMPLE_IP)
1896 		size += sizeof(data->ip);
1897 
1898 	if (sample_type & PERF_SAMPLE_ADDR)
1899 		size += sizeof(data->addr);
1900 
1901 	if (sample_type & PERF_SAMPLE_PERIOD)
1902 		size += sizeof(data->period);
1903 
1904 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1905 		size += sizeof(data->weight.full);
1906 
1907 	if (sample_type & PERF_SAMPLE_READ)
1908 		size += event->read_size;
1909 
1910 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1911 		size += sizeof(data->data_src.val);
1912 
1913 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1914 		size += sizeof(data->txn);
1915 
1916 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1917 		size += sizeof(data->phys_addr);
1918 
1919 	if (sample_type & PERF_SAMPLE_CGROUP)
1920 		size += sizeof(data->cgroup);
1921 
1922 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1923 		size += sizeof(data->data_page_size);
1924 
1925 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1926 		size += sizeof(data->code_page_size);
1927 
1928 	event->header_size = size;
1929 }
1930 
1931 /*
1932  * Called at perf_event creation and when events are attached/detached from a
1933  * group.
1934  */
perf_event__header_size(struct perf_event * event)1935 static void perf_event__header_size(struct perf_event *event)
1936 {
1937 	event->read_size =
1938 		__perf_event_read_size(event->attr.read_format,
1939 				       event->group_leader->nr_siblings);
1940 	__perf_event_header_size(event, event->attr.sample_type);
1941 }
1942 
perf_event__id_header_size(struct perf_event * event)1943 static void perf_event__id_header_size(struct perf_event *event)
1944 {
1945 	struct perf_sample_data *data;
1946 	u64 sample_type = event->attr.sample_type;
1947 	u16 size = 0;
1948 
1949 	if (sample_type & PERF_SAMPLE_TID)
1950 		size += sizeof(data->tid_entry);
1951 
1952 	if (sample_type & PERF_SAMPLE_TIME)
1953 		size += sizeof(data->time);
1954 
1955 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1956 		size += sizeof(data->id);
1957 
1958 	if (sample_type & PERF_SAMPLE_ID)
1959 		size += sizeof(data->id);
1960 
1961 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1962 		size += sizeof(data->stream_id);
1963 
1964 	if (sample_type & PERF_SAMPLE_CPU)
1965 		size += sizeof(data->cpu_entry);
1966 
1967 	event->id_header_size = size;
1968 }
1969 
1970 /*
1971  * Check that adding an event to the group does not result in anybody
1972  * overflowing the 64k event limit imposed by the output buffer.
1973  *
1974  * Specifically, check that the read_size for the event does not exceed 16k,
1975  * read_size being the one term that grows with groups size. Since read_size
1976  * depends on per-event read_format, also (re)check the existing events.
1977  *
1978  * This leaves 48k for the constant size fields and things like callchains,
1979  * branch stacks and register sets.
1980  */
perf_event_validate_size(struct perf_event * event)1981 static bool perf_event_validate_size(struct perf_event *event)
1982 {
1983 	struct perf_event *sibling, *group_leader = event->group_leader;
1984 
1985 	if (__perf_event_read_size(event->attr.read_format,
1986 				   group_leader->nr_siblings + 1) > 16*1024)
1987 		return false;
1988 
1989 	if (__perf_event_read_size(group_leader->attr.read_format,
1990 				   group_leader->nr_siblings + 1) > 16*1024)
1991 		return false;
1992 
1993 	/*
1994 	 * When creating a new group leader, group_leader->ctx is initialized
1995 	 * after the size has been validated, but we cannot safely use
1996 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1997 	 * leader cannot have any siblings yet, so we can safely skip checking
1998 	 * the non-existent siblings.
1999 	 */
2000 	if (event == group_leader)
2001 		return true;
2002 
2003 	for_each_sibling_event(sibling, group_leader) {
2004 		if (__perf_event_read_size(sibling->attr.read_format,
2005 					   group_leader->nr_siblings + 1) > 16*1024)
2006 			return false;
2007 	}
2008 
2009 	return true;
2010 }
2011 
perf_group_attach(struct perf_event * event)2012 static void perf_group_attach(struct perf_event *event)
2013 {
2014 	struct perf_event *group_leader = event->group_leader, *pos;
2015 
2016 	lockdep_assert_held(&event->ctx->lock);
2017 
2018 	/*
2019 	 * We can have double attach due to group movement (move_group) in
2020 	 * perf_event_open().
2021 	 */
2022 	if (event->attach_state & PERF_ATTACH_GROUP)
2023 		return;
2024 
2025 	event->attach_state |= PERF_ATTACH_GROUP;
2026 
2027 	if (group_leader == event)
2028 		return;
2029 
2030 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2031 
2032 	group_leader->group_caps &= event->event_caps;
2033 
2034 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2035 	group_leader->nr_siblings++;
2036 	group_leader->group_generation++;
2037 
2038 	perf_event__header_size(group_leader);
2039 
2040 	for_each_sibling_event(pos, group_leader)
2041 		perf_event__header_size(pos);
2042 }
2043 
2044 /*
2045  * Remove an event from the lists for its context.
2046  * Must be called with ctx->mutex and ctx->lock held.
2047  */
2048 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2050 {
2051 	WARN_ON_ONCE(event->ctx != ctx);
2052 	lockdep_assert_held(&ctx->lock);
2053 
2054 	/*
2055 	 * We can have double detach due to exit/hot-unplug + close.
2056 	 */
2057 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2058 		return;
2059 
2060 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2061 
2062 	ctx->nr_events--;
2063 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2064 		ctx->nr_user--;
2065 	if (event->attr.inherit_stat)
2066 		ctx->nr_stat--;
2067 	if (has_inherit_and_sample_read(&event->attr))
2068 		local_dec(&ctx->nr_no_switch_fast);
2069 
2070 	list_del_rcu(&event->event_entry);
2071 
2072 	if (event->group_leader == event)
2073 		del_event_from_groups(event, ctx);
2074 
2075 	/*
2076 	 * If event was in error state, then keep it
2077 	 * that way, otherwise bogus counts will be
2078 	 * returned on read(). The only way to get out
2079 	 * of error state is by explicit re-enabling
2080 	 * of the event
2081 	 */
2082 	if (event->state > PERF_EVENT_STATE_OFF) {
2083 		perf_cgroup_event_disable(event, ctx);
2084 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2085 	}
2086 
2087 	ctx->generation++;
2088 	event->pmu_ctx->nr_events--;
2089 }
2090 
2091 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2093 {
2094 	if (!has_aux(aux_event))
2095 		return 0;
2096 
2097 	if (!event->pmu->aux_output_match)
2098 		return 0;
2099 
2100 	return event->pmu->aux_output_match(aux_event);
2101 }
2102 
2103 static void put_event(struct perf_event *event);
2104 static void event_sched_out(struct perf_event *event,
2105 			    struct perf_event_context *ctx);
2106 
perf_put_aux_event(struct perf_event * event)2107 static void perf_put_aux_event(struct perf_event *event)
2108 {
2109 	struct perf_event_context *ctx = event->ctx;
2110 	struct perf_event *iter;
2111 
2112 	/*
2113 	 * If event uses aux_event tear down the link
2114 	 */
2115 	if (event->aux_event) {
2116 		iter = event->aux_event;
2117 		event->aux_event = NULL;
2118 		put_event(iter);
2119 		return;
2120 	}
2121 
2122 	/*
2123 	 * If the event is an aux_event, tear down all links to
2124 	 * it from other events.
2125 	 */
2126 	for_each_sibling_event(iter, event->group_leader) {
2127 		if (iter->aux_event != event)
2128 			continue;
2129 
2130 		iter->aux_event = NULL;
2131 		put_event(event);
2132 
2133 		/*
2134 		 * If it's ACTIVE, schedule it out and put it into ERROR
2135 		 * state so that we don't try to schedule it again. Note
2136 		 * that perf_event_enable() will clear the ERROR status.
2137 		 */
2138 		event_sched_out(iter, ctx);
2139 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2140 	}
2141 }
2142 
perf_need_aux_event(struct perf_event * event)2143 static bool perf_need_aux_event(struct perf_event *event)
2144 {
2145 	return event->attr.aux_output || has_aux_action(event);
2146 }
2147 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2148 static int perf_get_aux_event(struct perf_event *event,
2149 			      struct perf_event *group_leader)
2150 {
2151 	/*
2152 	 * Our group leader must be an aux event if we want to be
2153 	 * an aux_output. This way, the aux event will precede its
2154 	 * aux_output events in the group, and therefore will always
2155 	 * schedule first.
2156 	 */
2157 	if (!group_leader)
2158 		return 0;
2159 
2160 	/*
2161 	 * aux_output and aux_sample_size are mutually exclusive.
2162 	 */
2163 	if (event->attr.aux_output && event->attr.aux_sample_size)
2164 		return 0;
2165 
2166 	if (event->attr.aux_output &&
2167 	    !perf_aux_output_match(event, group_leader))
2168 		return 0;
2169 
2170 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2171 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2172 		return 0;
2173 
2174 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175 		return 0;
2176 
2177 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178 		return 0;
2179 
2180 	/*
2181 	 * Link aux_outputs to their aux event; this is undone in
2182 	 * perf_group_detach() by perf_put_aux_event(). When the
2183 	 * group in torn down, the aux_output events loose their
2184 	 * link to the aux_event and can't schedule any more.
2185 	 */
2186 	event->aux_event = group_leader;
2187 
2188 	return 1;
2189 }
2190 
get_event_list(struct perf_event * event)2191 static inline struct list_head *get_event_list(struct perf_event *event)
2192 {
2193 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194 				    &event->pmu_ctx->flexible_active;
2195 }
2196 
2197 /*
2198  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199  * cannot exist on their own, schedule them out and move them into the ERROR
2200  * state. Also see _perf_event_enable(), it will not be able to recover
2201  * this ERROR state.
2202  */
perf_remove_sibling_event(struct perf_event * event)2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2204 {
2205 	event_sched_out(event, event->ctx);
2206 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207 }
2208 
perf_group_detach(struct perf_event * event)2209 static void perf_group_detach(struct perf_event *event)
2210 {
2211 	struct perf_event *leader = event->group_leader;
2212 	struct perf_event *sibling, *tmp;
2213 	struct perf_event_context *ctx = event->ctx;
2214 
2215 	lockdep_assert_held(&ctx->lock);
2216 
2217 	/*
2218 	 * We can have double detach due to exit/hot-unplug + close.
2219 	 */
2220 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2221 		return;
2222 
2223 	event->attach_state &= ~PERF_ATTACH_GROUP;
2224 
2225 	perf_put_aux_event(event);
2226 
2227 	/*
2228 	 * If this is a sibling, remove it from its group.
2229 	 */
2230 	if (leader != event) {
2231 		list_del_init(&event->sibling_list);
2232 		event->group_leader->nr_siblings--;
2233 		event->group_leader->group_generation++;
2234 		goto out;
2235 	}
2236 
2237 	/*
2238 	 * If this was a group event with sibling events then
2239 	 * upgrade the siblings to singleton events by adding them
2240 	 * to whatever list we are on.
2241 	 */
2242 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243 
2244 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245 			perf_remove_sibling_event(sibling);
2246 
2247 		sibling->group_leader = sibling;
2248 		list_del_init(&sibling->sibling_list);
2249 
2250 		/* Inherit group flags from the previous leader */
2251 		sibling->group_caps = event->group_caps;
2252 
2253 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254 			add_event_to_groups(sibling, event->ctx);
2255 
2256 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2258 		}
2259 
2260 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2261 	}
2262 
2263 out:
2264 	for_each_sibling_event(tmp, leader)
2265 		perf_event__header_size(tmp);
2266 
2267 	perf_event__header_size(leader);
2268 }
2269 
2270 static void sync_child_event(struct perf_event *child_event);
2271 
perf_child_detach(struct perf_event * event)2272 static void perf_child_detach(struct perf_event *event)
2273 {
2274 	struct perf_event *parent_event = event->parent;
2275 
2276 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2277 		return;
2278 
2279 	event->attach_state &= ~PERF_ATTACH_CHILD;
2280 
2281 	if (WARN_ON_ONCE(!parent_event))
2282 		return;
2283 
2284 	lockdep_assert_held(&parent_event->child_mutex);
2285 
2286 	sync_child_event(event);
2287 	list_del_init(&event->child_list);
2288 }
2289 
is_orphaned_event(struct perf_event * event)2290 static bool is_orphaned_event(struct perf_event *event)
2291 {
2292 	return event->state == PERF_EVENT_STATE_DEAD;
2293 }
2294 
2295 static inline int
event_filter_match(struct perf_event * event)2296 event_filter_match(struct perf_event *event)
2297 {
2298 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299 	       perf_cgroup_match(event);
2300 }
2301 
2302 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304 {
2305 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2306 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308 
2309 	// XXX cpc serialization, probably per-cpu IRQ disabled
2310 
2311 	WARN_ON_ONCE(event->ctx != ctx);
2312 	lockdep_assert_held(&ctx->lock);
2313 
2314 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	/*
2318 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 	 * we can schedule events _OUT_ individually through things like
2320 	 * __perf_remove_from_context().
2321 	 */
2322 	list_del_init(&event->active_list);
2323 
2324 	perf_pmu_disable(event->pmu);
2325 
2326 	event->pmu->del(event, 0);
2327 	event->oncpu = -1;
2328 
2329 	if (event->pending_disable) {
2330 		event->pending_disable = 0;
2331 		perf_cgroup_event_disable(event, ctx);
2332 		state = PERF_EVENT_STATE_OFF;
2333 	}
2334 
2335 	perf_event_set_state(event, state);
2336 
2337 	if (!is_software_event(event))
2338 		cpc->active_oncpu--;
2339 	if (event->attr.freq && event->attr.sample_freq) {
2340 		ctx->nr_freq--;
2341 		epc->nr_freq--;
2342 	}
2343 	if (event->attr.exclusive || !cpc->active_oncpu)
2344 		cpc->exclusive = 0;
2345 
2346 	perf_pmu_enable(event->pmu);
2347 }
2348 
2349 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351 {
2352 	struct perf_event *event;
2353 
2354 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355 		return;
2356 
2357 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358 
2359 	event_sched_out(group_event, ctx);
2360 
2361 	/*
2362 	 * Schedule out siblings (if any):
2363 	 */
2364 	for_each_sibling_event(event, group_event)
2365 		event_sched_out(event, ctx);
2366 }
2367 
2368 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370 {
2371 	if (ctx->is_active & EVENT_TIME) {
2372 		if (ctx->is_active & EVENT_FROZEN)
2373 			return;
2374 		update_context_time(ctx);
2375 		update_cgrp_time_from_cpuctx(cpuctx, final);
2376 	}
2377 }
2378 
2379 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381 {
2382 	__ctx_time_update(cpuctx, ctx, false);
2383 }
2384 
2385 /*
2386  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387  */
2388 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390 {
2391 	ctx_time_update(cpuctx, ctx);
2392 	if (ctx->is_active & EVENT_TIME)
2393 		ctx->is_active |= EVENT_FROZEN;
2394 }
2395 
2396 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398 {
2399 	if (ctx->is_active & EVENT_TIME) {
2400 		if (ctx->is_active & EVENT_FROZEN)
2401 			return;
2402 		update_context_time(ctx);
2403 		update_cgrp_time_from_event(event);
2404 	}
2405 }
2406 
2407 #define DETACH_GROUP	0x01UL
2408 #define DETACH_CHILD	0x02UL
2409 #define DETACH_DEAD	0x04UL
2410 #define DETACH_EXIT	0x08UL
2411 
2412 /*
2413  * Cross CPU call to remove a performance event
2414  *
2415  * We disable the event on the hardware level first. After that we
2416  * remove it from the context list.
2417  */
2418 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2419 __perf_remove_from_context(struct perf_event *event,
2420 			   struct perf_cpu_context *cpuctx,
2421 			   struct perf_event_context *ctx,
2422 			   void *info)
2423 {
2424 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2425 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2426 	unsigned long flags = (unsigned long)info;
2427 
2428 	ctx_time_update(cpuctx, ctx);
2429 
2430 	/*
2431 	 * Ensure event_sched_out() switches to OFF, at the very least
2432 	 * this avoids raising perf_pending_task() at this time.
2433 	 */
2434 	if (flags & DETACH_EXIT)
2435 		state = PERF_EVENT_STATE_EXIT;
2436 	if (flags & DETACH_DEAD) {
2437 		event->pending_disable = 1;
2438 		state = PERF_EVENT_STATE_DEAD;
2439 	}
2440 	event_sched_out(event, ctx);
2441 	perf_event_set_state(event, min(event->state, state));
2442 	if (flags & DETACH_GROUP)
2443 		perf_group_detach(event);
2444 	if (flags & DETACH_CHILD)
2445 		perf_child_detach(event);
2446 	list_del_event(event, ctx);
2447 
2448 	if (!pmu_ctx->nr_events) {
2449 		pmu_ctx->rotate_necessary = 0;
2450 
2451 		if (ctx->task && ctx->is_active) {
2452 			struct perf_cpu_pmu_context *cpc;
2453 
2454 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2455 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2456 			cpc->task_epc = NULL;
2457 		}
2458 	}
2459 
2460 	if (!ctx->nr_events && ctx->is_active) {
2461 		if (ctx == &cpuctx->ctx)
2462 			update_cgrp_time_from_cpuctx(cpuctx, true);
2463 
2464 		ctx->is_active = 0;
2465 		if (ctx->task) {
2466 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2467 			cpuctx->task_ctx = NULL;
2468 		}
2469 	}
2470 }
2471 
2472 /*
2473  * Remove the event from a task's (or a CPU's) list of events.
2474  *
2475  * If event->ctx is a cloned context, callers must make sure that
2476  * every task struct that event->ctx->task could possibly point to
2477  * remains valid.  This is OK when called from perf_release since
2478  * that only calls us on the top-level context, which can't be a clone.
2479  * When called from perf_event_exit_task, it's OK because the
2480  * context has been detached from its task.
2481  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2482 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2483 {
2484 	struct perf_event_context *ctx = event->ctx;
2485 
2486 	lockdep_assert_held(&ctx->mutex);
2487 
2488 	/*
2489 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2490 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2491 	 * event_function_call() user.
2492 	 */
2493 	raw_spin_lock_irq(&ctx->lock);
2494 	if (!ctx->is_active) {
2495 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2496 					   ctx, (void *)flags);
2497 		raw_spin_unlock_irq(&ctx->lock);
2498 		return;
2499 	}
2500 	raw_spin_unlock_irq(&ctx->lock);
2501 
2502 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2503 }
2504 
2505 /*
2506  * Cross CPU call to disable a performance event
2507  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2508 static void __perf_event_disable(struct perf_event *event,
2509 				 struct perf_cpu_context *cpuctx,
2510 				 struct perf_event_context *ctx,
2511 				 void *info)
2512 {
2513 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2514 		return;
2515 
2516 	perf_pmu_disable(event->pmu_ctx->pmu);
2517 	ctx_time_update_event(ctx, event);
2518 
2519 	if (event == event->group_leader)
2520 		group_sched_out(event, ctx);
2521 	else
2522 		event_sched_out(event, ctx);
2523 
2524 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2525 	perf_cgroup_event_disable(event, ctx);
2526 
2527 	perf_pmu_enable(event->pmu_ctx->pmu);
2528 }
2529 
2530 /*
2531  * Disable an event.
2532  *
2533  * If event->ctx is a cloned context, callers must make sure that
2534  * every task struct that event->ctx->task could possibly point to
2535  * remains valid.  This condition is satisfied when called through
2536  * perf_event_for_each_child or perf_event_for_each because they
2537  * hold the top-level event's child_mutex, so any descendant that
2538  * goes to exit will block in perf_event_exit_event().
2539  *
2540  * When called from perf_pending_disable it's OK because event->ctx
2541  * is the current context on this CPU and preemption is disabled,
2542  * hence we can't get into perf_event_task_sched_out for this context.
2543  */
_perf_event_disable(struct perf_event * event)2544 static void _perf_event_disable(struct perf_event *event)
2545 {
2546 	struct perf_event_context *ctx = event->ctx;
2547 
2548 	raw_spin_lock_irq(&ctx->lock);
2549 	if (event->state <= PERF_EVENT_STATE_OFF) {
2550 		raw_spin_unlock_irq(&ctx->lock);
2551 		return;
2552 	}
2553 	raw_spin_unlock_irq(&ctx->lock);
2554 
2555 	event_function_call(event, __perf_event_disable, NULL);
2556 }
2557 
perf_event_disable_local(struct perf_event * event)2558 void perf_event_disable_local(struct perf_event *event)
2559 {
2560 	event_function_local(event, __perf_event_disable, NULL);
2561 }
2562 
2563 /*
2564  * Strictly speaking kernel users cannot create groups and therefore this
2565  * interface does not need the perf_event_ctx_lock() magic.
2566  */
perf_event_disable(struct perf_event * event)2567 void perf_event_disable(struct perf_event *event)
2568 {
2569 	struct perf_event_context *ctx;
2570 
2571 	ctx = perf_event_ctx_lock(event);
2572 	_perf_event_disable(event);
2573 	perf_event_ctx_unlock(event, ctx);
2574 }
2575 EXPORT_SYMBOL_GPL(perf_event_disable);
2576 
perf_event_disable_inatomic(struct perf_event * event)2577 void perf_event_disable_inatomic(struct perf_event *event)
2578 {
2579 	event->pending_disable = 1;
2580 	irq_work_queue(&event->pending_disable_irq);
2581 }
2582 
2583 #define MAX_INTERRUPTS (~0ULL)
2584 
2585 static void perf_log_throttle(struct perf_event *event, int enable);
2586 static void perf_log_itrace_start(struct perf_event *event);
2587 
2588 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2589 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2590 {
2591 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2592 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2593 	int ret = 0;
2594 
2595 	WARN_ON_ONCE(event->ctx != ctx);
2596 
2597 	lockdep_assert_held(&ctx->lock);
2598 
2599 	if (event->state <= PERF_EVENT_STATE_OFF)
2600 		return 0;
2601 
2602 	WRITE_ONCE(event->oncpu, smp_processor_id());
2603 	/*
2604 	 * Order event::oncpu write to happen before the ACTIVE state is
2605 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2606 	 * ->oncpu if it sees ACTIVE.
2607 	 */
2608 	smp_wmb();
2609 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2610 
2611 	/*
2612 	 * Unthrottle events, since we scheduled we might have missed several
2613 	 * ticks already, also for a heavily scheduling task there is little
2614 	 * guarantee it'll get a tick in a timely manner.
2615 	 */
2616 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2617 		perf_log_throttle(event, 1);
2618 		event->hw.interrupts = 0;
2619 	}
2620 
2621 	perf_pmu_disable(event->pmu);
2622 
2623 	perf_log_itrace_start(event);
2624 
2625 	if (event->pmu->add(event, PERF_EF_START)) {
2626 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2627 		event->oncpu = -1;
2628 		ret = -EAGAIN;
2629 		goto out;
2630 	}
2631 
2632 	if (!is_software_event(event))
2633 		cpc->active_oncpu++;
2634 	if (event->attr.freq && event->attr.sample_freq) {
2635 		ctx->nr_freq++;
2636 		epc->nr_freq++;
2637 	}
2638 	if (event->attr.exclusive)
2639 		cpc->exclusive = 1;
2640 
2641 out:
2642 	perf_pmu_enable(event->pmu);
2643 
2644 	return ret;
2645 }
2646 
2647 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2648 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2649 {
2650 	struct perf_event *event, *partial_group = NULL;
2651 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2652 
2653 	if (group_event->state == PERF_EVENT_STATE_OFF)
2654 		return 0;
2655 
2656 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2657 
2658 	if (event_sched_in(group_event, ctx))
2659 		goto error;
2660 
2661 	/*
2662 	 * Schedule in siblings as one group (if any):
2663 	 */
2664 	for_each_sibling_event(event, group_event) {
2665 		if (event_sched_in(event, ctx)) {
2666 			partial_group = event;
2667 			goto group_error;
2668 		}
2669 	}
2670 
2671 	if (!pmu->commit_txn(pmu))
2672 		return 0;
2673 
2674 group_error:
2675 	/*
2676 	 * Groups can be scheduled in as one unit only, so undo any
2677 	 * partial group before returning:
2678 	 * The events up to the failed event are scheduled out normally.
2679 	 */
2680 	for_each_sibling_event(event, group_event) {
2681 		if (event == partial_group)
2682 			break;
2683 
2684 		event_sched_out(event, ctx);
2685 	}
2686 	event_sched_out(group_event, ctx);
2687 
2688 error:
2689 	pmu->cancel_txn(pmu);
2690 	return -EAGAIN;
2691 }
2692 
2693 /*
2694  * Work out whether we can put this event group on the CPU now.
2695  */
group_can_go_on(struct perf_event * event,int can_add_hw)2696 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2697 {
2698 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2699 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2700 
2701 	/*
2702 	 * Groups consisting entirely of software events can always go on.
2703 	 */
2704 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2705 		return 1;
2706 	/*
2707 	 * If an exclusive group is already on, no other hardware
2708 	 * events can go on.
2709 	 */
2710 	if (cpc->exclusive)
2711 		return 0;
2712 	/*
2713 	 * If this group is exclusive and there are already
2714 	 * events on the CPU, it can't go on.
2715 	 */
2716 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2717 		return 0;
2718 	/*
2719 	 * Otherwise, try to add it if all previous groups were able
2720 	 * to go on.
2721 	 */
2722 	return can_add_hw;
2723 }
2724 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2725 static void add_event_to_ctx(struct perf_event *event,
2726 			       struct perf_event_context *ctx)
2727 {
2728 	list_add_event(event, ctx);
2729 	perf_group_attach(event);
2730 }
2731 
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2732 static void task_ctx_sched_out(struct perf_event_context *ctx,
2733 			       struct pmu *pmu,
2734 			       enum event_type_t event_type)
2735 {
2736 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2737 
2738 	if (!cpuctx->task_ctx)
2739 		return;
2740 
2741 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2742 		return;
2743 
2744 	ctx_sched_out(ctx, pmu, event_type);
2745 }
2746 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2747 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2748 				struct perf_event_context *ctx,
2749 				struct pmu *pmu)
2750 {
2751 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2752 	if (ctx)
2753 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2754 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2755 	if (ctx)
2756 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2757 }
2758 
2759 /*
2760  * We want to maintain the following priority of scheduling:
2761  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2762  *  - task pinned (EVENT_PINNED)
2763  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2764  *  - task flexible (EVENT_FLEXIBLE).
2765  *
2766  * In order to avoid unscheduling and scheduling back in everything every
2767  * time an event is added, only do it for the groups of equal priority and
2768  * below.
2769  *
2770  * This can be called after a batch operation on task events, in which case
2771  * event_type is a bit mask of the types of events involved. For CPU events,
2772  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2773  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2774 static void ctx_resched(struct perf_cpu_context *cpuctx,
2775 			struct perf_event_context *task_ctx,
2776 			struct pmu *pmu, enum event_type_t event_type)
2777 {
2778 	bool cpu_event = !!(event_type & EVENT_CPU);
2779 	struct perf_event_pmu_context *epc;
2780 
2781 	/*
2782 	 * If pinned groups are involved, flexible groups also need to be
2783 	 * scheduled out.
2784 	 */
2785 	if (event_type & EVENT_PINNED)
2786 		event_type |= EVENT_FLEXIBLE;
2787 
2788 	event_type &= EVENT_ALL;
2789 
2790 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2791 		perf_pmu_disable(epc->pmu);
2792 
2793 	if (task_ctx) {
2794 		for_each_epc(epc, task_ctx, pmu, false)
2795 			perf_pmu_disable(epc->pmu);
2796 
2797 		task_ctx_sched_out(task_ctx, pmu, event_type);
2798 	}
2799 
2800 	/*
2801 	 * Decide which cpu ctx groups to schedule out based on the types
2802 	 * of events that caused rescheduling:
2803 	 *  - EVENT_CPU: schedule out corresponding groups;
2804 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2805 	 *  - otherwise, do nothing more.
2806 	 */
2807 	if (cpu_event)
2808 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2809 	else if (event_type & EVENT_PINNED)
2810 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2811 
2812 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2813 
2814 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2815 		perf_pmu_enable(epc->pmu);
2816 
2817 	if (task_ctx) {
2818 		for_each_epc(epc, task_ctx, pmu, false)
2819 			perf_pmu_enable(epc->pmu);
2820 	}
2821 }
2822 
perf_pmu_resched(struct pmu * pmu)2823 void perf_pmu_resched(struct pmu *pmu)
2824 {
2825 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2826 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2827 
2828 	perf_ctx_lock(cpuctx, task_ctx);
2829 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2830 	perf_ctx_unlock(cpuctx, task_ctx);
2831 }
2832 
2833 /*
2834  * Cross CPU call to install and enable a performance event
2835  *
2836  * Very similar to remote_function() + event_function() but cannot assume that
2837  * things like ctx->is_active and cpuctx->task_ctx are set.
2838  */
__perf_install_in_context(void * info)2839 static int  __perf_install_in_context(void *info)
2840 {
2841 	struct perf_event *event = info;
2842 	struct perf_event_context *ctx = event->ctx;
2843 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2844 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2845 	bool reprogram = true;
2846 	int ret = 0;
2847 
2848 	raw_spin_lock(&cpuctx->ctx.lock);
2849 	if (ctx->task) {
2850 		raw_spin_lock(&ctx->lock);
2851 		task_ctx = ctx;
2852 
2853 		reprogram = (ctx->task == current);
2854 
2855 		/*
2856 		 * If the task is running, it must be running on this CPU,
2857 		 * otherwise we cannot reprogram things.
2858 		 *
2859 		 * If its not running, we don't care, ctx->lock will
2860 		 * serialize against it becoming runnable.
2861 		 */
2862 		if (task_curr(ctx->task) && !reprogram) {
2863 			ret = -ESRCH;
2864 			goto unlock;
2865 		}
2866 
2867 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2868 	} else if (task_ctx) {
2869 		raw_spin_lock(&task_ctx->lock);
2870 	}
2871 
2872 #ifdef CONFIG_CGROUP_PERF
2873 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2874 		/*
2875 		 * If the current cgroup doesn't match the event's
2876 		 * cgroup, we should not try to schedule it.
2877 		 */
2878 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2879 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2880 					event->cgrp->css.cgroup);
2881 	}
2882 #endif
2883 
2884 	if (reprogram) {
2885 		ctx_time_freeze(cpuctx, ctx);
2886 		add_event_to_ctx(event, ctx);
2887 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2888 			    get_event_type(event));
2889 	} else {
2890 		add_event_to_ctx(event, ctx);
2891 	}
2892 
2893 unlock:
2894 	perf_ctx_unlock(cpuctx, task_ctx);
2895 
2896 	return ret;
2897 }
2898 
2899 static bool exclusive_event_installable(struct perf_event *event,
2900 					struct perf_event_context *ctx);
2901 
2902 /*
2903  * Attach a performance event to a context.
2904  *
2905  * Very similar to event_function_call, see comment there.
2906  */
2907 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2908 perf_install_in_context(struct perf_event_context *ctx,
2909 			struct perf_event *event,
2910 			int cpu)
2911 {
2912 	struct task_struct *task = READ_ONCE(ctx->task);
2913 
2914 	lockdep_assert_held(&ctx->mutex);
2915 
2916 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2917 
2918 	if (event->cpu != -1)
2919 		WARN_ON_ONCE(event->cpu != cpu);
2920 
2921 	/*
2922 	 * Ensures that if we can observe event->ctx, both the event and ctx
2923 	 * will be 'complete'. See perf_iterate_sb_cpu().
2924 	 */
2925 	smp_store_release(&event->ctx, ctx);
2926 
2927 	/*
2928 	 * perf_event_attr::disabled events will not run and can be initialized
2929 	 * without IPI. Except when this is the first event for the context, in
2930 	 * that case we need the magic of the IPI to set ctx->is_active.
2931 	 *
2932 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2933 	 * event will issue the IPI and reprogram the hardware.
2934 	 */
2935 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2936 	    ctx->nr_events && !is_cgroup_event(event)) {
2937 		raw_spin_lock_irq(&ctx->lock);
2938 		if (ctx->task == TASK_TOMBSTONE) {
2939 			raw_spin_unlock_irq(&ctx->lock);
2940 			return;
2941 		}
2942 		add_event_to_ctx(event, ctx);
2943 		raw_spin_unlock_irq(&ctx->lock);
2944 		return;
2945 	}
2946 
2947 	if (!task) {
2948 		cpu_function_call(cpu, __perf_install_in_context, event);
2949 		return;
2950 	}
2951 
2952 	/*
2953 	 * Should not happen, we validate the ctx is still alive before calling.
2954 	 */
2955 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2956 		return;
2957 
2958 	/*
2959 	 * Installing events is tricky because we cannot rely on ctx->is_active
2960 	 * to be set in case this is the nr_events 0 -> 1 transition.
2961 	 *
2962 	 * Instead we use task_curr(), which tells us if the task is running.
2963 	 * However, since we use task_curr() outside of rq::lock, we can race
2964 	 * against the actual state. This means the result can be wrong.
2965 	 *
2966 	 * If we get a false positive, we retry, this is harmless.
2967 	 *
2968 	 * If we get a false negative, things are complicated. If we are after
2969 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2970 	 * value must be correct. If we're before, it doesn't matter since
2971 	 * perf_event_context_sched_in() will program the counter.
2972 	 *
2973 	 * However, this hinges on the remote context switch having observed
2974 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2975 	 * ctx::lock in perf_event_context_sched_in().
2976 	 *
2977 	 * We do this by task_function_call(), if the IPI fails to hit the task
2978 	 * we know any future context switch of task must see the
2979 	 * perf_event_ctpx[] store.
2980 	 */
2981 
2982 	/*
2983 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2984 	 * task_cpu() load, such that if the IPI then does not find the task
2985 	 * running, a future context switch of that task must observe the
2986 	 * store.
2987 	 */
2988 	smp_mb();
2989 again:
2990 	if (!task_function_call(task, __perf_install_in_context, event))
2991 		return;
2992 
2993 	raw_spin_lock_irq(&ctx->lock);
2994 	task = ctx->task;
2995 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2996 		/*
2997 		 * Cannot happen because we already checked above (which also
2998 		 * cannot happen), and we hold ctx->mutex, which serializes us
2999 		 * against perf_event_exit_task_context().
3000 		 */
3001 		raw_spin_unlock_irq(&ctx->lock);
3002 		return;
3003 	}
3004 	/*
3005 	 * If the task is not running, ctx->lock will avoid it becoming so,
3006 	 * thus we can safely install the event.
3007 	 */
3008 	if (task_curr(task)) {
3009 		raw_spin_unlock_irq(&ctx->lock);
3010 		goto again;
3011 	}
3012 	add_event_to_ctx(event, ctx);
3013 	raw_spin_unlock_irq(&ctx->lock);
3014 }
3015 
3016 /*
3017  * Cross CPU call to enable a performance event
3018  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3019 static void __perf_event_enable(struct perf_event *event,
3020 				struct perf_cpu_context *cpuctx,
3021 				struct perf_event_context *ctx,
3022 				void *info)
3023 {
3024 	struct perf_event *leader = event->group_leader;
3025 	struct perf_event_context *task_ctx;
3026 
3027 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3028 	    event->state <= PERF_EVENT_STATE_ERROR)
3029 		return;
3030 
3031 	ctx_time_freeze(cpuctx, ctx);
3032 
3033 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3034 	perf_cgroup_event_enable(event, ctx);
3035 
3036 	if (!ctx->is_active)
3037 		return;
3038 
3039 	if (!event_filter_match(event))
3040 		return;
3041 
3042 	/*
3043 	 * If the event is in a group and isn't the group leader,
3044 	 * then don't put it on unless the group is on.
3045 	 */
3046 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3047 		return;
3048 
3049 	task_ctx = cpuctx->task_ctx;
3050 	if (ctx->task)
3051 		WARN_ON_ONCE(task_ctx != ctx);
3052 
3053 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3054 }
3055 
3056 /*
3057  * Enable an event.
3058  *
3059  * If event->ctx is a cloned context, callers must make sure that
3060  * every task struct that event->ctx->task could possibly point to
3061  * remains valid.  This condition is satisfied when called through
3062  * perf_event_for_each_child or perf_event_for_each as described
3063  * for perf_event_disable.
3064  */
_perf_event_enable(struct perf_event * event)3065 static void _perf_event_enable(struct perf_event *event)
3066 {
3067 	struct perf_event_context *ctx = event->ctx;
3068 
3069 	raw_spin_lock_irq(&ctx->lock);
3070 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3071 	    event->state <  PERF_EVENT_STATE_ERROR) {
3072 out:
3073 		raw_spin_unlock_irq(&ctx->lock);
3074 		return;
3075 	}
3076 
3077 	/*
3078 	 * If the event is in error state, clear that first.
3079 	 *
3080 	 * That way, if we see the event in error state below, we know that it
3081 	 * has gone back into error state, as distinct from the task having
3082 	 * been scheduled away before the cross-call arrived.
3083 	 */
3084 	if (event->state == PERF_EVENT_STATE_ERROR) {
3085 		/*
3086 		 * Detached SIBLING events cannot leave ERROR state.
3087 		 */
3088 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3089 		    event->group_leader == event)
3090 			goto out;
3091 
3092 		event->state = PERF_EVENT_STATE_OFF;
3093 	}
3094 	raw_spin_unlock_irq(&ctx->lock);
3095 
3096 	event_function_call(event, __perf_event_enable, NULL);
3097 }
3098 
3099 /*
3100  * See perf_event_disable();
3101  */
perf_event_enable(struct perf_event * event)3102 void perf_event_enable(struct perf_event *event)
3103 {
3104 	struct perf_event_context *ctx;
3105 
3106 	ctx = perf_event_ctx_lock(event);
3107 	_perf_event_enable(event);
3108 	perf_event_ctx_unlock(event, ctx);
3109 }
3110 EXPORT_SYMBOL_GPL(perf_event_enable);
3111 
3112 struct stop_event_data {
3113 	struct perf_event	*event;
3114 	unsigned int		restart;
3115 };
3116 
__perf_event_stop(void * info)3117 static int __perf_event_stop(void *info)
3118 {
3119 	struct stop_event_data *sd = info;
3120 	struct perf_event *event = sd->event;
3121 
3122 	/* if it's already INACTIVE, do nothing */
3123 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3124 		return 0;
3125 
3126 	/* matches smp_wmb() in event_sched_in() */
3127 	smp_rmb();
3128 
3129 	/*
3130 	 * There is a window with interrupts enabled before we get here,
3131 	 * so we need to check again lest we try to stop another CPU's event.
3132 	 */
3133 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3134 		return -EAGAIN;
3135 
3136 	event->pmu->stop(event, PERF_EF_UPDATE);
3137 
3138 	/*
3139 	 * May race with the actual stop (through perf_pmu_output_stop()),
3140 	 * but it is only used for events with AUX ring buffer, and such
3141 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3142 	 * see comments in perf_aux_output_begin().
3143 	 *
3144 	 * Since this is happening on an event-local CPU, no trace is lost
3145 	 * while restarting.
3146 	 */
3147 	if (sd->restart)
3148 		event->pmu->start(event, 0);
3149 
3150 	return 0;
3151 }
3152 
perf_event_stop(struct perf_event * event,int restart)3153 static int perf_event_stop(struct perf_event *event, int restart)
3154 {
3155 	struct stop_event_data sd = {
3156 		.event		= event,
3157 		.restart	= restart,
3158 	};
3159 	int ret = 0;
3160 
3161 	do {
3162 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3163 			return 0;
3164 
3165 		/* matches smp_wmb() in event_sched_in() */
3166 		smp_rmb();
3167 
3168 		/*
3169 		 * We only want to restart ACTIVE events, so if the event goes
3170 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3171 		 * fall through with ret==-ENXIO.
3172 		 */
3173 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3174 					__perf_event_stop, &sd);
3175 	} while (ret == -EAGAIN);
3176 
3177 	return ret;
3178 }
3179 
3180 /*
3181  * In order to contain the amount of racy and tricky in the address filter
3182  * configuration management, it is a two part process:
3183  *
3184  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3185  *      we update the addresses of corresponding vmas in
3186  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3187  * (p2) when an event is scheduled in (pmu::add), it calls
3188  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3189  *      if the generation has changed since the previous call.
3190  *
3191  * If (p1) happens while the event is active, we restart it to force (p2).
3192  *
3193  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3194  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3195  *     ioctl;
3196  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3197  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3198  *     for reading;
3199  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3200  *     of exec.
3201  */
perf_event_addr_filters_sync(struct perf_event * event)3202 void perf_event_addr_filters_sync(struct perf_event *event)
3203 {
3204 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3205 
3206 	if (!has_addr_filter(event))
3207 		return;
3208 
3209 	raw_spin_lock(&ifh->lock);
3210 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3211 		event->pmu->addr_filters_sync(event);
3212 		event->hw.addr_filters_gen = event->addr_filters_gen;
3213 	}
3214 	raw_spin_unlock(&ifh->lock);
3215 }
3216 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3217 
_perf_event_refresh(struct perf_event * event,int refresh)3218 static int _perf_event_refresh(struct perf_event *event, int refresh)
3219 {
3220 	/*
3221 	 * not supported on inherited events
3222 	 */
3223 	if (event->attr.inherit || !is_sampling_event(event))
3224 		return -EINVAL;
3225 
3226 	atomic_add(refresh, &event->event_limit);
3227 	_perf_event_enable(event);
3228 
3229 	return 0;
3230 }
3231 
3232 /*
3233  * See perf_event_disable()
3234  */
perf_event_refresh(struct perf_event * event,int refresh)3235 int perf_event_refresh(struct perf_event *event, int refresh)
3236 {
3237 	struct perf_event_context *ctx;
3238 	int ret;
3239 
3240 	ctx = perf_event_ctx_lock(event);
3241 	ret = _perf_event_refresh(event, refresh);
3242 	perf_event_ctx_unlock(event, ctx);
3243 
3244 	return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(perf_event_refresh);
3247 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3248 static int perf_event_modify_breakpoint(struct perf_event *bp,
3249 					 struct perf_event_attr *attr)
3250 {
3251 	int err;
3252 
3253 	_perf_event_disable(bp);
3254 
3255 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3256 
3257 	if (!bp->attr.disabled)
3258 		_perf_event_enable(bp);
3259 
3260 	return err;
3261 }
3262 
3263 /*
3264  * Copy event-type-independent attributes that may be modified.
3265  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3266 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3267 					const struct perf_event_attr *from)
3268 {
3269 	to->sig_data = from->sig_data;
3270 }
3271 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3272 static int perf_event_modify_attr(struct perf_event *event,
3273 				  struct perf_event_attr *attr)
3274 {
3275 	int (*func)(struct perf_event *, struct perf_event_attr *);
3276 	struct perf_event *child;
3277 	int err;
3278 
3279 	if (event->attr.type != attr->type)
3280 		return -EINVAL;
3281 
3282 	switch (event->attr.type) {
3283 	case PERF_TYPE_BREAKPOINT:
3284 		func = perf_event_modify_breakpoint;
3285 		break;
3286 	default:
3287 		/* Place holder for future additions. */
3288 		return -EOPNOTSUPP;
3289 	}
3290 
3291 	WARN_ON_ONCE(event->ctx->parent_ctx);
3292 
3293 	mutex_lock(&event->child_mutex);
3294 	/*
3295 	 * Event-type-independent attributes must be copied before event-type
3296 	 * modification, which will validate that final attributes match the
3297 	 * source attributes after all relevant attributes have been copied.
3298 	 */
3299 	perf_event_modify_copy_attr(&event->attr, attr);
3300 	err = func(event, attr);
3301 	if (err)
3302 		goto out;
3303 	list_for_each_entry(child, &event->child_list, child_list) {
3304 		perf_event_modify_copy_attr(&child->attr, attr);
3305 		err = func(child, attr);
3306 		if (err)
3307 			goto out;
3308 	}
3309 out:
3310 	mutex_unlock(&event->child_mutex);
3311 	return err;
3312 }
3313 
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3314 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3315 				enum event_type_t event_type)
3316 {
3317 	struct perf_event_context *ctx = pmu_ctx->ctx;
3318 	struct perf_event *event, *tmp;
3319 	struct pmu *pmu = pmu_ctx->pmu;
3320 
3321 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3322 		struct perf_cpu_pmu_context *cpc;
3323 
3324 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3325 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3326 		cpc->task_epc = NULL;
3327 	}
3328 
3329 	if (!(event_type & EVENT_ALL))
3330 		return;
3331 
3332 	perf_pmu_disable(pmu);
3333 	if (event_type & EVENT_PINNED) {
3334 		list_for_each_entry_safe(event, tmp,
3335 					 &pmu_ctx->pinned_active,
3336 					 active_list)
3337 			group_sched_out(event, ctx);
3338 	}
3339 
3340 	if (event_type & EVENT_FLEXIBLE) {
3341 		list_for_each_entry_safe(event, tmp,
3342 					 &pmu_ctx->flexible_active,
3343 					 active_list)
3344 			group_sched_out(event, ctx);
3345 		/*
3346 		 * Since we cleared EVENT_FLEXIBLE, also clear
3347 		 * rotate_necessary, is will be reset by
3348 		 * ctx_flexible_sched_in() when needed.
3349 		 */
3350 		pmu_ctx->rotate_necessary = 0;
3351 	}
3352 	perf_pmu_enable(pmu);
3353 }
3354 
3355 /*
3356  * Be very careful with the @pmu argument since this will change ctx state.
3357  * The @pmu argument works for ctx_resched(), because that is symmetric in
3358  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3359  *
3360  * However, if you were to be asymmetrical, you could end up with messed up
3361  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3362  * be active.
3363  */
3364 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3365 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3366 {
3367 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3368 	struct perf_event_pmu_context *pmu_ctx;
3369 	int is_active = ctx->is_active;
3370 	bool cgroup = event_type & EVENT_CGROUP;
3371 
3372 	event_type &= ~EVENT_CGROUP;
3373 
3374 	lockdep_assert_held(&ctx->lock);
3375 
3376 	if (likely(!ctx->nr_events)) {
3377 		/*
3378 		 * See __perf_remove_from_context().
3379 		 */
3380 		WARN_ON_ONCE(ctx->is_active);
3381 		if (ctx->task)
3382 			WARN_ON_ONCE(cpuctx->task_ctx);
3383 		return;
3384 	}
3385 
3386 	/*
3387 	 * Always update time if it was set; not only when it changes.
3388 	 * Otherwise we can 'forget' to update time for any but the last
3389 	 * context we sched out. For example:
3390 	 *
3391 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3392 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3393 	 *
3394 	 * would only update time for the pinned events.
3395 	 */
3396 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3397 
3398 	/*
3399 	 * CPU-release for the below ->is_active store,
3400 	 * see __load_acquire() in perf_event_time_now()
3401 	 */
3402 	barrier();
3403 	ctx->is_active &= ~event_type;
3404 
3405 	if (!(ctx->is_active & EVENT_ALL)) {
3406 		/*
3407 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3408 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3409 		 */
3410 		if (ctx->is_active & EVENT_FROZEN)
3411 			ctx->is_active &= EVENT_TIME_FROZEN;
3412 		else
3413 			ctx->is_active = 0;
3414 	}
3415 
3416 	if (ctx->task) {
3417 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3418 		if (!(ctx->is_active & EVENT_ALL))
3419 			cpuctx->task_ctx = NULL;
3420 	}
3421 
3422 	is_active ^= ctx->is_active; /* changed bits */
3423 
3424 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3425 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3426 }
3427 
3428 /*
3429  * Test whether two contexts are equivalent, i.e. whether they have both been
3430  * cloned from the same version of the same context.
3431  *
3432  * Equivalence is measured using a generation number in the context that is
3433  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3434  * and list_del_event().
3435  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3436 static int context_equiv(struct perf_event_context *ctx1,
3437 			 struct perf_event_context *ctx2)
3438 {
3439 	lockdep_assert_held(&ctx1->lock);
3440 	lockdep_assert_held(&ctx2->lock);
3441 
3442 	/* Pinning disables the swap optimization */
3443 	if (ctx1->pin_count || ctx2->pin_count)
3444 		return 0;
3445 
3446 	/* If ctx1 is the parent of ctx2 */
3447 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3448 		return 1;
3449 
3450 	/* If ctx2 is the parent of ctx1 */
3451 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3452 		return 1;
3453 
3454 	/*
3455 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3456 	 * hierarchy, see perf_event_init_context().
3457 	 */
3458 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3459 			ctx1->parent_gen == ctx2->parent_gen)
3460 		return 1;
3461 
3462 	/* Unmatched */
3463 	return 0;
3464 }
3465 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3466 static void __perf_event_sync_stat(struct perf_event *event,
3467 				     struct perf_event *next_event)
3468 {
3469 	u64 value;
3470 
3471 	if (!event->attr.inherit_stat)
3472 		return;
3473 
3474 	/*
3475 	 * Update the event value, we cannot use perf_event_read()
3476 	 * because we're in the middle of a context switch and have IRQs
3477 	 * disabled, which upsets smp_call_function_single(), however
3478 	 * we know the event must be on the current CPU, therefore we
3479 	 * don't need to use it.
3480 	 */
3481 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3482 		event->pmu->read(event);
3483 
3484 	perf_event_update_time(event);
3485 
3486 	/*
3487 	 * In order to keep per-task stats reliable we need to flip the event
3488 	 * values when we flip the contexts.
3489 	 */
3490 	value = local64_read(&next_event->count);
3491 	value = local64_xchg(&event->count, value);
3492 	local64_set(&next_event->count, value);
3493 
3494 	swap(event->total_time_enabled, next_event->total_time_enabled);
3495 	swap(event->total_time_running, next_event->total_time_running);
3496 
3497 	/*
3498 	 * Since we swizzled the values, update the user visible data too.
3499 	 */
3500 	perf_event_update_userpage(event);
3501 	perf_event_update_userpage(next_event);
3502 }
3503 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3504 static void perf_event_sync_stat(struct perf_event_context *ctx,
3505 				   struct perf_event_context *next_ctx)
3506 {
3507 	struct perf_event *event, *next_event;
3508 
3509 	if (!ctx->nr_stat)
3510 		return;
3511 
3512 	update_context_time(ctx);
3513 
3514 	event = list_first_entry(&ctx->event_list,
3515 				   struct perf_event, event_entry);
3516 
3517 	next_event = list_first_entry(&next_ctx->event_list,
3518 					struct perf_event, event_entry);
3519 
3520 	while (&event->event_entry != &ctx->event_list &&
3521 	       &next_event->event_entry != &next_ctx->event_list) {
3522 
3523 		__perf_event_sync_stat(event, next_event);
3524 
3525 		event = list_next_entry(event, event_entry);
3526 		next_event = list_next_entry(next_event, event_entry);
3527 	}
3528 }
3529 
3530 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3531 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3532 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3533 	     !list_entry_is_head(pos1, head1, member) &&		\
3534 	     !list_entry_is_head(pos2, head2, member);			\
3535 	     pos1 = list_next_entry(pos1, member),			\
3536 	     pos2 = list_next_entry(pos2, member))
3537 
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3538 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3539 					  struct perf_event_context *next_ctx)
3540 {
3541 	struct perf_event_pmu_context *prev_epc, *next_epc;
3542 
3543 	if (!prev_ctx->nr_task_data)
3544 		return;
3545 
3546 	double_list_for_each_entry(prev_epc, next_epc,
3547 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3548 				   pmu_ctx_entry) {
3549 
3550 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3551 			continue;
3552 
3553 		/*
3554 		 * PMU specific parts of task perf context can require
3555 		 * additional synchronization. As an example of such
3556 		 * synchronization see implementation details of Intel
3557 		 * LBR call stack data profiling;
3558 		 */
3559 		if (prev_epc->pmu->swap_task_ctx)
3560 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3561 		else
3562 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3563 	}
3564 }
3565 
perf_ctx_sched_task_cb(struct perf_event_context * ctx,struct task_struct * task,bool sched_in)3566 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3567 				   struct task_struct *task, bool sched_in)
3568 {
3569 	struct perf_event_pmu_context *pmu_ctx;
3570 	struct perf_cpu_pmu_context *cpc;
3571 
3572 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3573 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3574 
3575 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3576 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3577 	}
3578 }
3579 
3580 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3581 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3582 {
3583 	struct perf_event_context *ctx = task->perf_event_ctxp;
3584 	struct perf_event_context *next_ctx;
3585 	struct perf_event_context *parent, *next_parent;
3586 	int do_switch = 1;
3587 
3588 	if (likely(!ctx))
3589 		return;
3590 
3591 	rcu_read_lock();
3592 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3593 	if (!next_ctx)
3594 		goto unlock;
3595 
3596 	parent = rcu_dereference(ctx->parent_ctx);
3597 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3598 
3599 	/* If neither context have a parent context; they cannot be clones. */
3600 	if (!parent && !next_parent)
3601 		goto unlock;
3602 
3603 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3604 		/*
3605 		 * Looks like the two contexts are clones, so we might be
3606 		 * able to optimize the context switch.  We lock both
3607 		 * contexts and check that they are clones under the
3608 		 * lock (including re-checking that neither has been
3609 		 * uncloned in the meantime).  It doesn't matter which
3610 		 * order we take the locks because no other cpu could
3611 		 * be trying to lock both of these tasks.
3612 		 */
3613 		raw_spin_lock(&ctx->lock);
3614 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3615 		if (context_equiv(ctx, next_ctx)) {
3616 
3617 			perf_ctx_disable(ctx, false);
3618 
3619 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3620 			if (local_read(&ctx->nr_no_switch_fast) ||
3621 			    local_read(&next_ctx->nr_no_switch_fast)) {
3622 				/*
3623 				 * Must not swap out ctx when there's pending
3624 				 * events that rely on the ctx->task relation.
3625 				 *
3626 				 * Likewise, when a context contains inherit +
3627 				 * SAMPLE_READ events they should be switched
3628 				 * out using the slow path so that they are
3629 				 * treated as if they were distinct contexts.
3630 				 */
3631 				raw_spin_unlock(&next_ctx->lock);
3632 				rcu_read_unlock();
3633 				goto inside_switch;
3634 			}
3635 
3636 			WRITE_ONCE(ctx->task, next);
3637 			WRITE_ONCE(next_ctx->task, task);
3638 
3639 			perf_ctx_sched_task_cb(ctx, task, false);
3640 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3641 
3642 			perf_ctx_enable(ctx, false);
3643 
3644 			/*
3645 			 * RCU_INIT_POINTER here is safe because we've not
3646 			 * modified the ctx and the above modification of
3647 			 * ctx->task and ctx->task_ctx_data are immaterial
3648 			 * since those values are always verified under
3649 			 * ctx->lock which we're now holding.
3650 			 */
3651 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3652 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3653 
3654 			do_switch = 0;
3655 
3656 			perf_event_sync_stat(ctx, next_ctx);
3657 		}
3658 		raw_spin_unlock(&next_ctx->lock);
3659 		raw_spin_unlock(&ctx->lock);
3660 	}
3661 unlock:
3662 	rcu_read_unlock();
3663 
3664 	if (do_switch) {
3665 		raw_spin_lock(&ctx->lock);
3666 		perf_ctx_disable(ctx, false);
3667 
3668 inside_switch:
3669 		perf_ctx_sched_task_cb(ctx, task, false);
3670 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3671 
3672 		perf_ctx_enable(ctx, false);
3673 		raw_spin_unlock(&ctx->lock);
3674 	}
3675 }
3676 
3677 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3678 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3679 
perf_sched_cb_dec(struct pmu * pmu)3680 void perf_sched_cb_dec(struct pmu *pmu)
3681 {
3682 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3683 
3684 	this_cpu_dec(perf_sched_cb_usages);
3685 	barrier();
3686 
3687 	if (!--cpc->sched_cb_usage)
3688 		list_del(&cpc->sched_cb_entry);
3689 }
3690 
3691 
perf_sched_cb_inc(struct pmu * pmu)3692 void perf_sched_cb_inc(struct pmu *pmu)
3693 {
3694 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3695 
3696 	if (!cpc->sched_cb_usage++)
3697 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3698 
3699 	barrier();
3700 	this_cpu_inc(perf_sched_cb_usages);
3701 }
3702 
3703 /*
3704  * This function provides the context switch callback to the lower code
3705  * layer. It is invoked ONLY when the context switch callback is enabled.
3706  *
3707  * This callback is relevant even to per-cpu events; for example multi event
3708  * PEBS requires this to provide PID/TID information. This requires we flush
3709  * all queued PEBS records before we context switch to a new task.
3710  */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,struct task_struct * task,bool sched_in)3711 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3712 				  struct task_struct *task, bool sched_in)
3713 {
3714 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3715 	struct pmu *pmu;
3716 
3717 	pmu = cpc->epc.pmu;
3718 
3719 	/* software PMUs will not have sched_task */
3720 	if (WARN_ON_ONCE(!pmu->sched_task))
3721 		return;
3722 
3723 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3724 	perf_pmu_disable(pmu);
3725 
3726 	pmu->sched_task(cpc->task_epc, task, sched_in);
3727 
3728 	perf_pmu_enable(pmu);
3729 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3730 }
3731 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3732 static void perf_pmu_sched_task(struct task_struct *prev,
3733 				struct task_struct *next,
3734 				bool sched_in)
3735 {
3736 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3737 	struct perf_cpu_pmu_context *cpc;
3738 
3739 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3740 	if (prev == next || cpuctx->task_ctx)
3741 		return;
3742 
3743 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3744 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3745 }
3746 
3747 static void perf_event_switch(struct task_struct *task,
3748 			      struct task_struct *next_prev, bool sched_in);
3749 
3750 /*
3751  * Called from scheduler to remove the events of the current task,
3752  * with interrupts disabled.
3753  *
3754  * We stop each event and update the event value in event->count.
3755  *
3756  * This does not protect us against NMI, but disable()
3757  * sets the disabled bit in the control field of event _before_
3758  * accessing the event control register. If a NMI hits, then it will
3759  * not restart the event.
3760  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3761 void __perf_event_task_sched_out(struct task_struct *task,
3762 				 struct task_struct *next)
3763 {
3764 	if (__this_cpu_read(perf_sched_cb_usages))
3765 		perf_pmu_sched_task(task, next, false);
3766 
3767 	if (atomic_read(&nr_switch_events))
3768 		perf_event_switch(task, next, false);
3769 
3770 	perf_event_context_sched_out(task, next);
3771 
3772 	/*
3773 	 * if cgroup events exist on this CPU, then we need
3774 	 * to check if we have to switch out PMU state.
3775 	 * cgroup event are system-wide mode only
3776 	 */
3777 	perf_cgroup_switch(next);
3778 }
3779 
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3780 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3781 {
3782 	const struct perf_event *le = *(const struct perf_event **)l;
3783 	const struct perf_event *re = *(const struct perf_event **)r;
3784 
3785 	return le->group_index < re->group_index;
3786 }
3787 
3788 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3789 
3790 static const struct min_heap_callbacks perf_min_heap = {
3791 	.less = perf_less_group_idx,
3792 	.swp = NULL,
3793 };
3794 
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3795 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3796 {
3797 	struct perf_event **itrs = heap->data;
3798 
3799 	if (event) {
3800 		itrs[heap->nr] = event;
3801 		heap->nr++;
3802 	}
3803 }
3804 
__link_epc(struct perf_event_pmu_context * pmu_ctx)3805 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3806 {
3807 	struct perf_cpu_pmu_context *cpc;
3808 
3809 	if (!pmu_ctx->ctx->task)
3810 		return;
3811 
3812 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3813 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3814 	cpc->task_epc = pmu_ctx;
3815 }
3816 
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3817 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3818 				struct perf_event_groups *groups, int cpu,
3819 				struct pmu *pmu,
3820 				int (*func)(struct perf_event *, void *),
3821 				void *data)
3822 {
3823 #ifdef CONFIG_CGROUP_PERF
3824 	struct cgroup_subsys_state *css = NULL;
3825 #endif
3826 	struct perf_cpu_context *cpuctx = NULL;
3827 	/* Space for per CPU and/or any CPU event iterators. */
3828 	struct perf_event *itrs[2];
3829 	struct perf_event_min_heap event_heap;
3830 	struct perf_event **evt;
3831 	int ret;
3832 
3833 	if (pmu->filter && pmu->filter(pmu, cpu))
3834 		return 0;
3835 
3836 	if (!ctx->task) {
3837 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3838 		event_heap = (struct perf_event_min_heap){
3839 			.data = cpuctx->heap,
3840 			.nr = 0,
3841 			.size = cpuctx->heap_size,
3842 		};
3843 
3844 		lockdep_assert_held(&cpuctx->ctx.lock);
3845 
3846 #ifdef CONFIG_CGROUP_PERF
3847 		if (cpuctx->cgrp)
3848 			css = &cpuctx->cgrp->css;
3849 #endif
3850 	} else {
3851 		event_heap = (struct perf_event_min_heap){
3852 			.data = itrs,
3853 			.nr = 0,
3854 			.size = ARRAY_SIZE(itrs),
3855 		};
3856 		/* Events not within a CPU context may be on any CPU. */
3857 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3858 	}
3859 	evt = event_heap.data;
3860 
3861 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3862 
3863 #ifdef CONFIG_CGROUP_PERF
3864 	for (; css; css = css->parent)
3865 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3866 #endif
3867 
3868 	if (event_heap.nr) {
3869 		__link_epc((*evt)->pmu_ctx);
3870 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3871 	}
3872 
3873 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3874 
3875 	while (event_heap.nr) {
3876 		ret = func(*evt, data);
3877 		if (ret)
3878 			return ret;
3879 
3880 		*evt = perf_event_groups_next(*evt, pmu);
3881 		if (*evt)
3882 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3883 		else
3884 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3885 	}
3886 
3887 	return 0;
3888 }
3889 
3890 /*
3891  * Because the userpage is strictly per-event (there is no concept of context,
3892  * so there cannot be a context indirection), every userpage must be updated
3893  * when context time starts :-(
3894  *
3895  * IOW, we must not miss EVENT_TIME edges.
3896  */
event_update_userpage(struct perf_event * event)3897 static inline bool event_update_userpage(struct perf_event *event)
3898 {
3899 	if (likely(!atomic_read(&event->mmap_count)))
3900 		return false;
3901 
3902 	perf_event_update_time(event);
3903 	perf_event_update_userpage(event);
3904 
3905 	return true;
3906 }
3907 
group_update_userpage(struct perf_event * group_event)3908 static inline void group_update_userpage(struct perf_event *group_event)
3909 {
3910 	struct perf_event *event;
3911 
3912 	if (!event_update_userpage(group_event))
3913 		return;
3914 
3915 	for_each_sibling_event(event, group_event)
3916 		event_update_userpage(event);
3917 }
3918 
merge_sched_in(struct perf_event * event,void * data)3919 static int merge_sched_in(struct perf_event *event, void *data)
3920 {
3921 	struct perf_event_context *ctx = event->ctx;
3922 	int *can_add_hw = data;
3923 
3924 	if (event->state <= PERF_EVENT_STATE_OFF)
3925 		return 0;
3926 
3927 	if (!event_filter_match(event))
3928 		return 0;
3929 
3930 	if (group_can_go_on(event, *can_add_hw)) {
3931 		if (!group_sched_in(event, ctx))
3932 			list_add_tail(&event->active_list, get_event_list(event));
3933 	}
3934 
3935 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3936 		*can_add_hw = 0;
3937 		if (event->attr.pinned) {
3938 			perf_cgroup_event_disable(event, ctx);
3939 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3940 		} else {
3941 			struct perf_cpu_pmu_context *cpc;
3942 
3943 			event->pmu_ctx->rotate_necessary = 1;
3944 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3945 			perf_mux_hrtimer_restart(cpc);
3946 			group_update_userpage(event);
3947 		}
3948 	}
3949 
3950 	return 0;
3951 }
3952 
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3953 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3954 				struct perf_event_groups *groups,
3955 				struct pmu *pmu)
3956 {
3957 	int can_add_hw = 1;
3958 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3959 			   merge_sched_in, &can_add_hw);
3960 }
3961 
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3962 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3963 			       enum event_type_t event_type)
3964 {
3965 	struct perf_event_context *ctx = pmu_ctx->ctx;
3966 
3967 	if (event_type & EVENT_PINNED)
3968 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3969 	if (event_type & EVENT_FLEXIBLE)
3970 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3971 }
3972 
3973 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3974 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3975 {
3976 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3977 	struct perf_event_pmu_context *pmu_ctx;
3978 	int is_active = ctx->is_active;
3979 	bool cgroup = event_type & EVENT_CGROUP;
3980 
3981 	event_type &= ~EVENT_CGROUP;
3982 
3983 	lockdep_assert_held(&ctx->lock);
3984 
3985 	if (likely(!ctx->nr_events))
3986 		return;
3987 
3988 	if (!(is_active & EVENT_TIME)) {
3989 		/* start ctx time */
3990 		__update_context_time(ctx, false);
3991 		perf_cgroup_set_timestamp(cpuctx);
3992 		/*
3993 		 * CPU-release for the below ->is_active store,
3994 		 * see __load_acquire() in perf_event_time_now()
3995 		 */
3996 		barrier();
3997 	}
3998 
3999 	ctx->is_active |= (event_type | EVENT_TIME);
4000 	if (ctx->task) {
4001 		if (!(is_active & EVENT_ALL))
4002 			cpuctx->task_ctx = ctx;
4003 		else
4004 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4005 	}
4006 
4007 	is_active ^= ctx->is_active; /* changed bits */
4008 
4009 	/*
4010 	 * First go through the list and put on any pinned groups
4011 	 * in order to give them the best chance of going on.
4012 	 */
4013 	if (is_active & EVENT_PINNED) {
4014 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4015 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4016 	}
4017 
4018 	/* Then walk through the lower prio flexible groups */
4019 	if (is_active & EVENT_FLEXIBLE) {
4020 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4021 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4022 	}
4023 }
4024 
perf_event_context_sched_in(struct task_struct * task)4025 static void perf_event_context_sched_in(struct task_struct *task)
4026 {
4027 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4028 	struct perf_event_context *ctx;
4029 
4030 	rcu_read_lock();
4031 	ctx = rcu_dereference(task->perf_event_ctxp);
4032 	if (!ctx)
4033 		goto rcu_unlock;
4034 
4035 	if (cpuctx->task_ctx == ctx) {
4036 		perf_ctx_lock(cpuctx, ctx);
4037 		perf_ctx_disable(ctx, false);
4038 
4039 		perf_ctx_sched_task_cb(ctx, task, true);
4040 
4041 		perf_ctx_enable(ctx, false);
4042 		perf_ctx_unlock(cpuctx, ctx);
4043 		goto rcu_unlock;
4044 	}
4045 
4046 	perf_ctx_lock(cpuctx, ctx);
4047 	/*
4048 	 * We must check ctx->nr_events while holding ctx->lock, such
4049 	 * that we serialize against perf_install_in_context().
4050 	 */
4051 	if (!ctx->nr_events)
4052 		goto unlock;
4053 
4054 	perf_ctx_disable(ctx, false);
4055 	/*
4056 	 * We want to keep the following priority order:
4057 	 * cpu pinned (that don't need to move), task pinned,
4058 	 * cpu flexible, task flexible.
4059 	 *
4060 	 * However, if task's ctx is not carrying any pinned
4061 	 * events, no need to flip the cpuctx's events around.
4062 	 */
4063 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4064 		perf_ctx_disable(&cpuctx->ctx, false);
4065 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4066 	}
4067 
4068 	perf_event_sched_in(cpuctx, ctx, NULL);
4069 
4070 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4071 
4072 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4073 		perf_ctx_enable(&cpuctx->ctx, false);
4074 
4075 	perf_ctx_enable(ctx, false);
4076 
4077 unlock:
4078 	perf_ctx_unlock(cpuctx, ctx);
4079 rcu_unlock:
4080 	rcu_read_unlock();
4081 }
4082 
4083 /*
4084  * Called from scheduler to add the events of the current task
4085  * with interrupts disabled.
4086  *
4087  * We restore the event value and then enable it.
4088  *
4089  * This does not protect us against NMI, but enable()
4090  * sets the enabled bit in the control field of event _before_
4091  * accessing the event control register. If a NMI hits, then it will
4092  * keep the event running.
4093  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4094 void __perf_event_task_sched_in(struct task_struct *prev,
4095 				struct task_struct *task)
4096 {
4097 	perf_event_context_sched_in(task);
4098 
4099 	if (atomic_read(&nr_switch_events))
4100 		perf_event_switch(task, prev, true);
4101 
4102 	if (__this_cpu_read(perf_sched_cb_usages))
4103 		perf_pmu_sched_task(prev, task, true);
4104 }
4105 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4106 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4107 {
4108 	u64 frequency = event->attr.sample_freq;
4109 	u64 sec = NSEC_PER_SEC;
4110 	u64 divisor, dividend;
4111 
4112 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4113 
4114 	count_fls = fls64(count);
4115 	nsec_fls = fls64(nsec);
4116 	frequency_fls = fls64(frequency);
4117 	sec_fls = 30;
4118 
4119 	/*
4120 	 * We got @count in @nsec, with a target of sample_freq HZ
4121 	 * the target period becomes:
4122 	 *
4123 	 *             @count * 10^9
4124 	 * period = -------------------
4125 	 *          @nsec * sample_freq
4126 	 *
4127 	 */
4128 
4129 	/*
4130 	 * Reduce accuracy by one bit such that @a and @b converge
4131 	 * to a similar magnitude.
4132 	 */
4133 #define REDUCE_FLS(a, b)		\
4134 do {					\
4135 	if (a##_fls > b##_fls) {	\
4136 		a >>= 1;		\
4137 		a##_fls--;		\
4138 	} else {			\
4139 		b >>= 1;		\
4140 		b##_fls--;		\
4141 	}				\
4142 } while (0)
4143 
4144 	/*
4145 	 * Reduce accuracy until either term fits in a u64, then proceed with
4146 	 * the other, so that finally we can do a u64/u64 division.
4147 	 */
4148 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4149 		REDUCE_FLS(nsec, frequency);
4150 		REDUCE_FLS(sec, count);
4151 	}
4152 
4153 	if (count_fls + sec_fls > 64) {
4154 		divisor = nsec * frequency;
4155 
4156 		while (count_fls + sec_fls > 64) {
4157 			REDUCE_FLS(count, sec);
4158 			divisor >>= 1;
4159 		}
4160 
4161 		dividend = count * sec;
4162 	} else {
4163 		dividend = count * sec;
4164 
4165 		while (nsec_fls + frequency_fls > 64) {
4166 			REDUCE_FLS(nsec, frequency);
4167 			dividend >>= 1;
4168 		}
4169 
4170 		divisor = nsec * frequency;
4171 	}
4172 
4173 	if (!divisor)
4174 		return dividend;
4175 
4176 	return div64_u64(dividend, divisor);
4177 }
4178 
4179 static DEFINE_PER_CPU(int, perf_throttled_count);
4180 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4181 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4182 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4183 {
4184 	struct hw_perf_event *hwc = &event->hw;
4185 	s64 period, sample_period;
4186 	s64 delta;
4187 
4188 	period = perf_calculate_period(event, nsec, count);
4189 
4190 	delta = (s64)(period - hwc->sample_period);
4191 	if (delta >= 0)
4192 		delta += 7;
4193 	else
4194 		delta -= 7;
4195 	delta /= 8; /* low pass filter */
4196 
4197 	sample_period = hwc->sample_period + delta;
4198 
4199 	if (!sample_period)
4200 		sample_period = 1;
4201 
4202 	hwc->sample_period = sample_period;
4203 
4204 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4205 		if (disable)
4206 			event->pmu->stop(event, PERF_EF_UPDATE);
4207 
4208 		local64_set(&hwc->period_left, 0);
4209 
4210 		if (disable)
4211 			event->pmu->start(event, PERF_EF_RELOAD);
4212 	}
4213 }
4214 
perf_adjust_freq_unthr_events(struct list_head * event_list)4215 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4216 {
4217 	struct perf_event *event;
4218 	struct hw_perf_event *hwc;
4219 	u64 now, period = TICK_NSEC;
4220 	s64 delta;
4221 
4222 	list_for_each_entry(event, event_list, active_list) {
4223 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4224 			continue;
4225 
4226 		// XXX use visit thingy to avoid the -1,cpu match
4227 		if (!event_filter_match(event))
4228 			continue;
4229 
4230 		hwc = &event->hw;
4231 
4232 		if (hwc->interrupts == MAX_INTERRUPTS) {
4233 			hwc->interrupts = 0;
4234 			perf_log_throttle(event, 1);
4235 			if (!event->attr.freq || !event->attr.sample_freq)
4236 				event->pmu->start(event, 0);
4237 		}
4238 
4239 		if (!event->attr.freq || !event->attr.sample_freq)
4240 			continue;
4241 
4242 		/*
4243 		 * stop the event and update event->count
4244 		 */
4245 		event->pmu->stop(event, PERF_EF_UPDATE);
4246 
4247 		now = local64_read(&event->count);
4248 		delta = now - hwc->freq_count_stamp;
4249 		hwc->freq_count_stamp = now;
4250 
4251 		/*
4252 		 * restart the event
4253 		 * reload only if value has changed
4254 		 * we have stopped the event so tell that
4255 		 * to perf_adjust_period() to avoid stopping it
4256 		 * twice.
4257 		 */
4258 		if (delta > 0)
4259 			perf_adjust_period(event, period, delta, false);
4260 
4261 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4262 	}
4263 }
4264 
4265 /*
4266  * combine freq adjustment with unthrottling to avoid two passes over the
4267  * events. At the same time, make sure, having freq events does not change
4268  * the rate of unthrottling as that would introduce bias.
4269  */
4270 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4271 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4272 {
4273 	struct perf_event_pmu_context *pmu_ctx;
4274 
4275 	/*
4276 	 * only need to iterate over all events iff:
4277 	 * - context have events in frequency mode (needs freq adjust)
4278 	 * - there are events to unthrottle on this cpu
4279 	 */
4280 	if (!(ctx->nr_freq || unthrottle))
4281 		return;
4282 
4283 	raw_spin_lock(&ctx->lock);
4284 
4285 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4286 		if (!(pmu_ctx->nr_freq || unthrottle))
4287 			continue;
4288 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4289 			continue;
4290 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4291 			continue;
4292 
4293 		perf_pmu_disable(pmu_ctx->pmu);
4294 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4295 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4296 		perf_pmu_enable(pmu_ctx->pmu);
4297 	}
4298 
4299 	raw_spin_unlock(&ctx->lock);
4300 }
4301 
4302 /*
4303  * Move @event to the tail of the @ctx's elegible events.
4304  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4305 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4306 {
4307 	/*
4308 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4309 	 * disabled by the inheritance code.
4310 	 */
4311 	if (ctx->rotate_disable)
4312 		return;
4313 
4314 	perf_event_groups_delete(&ctx->flexible_groups, event);
4315 	perf_event_groups_insert(&ctx->flexible_groups, event);
4316 }
4317 
4318 /* pick an event from the flexible_groups to rotate */
4319 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4320 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4321 {
4322 	struct perf_event *event;
4323 	struct rb_node *node;
4324 	struct rb_root *tree;
4325 	struct __group_key key = {
4326 		.pmu = pmu_ctx->pmu,
4327 	};
4328 
4329 	/* pick the first active flexible event */
4330 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4331 					 struct perf_event, active_list);
4332 	if (event)
4333 		goto out;
4334 
4335 	/* if no active flexible event, pick the first event */
4336 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4337 
4338 	if (!pmu_ctx->ctx->task) {
4339 		key.cpu = smp_processor_id();
4340 
4341 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342 		if (node)
4343 			event = __node_2_pe(node);
4344 		goto out;
4345 	}
4346 
4347 	key.cpu = -1;
4348 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349 	if (node) {
4350 		event = __node_2_pe(node);
4351 		goto out;
4352 	}
4353 
4354 	key.cpu = smp_processor_id();
4355 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4356 	if (node)
4357 		event = __node_2_pe(node);
4358 
4359 out:
4360 	/*
4361 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4362 	 * finds there are unschedulable events, it will set it again.
4363 	 */
4364 	pmu_ctx->rotate_necessary = 0;
4365 
4366 	return event;
4367 }
4368 
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4369 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4370 {
4371 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4372 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4373 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4374 	int cpu_rotate, task_rotate;
4375 	struct pmu *pmu;
4376 
4377 	/*
4378 	 * Since we run this from IRQ context, nobody can install new
4379 	 * events, thus the event count values are stable.
4380 	 */
4381 
4382 	cpu_epc = &cpc->epc;
4383 	pmu = cpu_epc->pmu;
4384 	task_epc = cpc->task_epc;
4385 
4386 	cpu_rotate = cpu_epc->rotate_necessary;
4387 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4388 
4389 	if (!(cpu_rotate || task_rotate))
4390 		return false;
4391 
4392 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4393 	perf_pmu_disable(pmu);
4394 
4395 	if (task_rotate)
4396 		task_event = ctx_event_to_rotate(task_epc);
4397 	if (cpu_rotate)
4398 		cpu_event = ctx_event_to_rotate(cpu_epc);
4399 
4400 	/*
4401 	 * As per the order given at ctx_resched() first 'pop' task flexible
4402 	 * and then, if needed CPU flexible.
4403 	 */
4404 	if (task_event || (task_epc && cpu_event)) {
4405 		update_context_time(task_epc->ctx);
4406 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4407 	}
4408 
4409 	if (cpu_event) {
4410 		update_context_time(&cpuctx->ctx);
4411 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4412 		rotate_ctx(&cpuctx->ctx, cpu_event);
4413 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4414 	}
4415 
4416 	if (task_event)
4417 		rotate_ctx(task_epc->ctx, task_event);
4418 
4419 	if (task_event || (task_epc && cpu_event))
4420 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4421 
4422 	perf_pmu_enable(pmu);
4423 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4424 
4425 	return true;
4426 }
4427 
perf_event_task_tick(void)4428 void perf_event_task_tick(void)
4429 {
4430 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4431 	struct perf_event_context *ctx;
4432 	int throttled;
4433 
4434 	lockdep_assert_irqs_disabled();
4435 
4436 	__this_cpu_inc(perf_throttled_seq);
4437 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4438 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4439 
4440 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4441 
4442 	rcu_read_lock();
4443 	ctx = rcu_dereference(current->perf_event_ctxp);
4444 	if (ctx)
4445 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4446 	rcu_read_unlock();
4447 }
4448 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4449 static int event_enable_on_exec(struct perf_event *event,
4450 				struct perf_event_context *ctx)
4451 {
4452 	if (!event->attr.enable_on_exec)
4453 		return 0;
4454 
4455 	event->attr.enable_on_exec = 0;
4456 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4457 		return 0;
4458 
4459 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4460 
4461 	return 1;
4462 }
4463 
4464 /*
4465  * Enable all of a task's events that have been marked enable-on-exec.
4466  * This expects task == current.
4467  */
perf_event_enable_on_exec(struct perf_event_context * ctx)4468 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4469 {
4470 	struct perf_event_context *clone_ctx = NULL;
4471 	enum event_type_t event_type = 0;
4472 	struct perf_cpu_context *cpuctx;
4473 	struct perf_event *event;
4474 	unsigned long flags;
4475 	int enabled = 0;
4476 
4477 	local_irq_save(flags);
4478 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4479 		goto out;
4480 
4481 	if (!ctx->nr_events)
4482 		goto out;
4483 
4484 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4485 	perf_ctx_lock(cpuctx, ctx);
4486 	ctx_time_freeze(cpuctx, ctx);
4487 
4488 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4489 		enabled |= event_enable_on_exec(event, ctx);
4490 		event_type |= get_event_type(event);
4491 	}
4492 
4493 	/*
4494 	 * Unclone and reschedule this context if we enabled any event.
4495 	 */
4496 	if (enabled) {
4497 		clone_ctx = unclone_ctx(ctx);
4498 		ctx_resched(cpuctx, ctx, NULL, event_type);
4499 	}
4500 	perf_ctx_unlock(cpuctx, ctx);
4501 
4502 out:
4503 	local_irq_restore(flags);
4504 
4505 	if (clone_ctx)
4506 		put_ctx(clone_ctx);
4507 }
4508 
4509 static void perf_remove_from_owner(struct perf_event *event);
4510 static void perf_event_exit_event(struct perf_event *event,
4511 				  struct perf_event_context *ctx);
4512 
4513 /*
4514  * Removes all events from the current task that have been marked
4515  * remove-on-exec, and feeds their values back to parent events.
4516  */
perf_event_remove_on_exec(struct perf_event_context * ctx)4517 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4518 {
4519 	struct perf_event_context *clone_ctx = NULL;
4520 	struct perf_event *event, *next;
4521 	unsigned long flags;
4522 	bool modified = false;
4523 
4524 	mutex_lock(&ctx->mutex);
4525 
4526 	if (WARN_ON_ONCE(ctx->task != current))
4527 		goto unlock;
4528 
4529 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4530 		if (!event->attr.remove_on_exec)
4531 			continue;
4532 
4533 		if (!is_kernel_event(event))
4534 			perf_remove_from_owner(event);
4535 
4536 		modified = true;
4537 
4538 		perf_event_exit_event(event, ctx);
4539 	}
4540 
4541 	raw_spin_lock_irqsave(&ctx->lock, flags);
4542 	if (modified)
4543 		clone_ctx = unclone_ctx(ctx);
4544 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4545 
4546 unlock:
4547 	mutex_unlock(&ctx->mutex);
4548 
4549 	if (clone_ctx)
4550 		put_ctx(clone_ctx);
4551 }
4552 
4553 struct perf_read_data {
4554 	struct perf_event *event;
4555 	bool group;
4556 	int ret;
4557 };
4558 
4559 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4560 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4561 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4562 {
4563 	int local_cpu = smp_processor_id();
4564 	u16 local_pkg, event_pkg;
4565 
4566 	if ((unsigned)event_cpu >= nr_cpu_ids)
4567 		return event_cpu;
4568 
4569 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4570 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4571 
4572 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4573 			return local_cpu;
4574 	}
4575 
4576 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4577 		event_pkg = topology_physical_package_id(event_cpu);
4578 		local_pkg = topology_physical_package_id(local_cpu);
4579 
4580 		if (event_pkg == local_pkg)
4581 			return local_cpu;
4582 	}
4583 
4584 	return event_cpu;
4585 }
4586 
4587 /*
4588  * Cross CPU call to read the hardware event
4589  */
__perf_event_read(void * info)4590 static void __perf_event_read(void *info)
4591 {
4592 	struct perf_read_data *data = info;
4593 	struct perf_event *sub, *event = data->event;
4594 	struct perf_event_context *ctx = event->ctx;
4595 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4596 	struct pmu *pmu = event->pmu;
4597 
4598 	/*
4599 	 * If this is a task context, we need to check whether it is
4600 	 * the current task context of this cpu.  If not it has been
4601 	 * scheduled out before the smp call arrived.  In that case
4602 	 * event->count would have been updated to a recent sample
4603 	 * when the event was scheduled out.
4604 	 */
4605 	if (ctx->task && cpuctx->task_ctx != ctx)
4606 		return;
4607 
4608 	raw_spin_lock(&ctx->lock);
4609 	ctx_time_update_event(ctx, event);
4610 
4611 	perf_event_update_time(event);
4612 	if (data->group)
4613 		perf_event_update_sibling_time(event);
4614 
4615 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4616 		goto unlock;
4617 
4618 	if (!data->group) {
4619 		pmu->read(event);
4620 		data->ret = 0;
4621 		goto unlock;
4622 	}
4623 
4624 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4625 
4626 	pmu->read(event);
4627 
4628 	for_each_sibling_event(sub, event) {
4629 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4630 			/*
4631 			 * Use sibling's PMU rather than @event's since
4632 			 * sibling could be on different (eg: software) PMU.
4633 			 */
4634 			sub->pmu->read(sub);
4635 		}
4636 	}
4637 
4638 	data->ret = pmu->commit_txn(pmu);
4639 
4640 unlock:
4641 	raw_spin_unlock(&ctx->lock);
4642 }
4643 
perf_event_count(struct perf_event * event,bool self)4644 static inline u64 perf_event_count(struct perf_event *event, bool self)
4645 {
4646 	if (self)
4647 		return local64_read(&event->count);
4648 
4649 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4650 }
4651 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4652 static void calc_timer_values(struct perf_event *event,
4653 				u64 *now,
4654 				u64 *enabled,
4655 				u64 *running)
4656 {
4657 	u64 ctx_time;
4658 
4659 	*now = perf_clock();
4660 	ctx_time = perf_event_time_now(event, *now);
4661 	__perf_update_times(event, ctx_time, enabled, running);
4662 }
4663 
4664 /*
4665  * NMI-safe method to read a local event, that is an event that
4666  * is:
4667  *   - either for the current task, or for this CPU
4668  *   - does not have inherit set, for inherited task events
4669  *     will not be local and we cannot read them atomically
4670  *   - must not have a pmu::count method
4671  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4672 int perf_event_read_local(struct perf_event *event, u64 *value,
4673 			  u64 *enabled, u64 *running)
4674 {
4675 	unsigned long flags;
4676 	int event_oncpu;
4677 	int event_cpu;
4678 	int ret = 0;
4679 
4680 	/*
4681 	 * Disabling interrupts avoids all counter scheduling (context
4682 	 * switches, timer based rotation and IPIs).
4683 	 */
4684 	local_irq_save(flags);
4685 
4686 	/*
4687 	 * It must not be an event with inherit set, we cannot read
4688 	 * all child counters from atomic context.
4689 	 */
4690 	if (event->attr.inherit) {
4691 		ret = -EOPNOTSUPP;
4692 		goto out;
4693 	}
4694 
4695 	/* If this is a per-task event, it must be for current */
4696 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4697 	    event->hw.target != current) {
4698 		ret = -EINVAL;
4699 		goto out;
4700 	}
4701 
4702 	/*
4703 	 * Get the event CPU numbers, and adjust them to local if the event is
4704 	 * a per-package event that can be read locally
4705 	 */
4706 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4707 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4708 
4709 	/* If this is a per-CPU event, it must be for this CPU */
4710 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4711 	    event_cpu != smp_processor_id()) {
4712 		ret = -EINVAL;
4713 		goto out;
4714 	}
4715 
4716 	/* If this is a pinned event it must be running on this CPU */
4717 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4718 		ret = -EBUSY;
4719 		goto out;
4720 	}
4721 
4722 	/*
4723 	 * If the event is currently on this CPU, its either a per-task event,
4724 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4725 	 * oncpu == -1).
4726 	 */
4727 	if (event_oncpu == smp_processor_id())
4728 		event->pmu->read(event);
4729 
4730 	*value = local64_read(&event->count);
4731 	if (enabled || running) {
4732 		u64 __enabled, __running, __now;
4733 
4734 		calc_timer_values(event, &__now, &__enabled, &__running);
4735 		if (enabled)
4736 			*enabled = __enabled;
4737 		if (running)
4738 			*running = __running;
4739 	}
4740 out:
4741 	local_irq_restore(flags);
4742 
4743 	return ret;
4744 }
4745 
perf_event_read(struct perf_event * event,bool group)4746 static int perf_event_read(struct perf_event *event, bool group)
4747 {
4748 	enum perf_event_state state = READ_ONCE(event->state);
4749 	int event_cpu, ret = 0;
4750 
4751 	/*
4752 	 * If event is enabled and currently active on a CPU, update the
4753 	 * value in the event structure:
4754 	 */
4755 again:
4756 	if (state == PERF_EVENT_STATE_ACTIVE) {
4757 		struct perf_read_data data;
4758 
4759 		/*
4760 		 * Orders the ->state and ->oncpu loads such that if we see
4761 		 * ACTIVE we must also see the right ->oncpu.
4762 		 *
4763 		 * Matches the smp_wmb() from event_sched_in().
4764 		 */
4765 		smp_rmb();
4766 
4767 		event_cpu = READ_ONCE(event->oncpu);
4768 		if ((unsigned)event_cpu >= nr_cpu_ids)
4769 			return 0;
4770 
4771 		data = (struct perf_read_data){
4772 			.event = event,
4773 			.group = group,
4774 			.ret = 0,
4775 		};
4776 
4777 		preempt_disable();
4778 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4779 
4780 		/*
4781 		 * Purposely ignore the smp_call_function_single() return
4782 		 * value.
4783 		 *
4784 		 * If event_cpu isn't a valid CPU it means the event got
4785 		 * scheduled out and that will have updated the event count.
4786 		 *
4787 		 * Therefore, either way, we'll have an up-to-date event count
4788 		 * after this.
4789 		 */
4790 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4791 		preempt_enable();
4792 		ret = data.ret;
4793 
4794 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4795 		struct perf_event_context *ctx = event->ctx;
4796 		unsigned long flags;
4797 
4798 		raw_spin_lock_irqsave(&ctx->lock, flags);
4799 		state = event->state;
4800 		if (state != PERF_EVENT_STATE_INACTIVE) {
4801 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4802 			goto again;
4803 		}
4804 
4805 		/*
4806 		 * May read while context is not active (e.g., thread is
4807 		 * blocked), in that case we cannot update context time
4808 		 */
4809 		ctx_time_update_event(ctx, event);
4810 
4811 		perf_event_update_time(event);
4812 		if (group)
4813 			perf_event_update_sibling_time(event);
4814 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4815 	}
4816 
4817 	return ret;
4818 }
4819 
4820 /*
4821  * Initialize the perf_event context in a task_struct:
4822  */
__perf_event_init_context(struct perf_event_context * ctx)4823 static void __perf_event_init_context(struct perf_event_context *ctx)
4824 {
4825 	raw_spin_lock_init(&ctx->lock);
4826 	mutex_init(&ctx->mutex);
4827 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4828 	perf_event_groups_init(&ctx->pinned_groups);
4829 	perf_event_groups_init(&ctx->flexible_groups);
4830 	INIT_LIST_HEAD(&ctx->event_list);
4831 	refcount_set(&ctx->refcount, 1);
4832 }
4833 
4834 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4835 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4836 {
4837 	epc->pmu = pmu;
4838 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4839 	INIT_LIST_HEAD(&epc->pinned_active);
4840 	INIT_LIST_HEAD(&epc->flexible_active);
4841 	atomic_set(&epc->refcount, 1);
4842 }
4843 
4844 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4845 alloc_perf_context(struct task_struct *task)
4846 {
4847 	struct perf_event_context *ctx;
4848 
4849 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4850 	if (!ctx)
4851 		return NULL;
4852 
4853 	__perf_event_init_context(ctx);
4854 	if (task)
4855 		ctx->task = get_task_struct(task);
4856 
4857 	return ctx;
4858 }
4859 
4860 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4861 find_lively_task_by_vpid(pid_t vpid)
4862 {
4863 	struct task_struct *task;
4864 
4865 	rcu_read_lock();
4866 	if (!vpid)
4867 		task = current;
4868 	else
4869 		task = find_task_by_vpid(vpid);
4870 	if (task)
4871 		get_task_struct(task);
4872 	rcu_read_unlock();
4873 
4874 	if (!task)
4875 		return ERR_PTR(-ESRCH);
4876 
4877 	return task;
4878 }
4879 
4880 /*
4881  * Returns a matching context with refcount and pincount.
4882  */
4883 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4884 find_get_context(struct task_struct *task, struct perf_event *event)
4885 {
4886 	struct perf_event_context *ctx, *clone_ctx = NULL;
4887 	struct perf_cpu_context *cpuctx;
4888 	unsigned long flags;
4889 	int err;
4890 
4891 	if (!task) {
4892 		/* Must be root to operate on a CPU event: */
4893 		err = perf_allow_cpu(&event->attr);
4894 		if (err)
4895 			return ERR_PTR(err);
4896 
4897 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4898 		ctx = &cpuctx->ctx;
4899 		get_ctx(ctx);
4900 		raw_spin_lock_irqsave(&ctx->lock, flags);
4901 		++ctx->pin_count;
4902 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4903 
4904 		return ctx;
4905 	}
4906 
4907 	err = -EINVAL;
4908 retry:
4909 	ctx = perf_lock_task_context(task, &flags);
4910 	if (ctx) {
4911 		clone_ctx = unclone_ctx(ctx);
4912 		++ctx->pin_count;
4913 
4914 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4915 
4916 		if (clone_ctx)
4917 			put_ctx(clone_ctx);
4918 	} else {
4919 		ctx = alloc_perf_context(task);
4920 		err = -ENOMEM;
4921 		if (!ctx)
4922 			goto errout;
4923 
4924 		err = 0;
4925 		mutex_lock(&task->perf_event_mutex);
4926 		/*
4927 		 * If it has already passed perf_event_exit_task().
4928 		 * we must see PF_EXITING, it takes this mutex too.
4929 		 */
4930 		if (task->flags & PF_EXITING)
4931 			err = -ESRCH;
4932 		else if (task->perf_event_ctxp)
4933 			err = -EAGAIN;
4934 		else {
4935 			get_ctx(ctx);
4936 			++ctx->pin_count;
4937 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4938 		}
4939 		mutex_unlock(&task->perf_event_mutex);
4940 
4941 		if (unlikely(err)) {
4942 			put_ctx(ctx);
4943 
4944 			if (err == -EAGAIN)
4945 				goto retry;
4946 			goto errout;
4947 		}
4948 	}
4949 
4950 	return ctx;
4951 
4952 errout:
4953 	return ERR_PTR(err);
4954 }
4955 
4956 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4957 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4958 		     struct perf_event *event)
4959 {
4960 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4961 	void *task_ctx_data = NULL;
4962 
4963 	if (!ctx->task) {
4964 		/*
4965 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4966 		 * relies on the fact that find_get_pmu_context() cannot fail
4967 		 * for CPU contexts.
4968 		 */
4969 		struct perf_cpu_pmu_context *cpc;
4970 
4971 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4972 		epc = &cpc->epc;
4973 		raw_spin_lock_irq(&ctx->lock);
4974 		if (!epc->ctx) {
4975 			atomic_set(&epc->refcount, 1);
4976 			epc->embedded = 1;
4977 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4978 			epc->ctx = ctx;
4979 		} else {
4980 			WARN_ON_ONCE(epc->ctx != ctx);
4981 			atomic_inc(&epc->refcount);
4982 		}
4983 		raw_spin_unlock_irq(&ctx->lock);
4984 		return epc;
4985 	}
4986 
4987 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4988 	if (!new)
4989 		return ERR_PTR(-ENOMEM);
4990 
4991 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4992 		task_ctx_data = alloc_task_ctx_data(pmu);
4993 		if (!task_ctx_data) {
4994 			kfree(new);
4995 			return ERR_PTR(-ENOMEM);
4996 		}
4997 	}
4998 
4999 	__perf_init_event_pmu_context(new, pmu);
5000 
5001 	/*
5002 	 * XXX
5003 	 *
5004 	 * lockdep_assert_held(&ctx->mutex);
5005 	 *
5006 	 * can't because perf_event_init_task() doesn't actually hold the
5007 	 * child_ctx->mutex.
5008 	 */
5009 
5010 	raw_spin_lock_irq(&ctx->lock);
5011 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5012 		if (epc->pmu == pmu) {
5013 			WARN_ON_ONCE(epc->ctx != ctx);
5014 			atomic_inc(&epc->refcount);
5015 			goto found_epc;
5016 		}
5017 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5018 		if (!pos && epc->pmu->type > pmu->type)
5019 			pos = epc;
5020 	}
5021 
5022 	epc = new;
5023 	new = NULL;
5024 
5025 	if (!pos)
5026 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5027 	else
5028 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5029 
5030 	epc->ctx = ctx;
5031 
5032 found_epc:
5033 	if (task_ctx_data && !epc->task_ctx_data) {
5034 		epc->task_ctx_data = task_ctx_data;
5035 		task_ctx_data = NULL;
5036 		ctx->nr_task_data++;
5037 	}
5038 	raw_spin_unlock_irq(&ctx->lock);
5039 
5040 	free_task_ctx_data(pmu, task_ctx_data);
5041 	kfree(new);
5042 
5043 	return epc;
5044 }
5045 
get_pmu_ctx(struct perf_event_pmu_context * epc)5046 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5047 {
5048 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5049 }
5050 
free_epc_rcu(struct rcu_head * head)5051 static void free_epc_rcu(struct rcu_head *head)
5052 {
5053 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5054 
5055 	kfree(epc->task_ctx_data);
5056 	kfree(epc);
5057 }
5058 
put_pmu_ctx(struct perf_event_pmu_context * epc)5059 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5060 {
5061 	struct perf_event_context *ctx = epc->ctx;
5062 	unsigned long flags;
5063 
5064 	/*
5065 	 * XXX
5066 	 *
5067 	 * lockdep_assert_held(&ctx->mutex);
5068 	 *
5069 	 * can't because of the call-site in _free_event()/put_event()
5070 	 * which isn't always called under ctx->mutex.
5071 	 */
5072 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5073 		return;
5074 
5075 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5076 
5077 	list_del_init(&epc->pmu_ctx_entry);
5078 	epc->ctx = NULL;
5079 
5080 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5081 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5082 
5083 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5084 
5085 	if (epc->embedded)
5086 		return;
5087 
5088 	call_rcu(&epc->rcu_head, free_epc_rcu);
5089 }
5090 
5091 static void perf_event_free_filter(struct perf_event *event);
5092 
free_event_rcu(struct rcu_head * head)5093 static void free_event_rcu(struct rcu_head *head)
5094 {
5095 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5096 
5097 	if (event->ns)
5098 		put_pid_ns(event->ns);
5099 	perf_event_free_filter(event);
5100 	kmem_cache_free(perf_event_cache, event);
5101 }
5102 
5103 static void ring_buffer_attach(struct perf_event *event,
5104 			       struct perf_buffer *rb);
5105 
detach_sb_event(struct perf_event * event)5106 static void detach_sb_event(struct perf_event *event)
5107 {
5108 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5109 
5110 	raw_spin_lock(&pel->lock);
5111 	list_del_rcu(&event->sb_list);
5112 	raw_spin_unlock(&pel->lock);
5113 }
5114 
is_sb_event(struct perf_event * event)5115 static bool is_sb_event(struct perf_event *event)
5116 {
5117 	struct perf_event_attr *attr = &event->attr;
5118 
5119 	if (event->parent)
5120 		return false;
5121 
5122 	if (event->attach_state & PERF_ATTACH_TASK)
5123 		return false;
5124 
5125 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5126 	    attr->comm || attr->comm_exec ||
5127 	    attr->task || attr->ksymbol ||
5128 	    attr->context_switch || attr->text_poke ||
5129 	    attr->bpf_event)
5130 		return true;
5131 	return false;
5132 }
5133 
unaccount_pmu_sb_event(struct perf_event * event)5134 static void unaccount_pmu_sb_event(struct perf_event *event)
5135 {
5136 	if (is_sb_event(event))
5137 		detach_sb_event(event);
5138 }
5139 
5140 #ifdef CONFIG_NO_HZ_FULL
5141 static DEFINE_SPINLOCK(nr_freq_lock);
5142 #endif
5143 
unaccount_freq_event_nohz(void)5144 static void unaccount_freq_event_nohz(void)
5145 {
5146 #ifdef CONFIG_NO_HZ_FULL
5147 	spin_lock(&nr_freq_lock);
5148 	if (atomic_dec_and_test(&nr_freq_events))
5149 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5150 	spin_unlock(&nr_freq_lock);
5151 #endif
5152 }
5153 
unaccount_freq_event(void)5154 static void unaccount_freq_event(void)
5155 {
5156 	if (tick_nohz_full_enabled())
5157 		unaccount_freq_event_nohz();
5158 	else
5159 		atomic_dec(&nr_freq_events);
5160 }
5161 
unaccount_event(struct perf_event * event)5162 static void unaccount_event(struct perf_event *event)
5163 {
5164 	bool dec = false;
5165 
5166 	if (event->parent)
5167 		return;
5168 
5169 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5170 		dec = true;
5171 	if (event->attr.mmap || event->attr.mmap_data)
5172 		atomic_dec(&nr_mmap_events);
5173 	if (event->attr.build_id)
5174 		atomic_dec(&nr_build_id_events);
5175 	if (event->attr.comm)
5176 		atomic_dec(&nr_comm_events);
5177 	if (event->attr.namespaces)
5178 		atomic_dec(&nr_namespaces_events);
5179 	if (event->attr.cgroup)
5180 		atomic_dec(&nr_cgroup_events);
5181 	if (event->attr.task)
5182 		atomic_dec(&nr_task_events);
5183 	if (event->attr.freq)
5184 		unaccount_freq_event();
5185 	if (event->attr.context_switch) {
5186 		dec = true;
5187 		atomic_dec(&nr_switch_events);
5188 	}
5189 	if (is_cgroup_event(event))
5190 		dec = true;
5191 	if (has_branch_stack(event))
5192 		dec = true;
5193 	if (event->attr.ksymbol)
5194 		atomic_dec(&nr_ksymbol_events);
5195 	if (event->attr.bpf_event)
5196 		atomic_dec(&nr_bpf_events);
5197 	if (event->attr.text_poke)
5198 		atomic_dec(&nr_text_poke_events);
5199 
5200 	if (dec) {
5201 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5202 			schedule_delayed_work(&perf_sched_work, HZ);
5203 	}
5204 
5205 	unaccount_pmu_sb_event(event);
5206 }
5207 
perf_sched_delayed(struct work_struct * work)5208 static void perf_sched_delayed(struct work_struct *work)
5209 {
5210 	mutex_lock(&perf_sched_mutex);
5211 	if (atomic_dec_and_test(&perf_sched_count))
5212 		static_branch_disable(&perf_sched_events);
5213 	mutex_unlock(&perf_sched_mutex);
5214 }
5215 
5216 /*
5217  * The following implement mutual exclusion of events on "exclusive" pmus
5218  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5219  * at a time, so we disallow creating events that might conflict, namely:
5220  *
5221  *  1) cpu-wide events in the presence of per-task events,
5222  *  2) per-task events in the presence of cpu-wide events,
5223  *  3) two matching events on the same perf_event_context.
5224  *
5225  * The former two cases are handled in the allocation path (perf_event_alloc(),
5226  * _free_event()), the latter -- before the first perf_install_in_context().
5227  */
exclusive_event_init(struct perf_event * event)5228 static int exclusive_event_init(struct perf_event *event)
5229 {
5230 	struct pmu *pmu = event->pmu;
5231 
5232 	if (!is_exclusive_pmu(pmu))
5233 		return 0;
5234 
5235 	/*
5236 	 * Prevent co-existence of per-task and cpu-wide events on the
5237 	 * same exclusive pmu.
5238 	 *
5239 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5240 	 * events on this "exclusive" pmu, positive means there are
5241 	 * per-task events.
5242 	 *
5243 	 * Since this is called in perf_event_alloc() path, event::ctx
5244 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5245 	 * to mean "per-task event", because unlike other attach states it
5246 	 * never gets cleared.
5247 	 */
5248 	if (event->attach_state & PERF_ATTACH_TASK) {
5249 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5250 			return -EBUSY;
5251 	} else {
5252 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5253 			return -EBUSY;
5254 	}
5255 
5256 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5257 
5258 	return 0;
5259 }
5260 
exclusive_event_destroy(struct perf_event * event)5261 static void exclusive_event_destroy(struct perf_event *event)
5262 {
5263 	struct pmu *pmu = event->pmu;
5264 
5265 	/* see comment in exclusive_event_init() */
5266 	if (event->attach_state & PERF_ATTACH_TASK)
5267 		atomic_dec(&pmu->exclusive_cnt);
5268 	else
5269 		atomic_inc(&pmu->exclusive_cnt);
5270 
5271 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5272 }
5273 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5274 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5275 {
5276 	if ((e1->pmu == e2->pmu) &&
5277 	    (e1->cpu == e2->cpu ||
5278 	     e1->cpu == -1 ||
5279 	     e2->cpu == -1))
5280 		return true;
5281 	return false;
5282 }
5283 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5284 static bool exclusive_event_installable(struct perf_event *event,
5285 					struct perf_event_context *ctx)
5286 {
5287 	struct perf_event *iter_event;
5288 	struct pmu *pmu = event->pmu;
5289 
5290 	lockdep_assert_held(&ctx->mutex);
5291 
5292 	if (!is_exclusive_pmu(pmu))
5293 		return true;
5294 
5295 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5296 		if (exclusive_event_match(iter_event, event))
5297 			return false;
5298 	}
5299 
5300 	return true;
5301 }
5302 
5303 static void perf_addr_filters_splice(struct perf_event *event,
5304 				       struct list_head *head);
5305 
5306 /* vs perf_event_alloc() error */
__free_event(struct perf_event * event)5307 static void __free_event(struct perf_event *event)
5308 {
5309 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5310 		put_callchain_buffers();
5311 
5312 	kfree(event->addr_filter_ranges);
5313 
5314 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5315 		exclusive_event_destroy(event);
5316 
5317 	if (is_cgroup_event(event))
5318 		perf_detach_cgroup(event);
5319 
5320 	if (event->destroy)
5321 		event->destroy(event);
5322 
5323 	/*
5324 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5325 	 * hw.target.
5326 	 */
5327 	if (event->hw.target)
5328 		put_task_struct(event->hw.target);
5329 
5330 	if (event->pmu_ctx) {
5331 		/*
5332 		 * put_pmu_ctx() needs an event->ctx reference, because of
5333 		 * epc->ctx.
5334 		 */
5335 		WARN_ON_ONCE(!event->ctx);
5336 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5337 		put_pmu_ctx(event->pmu_ctx);
5338 	}
5339 
5340 	/*
5341 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5342 	 * particular all task references must be cleaned up.
5343 	 */
5344 	if (event->ctx)
5345 		put_ctx(event->ctx);
5346 
5347 	if (event->pmu)
5348 		module_put(event->pmu->module);
5349 
5350 	call_rcu(&event->rcu_head, free_event_rcu);
5351 }
5352 
5353 /* vs perf_event_alloc() success */
_free_event(struct perf_event * event)5354 static void _free_event(struct perf_event *event)
5355 {
5356 	irq_work_sync(&event->pending_irq);
5357 	irq_work_sync(&event->pending_disable_irq);
5358 
5359 	unaccount_event(event);
5360 
5361 	security_perf_event_free(event);
5362 
5363 	if (event->rb) {
5364 		/*
5365 		 * Can happen when we close an event with re-directed output.
5366 		 *
5367 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5368 		 * over us; possibly making our ring_buffer_put() the last.
5369 		 */
5370 		mutex_lock(&event->mmap_mutex);
5371 		ring_buffer_attach(event, NULL);
5372 		mutex_unlock(&event->mmap_mutex);
5373 	}
5374 
5375 	perf_event_free_bpf_prog(event);
5376 	perf_addr_filters_splice(event, NULL);
5377 
5378 	__free_event(event);
5379 }
5380 
5381 /*
5382  * Used to free events which have a known refcount of 1, such as in error paths
5383  * where the event isn't exposed yet and inherited events.
5384  */
free_event(struct perf_event * event)5385 static void free_event(struct perf_event *event)
5386 {
5387 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5388 				"unexpected event refcount: %ld; ptr=%p\n",
5389 				atomic_long_read(&event->refcount), event)) {
5390 		/* leak to avoid use-after-free */
5391 		return;
5392 	}
5393 
5394 	_free_event(event);
5395 }
5396 
5397 /*
5398  * Remove user event from the owner task.
5399  */
perf_remove_from_owner(struct perf_event * event)5400 static void perf_remove_from_owner(struct perf_event *event)
5401 {
5402 	struct task_struct *owner;
5403 
5404 	rcu_read_lock();
5405 	/*
5406 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5407 	 * observe !owner it means the list deletion is complete and we can
5408 	 * indeed free this event, otherwise we need to serialize on
5409 	 * owner->perf_event_mutex.
5410 	 */
5411 	owner = READ_ONCE(event->owner);
5412 	if (owner) {
5413 		/*
5414 		 * Since delayed_put_task_struct() also drops the last
5415 		 * task reference we can safely take a new reference
5416 		 * while holding the rcu_read_lock().
5417 		 */
5418 		get_task_struct(owner);
5419 	}
5420 	rcu_read_unlock();
5421 
5422 	if (owner) {
5423 		/*
5424 		 * If we're here through perf_event_exit_task() we're already
5425 		 * holding ctx->mutex which would be an inversion wrt. the
5426 		 * normal lock order.
5427 		 *
5428 		 * However we can safely take this lock because its the child
5429 		 * ctx->mutex.
5430 		 */
5431 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5432 
5433 		/*
5434 		 * We have to re-check the event->owner field, if it is cleared
5435 		 * we raced with perf_event_exit_task(), acquiring the mutex
5436 		 * ensured they're done, and we can proceed with freeing the
5437 		 * event.
5438 		 */
5439 		if (event->owner) {
5440 			list_del_init(&event->owner_entry);
5441 			smp_store_release(&event->owner, NULL);
5442 		}
5443 		mutex_unlock(&owner->perf_event_mutex);
5444 		put_task_struct(owner);
5445 	}
5446 }
5447 
put_event(struct perf_event * event)5448 static void put_event(struct perf_event *event)
5449 {
5450 	struct perf_event *parent;
5451 
5452 	if (!atomic_long_dec_and_test(&event->refcount))
5453 		return;
5454 
5455 	parent = event->parent;
5456 	_free_event(event);
5457 
5458 	/* Matches the refcount bump in inherit_event() */
5459 	if (parent)
5460 		put_event(parent);
5461 }
5462 
5463 /*
5464  * Kill an event dead; while event:refcount will preserve the event
5465  * object, it will not preserve its functionality. Once the last 'user'
5466  * gives up the object, we'll destroy the thing.
5467  */
perf_event_release_kernel(struct perf_event * event)5468 int perf_event_release_kernel(struct perf_event *event)
5469 {
5470 	struct perf_event_context *ctx = event->ctx;
5471 	struct perf_event *child, *tmp;
5472 	LIST_HEAD(free_list);
5473 
5474 	/*
5475 	 * If we got here through err_alloc: free_event(event); we will not
5476 	 * have attached to a context yet.
5477 	 */
5478 	if (!ctx) {
5479 		WARN_ON_ONCE(event->attach_state &
5480 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5481 		goto no_ctx;
5482 	}
5483 
5484 	if (!is_kernel_event(event))
5485 		perf_remove_from_owner(event);
5486 
5487 	ctx = perf_event_ctx_lock(event);
5488 	WARN_ON_ONCE(ctx->parent_ctx);
5489 
5490 	/*
5491 	 * Mark this event as STATE_DEAD, there is no external reference to it
5492 	 * anymore.
5493 	 *
5494 	 * Anybody acquiring event->child_mutex after the below loop _must_
5495 	 * also see this, most importantly inherit_event() which will avoid
5496 	 * placing more children on the list.
5497 	 *
5498 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5499 	 * child events.
5500 	 */
5501 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5502 
5503 	perf_event_ctx_unlock(event, ctx);
5504 
5505 again:
5506 	mutex_lock(&event->child_mutex);
5507 	list_for_each_entry(child, &event->child_list, child_list) {
5508 		void *var = NULL;
5509 
5510 		/*
5511 		 * Cannot change, child events are not migrated, see the
5512 		 * comment with perf_event_ctx_lock_nested().
5513 		 */
5514 		ctx = READ_ONCE(child->ctx);
5515 		/*
5516 		 * Since child_mutex nests inside ctx::mutex, we must jump
5517 		 * through hoops. We start by grabbing a reference on the ctx.
5518 		 *
5519 		 * Since the event cannot get freed while we hold the
5520 		 * child_mutex, the context must also exist and have a !0
5521 		 * reference count.
5522 		 */
5523 		get_ctx(ctx);
5524 
5525 		/*
5526 		 * Now that we have a ctx ref, we can drop child_mutex, and
5527 		 * acquire ctx::mutex without fear of it going away. Then we
5528 		 * can re-acquire child_mutex.
5529 		 */
5530 		mutex_unlock(&event->child_mutex);
5531 		mutex_lock(&ctx->mutex);
5532 		mutex_lock(&event->child_mutex);
5533 
5534 		/*
5535 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5536 		 * state, if child is still the first entry, it didn't get freed
5537 		 * and we can continue doing so.
5538 		 */
5539 		tmp = list_first_entry_or_null(&event->child_list,
5540 					       struct perf_event, child_list);
5541 		if (tmp == child) {
5542 			perf_remove_from_context(child, DETACH_GROUP);
5543 			list_move(&child->child_list, &free_list);
5544 		} else {
5545 			var = &ctx->refcount;
5546 		}
5547 
5548 		mutex_unlock(&event->child_mutex);
5549 		mutex_unlock(&ctx->mutex);
5550 		put_ctx(ctx);
5551 
5552 		if (var) {
5553 			/*
5554 			 * If perf_event_free_task() has deleted all events from the
5555 			 * ctx while the child_mutex got released above, make sure to
5556 			 * notify about the preceding put_ctx().
5557 			 */
5558 			smp_mb(); /* pairs with wait_var_event() */
5559 			wake_up_var(var);
5560 		}
5561 		goto again;
5562 	}
5563 	mutex_unlock(&event->child_mutex);
5564 
5565 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5566 		void *var = &child->ctx->refcount;
5567 
5568 		list_del(&child->child_list);
5569 		/* Last reference unless ->pending_task work is pending */
5570 		put_event(child);
5571 
5572 		/*
5573 		 * Wake any perf_event_free_task() waiting for this event to be
5574 		 * freed.
5575 		 */
5576 		smp_mb(); /* pairs with wait_var_event() */
5577 		wake_up_var(var);
5578 	}
5579 
5580 no_ctx:
5581 	/*
5582 	 * Last reference unless ->pending_task work is pending on this event
5583 	 * or any of its children.
5584 	 */
5585 	put_event(event);
5586 	return 0;
5587 }
5588 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5589 
5590 /*
5591  * Called when the last reference to the file is gone.
5592  */
perf_release(struct inode * inode,struct file * file)5593 static int perf_release(struct inode *inode, struct file *file)
5594 {
5595 	perf_event_release_kernel(file->private_data);
5596 	return 0;
5597 }
5598 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5599 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5600 {
5601 	struct perf_event *child;
5602 	u64 total = 0;
5603 
5604 	*enabled = 0;
5605 	*running = 0;
5606 
5607 	mutex_lock(&event->child_mutex);
5608 
5609 	(void)perf_event_read(event, false);
5610 	total += perf_event_count(event, false);
5611 
5612 	*enabled += event->total_time_enabled +
5613 			atomic64_read(&event->child_total_time_enabled);
5614 	*running += event->total_time_running +
5615 			atomic64_read(&event->child_total_time_running);
5616 
5617 	list_for_each_entry(child, &event->child_list, child_list) {
5618 		(void)perf_event_read(child, false);
5619 		total += perf_event_count(child, false);
5620 		*enabled += child->total_time_enabled;
5621 		*running += child->total_time_running;
5622 	}
5623 	mutex_unlock(&event->child_mutex);
5624 
5625 	return total;
5626 }
5627 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5628 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5629 {
5630 	struct perf_event_context *ctx;
5631 	u64 count;
5632 
5633 	ctx = perf_event_ctx_lock(event);
5634 	count = __perf_event_read_value(event, enabled, running);
5635 	perf_event_ctx_unlock(event, ctx);
5636 
5637 	return count;
5638 }
5639 EXPORT_SYMBOL_GPL(perf_event_read_value);
5640 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5641 static int __perf_read_group_add(struct perf_event *leader,
5642 					u64 read_format, u64 *values)
5643 {
5644 	struct perf_event_context *ctx = leader->ctx;
5645 	struct perf_event *sub, *parent;
5646 	unsigned long flags;
5647 	int n = 1; /* skip @nr */
5648 	int ret;
5649 
5650 	ret = perf_event_read(leader, true);
5651 	if (ret)
5652 		return ret;
5653 
5654 	raw_spin_lock_irqsave(&ctx->lock, flags);
5655 	/*
5656 	 * Verify the grouping between the parent and child (inherited)
5657 	 * events is still in tact.
5658 	 *
5659 	 * Specifically:
5660 	 *  - leader->ctx->lock pins leader->sibling_list
5661 	 *  - parent->child_mutex pins parent->child_list
5662 	 *  - parent->ctx->mutex pins parent->sibling_list
5663 	 *
5664 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5665 	 * ctx->mutex), group destruction is not atomic between children, also
5666 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5667 	 * group.
5668 	 *
5669 	 * Therefore it is possible to have parent and child groups in a
5670 	 * different configuration and summing over such a beast makes no sense
5671 	 * what so ever.
5672 	 *
5673 	 * Reject this.
5674 	 */
5675 	parent = leader->parent;
5676 	if (parent &&
5677 	    (parent->group_generation != leader->group_generation ||
5678 	     parent->nr_siblings != leader->nr_siblings)) {
5679 		ret = -ECHILD;
5680 		goto unlock;
5681 	}
5682 
5683 	/*
5684 	 * Since we co-schedule groups, {enabled,running} times of siblings
5685 	 * will be identical to those of the leader, so we only publish one
5686 	 * set.
5687 	 */
5688 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5689 		values[n++] += leader->total_time_enabled +
5690 			atomic64_read(&leader->child_total_time_enabled);
5691 	}
5692 
5693 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5694 		values[n++] += leader->total_time_running +
5695 			atomic64_read(&leader->child_total_time_running);
5696 	}
5697 
5698 	/*
5699 	 * Write {count,id} tuples for every sibling.
5700 	 */
5701 	values[n++] += perf_event_count(leader, false);
5702 	if (read_format & PERF_FORMAT_ID)
5703 		values[n++] = primary_event_id(leader);
5704 	if (read_format & PERF_FORMAT_LOST)
5705 		values[n++] = atomic64_read(&leader->lost_samples);
5706 
5707 	for_each_sibling_event(sub, leader) {
5708 		values[n++] += perf_event_count(sub, false);
5709 		if (read_format & PERF_FORMAT_ID)
5710 			values[n++] = primary_event_id(sub);
5711 		if (read_format & PERF_FORMAT_LOST)
5712 			values[n++] = atomic64_read(&sub->lost_samples);
5713 	}
5714 
5715 unlock:
5716 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5717 	return ret;
5718 }
5719 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5720 static int perf_read_group(struct perf_event *event,
5721 				   u64 read_format, char __user *buf)
5722 {
5723 	struct perf_event *leader = event->group_leader, *child;
5724 	struct perf_event_context *ctx = leader->ctx;
5725 	int ret;
5726 	u64 *values;
5727 
5728 	lockdep_assert_held(&ctx->mutex);
5729 
5730 	values = kzalloc(event->read_size, GFP_KERNEL);
5731 	if (!values)
5732 		return -ENOMEM;
5733 
5734 	values[0] = 1 + leader->nr_siblings;
5735 
5736 	mutex_lock(&leader->child_mutex);
5737 
5738 	ret = __perf_read_group_add(leader, read_format, values);
5739 	if (ret)
5740 		goto unlock;
5741 
5742 	list_for_each_entry(child, &leader->child_list, child_list) {
5743 		ret = __perf_read_group_add(child, read_format, values);
5744 		if (ret)
5745 			goto unlock;
5746 	}
5747 
5748 	mutex_unlock(&leader->child_mutex);
5749 
5750 	ret = event->read_size;
5751 	if (copy_to_user(buf, values, event->read_size))
5752 		ret = -EFAULT;
5753 	goto out;
5754 
5755 unlock:
5756 	mutex_unlock(&leader->child_mutex);
5757 out:
5758 	kfree(values);
5759 	return ret;
5760 }
5761 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5762 static int perf_read_one(struct perf_event *event,
5763 				 u64 read_format, char __user *buf)
5764 {
5765 	u64 enabled, running;
5766 	u64 values[5];
5767 	int n = 0;
5768 
5769 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5770 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5771 		values[n++] = enabled;
5772 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5773 		values[n++] = running;
5774 	if (read_format & PERF_FORMAT_ID)
5775 		values[n++] = primary_event_id(event);
5776 	if (read_format & PERF_FORMAT_LOST)
5777 		values[n++] = atomic64_read(&event->lost_samples);
5778 
5779 	if (copy_to_user(buf, values, n * sizeof(u64)))
5780 		return -EFAULT;
5781 
5782 	return n * sizeof(u64);
5783 }
5784 
is_event_hup(struct perf_event * event)5785 static bool is_event_hup(struct perf_event *event)
5786 {
5787 	bool no_children;
5788 
5789 	if (event->state > PERF_EVENT_STATE_EXIT)
5790 		return false;
5791 
5792 	mutex_lock(&event->child_mutex);
5793 	no_children = list_empty(&event->child_list);
5794 	mutex_unlock(&event->child_mutex);
5795 	return no_children;
5796 }
5797 
5798 /*
5799  * Read the performance event - simple non blocking version for now
5800  */
5801 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5802 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5803 {
5804 	u64 read_format = event->attr.read_format;
5805 	int ret;
5806 
5807 	/*
5808 	 * Return end-of-file for a read on an event that is in
5809 	 * error state (i.e. because it was pinned but it couldn't be
5810 	 * scheduled on to the CPU at some point).
5811 	 */
5812 	if (event->state == PERF_EVENT_STATE_ERROR)
5813 		return 0;
5814 
5815 	if (count < event->read_size)
5816 		return -ENOSPC;
5817 
5818 	WARN_ON_ONCE(event->ctx->parent_ctx);
5819 	if (read_format & PERF_FORMAT_GROUP)
5820 		ret = perf_read_group(event, read_format, buf);
5821 	else
5822 		ret = perf_read_one(event, read_format, buf);
5823 
5824 	return ret;
5825 }
5826 
5827 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5828 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5829 {
5830 	struct perf_event *event = file->private_data;
5831 	struct perf_event_context *ctx;
5832 	int ret;
5833 
5834 	ret = security_perf_event_read(event);
5835 	if (ret)
5836 		return ret;
5837 
5838 	ctx = perf_event_ctx_lock(event);
5839 	ret = __perf_read(event, buf, count);
5840 	perf_event_ctx_unlock(event, ctx);
5841 
5842 	return ret;
5843 }
5844 
perf_poll(struct file * file,poll_table * wait)5845 static __poll_t perf_poll(struct file *file, poll_table *wait)
5846 {
5847 	struct perf_event *event = file->private_data;
5848 	struct perf_buffer *rb;
5849 	__poll_t events = EPOLLHUP;
5850 
5851 	poll_wait(file, &event->waitq, wait);
5852 
5853 	if (is_event_hup(event))
5854 		return events;
5855 
5856 	/*
5857 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5858 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5859 	 */
5860 	mutex_lock(&event->mmap_mutex);
5861 	rb = event->rb;
5862 	if (rb)
5863 		events = atomic_xchg(&rb->poll, 0);
5864 	mutex_unlock(&event->mmap_mutex);
5865 	return events;
5866 }
5867 
_perf_event_reset(struct perf_event * event)5868 static void _perf_event_reset(struct perf_event *event)
5869 {
5870 	(void)perf_event_read(event, false);
5871 	local64_set(&event->count, 0);
5872 	perf_event_update_userpage(event);
5873 }
5874 
5875 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5876 u64 perf_event_pause(struct perf_event *event, bool reset)
5877 {
5878 	struct perf_event_context *ctx;
5879 	u64 count;
5880 
5881 	ctx = perf_event_ctx_lock(event);
5882 	WARN_ON_ONCE(event->attr.inherit);
5883 	_perf_event_disable(event);
5884 	count = local64_read(&event->count);
5885 	if (reset)
5886 		local64_set(&event->count, 0);
5887 	perf_event_ctx_unlock(event, ctx);
5888 
5889 	return count;
5890 }
5891 EXPORT_SYMBOL_GPL(perf_event_pause);
5892 
5893 /*
5894  * Holding the top-level event's child_mutex means that any
5895  * descendant process that has inherited this event will block
5896  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5897  * task existence requirements of perf_event_enable/disable.
5898  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5899 static void perf_event_for_each_child(struct perf_event *event,
5900 					void (*func)(struct perf_event *))
5901 {
5902 	struct perf_event *child;
5903 
5904 	WARN_ON_ONCE(event->ctx->parent_ctx);
5905 
5906 	mutex_lock(&event->child_mutex);
5907 	func(event);
5908 	list_for_each_entry(child, &event->child_list, child_list)
5909 		func(child);
5910 	mutex_unlock(&event->child_mutex);
5911 }
5912 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5913 static void perf_event_for_each(struct perf_event *event,
5914 				  void (*func)(struct perf_event *))
5915 {
5916 	struct perf_event_context *ctx = event->ctx;
5917 	struct perf_event *sibling;
5918 
5919 	lockdep_assert_held(&ctx->mutex);
5920 
5921 	event = event->group_leader;
5922 
5923 	perf_event_for_each_child(event, func);
5924 	for_each_sibling_event(sibling, event)
5925 		perf_event_for_each_child(sibling, func);
5926 }
5927 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5928 static void __perf_event_period(struct perf_event *event,
5929 				struct perf_cpu_context *cpuctx,
5930 				struct perf_event_context *ctx,
5931 				void *info)
5932 {
5933 	u64 value = *((u64 *)info);
5934 	bool active;
5935 
5936 	if (event->attr.freq) {
5937 		event->attr.sample_freq = value;
5938 	} else {
5939 		event->attr.sample_period = value;
5940 		event->hw.sample_period = value;
5941 	}
5942 
5943 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5944 	if (active) {
5945 		perf_pmu_disable(event->pmu);
5946 		/*
5947 		 * We could be throttled; unthrottle now to avoid the tick
5948 		 * trying to unthrottle while we already re-started the event.
5949 		 */
5950 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5951 			event->hw.interrupts = 0;
5952 			perf_log_throttle(event, 1);
5953 		}
5954 		event->pmu->stop(event, PERF_EF_UPDATE);
5955 	}
5956 
5957 	local64_set(&event->hw.period_left, 0);
5958 
5959 	if (active) {
5960 		event->pmu->start(event, PERF_EF_RELOAD);
5961 		perf_pmu_enable(event->pmu);
5962 	}
5963 }
5964 
perf_event_check_period(struct perf_event * event,u64 value)5965 static int perf_event_check_period(struct perf_event *event, u64 value)
5966 {
5967 	return event->pmu->check_period(event, value);
5968 }
5969 
_perf_event_period(struct perf_event * event,u64 value)5970 static int _perf_event_period(struct perf_event *event, u64 value)
5971 {
5972 	if (!is_sampling_event(event))
5973 		return -EINVAL;
5974 
5975 	if (!value)
5976 		return -EINVAL;
5977 
5978 	if (event->attr.freq) {
5979 		if (value > sysctl_perf_event_sample_rate)
5980 			return -EINVAL;
5981 	} else {
5982 		if (perf_event_check_period(event, value))
5983 			return -EINVAL;
5984 		if (value & (1ULL << 63))
5985 			return -EINVAL;
5986 	}
5987 
5988 	event_function_call(event, __perf_event_period, &value);
5989 
5990 	return 0;
5991 }
5992 
perf_event_period(struct perf_event * event,u64 value)5993 int perf_event_period(struct perf_event *event, u64 value)
5994 {
5995 	struct perf_event_context *ctx;
5996 	int ret;
5997 
5998 	ctx = perf_event_ctx_lock(event);
5999 	ret = _perf_event_period(event, value);
6000 	perf_event_ctx_unlock(event, ctx);
6001 
6002 	return ret;
6003 }
6004 EXPORT_SYMBOL_GPL(perf_event_period);
6005 
6006 static const struct file_operations perf_fops;
6007 
is_perf_file(struct fd f)6008 static inline bool is_perf_file(struct fd f)
6009 {
6010 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6011 }
6012 
6013 static int perf_event_set_output(struct perf_event *event,
6014 				 struct perf_event *output_event);
6015 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6016 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6017 			  struct perf_event_attr *attr);
6018 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6019 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6020 {
6021 	void (*func)(struct perf_event *);
6022 	u32 flags = arg;
6023 
6024 	switch (cmd) {
6025 	case PERF_EVENT_IOC_ENABLE:
6026 		func = _perf_event_enable;
6027 		break;
6028 	case PERF_EVENT_IOC_DISABLE:
6029 		func = _perf_event_disable;
6030 		break;
6031 	case PERF_EVENT_IOC_RESET:
6032 		func = _perf_event_reset;
6033 		break;
6034 
6035 	case PERF_EVENT_IOC_REFRESH:
6036 		return _perf_event_refresh(event, arg);
6037 
6038 	case PERF_EVENT_IOC_PERIOD:
6039 	{
6040 		u64 value;
6041 
6042 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6043 			return -EFAULT;
6044 
6045 		return _perf_event_period(event, value);
6046 	}
6047 	case PERF_EVENT_IOC_ID:
6048 	{
6049 		u64 id = primary_event_id(event);
6050 
6051 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6052 			return -EFAULT;
6053 		return 0;
6054 	}
6055 
6056 	case PERF_EVENT_IOC_SET_OUTPUT:
6057 	{
6058 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6059 		struct perf_event *output_event = NULL;
6060 		if (arg != -1) {
6061 			if (!is_perf_file(output))
6062 				return -EBADF;
6063 			output_event = fd_file(output)->private_data;
6064 		}
6065 		return perf_event_set_output(event, output_event);
6066 	}
6067 
6068 	case PERF_EVENT_IOC_SET_FILTER:
6069 		return perf_event_set_filter(event, (void __user *)arg);
6070 
6071 	case PERF_EVENT_IOC_SET_BPF:
6072 	{
6073 		struct bpf_prog *prog;
6074 		int err;
6075 
6076 		prog = bpf_prog_get(arg);
6077 		if (IS_ERR(prog))
6078 			return PTR_ERR(prog);
6079 
6080 		err = perf_event_set_bpf_prog(event, prog, 0);
6081 		if (err) {
6082 			bpf_prog_put(prog);
6083 			return err;
6084 		}
6085 
6086 		return 0;
6087 	}
6088 
6089 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6090 		struct perf_buffer *rb;
6091 
6092 		rcu_read_lock();
6093 		rb = rcu_dereference(event->rb);
6094 		if (!rb || !rb->nr_pages) {
6095 			rcu_read_unlock();
6096 			return -EINVAL;
6097 		}
6098 		rb_toggle_paused(rb, !!arg);
6099 		rcu_read_unlock();
6100 		return 0;
6101 	}
6102 
6103 	case PERF_EVENT_IOC_QUERY_BPF:
6104 		return perf_event_query_prog_array(event, (void __user *)arg);
6105 
6106 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6107 		struct perf_event_attr new_attr;
6108 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6109 					 &new_attr);
6110 
6111 		if (err)
6112 			return err;
6113 
6114 		return perf_event_modify_attr(event,  &new_attr);
6115 	}
6116 	default:
6117 		return -ENOTTY;
6118 	}
6119 
6120 	if (flags & PERF_IOC_FLAG_GROUP)
6121 		perf_event_for_each(event, func);
6122 	else
6123 		perf_event_for_each_child(event, func);
6124 
6125 	return 0;
6126 }
6127 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6128 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6129 {
6130 	struct perf_event *event = file->private_data;
6131 	struct perf_event_context *ctx;
6132 	long ret;
6133 
6134 	/* Treat ioctl like writes as it is likely a mutating operation. */
6135 	ret = security_perf_event_write(event);
6136 	if (ret)
6137 		return ret;
6138 
6139 	ctx = perf_event_ctx_lock(event);
6140 	ret = _perf_ioctl(event, cmd, arg);
6141 	perf_event_ctx_unlock(event, ctx);
6142 
6143 	return ret;
6144 }
6145 
6146 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6147 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6148 				unsigned long arg)
6149 {
6150 	switch (_IOC_NR(cmd)) {
6151 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6152 	case _IOC_NR(PERF_EVENT_IOC_ID):
6153 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6154 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6155 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6156 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6157 			cmd &= ~IOCSIZE_MASK;
6158 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6159 		}
6160 		break;
6161 	}
6162 	return perf_ioctl(file, cmd, arg);
6163 }
6164 #else
6165 # define perf_compat_ioctl NULL
6166 #endif
6167 
perf_event_task_enable(void)6168 int perf_event_task_enable(void)
6169 {
6170 	struct perf_event_context *ctx;
6171 	struct perf_event *event;
6172 
6173 	mutex_lock(&current->perf_event_mutex);
6174 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6175 		ctx = perf_event_ctx_lock(event);
6176 		perf_event_for_each_child(event, _perf_event_enable);
6177 		perf_event_ctx_unlock(event, ctx);
6178 	}
6179 	mutex_unlock(&current->perf_event_mutex);
6180 
6181 	return 0;
6182 }
6183 
perf_event_task_disable(void)6184 int perf_event_task_disable(void)
6185 {
6186 	struct perf_event_context *ctx;
6187 	struct perf_event *event;
6188 
6189 	mutex_lock(&current->perf_event_mutex);
6190 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6191 		ctx = perf_event_ctx_lock(event);
6192 		perf_event_for_each_child(event, _perf_event_disable);
6193 		perf_event_ctx_unlock(event, ctx);
6194 	}
6195 	mutex_unlock(&current->perf_event_mutex);
6196 
6197 	return 0;
6198 }
6199 
perf_event_index(struct perf_event * event)6200 static int perf_event_index(struct perf_event *event)
6201 {
6202 	if (event->hw.state & PERF_HES_STOPPED)
6203 		return 0;
6204 
6205 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6206 		return 0;
6207 
6208 	return event->pmu->event_idx(event);
6209 }
6210 
perf_event_init_userpage(struct perf_event * event)6211 static void perf_event_init_userpage(struct perf_event *event)
6212 {
6213 	struct perf_event_mmap_page *userpg;
6214 	struct perf_buffer *rb;
6215 
6216 	rcu_read_lock();
6217 	rb = rcu_dereference(event->rb);
6218 	if (!rb)
6219 		goto unlock;
6220 
6221 	userpg = rb->user_page;
6222 
6223 	/* Allow new userspace to detect that bit 0 is deprecated */
6224 	userpg->cap_bit0_is_deprecated = 1;
6225 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6226 	userpg->data_offset = PAGE_SIZE;
6227 	userpg->data_size = perf_data_size(rb);
6228 
6229 unlock:
6230 	rcu_read_unlock();
6231 }
6232 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6233 void __weak arch_perf_update_userpage(
6234 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6235 {
6236 }
6237 
6238 /*
6239  * Callers need to ensure there can be no nesting of this function, otherwise
6240  * the seqlock logic goes bad. We can not serialize this because the arch
6241  * code calls this from NMI context.
6242  */
perf_event_update_userpage(struct perf_event * event)6243 void perf_event_update_userpage(struct perf_event *event)
6244 {
6245 	struct perf_event_mmap_page *userpg;
6246 	struct perf_buffer *rb;
6247 	u64 enabled, running, now;
6248 
6249 	rcu_read_lock();
6250 	rb = rcu_dereference(event->rb);
6251 	if (!rb)
6252 		goto unlock;
6253 
6254 	/*
6255 	 * compute total_time_enabled, total_time_running
6256 	 * based on snapshot values taken when the event
6257 	 * was last scheduled in.
6258 	 *
6259 	 * we cannot simply called update_context_time()
6260 	 * because of locking issue as we can be called in
6261 	 * NMI context
6262 	 */
6263 	calc_timer_values(event, &now, &enabled, &running);
6264 
6265 	userpg = rb->user_page;
6266 	/*
6267 	 * Disable preemption to guarantee consistent time stamps are stored to
6268 	 * the user page.
6269 	 */
6270 	preempt_disable();
6271 	++userpg->lock;
6272 	barrier();
6273 	userpg->index = perf_event_index(event);
6274 	userpg->offset = perf_event_count(event, false);
6275 	if (userpg->index)
6276 		userpg->offset -= local64_read(&event->hw.prev_count);
6277 
6278 	userpg->time_enabled = enabled +
6279 			atomic64_read(&event->child_total_time_enabled);
6280 
6281 	userpg->time_running = running +
6282 			atomic64_read(&event->child_total_time_running);
6283 
6284 	arch_perf_update_userpage(event, userpg, now);
6285 
6286 	barrier();
6287 	++userpg->lock;
6288 	preempt_enable();
6289 unlock:
6290 	rcu_read_unlock();
6291 }
6292 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6293 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6294 static void ring_buffer_attach(struct perf_event *event,
6295 			       struct perf_buffer *rb)
6296 {
6297 	struct perf_buffer *old_rb = NULL;
6298 	unsigned long flags;
6299 
6300 	WARN_ON_ONCE(event->parent);
6301 
6302 	if (event->rb) {
6303 		/*
6304 		 * Should be impossible, we set this when removing
6305 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6306 		 */
6307 		WARN_ON_ONCE(event->rcu_pending);
6308 
6309 		old_rb = event->rb;
6310 		spin_lock_irqsave(&old_rb->event_lock, flags);
6311 		list_del_rcu(&event->rb_entry);
6312 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6313 
6314 		event->rcu_batches = get_state_synchronize_rcu();
6315 		event->rcu_pending = 1;
6316 	}
6317 
6318 	if (rb) {
6319 		if (event->rcu_pending) {
6320 			cond_synchronize_rcu(event->rcu_batches);
6321 			event->rcu_pending = 0;
6322 		}
6323 
6324 		spin_lock_irqsave(&rb->event_lock, flags);
6325 		list_add_rcu(&event->rb_entry, &rb->event_list);
6326 		spin_unlock_irqrestore(&rb->event_lock, flags);
6327 	}
6328 
6329 	/*
6330 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6331 	 * before swizzling the event::rb pointer; if it's getting
6332 	 * unmapped, its aux_mmap_count will be 0 and it won't
6333 	 * restart. See the comment in __perf_pmu_output_stop().
6334 	 *
6335 	 * Data will inevitably be lost when set_output is done in
6336 	 * mid-air, but then again, whoever does it like this is
6337 	 * not in for the data anyway.
6338 	 */
6339 	if (has_aux(event))
6340 		perf_event_stop(event, 0);
6341 
6342 	rcu_assign_pointer(event->rb, rb);
6343 
6344 	if (old_rb) {
6345 		ring_buffer_put(old_rb);
6346 		/*
6347 		 * Since we detached before setting the new rb, so that we
6348 		 * could attach the new rb, we could have missed a wakeup.
6349 		 * Provide it now.
6350 		 */
6351 		wake_up_all(&event->waitq);
6352 	}
6353 }
6354 
ring_buffer_wakeup(struct perf_event * event)6355 static void ring_buffer_wakeup(struct perf_event *event)
6356 {
6357 	struct perf_buffer *rb;
6358 
6359 	if (event->parent)
6360 		event = event->parent;
6361 
6362 	rcu_read_lock();
6363 	rb = rcu_dereference(event->rb);
6364 	if (rb) {
6365 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6366 			wake_up_all(&event->waitq);
6367 	}
6368 	rcu_read_unlock();
6369 }
6370 
ring_buffer_get(struct perf_event * event)6371 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6372 {
6373 	struct perf_buffer *rb;
6374 
6375 	if (event->parent)
6376 		event = event->parent;
6377 
6378 	rcu_read_lock();
6379 	rb = rcu_dereference(event->rb);
6380 	if (rb) {
6381 		if (!refcount_inc_not_zero(&rb->refcount))
6382 			rb = NULL;
6383 	}
6384 	rcu_read_unlock();
6385 
6386 	return rb;
6387 }
6388 
ring_buffer_put(struct perf_buffer * rb)6389 void ring_buffer_put(struct perf_buffer *rb)
6390 {
6391 	if (!refcount_dec_and_test(&rb->refcount))
6392 		return;
6393 
6394 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6395 
6396 	call_rcu(&rb->rcu_head, rb_free_rcu);
6397 }
6398 
perf_mmap_open(struct vm_area_struct * vma)6399 static void perf_mmap_open(struct vm_area_struct *vma)
6400 {
6401 	struct perf_event *event = vma->vm_file->private_data;
6402 
6403 	atomic_inc(&event->mmap_count);
6404 	atomic_inc(&event->rb->mmap_count);
6405 
6406 	if (vma->vm_pgoff)
6407 		atomic_inc(&event->rb->aux_mmap_count);
6408 
6409 	if (event->pmu->event_mapped)
6410 		event->pmu->event_mapped(event, vma->vm_mm);
6411 }
6412 
6413 static void perf_pmu_output_stop(struct perf_event *event);
6414 
6415 /*
6416  * A buffer can be mmap()ed multiple times; either directly through the same
6417  * event, or through other events by use of perf_event_set_output().
6418  *
6419  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6420  * the buffer here, where we still have a VM context. This means we need
6421  * to detach all events redirecting to us.
6422  */
perf_mmap_close(struct vm_area_struct * vma)6423 static void perf_mmap_close(struct vm_area_struct *vma)
6424 {
6425 	struct perf_event *event = vma->vm_file->private_data;
6426 	struct perf_buffer *rb = ring_buffer_get(event);
6427 	struct user_struct *mmap_user = rb->mmap_user;
6428 	int mmap_locked = rb->mmap_locked;
6429 	unsigned long size = perf_data_size(rb);
6430 	bool detach_rest = false;
6431 
6432 	if (event->pmu->event_unmapped)
6433 		event->pmu->event_unmapped(event, vma->vm_mm);
6434 
6435 	/*
6436 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6437 	 * to avoid complications.
6438 	 */
6439 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6440 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6441 		/*
6442 		 * Stop all AUX events that are writing to this buffer,
6443 		 * so that we can free its AUX pages and corresponding PMU
6444 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6445 		 * they won't start any more (see perf_aux_output_begin()).
6446 		 */
6447 		perf_pmu_output_stop(event);
6448 
6449 		/* now it's safe to free the pages */
6450 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6451 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6452 
6453 		/* this has to be the last one */
6454 		rb_free_aux(rb);
6455 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6456 
6457 		mutex_unlock(&rb->aux_mutex);
6458 	}
6459 
6460 	if (atomic_dec_and_test(&rb->mmap_count))
6461 		detach_rest = true;
6462 
6463 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6464 		goto out_put;
6465 
6466 	ring_buffer_attach(event, NULL);
6467 	mutex_unlock(&event->mmap_mutex);
6468 
6469 	/* If there's still other mmap()s of this buffer, we're done. */
6470 	if (!detach_rest)
6471 		goto out_put;
6472 
6473 	/*
6474 	 * No other mmap()s, detach from all other events that might redirect
6475 	 * into the now unreachable buffer. Somewhat complicated by the
6476 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6477 	 */
6478 again:
6479 	rcu_read_lock();
6480 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6481 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6482 			/*
6483 			 * This event is en-route to free_event() which will
6484 			 * detach it and remove it from the list.
6485 			 */
6486 			continue;
6487 		}
6488 		rcu_read_unlock();
6489 
6490 		mutex_lock(&event->mmap_mutex);
6491 		/*
6492 		 * Check we didn't race with perf_event_set_output() which can
6493 		 * swizzle the rb from under us while we were waiting to
6494 		 * acquire mmap_mutex.
6495 		 *
6496 		 * If we find a different rb; ignore this event, a next
6497 		 * iteration will no longer find it on the list. We have to
6498 		 * still restart the iteration to make sure we're not now
6499 		 * iterating the wrong list.
6500 		 */
6501 		if (event->rb == rb)
6502 			ring_buffer_attach(event, NULL);
6503 
6504 		mutex_unlock(&event->mmap_mutex);
6505 		put_event(event);
6506 
6507 		/*
6508 		 * Restart the iteration; either we're on the wrong list or
6509 		 * destroyed its integrity by doing a deletion.
6510 		 */
6511 		goto again;
6512 	}
6513 	rcu_read_unlock();
6514 
6515 	/*
6516 	 * It could be there's still a few 0-ref events on the list; they'll
6517 	 * get cleaned up by free_event() -- they'll also still have their
6518 	 * ref on the rb and will free it whenever they are done with it.
6519 	 *
6520 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6521 	 * undo the VM accounting.
6522 	 */
6523 
6524 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6525 			&mmap_user->locked_vm);
6526 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6527 	free_uid(mmap_user);
6528 
6529 out_put:
6530 	ring_buffer_put(rb); /* could be last */
6531 }
6532 
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6533 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6534 {
6535 	/* The first page is the user control page, others are read-only. */
6536 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6537 }
6538 
6539 static const struct vm_operations_struct perf_mmap_vmops = {
6540 	.open		= perf_mmap_open,
6541 	.close		= perf_mmap_close, /* non mergeable */
6542 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6543 };
6544 
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6545 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6546 {
6547 	unsigned long nr_pages = vma_pages(vma);
6548 	int err = 0;
6549 	unsigned long pagenum;
6550 
6551 	/*
6552 	 * We map this as a VM_PFNMAP VMA.
6553 	 *
6554 	 * This is not ideal as this is designed broadly for mappings of PFNs
6555 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6556 	 * !pfn_valid(pfn).
6557 	 *
6558 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6559 	 * which would more ideally be mapped using vm_insert_page() or a
6560 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6561 	 *
6562 	 * However this won't work here, because:
6563 	 *
6564 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6565 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6566 	 *    indicate that this should be mapped CoW in order that the
6567 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6568 	 *    rest R/O as desired.
6569 	 *
6570 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6571 	 *    vm_normal_page() returning a struct page * pointer, which means
6572 	 *    vm_ops->page_mkwrite() will be invoked rather than
6573 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6574 	 *    to work around retry logic in the fault handler, however this
6575 	 *    field is no longer allowed to be used within struct page.
6576 	 *
6577 	 * 3. Having a struct page * made available in the fault logic also
6578 	 *    means that the page gets put on the rmap and becomes
6579 	 *    inappropriately accessible and subject to map and ref counting.
6580 	 *
6581 	 * Ideally we would have a mechanism that could explicitly express our
6582 	 * desires, but this is not currently the case, so we instead use
6583 	 * VM_PFNMAP.
6584 	 *
6585 	 * We manage the lifetime of these mappings with internal refcounts (see
6586 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6587 	 * this mapping is maintained correctly.
6588 	 */
6589 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6590 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6591 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6592 
6593 		if (page == NULL) {
6594 			err = -EINVAL;
6595 			break;
6596 		}
6597 
6598 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6599 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6600 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6601 		if (err)
6602 			break;
6603 	}
6604 
6605 #ifdef CONFIG_MMU
6606 	/* Clear any partial mappings on error. */
6607 	if (err)
6608 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6609 #endif
6610 
6611 	return err;
6612 }
6613 
perf_mmap(struct file * file,struct vm_area_struct * vma)6614 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6615 {
6616 	struct perf_event *event = file->private_data;
6617 	unsigned long user_locked, user_lock_limit;
6618 	struct user_struct *user = current_user();
6619 	struct mutex *aux_mutex = NULL;
6620 	struct perf_buffer *rb = NULL;
6621 	unsigned long locked, lock_limit;
6622 	unsigned long vma_size;
6623 	unsigned long nr_pages;
6624 	long user_extra = 0, extra = 0;
6625 	int ret = 0, flags = 0;
6626 
6627 	/*
6628 	 * Don't allow mmap() of inherited per-task counters. This would
6629 	 * create a performance issue due to all children writing to the
6630 	 * same rb.
6631 	 */
6632 	if (event->cpu == -1 && event->attr.inherit)
6633 		return -EINVAL;
6634 
6635 	if (!(vma->vm_flags & VM_SHARED))
6636 		return -EINVAL;
6637 
6638 	ret = security_perf_event_read(event);
6639 	if (ret)
6640 		return ret;
6641 
6642 	vma_size = vma->vm_end - vma->vm_start;
6643 
6644 	if (vma->vm_pgoff == 0) {
6645 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6646 	} else {
6647 		/*
6648 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6649 		 * mapped, all subsequent mappings should have the same size
6650 		 * and offset. Must be above the normal perf buffer.
6651 		 */
6652 		u64 aux_offset, aux_size;
6653 
6654 		if (!event->rb)
6655 			return -EINVAL;
6656 
6657 		nr_pages = vma_size / PAGE_SIZE;
6658 		if (nr_pages > INT_MAX)
6659 			return -ENOMEM;
6660 
6661 		mutex_lock(&event->mmap_mutex);
6662 		ret = -EINVAL;
6663 
6664 		rb = event->rb;
6665 		if (!rb)
6666 			goto aux_unlock;
6667 
6668 		aux_mutex = &rb->aux_mutex;
6669 		mutex_lock(aux_mutex);
6670 
6671 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6672 		aux_size = READ_ONCE(rb->user_page->aux_size);
6673 
6674 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6675 			goto aux_unlock;
6676 
6677 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6678 			goto aux_unlock;
6679 
6680 		/* already mapped with a different offset */
6681 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6682 			goto aux_unlock;
6683 
6684 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6685 			goto aux_unlock;
6686 
6687 		/* already mapped with a different size */
6688 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6689 			goto aux_unlock;
6690 
6691 		if (!is_power_of_2(nr_pages))
6692 			goto aux_unlock;
6693 
6694 		if (!atomic_inc_not_zero(&rb->mmap_count))
6695 			goto aux_unlock;
6696 
6697 		if (rb_has_aux(rb)) {
6698 			atomic_inc(&rb->aux_mmap_count);
6699 			ret = 0;
6700 			goto unlock;
6701 		}
6702 
6703 		atomic_set(&rb->aux_mmap_count, 1);
6704 		user_extra = nr_pages;
6705 
6706 		goto accounting;
6707 	}
6708 
6709 	/*
6710 	 * If we have rb pages ensure they're a power-of-two number, so we
6711 	 * can do bitmasks instead of modulo.
6712 	 */
6713 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6714 		return -EINVAL;
6715 
6716 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6717 		return -EINVAL;
6718 
6719 	WARN_ON_ONCE(event->ctx->parent_ctx);
6720 again:
6721 	mutex_lock(&event->mmap_mutex);
6722 	if (event->rb) {
6723 		if (data_page_nr(event->rb) != nr_pages) {
6724 			ret = -EINVAL;
6725 			goto unlock;
6726 		}
6727 
6728 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6729 			/*
6730 			 * Raced against perf_mmap_close(); remove the
6731 			 * event and try again.
6732 			 */
6733 			ring_buffer_attach(event, NULL);
6734 			mutex_unlock(&event->mmap_mutex);
6735 			goto again;
6736 		}
6737 
6738 		/* We need the rb to map pages. */
6739 		rb = event->rb;
6740 		goto unlock;
6741 	}
6742 
6743 	user_extra = nr_pages + 1;
6744 
6745 accounting:
6746 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6747 
6748 	/*
6749 	 * Increase the limit linearly with more CPUs:
6750 	 */
6751 	user_lock_limit *= num_online_cpus();
6752 
6753 	user_locked = atomic_long_read(&user->locked_vm);
6754 
6755 	/*
6756 	 * sysctl_perf_event_mlock may have changed, so that
6757 	 *     user->locked_vm > user_lock_limit
6758 	 */
6759 	if (user_locked > user_lock_limit)
6760 		user_locked = user_lock_limit;
6761 	user_locked += user_extra;
6762 
6763 	if (user_locked > user_lock_limit) {
6764 		/*
6765 		 * charge locked_vm until it hits user_lock_limit;
6766 		 * charge the rest from pinned_vm
6767 		 */
6768 		extra = user_locked - user_lock_limit;
6769 		user_extra -= extra;
6770 	}
6771 
6772 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6773 	lock_limit >>= PAGE_SHIFT;
6774 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6775 
6776 	if ((locked > lock_limit) && perf_is_paranoid() &&
6777 		!capable(CAP_IPC_LOCK)) {
6778 		ret = -EPERM;
6779 		goto unlock;
6780 	}
6781 
6782 	WARN_ON(!rb && event->rb);
6783 
6784 	if (vma->vm_flags & VM_WRITE)
6785 		flags |= RING_BUFFER_WRITABLE;
6786 
6787 	if (!rb) {
6788 		rb = rb_alloc(nr_pages,
6789 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6790 			      event->cpu, flags);
6791 
6792 		if (!rb) {
6793 			ret = -ENOMEM;
6794 			goto unlock;
6795 		}
6796 
6797 		atomic_set(&rb->mmap_count, 1);
6798 		rb->mmap_user = get_current_user();
6799 		rb->mmap_locked = extra;
6800 
6801 		ring_buffer_attach(event, rb);
6802 
6803 		perf_event_update_time(event);
6804 		perf_event_init_userpage(event);
6805 		perf_event_update_userpage(event);
6806 	} else {
6807 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6808 				   event->attr.aux_watermark, flags);
6809 		if (!ret)
6810 			rb->aux_mmap_locked = extra;
6811 	}
6812 
6813 unlock:
6814 	if (!ret) {
6815 		atomic_long_add(user_extra, &user->locked_vm);
6816 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6817 
6818 		atomic_inc(&event->mmap_count);
6819 	} else if (rb) {
6820 		atomic_dec(&rb->mmap_count);
6821 	}
6822 aux_unlock:
6823 	if (aux_mutex)
6824 		mutex_unlock(aux_mutex);
6825 	mutex_unlock(&event->mmap_mutex);
6826 
6827 	/*
6828 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6829 	 * vma.
6830 	 */
6831 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6832 	vma->vm_ops = &perf_mmap_vmops;
6833 
6834 	if (!ret)
6835 		ret = map_range(rb, vma);
6836 
6837 	if (event->pmu->event_mapped)
6838 		event->pmu->event_mapped(event, vma->vm_mm);
6839 
6840 	return ret;
6841 }
6842 
perf_fasync(int fd,struct file * filp,int on)6843 static int perf_fasync(int fd, struct file *filp, int on)
6844 {
6845 	struct inode *inode = file_inode(filp);
6846 	struct perf_event *event = filp->private_data;
6847 	int retval;
6848 
6849 	inode_lock(inode);
6850 	retval = fasync_helper(fd, filp, on, &event->fasync);
6851 	inode_unlock(inode);
6852 
6853 	if (retval < 0)
6854 		return retval;
6855 
6856 	return 0;
6857 }
6858 
6859 static const struct file_operations perf_fops = {
6860 	.release		= perf_release,
6861 	.read			= perf_read,
6862 	.poll			= perf_poll,
6863 	.unlocked_ioctl		= perf_ioctl,
6864 	.compat_ioctl		= perf_compat_ioctl,
6865 	.mmap			= perf_mmap,
6866 	.fasync			= perf_fasync,
6867 };
6868 
6869 /*
6870  * Perf event wakeup
6871  *
6872  * If there's data, ensure we set the poll() state and publish everything
6873  * to user-space before waking everybody up.
6874  */
6875 
perf_event_wakeup(struct perf_event * event)6876 void perf_event_wakeup(struct perf_event *event)
6877 {
6878 	ring_buffer_wakeup(event);
6879 
6880 	if (event->pending_kill) {
6881 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6882 		event->pending_kill = 0;
6883 	}
6884 }
6885 
perf_sigtrap(struct perf_event * event)6886 static void perf_sigtrap(struct perf_event *event)
6887 {
6888 	/*
6889 	 * We'd expect this to only occur if the irq_work is delayed and either
6890 	 * ctx->task or current has changed in the meantime. This can be the
6891 	 * case on architectures that do not implement arch_irq_work_raise().
6892 	 */
6893 	if (WARN_ON_ONCE(event->ctx->task != current))
6894 		return;
6895 
6896 	/*
6897 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6898 	 * task exiting.
6899 	 */
6900 	if (current->flags & PF_EXITING)
6901 		return;
6902 
6903 	send_sig_perf((void __user *)event->pending_addr,
6904 		      event->orig_type, event->attr.sig_data);
6905 }
6906 
6907 /*
6908  * Deliver the pending work in-event-context or follow the context.
6909  */
__perf_pending_disable(struct perf_event * event)6910 static void __perf_pending_disable(struct perf_event *event)
6911 {
6912 	int cpu = READ_ONCE(event->oncpu);
6913 
6914 	/*
6915 	 * If the event isn't running; we done. event_sched_out() will have
6916 	 * taken care of things.
6917 	 */
6918 	if (cpu < 0)
6919 		return;
6920 
6921 	/*
6922 	 * Yay, we hit home and are in the context of the event.
6923 	 */
6924 	if (cpu == smp_processor_id()) {
6925 		if (event->pending_disable) {
6926 			event->pending_disable = 0;
6927 			perf_event_disable_local(event);
6928 		}
6929 		return;
6930 	}
6931 
6932 	/*
6933 	 *  CPU-A			CPU-B
6934 	 *
6935 	 *  perf_event_disable_inatomic()
6936 	 *    @pending_disable = CPU-A;
6937 	 *    irq_work_queue();
6938 	 *
6939 	 *  sched-out
6940 	 *    @pending_disable = -1;
6941 	 *
6942 	 *				sched-in
6943 	 *				perf_event_disable_inatomic()
6944 	 *				  @pending_disable = CPU-B;
6945 	 *				  irq_work_queue(); // FAILS
6946 	 *
6947 	 *  irq_work_run()
6948 	 *    perf_pending_disable()
6949 	 *
6950 	 * But the event runs on CPU-B and wants disabling there.
6951 	 */
6952 	irq_work_queue_on(&event->pending_disable_irq, cpu);
6953 }
6954 
perf_pending_disable(struct irq_work * entry)6955 static void perf_pending_disable(struct irq_work *entry)
6956 {
6957 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6958 	int rctx;
6959 
6960 	/*
6961 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6962 	 * and we won't recurse 'further'.
6963 	 */
6964 	rctx = perf_swevent_get_recursion_context();
6965 	__perf_pending_disable(event);
6966 	if (rctx >= 0)
6967 		perf_swevent_put_recursion_context(rctx);
6968 }
6969 
perf_pending_irq(struct irq_work * entry)6970 static void perf_pending_irq(struct irq_work *entry)
6971 {
6972 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6973 	int rctx;
6974 
6975 	/*
6976 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6977 	 * and we won't recurse 'further'.
6978 	 */
6979 	rctx = perf_swevent_get_recursion_context();
6980 
6981 	/*
6982 	 * The wakeup isn't bound to the context of the event -- it can happen
6983 	 * irrespective of where the event is.
6984 	 */
6985 	if (event->pending_wakeup) {
6986 		event->pending_wakeup = 0;
6987 		perf_event_wakeup(event);
6988 	}
6989 
6990 	if (rctx >= 0)
6991 		perf_swevent_put_recursion_context(rctx);
6992 }
6993 
perf_pending_task(struct callback_head * head)6994 static void perf_pending_task(struct callback_head *head)
6995 {
6996 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6997 	int rctx;
6998 
6999 	/*
7000 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7001 	 * and we won't recurse 'further'.
7002 	 */
7003 	rctx = perf_swevent_get_recursion_context();
7004 
7005 	if (event->pending_work) {
7006 		event->pending_work = 0;
7007 		perf_sigtrap(event);
7008 		local_dec(&event->ctx->nr_no_switch_fast);
7009 	}
7010 	put_event(event);
7011 
7012 	if (rctx >= 0)
7013 		perf_swevent_put_recursion_context(rctx);
7014 }
7015 
7016 #ifdef CONFIG_GUEST_PERF_EVENTS
7017 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7018 
7019 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7020 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7021 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7022 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7023 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7024 {
7025 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7026 		return;
7027 
7028 	rcu_assign_pointer(perf_guest_cbs, cbs);
7029 	static_call_update(__perf_guest_state, cbs->state);
7030 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7031 
7032 	/* Implementing ->handle_intel_pt_intr is optional. */
7033 	if (cbs->handle_intel_pt_intr)
7034 		static_call_update(__perf_guest_handle_intel_pt_intr,
7035 				   cbs->handle_intel_pt_intr);
7036 }
7037 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7038 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7039 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7040 {
7041 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7042 		return;
7043 
7044 	rcu_assign_pointer(perf_guest_cbs, NULL);
7045 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7046 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7047 	static_call_update(__perf_guest_handle_intel_pt_intr,
7048 			   (void *)&__static_call_return0);
7049 	synchronize_rcu();
7050 }
7051 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7052 #endif
7053 
should_sample_guest(struct perf_event * event)7054 static bool should_sample_guest(struct perf_event *event)
7055 {
7056 	return !event->attr.exclude_guest && perf_guest_state();
7057 }
7058 
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7059 unsigned long perf_misc_flags(struct perf_event *event,
7060 			      struct pt_regs *regs)
7061 {
7062 	if (should_sample_guest(event))
7063 		return perf_arch_guest_misc_flags(regs);
7064 
7065 	return perf_arch_misc_flags(regs);
7066 }
7067 
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7068 unsigned long perf_instruction_pointer(struct perf_event *event,
7069 				       struct pt_regs *regs)
7070 {
7071 	if (should_sample_guest(event))
7072 		return perf_guest_get_ip();
7073 
7074 	return perf_arch_instruction_pointer(regs);
7075 }
7076 
7077 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7078 perf_output_sample_regs(struct perf_output_handle *handle,
7079 			struct pt_regs *regs, u64 mask)
7080 {
7081 	int bit;
7082 	DECLARE_BITMAP(_mask, 64);
7083 
7084 	bitmap_from_u64(_mask, mask);
7085 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7086 		u64 val;
7087 
7088 		val = perf_reg_value(regs, bit);
7089 		perf_output_put(handle, val);
7090 	}
7091 }
7092 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7093 static void perf_sample_regs_user(struct perf_regs *regs_user,
7094 				  struct pt_regs *regs)
7095 {
7096 	if (user_mode(regs)) {
7097 		regs_user->abi = perf_reg_abi(current);
7098 		regs_user->regs = regs;
7099 	} else if (!(current->flags & PF_KTHREAD)) {
7100 		perf_get_regs_user(regs_user, regs);
7101 	} else {
7102 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7103 		regs_user->regs = NULL;
7104 	}
7105 }
7106 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7107 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7108 				  struct pt_regs *regs)
7109 {
7110 	regs_intr->regs = regs;
7111 	regs_intr->abi  = perf_reg_abi(current);
7112 }
7113 
7114 
7115 /*
7116  * Get remaining task size from user stack pointer.
7117  *
7118  * It'd be better to take stack vma map and limit this more
7119  * precisely, but there's no way to get it safely under interrupt,
7120  * so using TASK_SIZE as limit.
7121  */
perf_ustack_task_size(struct pt_regs * regs)7122 static u64 perf_ustack_task_size(struct pt_regs *regs)
7123 {
7124 	unsigned long addr = perf_user_stack_pointer(regs);
7125 
7126 	if (!addr || addr >= TASK_SIZE)
7127 		return 0;
7128 
7129 	return TASK_SIZE - addr;
7130 }
7131 
7132 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7133 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7134 			struct pt_regs *regs)
7135 {
7136 	u64 task_size;
7137 
7138 	/* No regs, no stack pointer, no dump. */
7139 	if (!regs)
7140 		return 0;
7141 
7142 	/*
7143 	 * Check if we fit in with the requested stack size into the:
7144 	 * - TASK_SIZE
7145 	 *   If we don't, we limit the size to the TASK_SIZE.
7146 	 *
7147 	 * - remaining sample size
7148 	 *   If we don't, we customize the stack size to
7149 	 *   fit in to the remaining sample size.
7150 	 */
7151 
7152 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7153 	stack_size = min(stack_size, (u16) task_size);
7154 
7155 	/* Current header size plus static size and dynamic size. */
7156 	header_size += 2 * sizeof(u64);
7157 
7158 	/* Do we fit in with the current stack dump size? */
7159 	if ((u16) (header_size + stack_size) < header_size) {
7160 		/*
7161 		 * If we overflow the maximum size for the sample,
7162 		 * we customize the stack dump size to fit in.
7163 		 */
7164 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7165 		stack_size = round_up(stack_size, sizeof(u64));
7166 	}
7167 
7168 	return stack_size;
7169 }
7170 
7171 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7172 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7173 			  struct pt_regs *regs)
7174 {
7175 	/* Case of a kernel thread, nothing to dump */
7176 	if (!regs) {
7177 		u64 size = 0;
7178 		perf_output_put(handle, size);
7179 	} else {
7180 		unsigned long sp;
7181 		unsigned int rem;
7182 		u64 dyn_size;
7183 
7184 		/*
7185 		 * We dump:
7186 		 * static size
7187 		 *   - the size requested by user or the best one we can fit
7188 		 *     in to the sample max size
7189 		 * data
7190 		 *   - user stack dump data
7191 		 * dynamic size
7192 		 *   - the actual dumped size
7193 		 */
7194 
7195 		/* Static size. */
7196 		perf_output_put(handle, dump_size);
7197 
7198 		/* Data. */
7199 		sp = perf_user_stack_pointer(regs);
7200 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7201 		dyn_size = dump_size - rem;
7202 
7203 		perf_output_skip(handle, rem);
7204 
7205 		/* Dynamic size. */
7206 		perf_output_put(handle, dyn_size);
7207 	}
7208 }
7209 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7210 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7211 					  struct perf_sample_data *data,
7212 					  size_t size)
7213 {
7214 	struct perf_event *sampler = event->aux_event;
7215 	struct perf_buffer *rb;
7216 
7217 	data->aux_size = 0;
7218 
7219 	if (!sampler)
7220 		goto out;
7221 
7222 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7223 		goto out;
7224 
7225 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7226 		goto out;
7227 
7228 	rb = ring_buffer_get(sampler);
7229 	if (!rb)
7230 		goto out;
7231 
7232 	/*
7233 	 * If this is an NMI hit inside sampling code, don't take
7234 	 * the sample. See also perf_aux_sample_output().
7235 	 */
7236 	if (READ_ONCE(rb->aux_in_sampling)) {
7237 		data->aux_size = 0;
7238 	} else {
7239 		size = min_t(size_t, size, perf_aux_size(rb));
7240 		data->aux_size = ALIGN(size, sizeof(u64));
7241 	}
7242 	ring_buffer_put(rb);
7243 
7244 out:
7245 	return data->aux_size;
7246 }
7247 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7248 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7249                                  struct perf_event *event,
7250                                  struct perf_output_handle *handle,
7251                                  unsigned long size)
7252 {
7253 	unsigned long flags;
7254 	long ret;
7255 
7256 	/*
7257 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7258 	 * paths. If we start calling them in NMI context, they may race with
7259 	 * the IRQ ones, that is, for example, re-starting an event that's just
7260 	 * been stopped, which is why we're using a separate callback that
7261 	 * doesn't change the event state.
7262 	 *
7263 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7264 	 */
7265 	local_irq_save(flags);
7266 	/*
7267 	 * Guard against NMI hits inside the critical section;
7268 	 * see also perf_prepare_sample_aux().
7269 	 */
7270 	WRITE_ONCE(rb->aux_in_sampling, 1);
7271 	barrier();
7272 
7273 	ret = event->pmu->snapshot_aux(event, handle, size);
7274 
7275 	barrier();
7276 	WRITE_ONCE(rb->aux_in_sampling, 0);
7277 	local_irq_restore(flags);
7278 
7279 	return ret;
7280 }
7281 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7282 static void perf_aux_sample_output(struct perf_event *event,
7283 				   struct perf_output_handle *handle,
7284 				   struct perf_sample_data *data)
7285 {
7286 	struct perf_event *sampler = event->aux_event;
7287 	struct perf_buffer *rb;
7288 	unsigned long pad;
7289 	long size;
7290 
7291 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7292 		return;
7293 
7294 	rb = ring_buffer_get(sampler);
7295 	if (!rb)
7296 		return;
7297 
7298 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7299 
7300 	/*
7301 	 * An error here means that perf_output_copy() failed (returned a
7302 	 * non-zero surplus that it didn't copy), which in its current
7303 	 * enlightened implementation is not possible. If that changes, we'd
7304 	 * like to know.
7305 	 */
7306 	if (WARN_ON_ONCE(size < 0))
7307 		goto out_put;
7308 
7309 	/*
7310 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7311 	 * perf_prepare_sample_aux(), so should not be more than that.
7312 	 */
7313 	pad = data->aux_size - size;
7314 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7315 		pad = 8;
7316 
7317 	if (pad) {
7318 		u64 zero = 0;
7319 		perf_output_copy(handle, &zero, pad);
7320 	}
7321 
7322 out_put:
7323 	ring_buffer_put(rb);
7324 }
7325 
7326 /*
7327  * A set of common sample data types saved even for non-sample records
7328  * when event->attr.sample_id_all is set.
7329  */
7330 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7331 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7332 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7333 
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7334 static void __perf_event_header__init_id(struct perf_sample_data *data,
7335 					 struct perf_event *event,
7336 					 u64 sample_type)
7337 {
7338 	data->type = event->attr.sample_type;
7339 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7340 
7341 	if (sample_type & PERF_SAMPLE_TID) {
7342 		/* namespace issues */
7343 		data->tid_entry.pid = perf_event_pid(event, current);
7344 		data->tid_entry.tid = perf_event_tid(event, current);
7345 	}
7346 
7347 	if (sample_type & PERF_SAMPLE_TIME)
7348 		data->time = perf_event_clock(event);
7349 
7350 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7351 		data->id = primary_event_id(event);
7352 
7353 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7354 		data->stream_id = event->id;
7355 
7356 	if (sample_type & PERF_SAMPLE_CPU) {
7357 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7358 		data->cpu_entry.reserved = 0;
7359 	}
7360 }
7361 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7362 void perf_event_header__init_id(struct perf_event_header *header,
7363 				struct perf_sample_data *data,
7364 				struct perf_event *event)
7365 {
7366 	if (event->attr.sample_id_all) {
7367 		header->size += event->id_header_size;
7368 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7369 	}
7370 }
7371 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7372 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7373 					   struct perf_sample_data *data)
7374 {
7375 	u64 sample_type = data->type;
7376 
7377 	if (sample_type & PERF_SAMPLE_TID)
7378 		perf_output_put(handle, data->tid_entry);
7379 
7380 	if (sample_type & PERF_SAMPLE_TIME)
7381 		perf_output_put(handle, data->time);
7382 
7383 	if (sample_type & PERF_SAMPLE_ID)
7384 		perf_output_put(handle, data->id);
7385 
7386 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7387 		perf_output_put(handle, data->stream_id);
7388 
7389 	if (sample_type & PERF_SAMPLE_CPU)
7390 		perf_output_put(handle, data->cpu_entry);
7391 
7392 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7393 		perf_output_put(handle, data->id);
7394 }
7395 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7396 void perf_event__output_id_sample(struct perf_event *event,
7397 				  struct perf_output_handle *handle,
7398 				  struct perf_sample_data *sample)
7399 {
7400 	if (event->attr.sample_id_all)
7401 		__perf_event__output_id_sample(handle, sample);
7402 }
7403 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7404 static void perf_output_read_one(struct perf_output_handle *handle,
7405 				 struct perf_event *event,
7406 				 u64 enabled, u64 running)
7407 {
7408 	u64 read_format = event->attr.read_format;
7409 	u64 values[5];
7410 	int n = 0;
7411 
7412 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7413 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7414 		values[n++] = enabled +
7415 			atomic64_read(&event->child_total_time_enabled);
7416 	}
7417 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7418 		values[n++] = running +
7419 			atomic64_read(&event->child_total_time_running);
7420 	}
7421 	if (read_format & PERF_FORMAT_ID)
7422 		values[n++] = primary_event_id(event);
7423 	if (read_format & PERF_FORMAT_LOST)
7424 		values[n++] = atomic64_read(&event->lost_samples);
7425 
7426 	__output_copy(handle, values, n * sizeof(u64));
7427 }
7428 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7429 static void perf_output_read_group(struct perf_output_handle *handle,
7430 				   struct perf_event *event,
7431 				   u64 enabled, u64 running)
7432 {
7433 	struct perf_event *leader = event->group_leader, *sub;
7434 	u64 read_format = event->attr.read_format;
7435 	unsigned long flags;
7436 	u64 values[6];
7437 	int n = 0;
7438 	bool self = has_inherit_and_sample_read(&event->attr);
7439 
7440 	/*
7441 	 * Disabling interrupts avoids all counter scheduling
7442 	 * (context switches, timer based rotation and IPIs).
7443 	 */
7444 	local_irq_save(flags);
7445 
7446 	values[n++] = 1 + leader->nr_siblings;
7447 
7448 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7449 		values[n++] = enabled;
7450 
7451 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7452 		values[n++] = running;
7453 
7454 	if ((leader != event) &&
7455 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7456 		leader->pmu->read(leader);
7457 
7458 	values[n++] = perf_event_count(leader, self);
7459 	if (read_format & PERF_FORMAT_ID)
7460 		values[n++] = primary_event_id(leader);
7461 	if (read_format & PERF_FORMAT_LOST)
7462 		values[n++] = atomic64_read(&leader->lost_samples);
7463 
7464 	__output_copy(handle, values, n * sizeof(u64));
7465 
7466 	for_each_sibling_event(sub, leader) {
7467 		n = 0;
7468 
7469 		if ((sub != event) &&
7470 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7471 			sub->pmu->read(sub);
7472 
7473 		values[n++] = perf_event_count(sub, self);
7474 		if (read_format & PERF_FORMAT_ID)
7475 			values[n++] = primary_event_id(sub);
7476 		if (read_format & PERF_FORMAT_LOST)
7477 			values[n++] = atomic64_read(&sub->lost_samples);
7478 
7479 		__output_copy(handle, values, n * sizeof(u64));
7480 	}
7481 
7482 	local_irq_restore(flags);
7483 }
7484 
7485 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7486 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7487 
7488 /*
7489  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7490  *
7491  * The problem is that its both hard and excessively expensive to iterate the
7492  * child list, not to mention that its impossible to IPI the children running
7493  * on another CPU, from interrupt/NMI context.
7494  *
7495  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7496  * counts rather than attempting to accumulate some value across all children on
7497  * all cores.
7498  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7499 static void perf_output_read(struct perf_output_handle *handle,
7500 			     struct perf_event *event)
7501 {
7502 	u64 enabled = 0, running = 0, now;
7503 	u64 read_format = event->attr.read_format;
7504 
7505 	/*
7506 	 * compute total_time_enabled, total_time_running
7507 	 * based on snapshot values taken when the event
7508 	 * was last scheduled in.
7509 	 *
7510 	 * we cannot simply called update_context_time()
7511 	 * because of locking issue as we are called in
7512 	 * NMI context
7513 	 */
7514 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7515 		calc_timer_values(event, &now, &enabled, &running);
7516 
7517 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7518 		perf_output_read_group(handle, event, enabled, running);
7519 	else
7520 		perf_output_read_one(handle, event, enabled, running);
7521 }
7522 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7523 void perf_output_sample(struct perf_output_handle *handle,
7524 			struct perf_event_header *header,
7525 			struct perf_sample_data *data,
7526 			struct perf_event *event)
7527 {
7528 	u64 sample_type = data->type;
7529 
7530 	perf_output_put(handle, *header);
7531 
7532 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7533 		perf_output_put(handle, data->id);
7534 
7535 	if (sample_type & PERF_SAMPLE_IP)
7536 		perf_output_put(handle, data->ip);
7537 
7538 	if (sample_type & PERF_SAMPLE_TID)
7539 		perf_output_put(handle, data->tid_entry);
7540 
7541 	if (sample_type & PERF_SAMPLE_TIME)
7542 		perf_output_put(handle, data->time);
7543 
7544 	if (sample_type & PERF_SAMPLE_ADDR)
7545 		perf_output_put(handle, data->addr);
7546 
7547 	if (sample_type & PERF_SAMPLE_ID)
7548 		perf_output_put(handle, data->id);
7549 
7550 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7551 		perf_output_put(handle, data->stream_id);
7552 
7553 	if (sample_type & PERF_SAMPLE_CPU)
7554 		perf_output_put(handle, data->cpu_entry);
7555 
7556 	if (sample_type & PERF_SAMPLE_PERIOD)
7557 		perf_output_put(handle, data->period);
7558 
7559 	if (sample_type & PERF_SAMPLE_READ)
7560 		perf_output_read(handle, event);
7561 
7562 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7563 		int size = 1;
7564 
7565 		size += data->callchain->nr;
7566 		size *= sizeof(u64);
7567 		__output_copy(handle, data->callchain, size);
7568 	}
7569 
7570 	if (sample_type & PERF_SAMPLE_RAW) {
7571 		struct perf_raw_record *raw = data->raw;
7572 
7573 		if (raw) {
7574 			struct perf_raw_frag *frag = &raw->frag;
7575 
7576 			perf_output_put(handle, raw->size);
7577 			do {
7578 				if (frag->copy) {
7579 					__output_custom(handle, frag->copy,
7580 							frag->data, frag->size);
7581 				} else {
7582 					__output_copy(handle, frag->data,
7583 						      frag->size);
7584 				}
7585 				if (perf_raw_frag_last(frag))
7586 					break;
7587 				frag = frag->next;
7588 			} while (1);
7589 			if (frag->pad)
7590 				__output_skip(handle, NULL, frag->pad);
7591 		} else {
7592 			struct {
7593 				u32	size;
7594 				u32	data;
7595 			} raw = {
7596 				.size = sizeof(u32),
7597 				.data = 0,
7598 			};
7599 			perf_output_put(handle, raw);
7600 		}
7601 	}
7602 
7603 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7604 		if (data->br_stack) {
7605 			size_t size;
7606 
7607 			size = data->br_stack->nr
7608 			     * sizeof(struct perf_branch_entry);
7609 
7610 			perf_output_put(handle, data->br_stack->nr);
7611 			if (branch_sample_hw_index(event))
7612 				perf_output_put(handle, data->br_stack->hw_idx);
7613 			perf_output_copy(handle, data->br_stack->entries, size);
7614 			/*
7615 			 * Add the extension space which is appended
7616 			 * right after the struct perf_branch_stack.
7617 			 */
7618 			if (data->br_stack_cntr) {
7619 				size = data->br_stack->nr * sizeof(u64);
7620 				perf_output_copy(handle, data->br_stack_cntr, size);
7621 			}
7622 		} else {
7623 			/*
7624 			 * we always store at least the value of nr
7625 			 */
7626 			u64 nr = 0;
7627 			perf_output_put(handle, nr);
7628 		}
7629 	}
7630 
7631 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7632 		u64 abi = data->regs_user.abi;
7633 
7634 		/*
7635 		 * If there are no regs to dump, notice it through
7636 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7637 		 */
7638 		perf_output_put(handle, abi);
7639 
7640 		if (abi) {
7641 			u64 mask = event->attr.sample_regs_user;
7642 			perf_output_sample_regs(handle,
7643 						data->regs_user.regs,
7644 						mask);
7645 		}
7646 	}
7647 
7648 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7649 		perf_output_sample_ustack(handle,
7650 					  data->stack_user_size,
7651 					  data->regs_user.regs);
7652 	}
7653 
7654 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7655 		perf_output_put(handle, data->weight.full);
7656 
7657 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7658 		perf_output_put(handle, data->data_src.val);
7659 
7660 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7661 		perf_output_put(handle, data->txn);
7662 
7663 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7664 		u64 abi = data->regs_intr.abi;
7665 		/*
7666 		 * If there are no regs to dump, notice it through
7667 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7668 		 */
7669 		perf_output_put(handle, abi);
7670 
7671 		if (abi) {
7672 			u64 mask = event->attr.sample_regs_intr;
7673 
7674 			perf_output_sample_regs(handle,
7675 						data->regs_intr.regs,
7676 						mask);
7677 		}
7678 	}
7679 
7680 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7681 		perf_output_put(handle, data->phys_addr);
7682 
7683 	if (sample_type & PERF_SAMPLE_CGROUP)
7684 		perf_output_put(handle, data->cgroup);
7685 
7686 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7687 		perf_output_put(handle, data->data_page_size);
7688 
7689 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7690 		perf_output_put(handle, data->code_page_size);
7691 
7692 	if (sample_type & PERF_SAMPLE_AUX) {
7693 		perf_output_put(handle, data->aux_size);
7694 
7695 		if (data->aux_size)
7696 			perf_aux_sample_output(event, handle, data);
7697 	}
7698 
7699 	if (!event->attr.watermark) {
7700 		int wakeup_events = event->attr.wakeup_events;
7701 
7702 		if (wakeup_events) {
7703 			struct perf_buffer *rb = handle->rb;
7704 			int events = local_inc_return(&rb->events);
7705 
7706 			if (events >= wakeup_events) {
7707 				local_sub(wakeup_events, &rb->events);
7708 				local_inc(&rb->wakeup);
7709 			}
7710 		}
7711 	}
7712 }
7713 
perf_virt_to_phys(u64 virt)7714 static u64 perf_virt_to_phys(u64 virt)
7715 {
7716 	u64 phys_addr = 0;
7717 
7718 	if (!virt)
7719 		return 0;
7720 
7721 	if (virt >= TASK_SIZE) {
7722 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7723 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7724 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7725 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7726 	} else {
7727 		/*
7728 		 * Walking the pages tables for user address.
7729 		 * Interrupts are disabled, so it prevents any tear down
7730 		 * of the page tables.
7731 		 * Try IRQ-safe get_user_page_fast_only first.
7732 		 * If failed, leave phys_addr as 0.
7733 		 */
7734 		if (current->mm != NULL) {
7735 			struct page *p;
7736 
7737 			pagefault_disable();
7738 			if (get_user_page_fast_only(virt, 0, &p)) {
7739 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7740 				put_page(p);
7741 			}
7742 			pagefault_enable();
7743 		}
7744 	}
7745 
7746 	return phys_addr;
7747 }
7748 
7749 /*
7750  * Return the pagetable size of a given virtual address.
7751  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7752 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7753 {
7754 	u64 size = 0;
7755 
7756 #ifdef CONFIG_HAVE_GUP_FAST
7757 	pgd_t *pgdp, pgd;
7758 	p4d_t *p4dp, p4d;
7759 	pud_t *pudp, pud;
7760 	pmd_t *pmdp, pmd;
7761 	pte_t *ptep, pte;
7762 
7763 	pgdp = pgd_offset(mm, addr);
7764 	pgd = READ_ONCE(*pgdp);
7765 	if (pgd_none(pgd))
7766 		return 0;
7767 
7768 	if (pgd_leaf(pgd))
7769 		return pgd_leaf_size(pgd);
7770 
7771 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7772 	p4d = READ_ONCE(*p4dp);
7773 	if (!p4d_present(p4d))
7774 		return 0;
7775 
7776 	if (p4d_leaf(p4d))
7777 		return p4d_leaf_size(p4d);
7778 
7779 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7780 	pud = READ_ONCE(*pudp);
7781 	if (!pud_present(pud))
7782 		return 0;
7783 
7784 	if (pud_leaf(pud))
7785 		return pud_leaf_size(pud);
7786 
7787 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7788 again:
7789 	pmd = pmdp_get_lockless(pmdp);
7790 	if (!pmd_present(pmd))
7791 		return 0;
7792 
7793 	if (pmd_leaf(pmd))
7794 		return pmd_leaf_size(pmd);
7795 
7796 	ptep = pte_offset_map(&pmd, addr);
7797 	if (!ptep)
7798 		goto again;
7799 
7800 	pte = ptep_get_lockless(ptep);
7801 	if (pte_present(pte))
7802 		size = __pte_leaf_size(pmd, pte);
7803 	pte_unmap(ptep);
7804 #endif /* CONFIG_HAVE_GUP_FAST */
7805 
7806 	return size;
7807 }
7808 
perf_get_page_size(unsigned long addr)7809 static u64 perf_get_page_size(unsigned long addr)
7810 {
7811 	struct mm_struct *mm;
7812 	unsigned long flags;
7813 	u64 size;
7814 
7815 	if (!addr)
7816 		return 0;
7817 
7818 	/*
7819 	 * Software page-table walkers must disable IRQs,
7820 	 * which prevents any tear down of the page tables.
7821 	 */
7822 	local_irq_save(flags);
7823 
7824 	mm = current->mm;
7825 	if (!mm) {
7826 		/*
7827 		 * For kernel threads and the like, use init_mm so that
7828 		 * we can find kernel memory.
7829 		 */
7830 		mm = &init_mm;
7831 	}
7832 
7833 	size = perf_get_pgtable_size(mm, addr);
7834 
7835 	local_irq_restore(flags);
7836 
7837 	return size;
7838 }
7839 
7840 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7841 
7842 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7843 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7844 {
7845 	bool kernel = !event->attr.exclude_callchain_kernel;
7846 	bool user   = !event->attr.exclude_callchain_user;
7847 	/* Disallow cross-task user callchains. */
7848 	bool crosstask = event->ctx->task && event->ctx->task != current;
7849 	const u32 max_stack = event->attr.sample_max_stack;
7850 	struct perf_callchain_entry *callchain;
7851 
7852 	if (!kernel && !user)
7853 		return &__empty_callchain;
7854 
7855 	callchain = get_perf_callchain(regs, 0, kernel, user,
7856 				       max_stack, crosstask, true);
7857 	return callchain ?: &__empty_callchain;
7858 }
7859 
__cond_set(u64 flags,u64 s,u64 d)7860 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7861 {
7862 	return d * !!(flags & s);
7863 }
7864 
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7865 void perf_prepare_sample(struct perf_sample_data *data,
7866 			 struct perf_event *event,
7867 			 struct pt_regs *regs)
7868 {
7869 	u64 sample_type = event->attr.sample_type;
7870 	u64 filtered_sample_type;
7871 
7872 	/*
7873 	 * Add the sample flags that are dependent to others.  And clear the
7874 	 * sample flags that have already been done by the PMU driver.
7875 	 */
7876 	filtered_sample_type = sample_type;
7877 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7878 					   PERF_SAMPLE_IP);
7879 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7880 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7881 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7882 					   PERF_SAMPLE_REGS_USER);
7883 	filtered_sample_type &= ~data->sample_flags;
7884 
7885 	if (filtered_sample_type == 0) {
7886 		/* Make sure it has the correct data->type for output */
7887 		data->type = event->attr.sample_type;
7888 		return;
7889 	}
7890 
7891 	__perf_event_header__init_id(data, event, filtered_sample_type);
7892 
7893 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7894 		data->ip = perf_instruction_pointer(event, regs);
7895 		data->sample_flags |= PERF_SAMPLE_IP;
7896 	}
7897 
7898 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7899 		perf_sample_save_callchain(data, event, regs);
7900 
7901 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7902 		data->raw = NULL;
7903 		data->dyn_size += sizeof(u64);
7904 		data->sample_flags |= PERF_SAMPLE_RAW;
7905 	}
7906 
7907 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7908 		data->br_stack = NULL;
7909 		data->dyn_size += sizeof(u64);
7910 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7911 	}
7912 
7913 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7914 		perf_sample_regs_user(&data->regs_user, regs);
7915 
7916 	/*
7917 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7918 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7919 	 * the dyn_size if it's not requested by users.
7920 	 */
7921 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7922 		/* regs dump ABI info */
7923 		int size = sizeof(u64);
7924 
7925 		if (data->regs_user.regs) {
7926 			u64 mask = event->attr.sample_regs_user;
7927 			size += hweight64(mask) * sizeof(u64);
7928 		}
7929 
7930 		data->dyn_size += size;
7931 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7932 	}
7933 
7934 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7935 		/*
7936 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7937 		 * processed as the last one or have additional check added
7938 		 * in case new sample type is added, because we could eat
7939 		 * up the rest of the sample size.
7940 		 */
7941 		u16 stack_size = event->attr.sample_stack_user;
7942 		u16 header_size = perf_sample_data_size(data, event);
7943 		u16 size = sizeof(u64);
7944 
7945 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7946 						     data->regs_user.regs);
7947 
7948 		/*
7949 		 * If there is something to dump, add space for the dump
7950 		 * itself and for the field that tells the dynamic size,
7951 		 * which is how many have been actually dumped.
7952 		 */
7953 		if (stack_size)
7954 			size += sizeof(u64) + stack_size;
7955 
7956 		data->stack_user_size = stack_size;
7957 		data->dyn_size += size;
7958 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7959 	}
7960 
7961 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7962 		data->weight.full = 0;
7963 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7964 	}
7965 
7966 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7967 		data->data_src.val = PERF_MEM_NA;
7968 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7969 	}
7970 
7971 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7972 		data->txn = 0;
7973 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7974 	}
7975 
7976 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7977 		data->addr = 0;
7978 		data->sample_flags |= PERF_SAMPLE_ADDR;
7979 	}
7980 
7981 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7982 		/* regs dump ABI info */
7983 		int size = sizeof(u64);
7984 
7985 		perf_sample_regs_intr(&data->regs_intr, regs);
7986 
7987 		if (data->regs_intr.regs) {
7988 			u64 mask = event->attr.sample_regs_intr;
7989 
7990 			size += hweight64(mask) * sizeof(u64);
7991 		}
7992 
7993 		data->dyn_size += size;
7994 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7995 	}
7996 
7997 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7998 		data->phys_addr = perf_virt_to_phys(data->addr);
7999 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8000 	}
8001 
8002 #ifdef CONFIG_CGROUP_PERF
8003 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8004 		struct cgroup *cgrp;
8005 
8006 		/* protected by RCU */
8007 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8008 		data->cgroup = cgroup_id(cgrp);
8009 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8010 	}
8011 #endif
8012 
8013 	/*
8014 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8015 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8016 	 * but the value will not dump to the userspace.
8017 	 */
8018 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8019 		data->data_page_size = perf_get_page_size(data->addr);
8020 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8021 	}
8022 
8023 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8024 		data->code_page_size = perf_get_page_size(data->ip);
8025 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8026 	}
8027 
8028 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8029 		u64 size;
8030 		u16 header_size = perf_sample_data_size(data, event);
8031 
8032 		header_size += sizeof(u64); /* size */
8033 
8034 		/*
8035 		 * Given the 16bit nature of header::size, an AUX sample can
8036 		 * easily overflow it, what with all the preceding sample bits.
8037 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8038 		 * per sample in total (rounded down to 8 byte boundary).
8039 		 */
8040 		size = min_t(size_t, U16_MAX - header_size,
8041 			     event->attr.aux_sample_size);
8042 		size = rounddown(size, 8);
8043 		size = perf_prepare_sample_aux(event, data, size);
8044 
8045 		WARN_ON_ONCE(size + header_size > U16_MAX);
8046 		data->dyn_size += size + sizeof(u64); /* size above */
8047 		data->sample_flags |= PERF_SAMPLE_AUX;
8048 	}
8049 }
8050 
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8051 void perf_prepare_header(struct perf_event_header *header,
8052 			 struct perf_sample_data *data,
8053 			 struct perf_event *event,
8054 			 struct pt_regs *regs)
8055 {
8056 	header->type = PERF_RECORD_SAMPLE;
8057 	header->size = perf_sample_data_size(data, event);
8058 	header->misc = perf_misc_flags(event, regs);
8059 
8060 	/*
8061 	 * If you're adding more sample types here, you likely need to do
8062 	 * something about the overflowing header::size, like repurpose the
8063 	 * lowest 3 bits of size, which should be always zero at the moment.
8064 	 * This raises a more important question, do we really need 512k sized
8065 	 * samples and why, so good argumentation is in order for whatever you
8066 	 * do here next.
8067 	 */
8068 	WARN_ON_ONCE(header->size & 7);
8069 }
8070 
__perf_event_aux_pause(struct perf_event * event,bool pause)8071 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8072 {
8073 	if (pause) {
8074 		if (!event->hw.aux_paused) {
8075 			event->hw.aux_paused = 1;
8076 			event->pmu->stop(event, PERF_EF_PAUSE);
8077 		}
8078 	} else {
8079 		if (event->hw.aux_paused) {
8080 			event->hw.aux_paused = 0;
8081 			event->pmu->start(event, PERF_EF_RESUME);
8082 		}
8083 	}
8084 }
8085 
perf_event_aux_pause(struct perf_event * event,bool pause)8086 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8087 {
8088 	struct perf_buffer *rb;
8089 
8090 	if (WARN_ON_ONCE(!event))
8091 		return;
8092 
8093 	rb = ring_buffer_get(event);
8094 	if (!rb)
8095 		return;
8096 
8097 	scoped_guard (irqsave) {
8098 		/*
8099 		 * Guard against self-recursion here. Another event could trip
8100 		 * this same from NMI context.
8101 		 */
8102 		if (READ_ONCE(rb->aux_in_pause_resume))
8103 			break;
8104 
8105 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8106 		barrier();
8107 		__perf_event_aux_pause(event, pause);
8108 		barrier();
8109 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8110 	}
8111 	ring_buffer_put(rb);
8112 }
8113 
8114 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8115 __perf_event_output(struct perf_event *event,
8116 		    struct perf_sample_data *data,
8117 		    struct pt_regs *regs,
8118 		    int (*output_begin)(struct perf_output_handle *,
8119 					struct perf_sample_data *,
8120 					struct perf_event *,
8121 					unsigned int))
8122 {
8123 	struct perf_output_handle handle;
8124 	struct perf_event_header header;
8125 	int err;
8126 
8127 	/* protect the callchain buffers */
8128 	rcu_read_lock();
8129 
8130 	perf_prepare_sample(data, event, regs);
8131 	perf_prepare_header(&header, data, event, regs);
8132 
8133 	err = output_begin(&handle, data, event, header.size);
8134 	if (err)
8135 		goto exit;
8136 
8137 	perf_output_sample(&handle, &header, data, event);
8138 
8139 	perf_output_end(&handle);
8140 
8141 exit:
8142 	rcu_read_unlock();
8143 	return err;
8144 }
8145 
8146 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8147 perf_event_output_forward(struct perf_event *event,
8148 			 struct perf_sample_data *data,
8149 			 struct pt_regs *regs)
8150 {
8151 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8152 }
8153 
8154 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8155 perf_event_output_backward(struct perf_event *event,
8156 			   struct perf_sample_data *data,
8157 			   struct pt_regs *regs)
8158 {
8159 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8160 }
8161 
8162 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8163 perf_event_output(struct perf_event *event,
8164 		  struct perf_sample_data *data,
8165 		  struct pt_regs *regs)
8166 {
8167 	return __perf_event_output(event, data, regs, perf_output_begin);
8168 }
8169 
8170 /*
8171  * read event_id
8172  */
8173 
8174 struct perf_read_event {
8175 	struct perf_event_header	header;
8176 
8177 	u32				pid;
8178 	u32				tid;
8179 };
8180 
8181 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8182 perf_event_read_event(struct perf_event *event,
8183 			struct task_struct *task)
8184 {
8185 	struct perf_output_handle handle;
8186 	struct perf_sample_data sample;
8187 	struct perf_read_event read_event = {
8188 		.header = {
8189 			.type = PERF_RECORD_READ,
8190 			.misc = 0,
8191 			.size = sizeof(read_event) + event->read_size,
8192 		},
8193 		.pid = perf_event_pid(event, task),
8194 		.tid = perf_event_tid(event, task),
8195 	};
8196 	int ret;
8197 
8198 	perf_event_header__init_id(&read_event.header, &sample, event);
8199 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8200 	if (ret)
8201 		return;
8202 
8203 	perf_output_put(&handle, read_event);
8204 	perf_output_read(&handle, event);
8205 	perf_event__output_id_sample(event, &handle, &sample);
8206 
8207 	perf_output_end(&handle);
8208 }
8209 
8210 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8211 
8212 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8213 perf_iterate_ctx(struct perf_event_context *ctx,
8214 		   perf_iterate_f output,
8215 		   void *data, bool all)
8216 {
8217 	struct perf_event *event;
8218 
8219 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8220 		if (!all) {
8221 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8222 				continue;
8223 			if (!event_filter_match(event))
8224 				continue;
8225 		}
8226 
8227 		output(event, data);
8228 	}
8229 }
8230 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8231 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8232 {
8233 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8234 	struct perf_event *event;
8235 
8236 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8237 		/*
8238 		 * Skip events that are not fully formed yet; ensure that
8239 		 * if we observe event->ctx, both event and ctx will be
8240 		 * complete enough. See perf_install_in_context().
8241 		 */
8242 		if (!smp_load_acquire(&event->ctx))
8243 			continue;
8244 
8245 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8246 			continue;
8247 		if (!event_filter_match(event))
8248 			continue;
8249 		output(event, data);
8250 	}
8251 }
8252 
8253 /*
8254  * Iterate all events that need to receive side-band events.
8255  *
8256  * For new callers; ensure that account_pmu_sb_event() includes
8257  * your event, otherwise it might not get delivered.
8258  */
8259 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8260 perf_iterate_sb(perf_iterate_f output, void *data,
8261 	       struct perf_event_context *task_ctx)
8262 {
8263 	struct perf_event_context *ctx;
8264 
8265 	rcu_read_lock();
8266 	preempt_disable();
8267 
8268 	/*
8269 	 * If we have task_ctx != NULL we only notify the task context itself.
8270 	 * The task_ctx is set only for EXIT events before releasing task
8271 	 * context.
8272 	 */
8273 	if (task_ctx) {
8274 		perf_iterate_ctx(task_ctx, output, data, false);
8275 		goto done;
8276 	}
8277 
8278 	perf_iterate_sb_cpu(output, data);
8279 
8280 	ctx = rcu_dereference(current->perf_event_ctxp);
8281 	if (ctx)
8282 		perf_iterate_ctx(ctx, output, data, false);
8283 done:
8284 	preempt_enable();
8285 	rcu_read_unlock();
8286 }
8287 
8288 /*
8289  * Clear all file-based filters at exec, they'll have to be
8290  * re-instated when/if these objects are mmapped again.
8291  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8292 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8293 {
8294 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8295 	struct perf_addr_filter *filter;
8296 	unsigned int restart = 0, count = 0;
8297 	unsigned long flags;
8298 
8299 	if (!has_addr_filter(event))
8300 		return;
8301 
8302 	raw_spin_lock_irqsave(&ifh->lock, flags);
8303 	list_for_each_entry(filter, &ifh->list, entry) {
8304 		if (filter->path.dentry) {
8305 			event->addr_filter_ranges[count].start = 0;
8306 			event->addr_filter_ranges[count].size = 0;
8307 			restart++;
8308 		}
8309 
8310 		count++;
8311 	}
8312 
8313 	if (restart)
8314 		event->addr_filters_gen++;
8315 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8316 
8317 	if (restart)
8318 		perf_event_stop(event, 1);
8319 }
8320 
perf_event_exec(void)8321 void perf_event_exec(void)
8322 {
8323 	struct perf_event_context *ctx;
8324 
8325 	ctx = perf_pin_task_context(current);
8326 	if (!ctx)
8327 		return;
8328 
8329 	perf_event_enable_on_exec(ctx);
8330 	perf_event_remove_on_exec(ctx);
8331 	scoped_guard(rcu)
8332 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8333 
8334 	perf_unpin_context(ctx);
8335 	put_ctx(ctx);
8336 }
8337 
8338 struct remote_output {
8339 	struct perf_buffer	*rb;
8340 	int			err;
8341 };
8342 
__perf_event_output_stop(struct perf_event * event,void * data)8343 static void __perf_event_output_stop(struct perf_event *event, void *data)
8344 {
8345 	struct perf_event *parent = event->parent;
8346 	struct remote_output *ro = data;
8347 	struct perf_buffer *rb = ro->rb;
8348 	struct stop_event_data sd = {
8349 		.event	= event,
8350 	};
8351 
8352 	if (!has_aux(event))
8353 		return;
8354 
8355 	if (!parent)
8356 		parent = event;
8357 
8358 	/*
8359 	 * In case of inheritance, it will be the parent that links to the
8360 	 * ring-buffer, but it will be the child that's actually using it.
8361 	 *
8362 	 * We are using event::rb to determine if the event should be stopped,
8363 	 * however this may race with ring_buffer_attach() (through set_output),
8364 	 * which will make us skip the event that actually needs to be stopped.
8365 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8366 	 * its rb pointer.
8367 	 */
8368 	if (rcu_dereference(parent->rb) == rb)
8369 		ro->err = __perf_event_stop(&sd);
8370 }
8371 
__perf_pmu_output_stop(void * info)8372 static int __perf_pmu_output_stop(void *info)
8373 {
8374 	struct perf_event *event = info;
8375 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8376 	struct remote_output ro = {
8377 		.rb	= event->rb,
8378 	};
8379 
8380 	rcu_read_lock();
8381 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8382 	if (cpuctx->task_ctx)
8383 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8384 				   &ro, false);
8385 	rcu_read_unlock();
8386 
8387 	return ro.err;
8388 }
8389 
perf_pmu_output_stop(struct perf_event * event)8390 static void perf_pmu_output_stop(struct perf_event *event)
8391 {
8392 	struct perf_event *iter;
8393 	int err, cpu;
8394 
8395 restart:
8396 	rcu_read_lock();
8397 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8398 		/*
8399 		 * For per-CPU events, we need to make sure that neither they
8400 		 * nor their children are running; for cpu==-1 events it's
8401 		 * sufficient to stop the event itself if it's active, since
8402 		 * it can't have children.
8403 		 */
8404 		cpu = iter->cpu;
8405 		if (cpu == -1)
8406 			cpu = READ_ONCE(iter->oncpu);
8407 
8408 		if (cpu == -1)
8409 			continue;
8410 
8411 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8412 		if (err == -EAGAIN) {
8413 			rcu_read_unlock();
8414 			goto restart;
8415 		}
8416 	}
8417 	rcu_read_unlock();
8418 }
8419 
8420 /*
8421  * task tracking -- fork/exit
8422  *
8423  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8424  */
8425 
8426 struct perf_task_event {
8427 	struct task_struct		*task;
8428 	struct perf_event_context	*task_ctx;
8429 
8430 	struct {
8431 		struct perf_event_header	header;
8432 
8433 		u32				pid;
8434 		u32				ppid;
8435 		u32				tid;
8436 		u32				ptid;
8437 		u64				time;
8438 	} event_id;
8439 };
8440 
perf_event_task_match(struct perf_event * event)8441 static int perf_event_task_match(struct perf_event *event)
8442 {
8443 	return event->attr.comm  || event->attr.mmap ||
8444 	       event->attr.mmap2 || event->attr.mmap_data ||
8445 	       event->attr.task;
8446 }
8447 
perf_event_task_output(struct perf_event * event,void * data)8448 static void perf_event_task_output(struct perf_event *event,
8449 				   void *data)
8450 {
8451 	struct perf_task_event *task_event = data;
8452 	struct perf_output_handle handle;
8453 	struct perf_sample_data	sample;
8454 	struct task_struct *task = task_event->task;
8455 	int ret, size = task_event->event_id.header.size;
8456 
8457 	if (!perf_event_task_match(event))
8458 		return;
8459 
8460 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8461 
8462 	ret = perf_output_begin(&handle, &sample, event,
8463 				task_event->event_id.header.size);
8464 	if (ret)
8465 		goto out;
8466 
8467 	task_event->event_id.pid = perf_event_pid(event, task);
8468 	task_event->event_id.tid = perf_event_tid(event, task);
8469 
8470 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8471 		task_event->event_id.ppid = perf_event_pid(event,
8472 							task->real_parent);
8473 		task_event->event_id.ptid = perf_event_pid(event,
8474 							task->real_parent);
8475 	} else {  /* PERF_RECORD_FORK */
8476 		task_event->event_id.ppid = perf_event_pid(event, current);
8477 		task_event->event_id.ptid = perf_event_tid(event, current);
8478 	}
8479 
8480 	task_event->event_id.time = perf_event_clock(event);
8481 
8482 	perf_output_put(&handle, task_event->event_id);
8483 
8484 	perf_event__output_id_sample(event, &handle, &sample);
8485 
8486 	perf_output_end(&handle);
8487 out:
8488 	task_event->event_id.header.size = size;
8489 }
8490 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8491 static void perf_event_task(struct task_struct *task,
8492 			      struct perf_event_context *task_ctx,
8493 			      int new)
8494 {
8495 	struct perf_task_event task_event;
8496 
8497 	if (!atomic_read(&nr_comm_events) &&
8498 	    !atomic_read(&nr_mmap_events) &&
8499 	    !atomic_read(&nr_task_events))
8500 		return;
8501 
8502 	task_event = (struct perf_task_event){
8503 		.task	  = task,
8504 		.task_ctx = task_ctx,
8505 		.event_id    = {
8506 			.header = {
8507 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8508 				.misc = 0,
8509 				.size = sizeof(task_event.event_id),
8510 			},
8511 			/* .pid  */
8512 			/* .ppid */
8513 			/* .tid  */
8514 			/* .ptid */
8515 			/* .time */
8516 		},
8517 	};
8518 
8519 	perf_iterate_sb(perf_event_task_output,
8520 		       &task_event,
8521 		       task_ctx);
8522 }
8523 
perf_event_fork(struct task_struct * task)8524 void perf_event_fork(struct task_struct *task)
8525 {
8526 	perf_event_task(task, NULL, 1);
8527 	perf_event_namespaces(task);
8528 }
8529 
8530 /*
8531  * comm tracking
8532  */
8533 
8534 struct perf_comm_event {
8535 	struct task_struct	*task;
8536 	char			*comm;
8537 	int			comm_size;
8538 
8539 	struct {
8540 		struct perf_event_header	header;
8541 
8542 		u32				pid;
8543 		u32				tid;
8544 	} event_id;
8545 };
8546 
perf_event_comm_match(struct perf_event * event)8547 static int perf_event_comm_match(struct perf_event *event)
8548 {
8549 	return event->attr.comm;
8550 }
8551 
perf_event_comm_output(struct perf_event * event,void * data)8552 static void perf_event_comm_output(struct perf_event *event,
8553 				   void *data)
8554 {
8555 	struct perf_comm_event *comm_event = data;
8556 	struct perf_output_handle handle;
8557 	struct perf_sample_data sample;
8558 	int size = comm_event->event_id.header.size;
8559 	int ret;
8560 
8561 	if (!perf_event_comm_match(event))
8562 		return;
8563 
8564 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8565 	ret = perf_output_begin(&handle, &sample, event,
8566 				comm_event->event_id.header.size);
8567 
8568 	if (ret)
8569 		goto out;
8570 
8571 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8572 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8573 
8574 	perf_output_put(&handle, comm_event->event_id);
8575 	__output_copy(&handle, comm_event->comm,
8576 				   comm_event->comm_size);
8577 
8578 	perf_event__output_id_sample(event, &handle, &sample);
8579 
8580 	perf_output_end(&handle);
8581 out:
8582 	comm_event->event_id.header.size = size;
8583 }
8584 
perf_event_comm_event(struct perf_comm_event * comm_event)8585 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8586 {
8587 	char comm[TASK_COMM_LEN];
8588 	unsigned int size;
8589 
8590 	memset(comm, 0, sizeof(comm));
8591 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8592 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8593 
8594 	comm_event->comm = comm;
8595 	comm_event->comm_size = size;
8596 
8597 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8598 
8599 	perf_iterate_sb(perf_event_comm_output,
8600 		       comm_event,
8601 		       NULL);
8602 }
8603 
perf_event_comm(struct task_struct * task,bool exec)8604 void perf_event_comm(struct task_struct *task, bool exec)
8605 {
8606 	struct perf_comm_event comm_event;
8607 
8608 	if (!atomic_read(&nr_comm_events))
8609 		return;
8610 
8611 	comm_event = (struct perf_comm_event){
8612 		.task	= task,
8613 		/* .comm      */
8614 		/* .comm_size */
8615 		.event_id  = {
8616 			.header = {
8617 				.type = PERF_RECORD_COMM,
8618 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8619 				/* .size */
8620 			},
8621 			/* .pid */
8622 			/* .tid */
8623 		},
8624 	};
8625 
8626 	perf_event_comm_event(&comm_event);
8627 }
8628 
8629 /*
8630  * namespaces tracking
8631  */
8632 
8633 struct perf_namespaces_event {
8634 	struct task_struct		*task;
8635 
8636 	struct {
8637 		struct perf_event_header	header;
8638 
8639 		u32				pid;
8640 		u32				tid;
8641 		u64				nr_namespaces;
8642 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8643 	} event_id;
8644 };
8645 
perf_event_namespaces_match(struct perf_event * event)8646 static int perf_event_namespaces_match(struct perf_event *event)
8647 {
8648 	return event->attr.namespaces;
8649 }
8650 
perf_event_namespaces_output(struct perf_event * event,void * data)8651 static void perf_event_namespaces_output(struct perf_event *event,
8652 					 void *data)
8653 {
8654 	struct perf_namespaces_event *namespaces_event = data;
8655 	struct perf_output_handle handle;
8656 	struct perf_sample_data sample;
8657 	u16 header_size = namespaces_event->event_id.header.size;
8658 	int ret;
8659 
8660 	if (!perf_event_namespaces_match(event))
8661 		return;
8662 
8663 	perf_event_header__init_id(&namespaces_event->event_id.header,
8664 				   &sample, event);
8665 	ret = perf_output_begin(&handle, &sample, event,
8666 				namespaces_event->event_id.header.size);
8667 	if (ret)
8668 		goto out;
8669 
8670 	namespaces_event->event_id.pid = perf_event_pid(event,
8671 							namespaces_event->task);
8672 	namespaces_event->event_id.tid = perf_event_tid(event,
8673 							namespaces_event->task);
8674 
8675 	perf_output_put(&handle, namespaces_event->event_id);
8676 
8677 	perf_event__output_id_sample(event, &handle, &sample);
8678 
8679 	perf_output_end(&handle);
8680 out:
8681 	namespaces_event->event_id.header.size = header_size;
8682 }
8683 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8684 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8685 				   struct task_struct *task,
8686 				   const struct proc_ns_operations *ns_ops)
8687 {
8688 	struct path ns_path;
8689 	struct inode *ns_inode;
8690 	int error;
8691 
8692 	error = ns_get_path(&ns_path, task, ns_ops);
8693 	if (!error) {
8694 		ns_inode = ns_path.dentry->d_inode;
8695 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8696 		ns_link_info->ino = ns_inode->i_ino;
8697 		path_put(&ns_path);
8698 	}
8699 }
8700 
perf_event_namespaces(struct task_struct * task)8701 void perf_event_namespaces(struct task_struct *task)
8702 {
8703 	struct perf_namespaces_event namespaces_event;
8704 	struct perf_ns_link_info *ns_link_info;
8705 
8706 	if (!atomic_read(&nr_namespaces_events))
8707 		return;
8708 
8709 	namespaces_event = (struct perf_namespaces_event){
8710 		.task	= task,
8711 		.event_id  = {
8712 			.header = {
8713 				.type = PERF_RECORD_NAMESPACES,
8714 				.misc = 0,
8715 				.size = sizeof(namespaces_event.event_id),
8716 			},
8717 			/* .pid */
8718 			/* .tid */
8719 			.nr_namespaces = NR_NAMESPACES,
8720 			/* .link_info[NR_NAMESPACES] */
8721 		},
8722 	};
8723 
8724 	ns_link_info = namespaces_event.event_id.link_info;
8725 
8726 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8727 			       task, &mntns_operations);
8728 
8729 #ifdef CONFIG_USER_NS
8730 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8731 			       task, &userns_operations);
8732 #endif
8733 #ifdef CONFIG_NET_NS
8734 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8735 			       task, &netns_operations);
8736 #endif
8737 #ifdef CONFIG_UTS_NS
8738 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8739 			       task, &utsns_operations);
8740 #endif
8741 #ifdef CONFIG_IPC_NS
8742 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8743 			       task, &ipcns_operations);
8744 #endif
8745 #ifdef CONFIG_PID_NS
8746 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8747 			       task, &pidns_operations);
8748 #endif
8749 #ifdef CONFIG_CGROUPS
8750 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8751 			       task, &cgroupns_operations);
8752 #endif
8753 
8754 	perf_iterate_sb(perf_event_namespaces_output,
8755 			&namespaces_event,
8756 			NULL);
8757 }
8758 
8759 /*
8760  * cgroup tracking
8761  */
8762 #ifdef CONFIG_CGROUP_PERF
8763 
8764 struct perf_cgroup_event {
8765 	char				*path;
8766 	int				path_size;
8767 	struct {
8768 		struct perf_event_header	header;
8769 		u64				id;
8770 		char				path[];
8771 	} event_id;
8772 };
8773 
perf_event_cgroup_match(struct perf_event * event)8774 static int perf_event_cgroup_match(struct perf_event *event)
8775 {
8776 	return event->attr.cgroup;
8777 }
8778 
perf_event_cgroup_output(struct perf_event * event,void * data)8779 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8780 {
8781 	struct perf_cgroup_event *cgroup_event = data;
8782 	struct perf_output_handle handle;
8783 	struct perf_sample_data sample;
8784 	u16 header_size = cgroup_event->event_id.header.size;
8785 	int ret;
8786 
8787 	if (!perf_event_cgroup_match(event))
8788 		return;
8789 
8790 	perf_event_header__init_id(&cgroup_event->event_id.header,
8791 				   &sample, event);
8792 	ret = perf_output_begin(&handle, &sample, event,
8793 				cgroup_event->event_id.header.size);
8794 	if (ret)
8795 		goto out;
8796 
8797 	perf_output_put(&handle, cgroup_event->event_id);
8798 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8799 
8800 	perf_event__output_id_sample(event, &handle, &sample);
8801 
8802 	perf_output_end(&handle);
8803 out:
8804 	cgroup_event->event_id.header.size = header_size;
8805 }
8806 
perf_event_cgroup(struct cgroup * cgrp)8807 static void perf_event_cgroup(struct cgroup *cgrp)
8808 {
8809 	struct perf_cgroup_event cgroup_event;
8810 	char path_enomem[16] = "//enomem";
8811 	char *pathname;
8812 	size_t size;
8813 
8814 	if (!atomic_read(&nr_cgroup_events))
8815 		return;
8816 
8817 	cgroup_event = (struct perf_cgroup_event){
8818 		.event_id  = {
8819 			.header = {
8820 				.type = PERF_RECORD_CGROUP,
8821 				.misc = 0,
8822 				.size = sizeof(cgroup_event.event_id),
8823 			},
8824 			.id = cgroup_id(cgrp),
8825 		},
8826 	};
8827 
8828 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8829 	if (pathname == NULL) {
8830 		cgroup_event.path = path_enomem;
8831 	} else {
8832 		/* just to be sure to have enough space for alignment */
8833 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8834 		cgroup_event.path = pathname;
8835 	}
8836 
8837 	/*
8838 	 * Since our buffer works in 8 byte units we need to align our string
8839 	 * size to a multiple of 8. However, we must guarantee the tail end is
8840 	 * zero'd out to avoid leaking random bits to userspace.
8841 	 */
8842 	size = strlen(cgroup_event.path) + 1;
8843 	while (!IS_ALIGNED(size, sizeof(u64)))
8844 		cgroup_event.path[size++] = '\0';
8845 
8846 	cgroup_event.event_id.header.size += size;
8847 	cgroup_event.path_size = size;
8848 
8849 	perf_iterate_sb(perf_event_cgroup_output,
8850 			&cgroup_event,
8851 			NULL);
8852 
8853 	kfree(pathname);
8854 }
8855 
8856 #endif
8857 
8858 /*
8859  * mmap tracking
8860  */
8861 
8862 struct perf_mmap_event {
8863 	struct vm_area_struct	*vma;
8864 
8865 	const char		*file_name;
8866 	int			file_size;
8867 	int			maj, min;
8868 	u64			ino;
8869 	u64			ino_generation;
8870 	u32			prot, flags;
8871 	u8			build_id[BUILD_ID_SIZE_MAX];
8872 	u32			build_id_size;
8873 
8874 	struct {
8875 		struct perf_event_header	header;
8876 
8877 		u32				pid;
8878 		u32				tid;
8879 		u64				start;
8880 		u64				len;
8881 		u64				pgoff;
8882 	} event_id;
8883 };
8884 
perf_event_mmap_match(struct perf_event * event,void * data)8885 static int perf_event_mmap_match(struct perf_event *event,
8886 				 void *data)
8887 {
8888 	struct perf_mmap_event *mmap_event = data;
8889 	struct vm_area_struct *vma = mmap_event->vma;
8890 	int executable = vma->vm_flags & VM_EXEC;
8891 
8892 	return (!executable && event->attr.mmap_data) ||
8893 	       (executable && (event->attr.mmap || event->attr.mmap2));
8894 }
8895 
perf_event_mmap_output(struct perf_event * event,void * data)8896 static void perf_event_mmap_output(struct perf_event *event,
8897 				   void *data)
8898 {
8899 	struct perf_mmap_event *mmap_event = data;
8900 	struct perf_output_handle handle;
8901 	struct perf_sample_data sample;
8902 	int size = mmap_event->event_id.header.size;
8903 	u32 type = mmap_event->event_id.header.type;
8904 	bool use_build_id;
8905 	int ret;
8906 
8907 	if (!perf_event_mmap_match(event, data))
8908 		return;
8909 
8910 	if (event->attr.mmap2) {
8911 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8912 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8913 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8914 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8915 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8916 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8917 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8918 	}
8919 
8920 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8921 	ret = perf_output_begin(&handle, &sample, event,
8922 				mmap_event->event_id.header.size);
8923 	if (ret)
8924 		goto out;
8925 
8926 	mmap_event->event_id.pid = perf_event_pid(event, current);
8927 	mmap_event->event_id.tid = perf_event_tid(event, current);
8928 
8929 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8930 
8931 	if (event->attr.mmap2 && use_build_id)
8932 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8933 
8934 	perf_output_put(&handle, mmap_event->event_id);
8935 
8936 	if (event->attr.mmap2) {
8937 		if (use_build_id) {
8938 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8939 
8940 			__output_copy(&handle, size, 4);
8941 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8942 		} else {
8943 			perf_output_put(&handle, mmap_event->maj);
8944 			perf_output_put(&handle, mmap_event->min);
8945 			perf_output_put(&handle, mmap_event->ino);
8946 			perf_output_put(&handle, mmap_event->ino_generation);
8947 		}
8948 		perf_output_put(&handle, mmap_event->prot);
8949 		perf_output_put(&handle, mmap_event->flags);
8950 	}
8951 
8952 	__output_copy(&handle, mmap_event->file_name,
8953 				   mmap_event->file_size);
8954 
8955 	perf_event__output_id_sample(event, &handle, &sample);
8956 
8957 	perf_output_end(&handle);
8958 out:
8959 	mmap_event->event_id.header.size = size;
8960 	mmap_event->event_id.header.type = type;
8961 }
8962 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8963 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8964 {
8965 	struct vm_area_struct *vma = mmap_event->vma;
8966 	struct file *file = vma->vm_file;
8967 	int maj = 0, min = 0;
8968 	u64 ino = 0, gen = 0;
8969 	u32 prot = 0, flags = 0;
8970 	unsigned int size;
8971 	char tmp[16];
8972 	char *buf = NULL;
8973 	char *name = NULL;
8974 
8975 	if (vma->vm_flags & VM_READ)
8976 		prot |= PROT_READ;
8977 	if (vma->vm_flags & VM_WRITE)
8978 		prot |= PROT_WRITE;
8979 	if (vma->vm_flags & VM_EXEC)
8980 		prot |= PROT_EXEC;
8981 
8982 	if (vma->vm_flags & VM_MAYSHARE)
8983 		flags = MAP_SHARED;
8984 	else
8985 		flags = MAP_PRIVATE;
8986 
8987 	if (vma->vm_flags & VM_LOCKED)
8988 		flags |= MAP_LOCKED;
8989 	if (is_vm_hugetlb_page(vma))
8990 		flags |= MAP_HUGETLB;
8991 
8992 	if (file) {
8993 		struct inode *inode;
8994 		dev_t dev;
8995 
8996 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8997 		if (!buf) {
8998 			name = "//enomem";
8999 			goto cpy_name;
9000 		}
9001 		/*
9002 		 * d_path() works from the end of the rb backwards, so we
9003 		 * need to add enough zero bytes after the string to handle
9004 		 * the 64bit alignment we do later.
9005 		 */
9006 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9007 		if (IS_ERR(name)) {
9008 			name = "//toolong";
9009 			goto cpy_name;
9010 		}
9011 		inode = file_inode(vma->vm_file);
9012 		dev = inode->i_sb->s_dev;
9013 		ino = inode->i_ino;
9014 		gen = inode->i_generation;
9015 		maj = MAJOR(dev);
9016 		min = MINOR(dev);
9017 
9018 		goto got_name;
9019 	} else {
9020 		if (vma->vm_ops && vma->vm_ops->name)
9021 			name = (char *) vma->vm_ops->name(vma);
9022 		if (!name)
9023 			name = (char *)arch_vma_name(vma);
9024 		if (!name) {
9025 			if (vma_is_initial_heap(vma))
9026 				name = "[heap]";
9027 			else if (vma_is_initial_stack(vma))
9028 				name = "[stack]";
9029 			else
9030 				name = "//anon";
9031 		}
9032 	}
9033 
9034 cpy_name:
9035 	strscpy(tmp, name, sizeof(tmp));
9036 	name = tmp;
9037 got_name:
9038 	/*
9039 	 * Since our buffer works in 8 byte units we need to align our string
9040 	 * size to a multiple of 8. However, we must guarantee the tail end is
9041 	 * zero'd out to avoid leaking random bits to userspace.
9042 	 */
9043 	size = strlen(name)+1;
9044 	while (!IS_ALIGNED(size, sizeof(u64)))
9045 		name[size++] = '\0';
9046 
9047 	mmap_event->file_name = name;
9048 	mmap_event->file_size = size;
9049 	mmap_event->maj = maj;
9050 	mmap_event->min = min;
9051 	mmap_event->ino = ino;
9052 	mmap_event->ino_generation = gen;
9053 	mmap_event->prot = prot;
9054 	mmap_event->flags = flags;
9055 
9056 	if (!(vma->vm_flags & VM_EXEC))
9057 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9058 
9059 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9060 
9061 	if (atomic_read(&nr_build_id_events))
9062 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9063 
9064 	perf_iterate_sb(perf_event_mmap_output,
9065 		       mmap_event,
9066 		       NULL);
9067 
9068 	kfree(buf);
9069 }
9070 
9071 /*
9072  * Check whether inode and address range match filter criteria.
9073  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9074 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9075 				     struct file *file, unsigned long offset,
9076 				     unsigned long size)
9077 {
9078 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9079 	if (!filter->path.dentry)
9080 		return false;
9081 
9082 	if (d_inode(filter->path.dentry) != file_inode(file))
9083 		return false;
9084 
9085 	if (filter->offset > offset + size)
9086 		return false;
9087 
9088 	if (filter->offset + filter->size < offset)
9089 		return false;
9090 
9091 	return true;
9092 }
9093 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9094 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9095 					struct vm_area_struct *vma,
9096 					struct perf_addr_filter_range *fr)
9097 {
9098 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9099 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9100 	struct file *file = vma->vm_file;
9101 
9102 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9103 		return false;
9104 
9105 	if (filter->offset < off) {
9106 		fr->start = vma->vm_start;
9107 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9108 	} else {
9109 		fr->start = vma->vm_start + filter->offset - off;
9110 		fr->size = min(vma->vm_end - fr->start, filter->size);
9111 	}
9112 
9113 	return true;
9114 }
9115 
__perf_addr_filters_adjust(struct perf_event * event,void * data)9116 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9117 {
9118 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9119 	struct vm_area_struct *vma = data;
9120 	struct perf_addr_filter *filter;
9121 	unsigned int restart = 0, count = 0;
9122 	unsigned long flags;
9123 
9124 	if (!has_addr_filter(event))
9125 		return;
9126 
9127 	if (!vma->vm_file)
9128 		return;
9129 
9130 	raw_spin_lock_irqsave(&ifh->lock, flags);
9131 	list_for_each_entry(filter, &ifh->list, entry) {
9132 		if (perf_addr_filter_vma_adjust(filter, vma,
9133 						&event->addr_filter_ranges[count]))
9134 			restart++;
9135 
9136 		count++;
9137 	}
9138 
9139 	if (restart)
9140 		event->addr_filters_gen++;
9141 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9142 
9143 	if (restart)
9144 		perf_event_stop(event, 1);
9145 }
9146 
9147 /*
9148  * Adjust all task's events' filters to the new vma
9149  */
perf_addr_filters_adjust(struct vm_area_struct * vma)9150 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9151 {
9152 	struct perf_event_context *ctx;
9153 
9154 	/*
9155 	 * Data tracing isn't supported yet and as such there is no need
9156 	 * to keep track of anything that isn't related to executable code:
9157 	 */
9158 	if (!(vma->vm_flags & VM_EXEC))
9159 		return;
9160 
9161 	rcu_read_lock();
9162 	ctx = rcu_dereference(current->perf_event_ctxp);
9163 	if (ctx)
9164 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9165 	rcu_read_unlock();
9166 }
9167 
perf_event_mmap(struct vm_area_struct * vma)9168 void perf_event_mmap(struct vm_area_struct *vma)
9169 {
9170 	struct perf_mmap_event mmap_event;
9171 
9172 	if (!atomic_read(&nr_mmap_events))
9173 		return;
9174 
9175 	mmap_event = (struct perf_mmap_event){
9176 		.vma	= vma,
9177 		/* .file_name */
9178 		/* .file_size */
9179 		.event_id  = {
9180 			.header = {
9181 				.type = PERF_RECORD_MMAP,
9182 				.misc = PERF_RECORD_MISC_USER,
9183 				/* .size */
9184 			},
9185 			/* .pid */
9186 			/* .tid */
9187 			.start  = vma->vm_start,
9188 			.len    = vma->vm_end - vma->vm_start,
9189 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9190 		},
9191 		/* .maj (attr_mmap2 only) */
9192 		/* .min (attr_mmap2 only) */
9193 		/* .ino (attr_mmap2 only) */
9194 		/* .ino_generation (attr_mmap2 only) */
9195 		/* .prot (attr_mmap2 only) */
9196 		/* .flags (attr_mmap2 only) */
9197 	};
9198 
9199 	perf_addr_filters_adjust(vma);
9200 	perf_event_mmap_event(&mmap_event);
9201 }
9202 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9203 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9204 			  unsigned long size, u64 flags)
9205 {
9206 	struct perf_output_handle handle;
9207 	struct perf_sample_data sample;
9208 	struct perf_aux_event {
9209 		struct perf_event_header	header;
9210 		u64				offset;
9211 		u64				size;
9212 		u64				flags;
9213 	} rec = {
9214 		.header = {
9215 			.type = PERF_RECORD_AUX,
9216 			.misc = 0,
9217 			.size = sizeof(rec),
9218 		},
9219 		.offset		= head,
9220 		.size		= size,
9221 		.flags		= flags,
9222 	};
9223 	int ret;
9224 
9225 	perf_event_header__init_id(&rec.header, &sample, event);
9226 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9227 
9228 	if (ret)
9229 		return;
9230 
9231 	perf_output_put(&handle, rec);
9232 	perf_event__output_id_sample(event, &handle, &sample);
9233 
9234 	perf_output_end(&handle);
9235 }
9236 
9237 /*
9238  * Lost/dropped samples logging
9239  */
perf_log_lost_samples(struct perf_event * event,u64 lost)9240 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9241 {
9242 	struct perf_output_handle handle;
9243 	struct perf_sample_data sample;
9244 	int ret;
9245 
9246 	struct {
9247 		struct perf_event_header	header;
9248 		u64				lost;
9249 	} lost_samples_event = {
9250 		.header = {
9251 			.type = PERF_RECORD_LOST_SAMPLES,
9252 			.misc = 0,
9253 			.size = sizeof(lost_samples_event),
9254 		},
9255 		.lost		= lost,
9256 	};
9257 
9258 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9259 
9260 	ret = perf_output_begin(&handle, &sample, event,
9261 				lost_samples_event.header.size);
9262 	if (ret)
9263 		return;
9264 
9265 	perf_output_put(&handle, lost_samples_event);
9266 	perf_event__output_id_sample(event, &handle, &sample);
9267 	perf_output_end(&handle);
9268 }
9269 
9270 /*
9271  * context_switch tracking
9272  */
9273 
9274 struct perf_switch_event {
9275 	struct task_struct	*task;
9276 	struct task_struct	*next_prev;
9277 
9278 	struct {
9279 		struct perf_event_header	header;
9280 		u32				next_prev_pid;
9281 		u32				next_prev_tid;
9282 	} event_id;
9283 };
9284 
perf_event_switch_match(struct perf_event * event)9285 static int perf_event_switch_match(struct perf_event *event)
9286 {
9287 	return event->attr.context_switch;
9288 }
9289 
perf_event_switch_output(struct perf_event * event,void * data)9290 static void perf_event_switch_output(struct perf_event *event, void *data)
9291 {
9292 	struct perf_switch_event *se = data;
9293 	struct perf_output_handle handle;
9294 	struct perf_sample_data sample;
9295 	int ret;
9296 
9297 	if (!perf_event_switch_match(event))
9298 		return;
9299 
9300 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9301 	if (event->ctx->task) {
9302 		se->event_id.header.type = PERF_RECORD_SWITCH;
9303 		se->event_id.header.size = sizeof(se->event_id.header);
9304 	} else {
9305 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9306 		se->event_id.header.size = sizeof(se->event_id);
9307 		se->event_id.next_prev_pid =
9308 					perf_event_pid(event, se->next_prev);
9309 		se->event_id.next_prev_tid =
9310 					perf_event_tid(event, se->next_prev);
9311 	}
9312 
9313 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9314 
9315 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9316 	if (ret)
9317 		return;
9318 
9319 	if (event->ctx->task)
9320 		perf_output_put(&handle, se->event_id.header);
9321 	else
9322 		perf_output_put(&handle, se->event_id);
9323 
9324 	perf_event__output_id_sample(event, &handle, &sample);
9325 
9326 	perf_output_end(&handle);
9327 }
9328 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9329 static void perf_event_switch(struct task_struct *task,
9330 			      struct task_struct *next_prev, bool sched_in)
9331 {
9332 	struct perf_switch_event switch_event;
9333 
9334 	/* N.B. caller checks nr_switch_events != 0 */
9335 
9336 	switch_event = (struct perf_switch_event){
9337 		.task		= task,
9338 		.next_prev	= next_prev,
9339 		.event_id	= {
9340 			.header = {
9341 				/* .type */
9342 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9343 				/* .size */
9344 			},
9345 			/* .next_prev_pid */
9346 			/* .next_prev_tid */
9347 		},
9348 	};
9349 
9350 	if (!sched_in && task_is_runnable(task)) {
9351 		switch_event.event_id.header.misc |=
9352 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9353 	}
9354 
9355 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9356 }
9357 
9358 /*
9359  * IRQ throttle logging
9360  */
9361 
perf_log_throttle(struct perf_event * event,int enable)9362 static void perf_log_throttle(struct perf_event *event, int enable)
9363 {
9364 	struct perf_output_handle handle;
9365 	struct perf_sample_data sample;
9366 	int ret;
9367 
9368 	struct {
9369 		struct perf_event_header	header;
9370 		u64				time;
9371 		u64				id;
9372 		u64				stream_id;
9373 	} throttle_event = {
9374 		.header = {
9375 			.type = PERF_RECORD_THROTTLE,
9376 			.misc = 0,
9377 			.size = sizeof(throttle_event),
9378 		},
9379 		.time		= perf_event_clock(event),
9380 		.id		= primary_event_id(event),
9381 		.stream_id	= event->id,
9382 	};
9383 
9384 	if (enable)
9385 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9386 
9387 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9388 
9389 	ret = perf_output_begin(&handle, &sample, event,
9390 				throttle_event.header.size);
9391 	if (ret)
9392 		return;
9393 
9394 	perf_output_put(&handle, throttle_event);
9395 	perf_event__output_id_sample(event, &handle, &sample);
9396 	perf_output_end(&handle);
9397 }
9398 
9399 /*
9400  * ksymbol register/unregister tracking
9401  */
9402 
9403 struct perf_ksymbol_event {
9404 	const char	*name;
9405 	int		name_len;
9406 	struct {
9407 		struct perf_event_header        header;
9408 		u64				addr;
9409 		u32				len;
9410 		u16				ksym_type;
9411 		u16				flags;
9412 	} event_id;
9413 };
9414 
perf_event_ksymbol_match(struct perf_event * event)9415 static int perf_event_ksymbol_match(struct perf_event *event)
9416 {
9417 	return event->attr.ksymbol;
9418 }
9419 
perf_event_ksymbol_output(struct perf_event * event,void * data)9420 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9421 {
9422 	struct perf_ksymbol_event *ksymbol_event = data;
9423 	struct perf_output_handle handle;
9424 	struct perf_sample_data sample;
9425 	int ret;
9426 
9427 	if (!perf_event_ksymbol_match(event))
9428 		return;
9429 
9430 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9431 				   &sample, event);
9432 	ret = perf_output_begin(&handle, &sample, event,
9433 				ksymbol_event->event_id.header.size);
9434 	if (ret)
9435 		return;
9436 
9437 	perf_output_put(&handle, ksymbol_event->event_id);
9438 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9439 	perf_event__output_id_sample(event, &handle, &sample);
9440 
9441 	perf_output_end(&handle);
9442 }
9443 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9444 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9445 			const char *sym)
9446 {
9447 	struct perf_ksymbol_event ksymbol_event;
9448 	char name[KSYM_NAME_LEN];
9449 	u16 flags = 0;
9450 	int name_len;
9451 
9452 	if (!atomic_read(&nr_ksymbol_events))
9453 		return;
9454 
9455 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9456 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9457 		goto err;
9458 
9459 	strscpy(name, sym, KSYM_NAME_LEN);
9460 	name_len = strlen(name) + 1;
9461 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9462 		name[name_len++] = '\0';
9463 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9464 
9465 	if (unregister)
9466 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9467 
9468 	ksymbol_event = (struct perf_ksymbol_event){
9469 		.name = name,
9470 		.name_len = name_len,
9471 		.event_id = {
9472 			.header = {
9473 				.type = PERF_RECORD_KSYMBOL,
9474 				.size = sizeof(ksymbol_event.event_id) +
9475 					name_len,
9476 			},
9477 			.addr = addr,
9478 			.len = len,
9479 			.ksym_type = ksym_type,
9480 			.flags = flags,
9481 		},
9482 	};
9483 
9484 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9485 	return;
9486 err:
9487 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9488 }
9489 
9490 /*
9491  * bpf program load/unload tracking
9492  */
9493 
9494 struct perf_bpf_event {
9495 	struct bpf_prog	*prog;
9496 	struct {
9497 		struct perf_event_header        header;
9498 		u16				type;
9499 		u16				flags;
9500 		u32				id;
9501 		u8				tag[BPF_TAG_SIZE];
9502 	} event_id;
9503 };
9504 
perf_event_bpf_match(struct perf_event * event)9505 static int perf_event_bpf_match(struct perf_event *event)
9506 {
9507 	return event->attr.bpf_event;
9508 }
9509 
perf_event_bpf_output(struct perf_event * event,void * data)9510 static void perf_event_bpf_output(struct perf_event *event, void *data)
9511 {
9512 	struct perf_bpf_event *bpf_event = data;
9513 	struct perf_output_handle handle;
9514 	struct perf_sample_data sample;
9515 	int ret;
9516 
9517 	if (!perf_event_bpf_match(event))
9518 		return;
9519 
9520 	perf_event_header__init_id(&bpf_event->event_id.header,
9521 				   &sample, event);
9522 	ret = perf_output_begin(&handle, &sample, event,
9523 				bpf_event->event_id.header.size);
9524 	if (ret)
9525 		return;
9526 
9527 	perf_output_put(&handle, bpf_event->event_id);
9528 	perf_event__output_id_sample(event, &handle, &sample);
9529 
9530 	perf_output_end(&handle);
9531 }
9532 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9533 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9534 					 enum perf_bpf_event_type type)
9535 {
9536 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9537 	int i;
9538 
9539 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9540 			   (u64)(unsigned long)prog->bpf_func,
9541 			   prog->jited_len, unregister,
9542 			   prog->aux->ksym.name);
9543 
9544 	for (i = 1; i < prog->aux->func_cnt; i++) {
9545 		struct bpf_prog *subprog = prog->aux->func[i];
9546 
9547 		perf_event_ksymbol(
9548 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9549 			(u64)(unsigned long)subprog->bpf_func,
9550 			subprog->jited_len, unregister,
9551 			subprog->aux->ksym.name);
9552 	}
9553 }
9554 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9555 void perf_event_bpf_event(struct bpf_prog *prog,
9556 			  enum perf_bpf_event_type type,
9557 			  u16 flags)
9558 {
9559 	struct perf_bpf_event bpf_event;
9560 
9561 	switch (type) {
9562 	case PERF_BPF_EVENT_PROG_LOAD:
9563 	case PERF_BPF_EVENT_PROG_UNLOAD:
9564 		if (atomic_read(&nr_ksymbol_events))
9565 			perf_event_bpf_emit_ksymbols(prog, type);
9566 		break;
9567 	default:
9568 		return;
9569 	}
9570 
9571 	if (!atomic_read(&nr_bpf_events))
9572 		return;
9573 
9574 	bpf_event = (struct perf_bpf_event){
9575 		.prog = prog,
9576 		.event_id = {
9577 			.header = {
9578 				.type = PERF_RECORD_BPF_EVENT,
9579 				.size = sizeof(bpf_event.event_id),
9580 			},
9581 			.type = type,
9582 			.flags = flags,
9583 			.id = prog->aux->id,
9584 		},
9585 	};
9586 
9587 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9588 
9589 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9590 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9591 }
9592 
9593 struct perf_text_poke_event {
9594 	const void		*old_bytes;
9595 	const void		*new_bytes;
9596 	size_t			pad;
9597 	u16			old_len;
9598 	u16			new_len;
9599 
9600 	struct {
9601 		struct perf_event_header	header;
9602 
9603 		u64				addr;
9604 	} event_id;
9605 };
9606 
perf_event_text_poke_match(struct perf_event * event)9607 static int perf_event_text_poke_match(struct perf_event *event)
9608 {
9609 	return event->attr.text_poke;
9610 }
9611 
perf_event_text_poke_output(struct perf_event * event,void * data)9612 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9613 {
9614 	struct perf_text_poke_event *text_poke_event = data;
9615 	struct perf_output_handle handle;
9616 	struct perf_sample_data sample;
9617 	u64 padding = 0;
9618 	int ret;
9619 
9620 	if (!perf_event_text_poke_match(event))
9621 		return;
9622 
9623 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9624 
9625 	ret = perf_output_begin(&handle, &sample, event,
9626 				text_poke_event->event_id.header.size);
9627 	if (ret)
9628 		return;
9629 
9630 	perf_output_put(&handle, text_poke_event->event_id);
9631 	perf_output_put(&handle, text_poke_event->old_len);
9632 	perf_output_put(&handle, text_poke_event->new_len);
9633 
9634 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9635 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9636 
9637 	if (text_poke_event->pad)
9638 		__output_copy(&handle, &padding, text_poke_event->pad);
9639 
9640 	perf_event__output_id_sample(event, &handle, &sample);
9641 
9642 	perf_output_end(&handle);
9643 }
9644 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9645 void perf_event_text_poke(const void *addr, const void *old_bytes,
9646 			  size_t old_len, const void *new_bytes, size_t new_len)
9647 {
9648 	struct perf_text_poke_event text_poke_event;
9649 	size_t tot, pad;
9650 
9651 	if (!atomic_read(&nr_text_poke_events))
9652 		return;
9653 
9654 	tot  = sizeof(text_poke_event.old_len) + old_len;
9655 	tot += sizeof(text_poke_event.new_len) + new_len;
9656 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9657 
9658 	text_poke_event = (struct perf_text_poke_event){
9659 		.old_bytes    = old_bytes,
9660 		.new_bytes    = new_bytes,
9661 		.pad          = pad,
9662 		.old_len      = old_len,
9663 		.new_len      = new_len,
9664 		.event_id  = {
9665 			.header = {
9666 				.type = PERF_RECORD_TEXT_POKE,
9667 				.misc = PERF_RECORD_MISC_KERNEL,
9668 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9669 			},
9670 			.addr = (unsigned long)addr,
9671 		},
9672 	};
9673 
9674 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9675 }
9676 
perf_event_itrace_started(struct perf_event * event)9677 void perf_event_itrace_started(struct perf_event *event)
9678 {
9679 	event->attach_state |= PERF_ATTACH_ITRACE;
9680 }
9681 
perf_log_itrace_start(struct perf_event * event)9682 static void perf_log_itrace_start(struct perf_event *event)
9683 {
9684 	struct perf_output_handle handle;
9685 	struct perf_sample_data sample;
9686 	struct perf_aux_event {
9687 		struct perf_event_header        header;
9688 		u32				pid;
9689 		u32				tid;
9690 	} rec;
9691 	int ret;
9692 
9693 	if (event->parent)
9694 		event = event->parent;
9695 
9696 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9697 	    event->attach_state & PERF_ATTACH_ITRACE)
9698 		return;
9699 
9700 	rec.header.type	= PERF_RECORD_ITRACE_START;
9701 	rec.header.misc	= 0;
9702 	rec.header.size	= sizeof(rec);
9703 	rec.pid	= perf_event_pid(event, current);
9704 	rec.tid	= perf_event_tid(event, current);
9705 
9706 	perf_event_header__init_id(&rec.header, &sample, event);
9707 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9708 
9709 	if (ret)
9710 		return;
9711 
9712 	perf_output_put(&handle, rec);
9713 	perf_event__output_id_sample(event, &handle, &sample);
9714 
9715 	perf_output_end(&handle);
9716 }
9717 
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9718 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9719 {
9720 	struct perf_output_handle handle;
9721 	struct perf_sample_data sample;
9722 	struct perf_aux_event {
9723 		struct perf_event_header        header;
9724 		u64				hw_id;
9725 	} rec;
9726 	int ret;
9727 
9728 	if (event->parent)
9729 		event = event->parent;
9730 
9731 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9732 	rec.header.misc	= 0;
9733 	rec.header.size	= sizeof(rec);
9734 	rec.hw_id	= hw_id;
9735 
9736 	perf_event_header__init_id(&rec.header, &sample, event);
9737 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9738 
9739 	if (ret)
9740 		return;
9741 
9742 	perf_output_put(&handle, rec);
9743 	perf_event__output_id_sample(event, &handle, &sample);
9744 
9745 	perf_output_end(&handle);
9746 }
9747 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9748 
9749 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9750 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9751 {
9752 	struct hw_perf_event *hwc = &event->hw;
9753 	int ret = 0;
9754 	u64 seq;
9755 
9756 	seq = __this_cpu_read(perf_throttled_seq);
9757 	if (seq != hwc->interrupts_seq) {
9758 		hwc->interrupts_seq = seq;
9759 		hwc->interrupts = 1;
9760 	} else {
9761 		hwc->interrupts++;
9762 		if (unlikely(throttle &&
9763 			     hwc->interrupts > max_samples_per_tick)) {
9764 			__this_cpu_inc(perf_throttled_count);
9765 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9766 			hwc->interrupts = MAX_INTERRUPTS;
9767 			perf_log_throttle(event, 0);
9768 			ret = 1;
9769 		}
9770 	}
9771 
9772 	if (event->attr.freq) {
9773 		u64 now = perf_clock();
9774 		s64 delta = now - hwc->freq_time_stamp;
9775 
9776 		hwc->freq_time_stamp = now;
9777 
9778 		if (delta > 0 && delta < 2*TICK_NSEC)
9779 			perf_adjust_period(event, delta, hwc->last_period, true);
9780 	}
9781 
9782 	return ret;
9783 }
9784 
perf_event_account_interrupt(struct perf_event * event)9785 int perf_event_account_interrupt(struct perf_event *event)
9786 {
9787 	return __perf_event_account_interrupt(event, 1);
9788 }
9789 
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9790 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9791 {
9792 	/*
9793 	 * Due to interrupt latency (AKA "skid"), we may enter the
9794 	 * kernel before taking an overflow, even if the PMU is only
9795 	 * counting user events.
9796 	 */
9797 	if (event->attr.exclude_kernel && !user_mode(regs))
9798 		return false;
9799 
9800 	return true;
9801 }
9802 
9803 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9804 static int bpf_overflow_handler(struct perf_event *event,
9805 				struct perf_sample_data *data,
9806 				struct pt_regs *regs)
9807 {
9808 	struct bpf_perf_event_data_kern ctx = {
9809 		.data = data,
9810 		.event = event,
9811 	};
9812 	struct bpf_prog *prog;
9813 	int ret = 0;
9814 
9815 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9816 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9817 		goto out;
9818 	rcu_read_lock();
9819 	prog = READ_ONCE(event->prog);
9820 	if (prog) {
9821 		perf_prepare_sample(data, event, regs);
9822 		ret = bpf_prog_run(prog, &ctx);
9823 	}
9824 	rcu_read_unlock();
9825 out:
9826 	__this_cpu_dec(bpf_prog_active);
9827 
9828 	return ret;
9829 }
9830 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9831 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9832 					     struct bpf_prog *prog,
9833 					     u64 bpf_cookie)
9834 {
9835 	if (event->overflow_handler_context)
9836 		/* hw breakpoint or kernel counter */
9837 		return -EINVAL;
9838 
9839 	if (event->prog)
9840 		return -EEXIST;
9841 
9842 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9843 		return -EINVAL;
9844 
9845 	if (event->attr.precise_ip &&
9846 	    prog->call_get_stack &&
9847 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9848 	     event->attr.exclude_callchain_kernel ||
9849 	     event->attr.exclude_callchain_user)) {
9850 		/*
9851 		 * On perf_event with precise_ip, calling bpf_get_stack()
9852 		 * may trigger unwinder warnings and occasional crashes.
9853 		 * bpf_get_[stack|stackid] works around this issue by using
9854 		 * callchain attached to perf_sample_data. If the
9855 		 * perf_event does not full (kernel and user) callchain
9856 		 * attached to perf_sample_data, do not allow attaching BPF
9857 		 * program that calls bpf_get_[stack|stackid].
9858 		 */
9859 		return -EPROTO;
9860 	}
9861 
9862 	event->prog = prog;
9863 	event->bpf_cookie = bpf_cookie;
9864 	return 0;
9865 }
9866 
perf_event_free_bpf_handler(struct perf_event * event)9867 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9868 {
9869 	struct bpf_prog *prog = event->prog;
9870 
9871 	if (!prog)
9872 		return;
9873 
9874 	event->prog = NULL;
9875 	bpf_prog_put(prog);
9876 }
9877 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9878 static inline int bpf_overflow_handler(struct perf_event *event,
9879 				       struct perf_sample_data *data,
9880 				       struct pt_regs *regs)
9881 {
9882 	return 1;
9883 }
9884 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9885 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9886 					     struct bpf_prog *prog,
9887 					     u64 bpf_cookie)
9888 {
9889 	return -EOPNOTSUPP;
9890 }
9891 
perf_event_free_bpf_handler(struct perf_event * event)9892 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9893 {
9894 }
9895 #endif
9896 
9897 /*
9898  * Generic event overflow handling, sampling.
9899  */
9900 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9901 static int __perf_event_overflow(struct perf_event *event,
9902 				 int throttle, struct perf_sample_data *data,
9903 				 struct pt_regs *regs)
9904 {
9905 	int events = atomic_read(&event->event_limit);
9906 	int ret = 0;
9907 
9908 	/*
9909 	 * Non-sampling counters might still use the PMI to fold short
9910 	 * hardware counters, ignore those.
9911 	 */
9912 	if (unlikely(!is_sampling_event(event)))
9913 		return 0;
9914 
9915 	ret = __perf_event_account_interrupt(event, throttle);
9916 
9917 	if (event->attr.aux_pause)
9918 		perf_event_aux_pause(event->aux_event, true);
9919 
9920 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9921 	    !bpf_overflow_handler(event, data, regs))
9922 		goto out;
9923 
9924 	/*
9925 	 * XXX event_limit might not quite work as expected on inherited
9926 	 * events
9927 	 */
9928 
9929 	event->pending_kill = POLL_IN;
9930 	if (events && atomic_dec_and_test(&event->event_limit)) {
9931 		ret = 1;
9932 		event->pending_kill = POLL_HUP;
9933 		perf_event_disable_inatomic(event);
9934 	}
9935 
9936 	if (event->attr.sigtrap) {
9937 		/*
9938 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9939 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9940 		 * it is the first event, on the other hand, we should also not
9941 		 * trigger the WARN or override the data address.
9942 		 */
9943 		bool valid_sample = sample_is_allowed(event, regs);
9944 		unsigned int pending_id = 1;
9945 		enum task_work_notify_mode notify_mode;
9946 
9947 		if (regs)
9948 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9949 
9950 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9951 
9952 		if (!event->pending_work &&
9953 		    !task_work_add(current, &event->pending_task, notify_mode)) {
9954 			event->pending_work = pending_id;
9955 			local_inc(&event->ctx->nr_no_switch_fast);
9956 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
9957 
9958 			event->pending_addr = 0;
9959 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9960 				event->pending_addr = data->addr;
9961 
9962 		} else if (event->attr.exclude_kernel && valid_sample) {
9963 			/*
9964 			 * Should not be able to return to user space without
9965 			 * consuming pending_work; with exceptions:
9966 			 *
9967 			 *  1. Where !exclude_kernel, events can overflow again
9968 			 *     in the kernel without returning to user space.
9969 			 *
9970 			 *  2. Events that can overflow again before the IRQ-
9971 			 *     work without user space progress (e.g. hrtimer).
9972 			 *     To approximate progress (with false negatives),
9973 			 *     check 32-bit hash of the current IP.
9974 			 */
9975 			WARN_ON_ONCE(event->pending_work != pending_id);
9976 		}
9977 	}
9978 
9979 	READ_ONCE(event->overflow_handler)(event, data, regs);
9980 
9981 	if (*perf_event_fasync(event) && event->pending_kill) {
9982 		event->pending_wakeup = 1;
9983 		irq_work_queue(&event->pending_irq);
9984 	}
9985 out:
9986 	if (event->attr.aux_resume)
9987 		perf_event_aux_pause(event->aux_event, false);
9988 
9989 	return ret;
9990 }
9991 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9992 int perf_event_overflow(struct perf_event *event,
9993 			struct perf_sample_data *data,
9994 			struct pt_regs *regs)
9995 {
9996 	return __perf_event_overflow(event, 1, data, regs);
9997 }
9998 
9999 /*
10000  * Generic software event infrastructure
10001  */
10002 
10003 struct swevent_htable {
10004 	struct swevent_hlist		*swevent_hlist;
10005 	struct mutex			hlist_mutex;
10006 	int				hlist_refcount;
10007 };
10008 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10009 
10010 /*
10011  * We directly increment event->count and keep a second value in
10012  * event->hw.period_left to count intervals. This period event
10013  * is kept in the range [-sample_period, 0] so that we can use the
10014  * sign as trigger.
10015  */
10016 
perf_swevent_set_period(struct perf_event * event)10017 u64 perf_swevent_set_period(struct perf_event *event)
10018 {
10019 	struct hw_perf_event *hwc = &event->hw;
10020 	u64 period = hwc->last_period;
10021 	u64 nr, offset;
10022 	s64 old, val;
10023 
10024 	hwc->last_period = hwc->sample_period;
10025 
10026 	old = local64_read(&hwc->period_left);
10027 	do {
10028 		val = old;
10029 		if (val < 0)
10030 			return 0;
10031 
10032 		nr = div64_u64(period + val, period);
10033 		offset = nr * period;
10034 		val -= offset;
10035 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10036 
10037 	return nr;
10038 }
10039 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10040 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10041 				    struct perf_sample_data *data,
10042 				    struct pt_regs *regs)
10043 {
10044 	struct hw_perf_event *hwc = &event->hw;
10045 	int throttle = 0;
10046 
10047 	if (!overflow)
10048 		overflow = perf_swevent_set_period(event);
10049 
10050 	if (hwc->interrupts == MAX_INTERRUPTS)
10051 		return;
10052 
10053 	for (; overflow; overflow--) {
10054 		if (__perf_event_overflow(event, throttle,
10055 					    data, regs)) {
10056 			/*
10057 			 * We inhibit the overflow from happening when
10058 			 * hwc->interrupts == MAX_INTERRUPTS.
10059 			 */
10060 			break;
10061 		}
10062 		throttle = 1;
10063 	}
10064 }
10065 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10066 static void perf_swevent_event(struct perf_event *event, u64 nr,
10067 			       struct perf_sample_data *data,
10068 			       struct pt_regs *regs)
10069 {
10070 	struct hw_perf_event *hwc = &event->hw;
10071 
10072 	local64_add(nr, &event->count);
10073 
10074 	if (!regs)
10075 		return;
10076 
10077 	if (!is_sampling_event(event))
10078 		return;
10079 
10080 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10081 		data->period = nr;
10082 		return perf_swevent_overflow(event, 1, data, regs);
10083 	} else
10084 		data->period = event->hw.last_period;
10085 
10086 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10087 		return perf_swevent_overflow(event, 1, data, regs);
10088 
10089 	if (local64_add_negative(nr, &hwc->period_left))
10090 		return;
10091 
10092 	perf_swevent_overflow(event, 0, data, regs);
10093 }
10094 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10095 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10096 {
10097 	if (event->hw.state & PERF_HES_STOPPED)
10098 		return 1;
10099 
10100 	if (regs) {
10101 		if (event->attr.exclude_user && user_mode(regs))
10102 			return 1;
10103 
10104 		if (event->attr.exclude_kernel && !user_mode(regs))
10105 			return 1;
10106 	}
10107 
10108 	return 0;
10109 }
10110 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10111 static int perf_swevent_match(struct perf_event *event,
10112 				enum perf_type_id type,
10113 				u32 event_id,
10114 				struct perf_sample_data *data,
10115 				struct pt_regs *regs)
10116 {
10117 	if (event->attr.type != type)
10118 		return 0;
10119 
10120 	if (event->attr.config != event_id)
10121 		return 0;
10122 
10123 	if (perf_exclude_event(event, regs))
10124 		return 0;
10125 
10126 	return 1;
10127 }
10128 
swevent_hash(u64 type,u32 event_id)10129 static inline u64 swevent_hash(u64 type, u32 event_id)
10130 {
10131 	u64 val = event_id | (type << 32);
10132 
10133 	return hash_64(val, SWEVENT_HLIST_BITS);
10134 }
10135 
10136 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10137 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10138 {
10139 	u64 hash = swevent_hash(type, event_id);
10140 
10141 	return &hlist->heads[hash];
10142 }
10143 
10144 /* For the read side: events when they trigger */
10145 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10146 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10147 {
10148 	struct swevent_hlist *hlist;
10149 
10150 	hlist = rcu_dereference(swhash->swevent_hlist);
10151 	if (!hlist)
10152 		return NULL;
10153 
10154 	return __find_swevent_head(hlist, type, event_id);
10155 }
10156 
10157 /* For the event head insertion and removal in the hlist */
10158 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10159 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10160 {
10161 	struct swevent_hlist *hlist;
10162 	u32 event_id = event->attr.config;
10163 	u64 type = event->attr.type;
10164 
10165 	/*
10166 	 * Event scheduling is always serialized against hlist allocation
10167 	 * and release. Which makes the protected version suitable here.
10168 	 * The context lock guarantees that.
10169 	 */
10170 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10171 					  lockdep_is_held(&event->ctx->lock));
10172 	if (!hlist)
10173 		return NULL;
10174 
10175 	return __find_swevent_head(hlist, type, event_id);
10176 }
10177 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10178 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10179 				    u64 nr,
10180 				    struct perf_sample_data *data,
10181 				    struct pt_regs *regs)
10182 {
10183 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10184 	struct perf_event *event;
10185 	struct hlist_head *head;
10186 
10187 	rcu_read_lock();
10188 	head = find_swevent_head_rcu(swhash, type, event_id);
10189 	if (!head)
10190 		goto end;
10191 
10192 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10193 		if (perf_swevent_match(event, type, event_id, data, regs))
10194 			perf_swevent_event(event, nr, data, regs);
10195 	}
10196 end:
10197 	rcu_read_unlock();
10198 }
10199 
10200 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10201 
perf_swevent_get_recursion_context(void)10202 int perf_swevent_get_recursion_context(void)
10203 {
10204 	return get_recursion_context(current->perf_recursion);
10205 }
10206 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10207 
perf_swevent_put_recursion_context(int rctx)10208 void perf_swevent_put_recursion_context(int rctx)
10209 {
10210 	put_recursion_context(current->perf_recursion, rctx);
10211 }
10212 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10213 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10214 {
10215 	struct perf_sample_data data;
10216 
10217 	if (WARN_ON_ONCE(!regs))
10218 		return;
10219 
10220 	perf_sample_data_init(&data, addr, 0);
10221 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10222 }
10223 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10224 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10225 {
10226 	int rctx;
10227 
10228 	preempt_disable_notrace();
10229 	rctx = perf_swevent_get_recursion_context();
10230 	if (unlikely(rctx < 0))
10231 		goto fail;
10232 
10233 	___perf_sw_event(event_id, nr, regs, addr);
10234 
10235 	perf_swevent_put_recursion_context(rctx);
10236 fail:
10237 	preempt_enable_notrace();
10238 }
10239 
perf_swevent_read(struct perf_event * event)10240 static void perf_swevent_read(struct perf_event *event)
10241 {
10242 }
10243 
perf_swevent_add(struct perf_event * event,int flags)10244 static int perf_swevent_add(struct perf_event *event, int flags)
10245 {
10246 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10247 	struct hw_perf_event *hwc = &event->hw;
10248 	struct hlist_head *head;
10249 
10250 	if (is_sampling_event(event)) {
10251 		hwc->last_period = hwc->sample_period;
10252 		perf_swevent_set_period(event);
10253 	}
10254 
10255 	hwc->state = !(flags & PERF_EF_START);
10256 
10257 	head = find_swevent_head(swhash, event);
10258 	if (WARN_ON_ONCE(!head))
10259 		return -EINVAL;
10260 
10261 	hlist_add_head_rcu(&event->hlist_entry, head);
10262 	perf_event_update_userpage(event);
10263 
10264 	return 0;
10265 }
10266 
perf_swevent_del(struct perf_event * event,int flags)10267 static void perf_swevent_del(struct perf_event *event, int flags)
10268 {
10269 	hlist_del_rcu(&event->hlist_entry);
10270 }
10271 
perf_swevent_start(struct perf_event * event,int flags)10272 static void perf_swevent_start(struct perf_event *event, int flags)
10273 {
10274 	event->hw.state = 0;
10275 }
10276 
perf_swevent_stop(struct perf_event * event,int flags)10277 static void perf_swevent_stop(struct perf_event *event, int flags)
10278 {
10279 	event->hw.state = PERF_HES_STOPPED;
10280 }
10281 
10282 /* Deref the hlist from the update side */
10283 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10284 swevent_hlist_deref(struct swevent_htable *swhash)
10285 {
10286 	return rcu_dereference_protected(swhash->swevent_hlist,
10287 					 lockdep_is_held(&swhash->hlist_mutex));
10288 }
10289 
swevent_hlist_release(struct swevent_htable * swhash)10290 static void swevent_hlist_release(struct swevent_htable *swhash)
10291 {
10292 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10293 
10294 	if (!hlist)
10295 		return;
10296 
10297 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10298 	kfree_rcu(hlist, rcu_head);
10299 }
10300 
swevent_hlist_put_cpu(int cpu)10301 static void swevent_hlist_put_cpu(int cpu)
10302 {
10303 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10304 
10305 	mutex_lock(&swhash->hlist_mutex);
10306 
10307 	if (!--swhash->hlist_refcount)
10308 		swevent_hlist_release(swhash);
10309 
10310 	mutex_unlock(&swhash->hlist_mutex);
10311 }
10312 
swevent_hlist_put(void)10313 static void swevent_hlist_put(void)
10314 {
10315 	int cpu;
10316 
10317 	for_each_possible_cpu(cpu)
10318 		swevent_hlist_put_cpu(cpu);
10319 }
10320 
swevent_hlist_get_cpu(int cpu)10321 static int swevent_hlist_get_cpu(int cpu)
10322 {
10323 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10324 	int err = 0;
10325 
10326 	mutex_lock(&swhash->hlist_mutex);
10327 	if (!swevent_hlist_deref(swhash) &&
10328 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10329 		struct swevent_hlist *hlist;
10330 
10331 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10332 		if (!hlist) {
10333 			err = -ENOMEM;
10334 			goto exit;
10335 		}
10336 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10337 	}
10338 	swhash->hlist_refcount++;
10339 exit:
10340 	mutex_unlock(&swhash->hlist_mutex);
10341 
10342 	return err;
10343 }
10344 
swevent_hlist_get(void)10345 static int swevent_hlist_get(void)
10346 {
10347 	int err, cpu, failed_cpu;
10348 
10349 	mutex_lock(&pmus_lock);
10350 	for_each_possible_cpu(cpu) {
10351 		err = swevent_hlist_get_cpu(cpu);
10352 		if (err) {
10353 			failed_cpu = cpu;
10354 			goto fail;
10355 		}
10356 	}
10357 	mutex_unlock(&pmus_lock);
10358 	return 0;
10359 fail:
10360 	for_each_possible_cpu(cpu) {
10361 		if (cpu == failed_cpu)
10362 			break;
10363 		swevent_hlist_put_cpu(cpu);
10364 	}
10365 	mutex_unlock(&pmus_lock);
10366 	return err;
10367 }
10368 
10369 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10370 
sw_perf_event_destroy(struct perf_event * event)10371 static void sw_perf_event_destroy(struct perf_event *event)
10372 {
10373 	u64 event_id = event->attr.config;
10374 
10375 	WARN_ON(event->parent);
10376 
10377 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10378 	swevent_hlist_put();
10379 }
10380 
10381 static struct pmu perf_cpu_clock; /* fwd declaration */
10382 static struct pmu perf_task_clock;
10383 
perf_swevent_init(struct perf_event * event)10384 static int perf_swevent_init(struct perf_event *event)
10385 {
10386 	u64 event_id = event->attr.config;
10387 
10388 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10389 		return -ENOENT;
10390 
10391 	/*
10392 	 * no branch sampling for software events
10393 	 */
10394 	if (has_branch_stack(event))
10395 		return -EOPNOTSUPP;
10396 
10397 	switch (event_id) {
10398 	case PERF_COUNT_SW_CPU_CLOCK:
10399 		event->attr.type = perf_cpu_clock.type;
10400 		return -ENOENT;
10401 	case PERF_COUNT_SW_TASK_CLOCK:
10402 		event->attr.type = perf_task_clock.type;
10403 		return -ENOENT;
10404 
10405 	default:
10406 		break;
10407 	}
10408 
10409 	if (event_id >= PERF_COUNT_SW_MAX)
10410 		return -ENOENT;
10411 
10412 	if (!event->parent) {
10413 		int err;
10414 
10415 		err = swevent_hlist_get();
10416 		if (err)
10417 			return err;
10418 
10419 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10420 		event->destroy = sw_perf_event_destroy;
10421 	}
10422 
10423 	return 0;
10424 }
10425 
10426 static struct pmu perf_swevent = {
10427 	.task_ctx_nr	= perf_sw_context,
10428 
10429 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10430 
10431 	.event_init	= perf_swevent_init,
10432 	.add		= perf_swevent_add,
10433 	.del		= perf_swevent_del,
10434 	.start		= perf_swevent_start,
10435 	.stop		= perf_swevent_stop,
10436 	.read		= perf_swevent_read,
10437 };
10438 
10439 #ifdef CONFIG_EVENT_TRACING
10440 
tp_perf_event_destroy(struct perf_event * event)10441 static void tp_perf_event_destroy(struct perf_event *event)
10442 {
10443 	perf_trace_destroy(event);
10444 }
10445 
perf_tp_event_init(struct perf_event * event)10446 static int perf_tp_event_init(struct perf_event *event)
10447 {
10448 	int err;
10449 
10450 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10451 		return -ENOENT;
10452 
10453 	/*
10454 	 * no branch sampling for tracepoint events
10455 	 */
10456 	if (has_branch_stack(event))
10457 		return -EOPNOTSUPP;
10458 
10459 	err = perf_trace_init(event);
10460 	if (err)
10461 		return err;
10462 
10463 	event->destroy = tp_perf_event_destroy;
10464 
10465 	return 0;
10466 }
10467 
10468 static struct pmu perf_tracepoint = {
10469 	.task_ctx_nr	= perf_sw_context,
10470 
10471 	.event_init	= perf_tp_event_init,
10472 	.add		= perf_trace_add,
10473 	.del		= perf_trace_del,
10474 	.start		= perf_swevent_start,
10475 	.stop		= perf_swevent_stop,
10476 	.read		= perf_swevent_read,
10477 };
10478 
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10479 static int perf_tp_filter_match(struct perf_event *event,
10480 				struct perf_raw_record *raw)
10481 {
10482 	void *record = raw->frag.data;
10483 
10484 	/* only top level events have filters set */
10485 	if (event->parent)
10486 		event = event->parent;
10487 
10488 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10489 		return 1;
10490 	return 0;
10491 }
10492 
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10493 static int perf_tp_event_match(struct perf_event *event,
10494 				struct perf_raw_record *raw,
10495 				struct pt_regs *regs)
10496 {
10497 	if (event->hw.state & PERF_HES_STOPPED)
10498 		return 0;
10499 	/*
10500 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10501 	 */
10502 	if (event->attr.exclude_kernel && !user_mode(regs))
10503 		return 0;
10504 
10505 	if (!perf_tp_filter_match(event, raw))
10506 		return 0;
10507 
10508 	return 1;
10509 }
10510 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10511 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10512 			       struct trace_event_call *call, u64 count,
10513 			       struct pt_regs *regs, struct hlist_head *head,
10514 			       struct task_struct *task)
10515 {
10516 	if (bpf_prog_array_valid(call)) {
10517 		*(struct pt_regs **)raw_data = regs;
10518 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10519 			perf_swevent_put_recursion_context(rctx);
10520 			return;
10521 		}
10522 	}
10523 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10524 		      rctx, task);
10525 }
10526 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10527 
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10528 static void __perf_tp_event_target_task(u64 count, void *record,
10529 					struct pt_regs *regs,
10530 					struct perf_sample_data *data,
10531 					struct perf_raw_record *raw,
10532 					struct perf_event *event)
10533 {
10534 	struct trace_entry *entry = record;
10535 
10536 	if (event->attr.config != entry->type)
10537 		return;
10538 	/* Cannot deliver synchronous signal to other task. */
10539 	if (event->attr.sigtrap)
10540 		return;
10541 	if (perf_tp_event_match(event, raw, regs)) {
10542 		perf_sample_data_init(data, 0, 0);
10543 		perf_sample_save_raw_data(data, event, raw);
10544 		perf_swevent_event(event, count, data, regs);
10545 	}
10546 }
10547 
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10548 static void perf_tp_event_target_task(u64 count, void *record,
10549 				      struct pt_regs *regs,
10550 				      struct perf_sample_data *data,
10551 				      struct perf_raw_record *raw,
10552 				      struct perf_event_context *ctx)
10553 {
10554 	unsigned int cpu = smp_processor_id();
10555 	struct pmu *pmu = &perf_tracepoint;
10556 	struct perf_event *event, *sibling;
10557 
10558 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10559 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10560 		for_each_sibling_event(sibling, event)
10561 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10562 	}
10563 
10564 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10565 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10566 		for_each_sibling_event(sibling, event)
10567 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10568 	}
10569 }
10570 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10571 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10572 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10573 		   struct task_struct *task)
10574 {
10575 	struct perf_sample_data data;
10576 	struct perf_event *event;
10577 
10578 	struct perf_raw_record raw = {
10579 		.frag = {
10580 			.size = entry_size,
10581 			.data = record,
10582 		},
10583 	};
10584 
10585 	perf_trace_buf_update(record, event_type);
10586 
10587 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10588 		if (perf_tp_event_match(event, &raw, regs)) {
10589 			/*
10590 			 * Here use the same on-stack perf_sample_data,
10591 			 * some members in data are event-specific and
10592 			 * need to be re-computed for different sweveents.
10593 			 * Re-initialize data->sample_flags safely to avoid
10594 			 * the problem that next event skips preparing data
10595 			 * because data->sample_flags is set.
10596 			 */
10597 			perf_sample_data_init(&data, 0, 0);
10598 			perf_sample_save_raw_data(&data, event, &raw);
10599 			perf_swevent_event(event, count, &data, regs);
10600 		}
10601 	}
10602 
10603 	/*
10604 	 * If we got specified a target task, also iterate its context and
10605 	 * deliver this event there too.
10606 	 */
10607 	if (task && task != current) {
10608 		struct perf_event_context *ctx;
10609 
10610 		rcu_read_lock();
10611 		ctx = rcu_dereference(task->perf_event_ctxp);
10612 		if (!ctx)
10613 			goto unlock;
10614 
10615 		raw_spin_lock(&ctx->lock);
10616 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10617 		raw_spin_unlock(&ctx->lock);
10618 unlock:
10619 		rcu_read_unlock();
10620 	}
10621 
10622 	perf_swevent_put_recursion_context(rctx);
10623 }
10624 EXPORT_SYMBOL_GPL(perf_tp_event);
10625 
10626 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10627 /*
10628  * Flags in config, used by dynamic PMU kprobe and uprobe
10629  * The flags should match following PMU_FORMAT_ATTR().
10630  *
10631  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10632  *                               if not set, create kprobe/uprobe
10633  *
10634  * The following values specify a reference counter (or semaphore in the
10635  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10636  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10637  *
10638  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10639  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10640  */
10641 enum perf_probe_config {
10642 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10643 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10644 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10645 };
10646 
10647 PMU_FORMAT_ATTR(retprobe, "config:0");
10648 #endif
10649 
10650 #ifdef CONFIG_KPROBE_EVENTS
10651 static struct attribute *kprobe_attrs[] = {
10652 	&format_attr_retprobe.attr,
10653 	NULL,
10654 };
10655 
10656 static struct attribute_group kprobe_format_group = {
10657 	.name = "format",
10658 	.attrs = kprobe_attrs,
10659 };
10660 
10661 static const struct attribute_group *kprobe_attr_groups[] = {
10662 	&kprobe_format_group,
10663 	NULL,
10664 };
10665 
10666 static int perf_kprobe_event_init(struct perf_event *event);
10667 static struct pmu perf_kprobe = {
10668 	.task_ctx_nr	= perf_sw_context,
10669 	.event_init	= perf_kprobe_event_init,
10670 	.add		= perf_trace_add,
10671 	.del		= perf_trace_del,
10672 	.start		= perf_swevent_start,
10673 	.stop		= perf_swevent_stop,
10674 	.read		= perf_swevent_read,
10675 	.attr_groups	= kprobe_attr_groups,
10676 };
10677 
perf_kprobe_event_init(struct perf_event * event)10678 static int perf_kprobe_event_init(struct perf_event *event)
10679 {
10680 	int err;
10681 	bool is_retprobe;
10682 
10683 	if (event->attr.type != perf_kprobe.type)
10684 		return -ENOENT;
10685 
10686 	if (!perfmon_capable())
10687 		return -EACCES;
10688 
10689 	/*
10690 	 * no branch sampling for probe events
10691 	 */
10692 	if (has_branch_stack(event))
10693 		return -EOPNOTSUPP;
10694 
10695 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10696 	err = perf_kprobe_init(event, is_retprobe);
10697 	if (err)
10698 		return err;
10699 
10700 	event->destroy = perf_kprobe_destroy;
10701 
10702 	return 0;
10703 }
10704 #endif /* CONFIG_KPROBE_EVENTS */
10705 
10706 #ifdef CONFIG_UPROBE_EVENTS
10707 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10708 
10709 static struct attribute *uprobe_attrs[] = {
10710 	&format_attr_retprobe.attr,
10711 	&format_attr_ref_ctr_offset.attr,
10712 	NULL,
10713 };
10714 
10715 static struct attribute_group uprobe_format_group = {
10716 	.name = "format",
10717 	.attrs = uprobe_attrs,
10718 };
10719 
10720 static const struct attribute_group *uprobe_attr_groups[] = {
10721 	&uprobe_format_group,
10722 	NULL,
10723 };
10724 
10725 static int perf_uprobe_event_init(struct perf_event *event);
10726 static struct pmu perf_uprobe = {
10727 	.task_ctx_nr	= perf_sw_context,
10728 	.event_init	= perf_uprobe_event_init,
10729 	.add		= perf_trace_add,
10730 	.del		= perf_trace_del,
10731 	.start		= perf_swevent_start,
10732 	.stop		= perf_swevent_stop,
10733 	.read		= perf_swevent_read,
10734 	.attr_groups	= uprobe_attr_groups,
10735 };
10736 
perf_uprobe_event_init(struct perf_event * event)10737 static int perf_uprobe_event_init(struct perf_event *event)
10738 {
10739 	int err;
10740 	unsigned long ref_ctr_offset;
10741 	bool is_retprobe;
10742 
10743 	if (event->attr.type != perf_uprobe.type)
10744 		return -ENOENT;
10745 
10746 	if (!perfmon_capable())
10747 		return -EACCES;
10748 
10749 	/*
10750 	 * no branch sampling for probe events
10751 	 */
10752 	if (has_branch_stack(event))
10753 		return -EOPNOTSUPP;
10754 
10755 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10756 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10757 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10758 	if (err)
10759 		return err;
10760 
10761 	event->destroy = perf_uprobe_destroy;
10762 
10763 	return 0;
10764 }
10765 #endif /* CONFIG_UPROBE_EVENTS */
10766 
perf_tp_register(void)10767 static inline void perf_tp_register(void)
10768 {
10769 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10770 #ifdef CONFIG_KPROBE_EVENTS
10771 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10772 #endif
10773 #ifdef CONFIG_UPROBE_EVENTS
10774 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10775 #endif
10776 }
10777 
perf_event_free_filter(struct perf_event * event)10778 static void perf_event_free_filter(struct perf_event *event)
10779 {
10780 	ftrace_profile_free_filter(event);
10781 }
10782 
10783 /*
10784  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10785  * with perf_event_open()
10786  */
perf_event_is_tracing(struct perf_event * event)10787 static inline bool perf_event_is_tracing(struct perf_event *event)
10788 {
10789 	if (event->pmu == &perf_tracepoint)
10790 		return true;
10791 #ifdef CONFIG_KPROBE_EVENTS
10792 	if (event->pmu == &perf_kprobe)
10793 		return true;
10794 #endif
10795 #ifdef CONFIG_UPROBE_EVENTS
10796 	if (event->pmu == &perf_uprobe)
10797 		return true;
10798 #endif
10799 	return false;
10800 }
10801 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10802 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10803 			    u64 bpf_cookie)
10804 {
10805 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10806 
10807 	if (!perf_event_is_tracing(event))
10808 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10809 
10810 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10811 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10812 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10813 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10814 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10815 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10816 		return -EINVAL;
10817 
10818 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10819 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10820 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10821 		return -EINVAL;
10822 
10823 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10824 		/* only uprobe programs are allowed to be sleepable */
10825 		return -EINVAL;
10826 
10827 	/* Kprobe override only works for kprobes, not uprobes. */
10828 	if (prog->kprobe_override && !is_kprobe)
10829 		return -EINVAL;
10830 
10831 	if (is_tracepoint || is_syscall_tp) {
10832 		int off = trace_event_get_offsets(event->tp_event);
10833 
10834 		if (prog->aux->max_ctx_offset > off)
10835 			return -EACCES;
10836 	}
10837 
10838 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10839 }
10840 
perf_event_free_bpf_prog(struct perf_event * event)10841 void perf_event_free_bpf_prog(struct perf_event *event)
10842 {
10843 	if (!perf_event_is_tracing(event)) {
10844 		perf_event_free_bpf_handler(event);
10845 		return;
10846 	}
10847 	perf_event_detach_bpf_prog(event);
10848 }
10849 
10850 #else
10851 
perf_tp_register(void)10852 static inline void perf_tp_register(void)
10853 {
10854 }
10855 
perf_event_free_filter(struct perf_event * event)10856 static void perf_event_free_filter(struct perf_event *event)
10857 {
10858 }
10859 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10860 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10861 			    u64 bpf_cookie)
10862 {
10863 	return -ENOENT;
10864 }
10865 
perf_event_free_bpf_prog(struct perf_event * event)10866 void perf_event_free_bpf_prog(struct perf_event *event)
10867 {
10868 }
10869 #endif /* CONFIG_EVENT_TRACING */
10870 
10871 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10872 void perf_bp_event(struct perf_event *bp, void *data)
10873 {
10874 	struct perf_sample_data sample;
10875 	struct pt_regs *regs = data;
10876 
10877 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10878 
10879 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10880 		perf_swevent_event(bp, 1, &sample, regs);
10881 }
10882 #endif
10883 
10884 /*
10885  * Allocate a new address filter
10886  */
10887 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10888 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10889 {
10890 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10891 	struct perf_addr_filter *filter;
10892 
10893 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10894 	if (!filter)
10895 		return NULL;
10896 
10897 	INIT_LIST_HEAD(&filter->entry);
10898 	list_add_tail(&filter->entry, filters);
10899 
10900 	return filter;
10901 }
10902 
free_filters_list(struct list_head * filters)10903 static void free_filters_list(struct list_head *filters)
10904 {
10905 	struct perf_addr_filter *filter, *iter;
10906 
10907 	list_for_each_entry_safe(filter, iter, filters, entry) {
10908 		path_put(&filter->path);
10909 		list_del(&filter->entry);
10910 		kfree(filter);
10911 	}
10912 }
10913 
10914 /*
10915  * Free existing address filters and optionally install new ones
10916  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10917 static void perf_addr_filters_splice(struct perf_event *event,
10918 				     struct list_head *head)
10919 {
10920 	unsigned long flags;
10921 	LIST_HEAD(list);
10922 
10923 	if (!has_addr_filter(event))
10924 		return;
10925 
10926 	/* don't bother with children, they don't have their own filters */
10927 	if (event->parent)
10928 		return;
10929 
10930 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10931 
10932 	list_splice_init(&event->addr_filters.list, &list);
10933 	if (head)
10934 		list_splice(head, &event->addr_filters.list);
10935 
10936 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10937 
10938 	free_filters_list(&list);
10939 }
10940 
10941 /*
10942  * Scan through mm's vmas and see if one of them matches the
10943  * @filter; if so, adjust filter's address range.
10944  * Called with mm::mmap_lock down for reading.
10945  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10946 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10947 				   struct mm_struct *mm,
10948 				   struct perf_addr_filter_range *fr)
10949 {
10950 	struct vm_area_struct *vma;
10951 	VMA_ITERATOR(vmi, mm, 0);
10952 
10953 	for_each_vma(vmi, vma) {
10954 		if (!vma->vm_file)
10955 			continue;
10956 
10957 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10958 			return;
10959 	}
10960 }
10961 
10962 /*
10963  * Update event's address range filters based on the
10964  * task's existing mappings, if any.
10965  */
perf_event_addr_filters_apply(struct perf_event * event)10966 static void perf_event_addr_filters_apply(struct perf_event *event)
10967 {
10968 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10969 	struct task_struct *task = READ_ONCE(event->ctx->task);
10970 	struct perf_addr_filter *filter;
10971 	struct mm_struct *mm = NULL;
10972 	unsigned int count = 0;
10973 	unsigned long flags;
10974 
10975 	/*
10976 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10977 	 * will stop on the parent's child_mutex that our caller is also holding
10978 	 */
10979 	if (task == TASK_TOMBSTONE)
10980 		return;
10981 
10982 	if (ifh->nr_file_filters) {
10983 		mm = get_task_mm(task);
10984 		if (!mm)
10985 			goto restart;
10986 
10987 		mmap_read_lock(mm);
10988 	}
10989 
10990 	raw_spin_lock_irqsave(&ifh->lock, flags);
10991 	list_for_each_entry(filter, &ifh->list, entry) {
10992 		if (filter->path.dentry) {
10993 			/*
10994 			 * Adjust base offset if the filter is associated to a
10995 			 * binary that needs to be mapped:
10996 			 */
10997 			event->addr_filter_ranges[count].start = 0;
10998 			event->addr_filter_ranges[count].size = 0;
10999 
11000 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11001 		} else {
11002 			event->addr_filter_ranges[count].start = filter->offset;
11003 			event->addr_filter_ranges[count].size  = filter->size;
11004 		}
11005 
11006 		count++;
11007 	}
11008 
11009 	event->addr_filters_gen++;
11010 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11011 
11012 	if (ifh->nr_file_filters) {
11013 		mmap_read_unlock(mm);
11014 
11015 		mmput(mm);
11016 	}
11017 
11018 restart:
11019 	perf_event_stop(event, 1);
11020 }
11021 
11022 /*
11023  * Address range filtering: limiting the data to certain
11024  * instruction address ranges. Filters are ioctl()ed to us from
11025  * userspace as ascii strings.
11026  *
11027  * Filter string format:
11028  *
11029  * ACTION RANGE_SPEC
11030  * where ACTION is one of the
11031  *  * "filter": limit the trace to this region
11032  *  * "start": start tracing from this address
11033  *  * "stop": stop tracing at this address/region;
11034  * RANGE_SPEC is
11035  *  * for kernel addresses: <start address>[/<size>]
11036  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11037  *
11038  * if <size> is not specified or is zero, the range is treated as a single
11039  * address; not valid for ACTION=="filter".
11040  */
11041 enum {
11042 	IF_ACT_NONE = -1,
11043 	IF_ACT_FILTER,
11044 	IF_ACT_START,
11045 	IF_ACT_STOP,
11046 	IF_SRC_FILE,
11047 	IF_SRC_KERNEL,
11048 	IF_SRC_FILEADDR,
11049 	IF_SRC_KERNELADDR,
11050 };
11051 
11052 enum {
11053 	IF_STATE_ACTION = 0,
11054 	IF_STATE_SOURCE,
11055 	IF_STATE_END,
11056 };
11057 
11058 static const match_table_t if_tokens = {
11059 	{ IF_ACT_FILTER,	"filter" },
11060 	{ IF_ACT_START,		"start" },
11061 	{ IF_ACT_STOP,		"stop" },
11062 	{ IF_SRC_FILE,		"%u/%u@%s" },
11063 	{ IF_SRC_KERNEL,	"%u/%u" },
11064 	{ IF_SRC_FILEADDR,	"%u@%s" },
11065 	{ IF_SRC_KERNELADDR,	"%u" },
11066 	{ IF_ACT_NONE,		NULL },
11067 };
11068 
11069 /*
11070  * Address filter string parser
11071  */
11072 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11073 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11074 			     struct list_head *filters)
11075 {
11076 	struct perf_addr_filter *filter = NULL;
11077 	char *start, *orig, *filename = NULL;
11078 	substring_t args[MAX_OPT_ARGS];
11079 	int state = IF_STATE_ACTION, token;
11080 	unsigned int kernel = 0;
11081 	int ret = -EINVAL;
11082 
11083 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11084 	if (!fstr)
11085 		return -ENOMEM;
11086 
11087 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11088 		static const enum perf_addr_filter_action_t actions[] = {
11089 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11090 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11091 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11092 		};
11093 		ret = -EINVAL;
11094 
11095 		if (!*start)
11096 			continue;
11097 
11098 		/* filter definition begins */
11099 		if (state == IF_STATE_ACTION) {
11100 			filter = perf_addr_filter_new(event, filters);
11101 			if (!filter)
11102 				goto fail;
11103 		}
11104 
11105 		token = match_token(start, if_tokens, args);
11106 		switch (token) {
11107 		case IF_ACT_FILTER:
11108 		case IF_ACT_START:
11109 		case IF_ACT_STOP:
11110 			if (state != IF_STATE_ACTION)
11111 				goto fail;
11112 
11113 			filter->action = actions[token];
11114 			state = IF_STATE_SOURCE;
11115 			break;
11116 
11117 		case IF_SRC_KERNELADDR:
11118 		case IF_SRC_KERNEL:
11119 			kernel = 1;
11120 			fallthrough;
11121 
11122 		case IF_SRC_FILEADDR:
11123 		case IF_SRC_FILE:
11124 			if (state != IF_STATE_SOURCE)
11125 				goto fail;
11126 
11127 			*args[0].to = 0;
11128 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11129 			if (ret)
11130 				goto fail;
11131 
11132 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11133 				*args[1].to = 0;
11134 				ret = kstrtoul(args[1].from, 0, &filter->size);
11135 				if (ret)
11136 					goto fail;
11137 			}
11138 
11139 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11140 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11141 
11142 				kfree(filename);
11143 				filename = match_strdup(&args[fpos]);
11144 				if (!filename) {
11145 					ret = -ENOMEM;
11146 					goto fail;
11147 				}
11148 			}
11149 
11150 			state = IF_STATE_END;
11151 			break;
11152 
11153 		default:
11154 			goto fail;
11155 		}
11156 
11157 		/*
11158 		 * Filter definition is fully parsed, validate and install it.
11159 		 * Make sure that it doesn't contradict itself or the event's
11160 		 * attribute.
11161 		 */
11162 		if (state == IF_STATE_END) {
11163 			ret = -EINVAL;
11164 
11165 			/*
11166 			 * ACTION "filter" must have a non-zero length region
11167 			 * specified.
11168 			 */
11169 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11170 			    !filter->size)
11171 				goto fail;
11172 
11173 			if (!kernel) {
11174 				if (!filename)
11175 					goto fail;
11176 
11177 				/*
11178 				 * For now, we only support file-based filters
11179 				 * in per-task events; doing so for CPU-wide
11180 				 * events requires additional context switching
11181 				 * trickery, since same object code will be
11182 				 * mapped at different virtual addresses in
11183 				 * different processes.
11184 				 */
11185 				ret = -EOPNOTSUPP;
11186 				if (!event->ctx->task)
11187 					goto fail;
11188 
11189 				/* look up the path and grab its inode */
11190 				ret = kern_path(filename, LOOKUP_FOLLOW,
11191 						&filter->path);
11192 				if (ret)
11193 					goto fail;
11194 
11195 				ret = -EINVAL;
11196 				if (!filter->path.dentry ||
11197 				    !S_ISREG(d_inode(filter->path.dentry)
11198 					     ->i_mode))
11199 					goto fail;
11200 
11201 				event->addr_filters.nr_file_filters++;
11202 			}
11203 
11204 			/* ready to consume more filters */
11205 			kfree(filename);
11206 			filename = NULL;
11207 			state = IF_STATE_ACTION;
11208 			filter = NULL;
11209 			kernel = 0;
11210 		}
11211 	}
11212 
11213 	if (state != IF_STATE_ACTION)
11214 		goto fail;
11215 
11216 	kfree(filename);
11217 	kfree(orig);
11218 
11219 	return 0;
11220 
11221 fail:
11222 	kfree(filename);
11223 	free_filters_list(filters);
11224 	kfree(orig);
11225 
11226 	return ret;
11227 }
11228 
11229 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11230 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11231 {
11232 	LIST_HEAD(filters);
11233 	int ret;
11234 
11235 	/*
11236 	 * Since this is called in perf_ioctl() path, we're already holding
11237 	 * ctx::mutex.
11238 	 */
11239 	lockdep_assert_held(&event->ctx->mutex);
11240 
11241 	if (WARN_ON_ONCE(event->parent))
11242 		return -EINVAL;
11243 
11244 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11245 	if (ret)
11246 		goto fail_clear_files;
11247 
11248 	ret = event->pmu->addr_filters_validate(&filters);
11249 	if (ret)
11250 		goto fail_free_filters;
11251 
11252 	/* remove existing filters, if any */
11253 	perf_addr_filters_splice(event, &filters);
11254 
11255 	/* install new filters */
11256 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11257 
11258 	return ret;
11259 
11260 fail_free_filters:
11261 	free_filters_list(&filters);
11262 
11263 fail_clear_files:
11264 	event->addr_filters.nr_file_filters = 0;
11265 
11266 	return ret;
11267 }
11268 
perf_event_set_filter(struct perf_event * event,void __user * arg)11269 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11270 {
11271 	int ret = -EINVAL;
11272 	char *filter_str;
11273 
11274 	filter_str = strndup_user(arg, PAGE_SIZE);
11275 	if (IS_ERR(filter_str))
11276 		return PTR_ERR(filter_str);
11277 
11278 #ifdef CONFIG_EVENT_TRACING
11279 	if (perf_event_is_tracing(event)) {
11280 		struct perf_event_context *ctx = event->ctx;
11281 
11282 		/*
11283 		 * Beware, here be dragons!!
11284 		 *
11285 		 * the tracepoint muck will deadlock against ctx->mutex, but
11286 		 * the tracepoint stuff does not actually need it. So
11287 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11288 		 * already have a reference on ctx.
11289 		 *
11290 		 * This can result in event getting moved to a different ctx,
11291 		 * but that does not affect the tracepoint state.
11292 		 */
11293 		mutex_unlock(&ctx->mutex);
11294 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11295 		mutex_lock(&ctx->mutex);
11296 	} else
11297 #endif
11298 	if (has_addr_filter(event))
11299 		ret = perf_event_set_addr_filter(event, filter_str);
11300 
11301 	kfree(filter_str);
11302 	return ret;
11303 }
11304 
11305 /*
11306  * hrtimer based swevent callback
11307  */
11308 
perf_swevent_hrtimer(struct hrtimer * hrtimer)11309 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11310 {
11311 	enum hrtimer_restart ret = HRTIMER_RESTART;
11312 	struct perf_sample_data data;
11313 	struct pt_regs *regs;
11314 	struct perf_event *event;
11315 	u64 period;
11316 
11317 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11318 
11319 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11320 		return HRTIMER_NORESTART;
11321 
11322 	event->pmu->read(event);
11323 
11324 	perf_sample_data_init(&data, 0, event->hw.last_period);
11325 	regs = get_irq_regs();
11326 
11327 	if (regs && !perf_exclude_event(event, regs)) {
11328 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11329 			if (__perf_event_overflow(event, 1, &data, regs))
11330 				ret = HRTIMER_NORESTART;
11331 	}
11332 
11333 	period = max_t(u64, 10000, event->hw.sample_period);
11334 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11335 
11336 	return ret;
11337 }
11338 
perf_swevent_start_hrtimer(struct perf_event * event)11339 static void perf_swevent_start_hrtimer(struct perf_event *event)
11340 {
11341 	struct hw_perf_event *hwc = &event->hw;
11342 	s64 period;
11343 
11344 	if (!is_sampling_event(event))
11345 		return;
11346 
11347 	period = local64_read(&hwc->period_left);
11348 	if (period) {
11349 		if (period < 0)
11350 			period = 10000;
11351 
11352 		local64_set(&hwc->period_left, 0);
11353 	} else {
11354 		period = max_t(u64, 10000, hwc->sample_period);
11355 	}
11356 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11357 		      HRTIMER_MODE_REL_PINNED_HARD);
11358 }
11359 
perf_swevent_cancel_hrtimer(struct perf_event * event)11360 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11361 {
11362 	struct hw_perf_event *hwc = &event->hw;
11363 
11364 	if (is_sampling_event(event)) {
11365 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11366 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11367 
11368 		hrtimer_cancel(&hwc->hrtimer);
11369 	}
11370 }
11371 
perf_swevent_init_hrtimer(struct perf_event * event)11372 static void perf_swevent_init_hrtimer(struct perf_event *event)
11373 {
11374 	struct hw_perf_event *hwc = &event->hw;
11375 
11376 	if (!is_sampling_event(event))
11377 		return;
11378 
11379 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11380 	hwc->hrtimer.function = perf_swevent_hrtimer;
11381 
11382 	/*
11383 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11384 	 * mapping and avoid the whole period adjust feedback stuff.
11385 	 */
11386 	if (event->attr.freq) {
11387 		long freq = event->attr.sample_freq;
11388 
11389 		event->attr.sample_period = NSEC_PER_SEC / freq;
11390 		hwc->sample_period = event->attr.sample_period;
11391 		local64_set(&hwc->period_left, hwc->sample_period);
11392 		hwc->last_period = hwc->sample_period;
11393 		event->attr.freq = 0;
11394 	}
11395 }
11396 
11397 /*
11398  * Software event: cpu wall time clock
11399  */
11400 
cpu_clock_event_update(struct perf_event * event)11401 static void cpu_clock_event_update(struct perf_event *event)
11402 {
11403 	s64 prev;
11404 	u64 now;
11405 
11406 	now = local_clock();
11407 	prev = local64_xchg(&event->hw.prev_count, now);
11408 	local64_add(now - prev, &event->count);
11409 }
11410 
cpu_clock_event_start(struct perf_event * event,int flags)11411 static void cpu_clock_event_start(struct perf_event *event, int flags)
11412 {
11413 	local64_set(&event->hw.prev_count, local_clock());
11414 	perf_swevent_start_hrtimer(event);
11415 }
11416 
cpu_clock_event_stop(struct perf_event * event,int flags)11417 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11418 {
11419 	perf_swevent_cancel_hrtimer(event);
11420 	cpu_clock_event_update(event);
11421 }
11422 
cpu_clock_event_add(struct perf_event * event,int flags)11423 static int cpu_clock_event_add(struct perf_event *event, int flags)
11424 {
11425 	if (flags & PERF_EF_START)
11426 		cpu_clock_event_start(event, flags);
11427 	perf_event_update_userpage(event);
11428 
11429 	return 0;
11430 }
11431 
cpu_clock_event_del(struct perf_event * event,int flags)11432 static void cpu_clock_event_del(struct perf_event *event, int flags)
11433 {
11434 	cpu_clock_event_stop(event, flags);
11435 }
11436 
cpu_clock_event_read(struct perf_event * event)11437 static void cpu_clock_event_read(struct perf_event *event)
11438 {
11439 	cpu_clock_event_update(event);
11440 }
11441 
cpu_clock_event_init(struct perf_event * event)11442 static int cpu_clock_event_init(struct perf_event *event)
11443 {
11444 	if (event->attr.type != perf_cpu_clock.type)
11445 		return -ENOENT;
11446 
11447 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11448 		return -ENOENT;
11449 
11450 	/*
11451 	 * no branch sampling for software events
11452 	 */
11453 	if (has_branch_stack(event))
11454 		return -EOPNOTSUPP;
11455 
11456 	perf_swevent_init_hrtimer(event);
11457 
11458 	return 0;
11459 }
11460 
11461 static struct pmu perf_cpu_clock = {
11462 	.task_ctx_nr	= perf_sw_context,
11463 
11464 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11465 	.dev		= PMU_NULL_DEV,
11466 
11467 	.event_init	= cpu_clock_event_init,
11468 	.add		= cpu_clock_event_add,
11469 	.del		= cpu_clock_event_del,
11470 	.start		= cpu_clock_event_start,
11471 	.stop		= cpu_clock_event_stop,
11472 	.read		= cpu_clock_event_read,
11473 };
11474 
11475 /*
11476  * Software event: task time clock
11477  */
11478 
task_clock_event_update(struct perf_event * event,u64 now)11479 static void task_clock_event_update(struct perf_event *event, u64 now)
11480 {
11481 	u64 prev;
11482 	s64 delta;
11483 
11484 	prev = local64_xchg(&event->hw.prev_count, now);
11485 	delta = now - prev;
11486 	local64_add(delta, &event->count);
11487 }
11488 
task_clock_event_start(struct perf_event * event,int flags)11489 static void task_clock_event_start(struct perf_event *event, int flags)
11490 {
11491 	local64_set(&event->hw.prev_count, event->ctx->time);
11492 	perf_swevent_start_hrtimer(event);
11493 }
11494 
task_clock_event_stop(struct perf_event * event,int flags)11495 static void task_clock_event_stop(struct perf_event *event, int flags)
11496 {
11497 	perf_swevent_cancel_hrtimer(event);
11498 	task_clock_event_update(event, event->ctx->time);
11499 }
11500 
task_clock_event_add(struct perf_event * event,int flags)11501 static int task_clock_event_add(struct perf_event *event, int flags)
11502 {
11503 	if (flags & PERF_EF_START)
11504 		task_clock_event_start(event, flags);
11505 	perf_event_update_userpage(event);
11506 
11507 	return 0;
11508 }
11509 
task_clock_event_del(struct perf_event * event,int flags)11510 static void task_clock_event_del(struct perf_event *event, int flags)
11511 {
11512 	task_clock_event_stop(event, PERF_EF_UPDATE);
11513 }
11514 
task_clock_event_read(struct perf_event * event)11515 static void task_clock_event_read(struct perf_event *event)
11516 {
11517 	u64 now = perf_clock();
11518 	u64 delta = now - event->ctx->timestamp;
11519 	u64 time = event->ctx->time + delta;
11520 
11521 	task_clock_event_update(event, time);
11522 }
11523 
task_clock_event_init(struct perf_event * event)11524 static int task_clock_event_init(struct perf_event *event)
11525 {
11526 	if (event->attr.type != perf_task_clock.type)
11527 		return -ENOENT;
11528 
11529 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11530 		return -ENOENT;
11531 
11532 	/*
11533 	 * no branch sampling for software events
11534 	 */
11535 	if (has_branch_stack(event))
11536 		return -EOPNOTSUPP;
11537 
11538 	perf_swevent_init_hrtimer(event);
11539 
11540 	return 0;
11541 }
11542 
11543 static struct pmu perf_task_clock = {
11544 	.task_ctx_nr	= perf_sw_context,
11545 
11546 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11547 	.dev		= PMU_NULL_DEV,
11548 
11549 	.event_init	= task_clock_event_init,
11550 	.add		= task_clock_event_add,
11551 	.del		= task_clock_event_del,
11552 	.start		= task_clock_event_start,
11553 	.stop		= task_clock_event_stop,
11554 	.read		= task_clock_event_read,
11555 };
11556 
perf_pmu_nop_void(struct pmu * pmu)11557 static void perf_pmu_nop_void(struct pmu *pmu)
11558 {
11559 }
11560 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11561 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11562 {
11563 }
11564 
perf_pmu_nop_int(struct pmu * pmu)11565 static int perf_pmu_nop_int(struct pmu *pmu)
11566 {
11567 	return 0;
11568 }
11569 
perf_event_nop_int(struct perf_event * event,u64 value)11570 static int perf_event_nop_int(struct perf_event *event, u64 value)
11571 {
11572 	return 0;
11573 }
11574 
11575 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11576 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11577 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11578 {
11579 	__this_cpu_write(nop_txn_flags, flags);
11580 
11581 	if (flags & ~PERF_PMU_TXN_ADD)
11582 		return;
11583 
11584 	perf_pmu_disable(pmu);
11585 }
11586 
perf_pmu_commit_txn(struct pmu * pmu)11587 static int perf_pmu_commit_txn(struct pmu *pmu)
11588 {
11589 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11590 
11591 	__this_cpu_write(nop_txn_flags, 0);
11592 
11593 	if (flags & ~PERF_PMU_TXN_ADD)
11594 		return 0;
11595 
11596 	perf_pmu_enable(pmu);
11597 	return 0;
11598 }
11599 
perf_pmu_cancel_txn(struct pmu * pmu)11600 static void perf_pmu_cancel_txn(struct pmu *pmu)
11601 {
11602 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11603 
11604 	__this_cpu_write(nop_txn_flags, 0);
11605 
11606 	if (flags & ~PERF_PMU_TXN_ADD)
11607 		return;
11608 
11609 	perf_pmu_enable(pmu);
11610 }
11611 
perf_event_idx_default(struct perf_event * event)11612 static int perf_event_idx_default(struct perf_event *event)
11613 {
11614 	return 0;
11615 }
11616 
free_pmu_context(struct pmu * pmu)11617 static void free_pmu_context(struct pmu *pmu)
11618 {
11619 	free_percpu(pmu->cpu_pmu_context);
11620 }
11621 
11622 /*
11623  * Let userspace know that this PMU supports address range filtering:
11624  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11625 static ssize_t nr_addr_filters_show(struct device *dev,
11626 				    struct device_attribute *attr,
11627 				    char *page)
11628 {
11629 	struct pmu *pmu = dev_get_drvdata(dev);
11630 
11631 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11632 }
11633 DEVICE_ATTR_RO(nr_addr_filters);
11634 
11635 static struct idr pmu_idr;
11636 
11637 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11638 type_show(struct device *dev, struct device_attribute *attr, char *page)
11639 {
11640 	struct pmu *pmu = dev_get_drvdata(dev);
11641 
11642 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11643 }
11644 static DEVICE_ATTR_RO(type);
11645 
11646 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11647 perf_event_mux_interval_ms_show(struct device *dev,
11648 				struct device_attribute *attr,
11649 				char *page)
11650 {
11651 	struct pmu *pmu = dev_get_drvdata(dev);
11652 
11653 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11654 }
11655 
11656 static DEFINE_MUTEX(mux_interval_mutex);
11657 
11658 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11659 perf_event_mux_interval_ms_store(struct device *dev,
11660 				 struct device_attribute *attr,
11661 				 const char *buf, size_t count)
11662 {
11663 	struct pmu *pmu = dev_get_drvdata(dev);
11664 	int timer, cpu, ret;
11665 
11666 	ret = kstrtoint(buf, 0, &timer);
11667 	if (ret)
11668 		return ret;
11669 
11670 	if (timer < 1)
11671 		return -EINVAL;
11672 
11673 	/* same value, noting to do */
11674 	if (timer == pmu->hrtimer_interval_ms)
11675 		return count;
11676 
11677 	mutex_lock(&mux_interval_mutex);
11678 	pmu->hrtimer_interval_ms = timer;
11679 
11680 	/* update all cpuctx for this PMU */
11681 	cpus_read_lock();
11682 	for_each_online_cpu(cpu) {
11683 		struct perf_cpu_pmu_context *cpc;
11684 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11685 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11686 
11687 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11688 	}
11689 	cpus_read_unlock();
11690 	mutex_unlock(&mux_interval_mutex);
11691 
11692 	return count;
11693 }
11694 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11695 
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)11696 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11697 {
11698 	switch (scope) {
11699 	case PERF_PMU_SCOPE_CORE:
11700 		return topology_sibling_cpumask(cpu);
11701 	case PERF_PMU_SCOPE_DIE:
11702 		return topology_die_cpumask(cpu);
11703 	case PERF_PMU_SCOPE_CLUSTER:
11704 		return topology_cluster_cpumask(cpu);
11705 	case PERF_PMU_SCOPE_PKG:
11706 		return topology_core_cpumask(cpu);
11707 	case PERF_PMU_SCOPE_SYS_WIDE:
11708 		return cpu_online_mask;
11709 	}
11710 
11711 	return NULL;
11712 }
11713 
perf_scope_cpumask(unsigned int scope)11714 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11715 {
11716 	switch (scope) {
11717 	case PERF_PMU_SCOPE_CORE:
11718 		return perf_online_core_mask;
11719 	case PERF_PMU_SCOPE_DIE:
11720 		return perf_online_die_mask;
11721 	case PERF_PMU_SCOPE_CLUSTER:
11722 		return perf_online_cluster_mask;
11723 	case PERF_PMU_SCOPE_PKG:
11724 		return perf_online_pkg_mask;
11725 	case PERF_PMU_SCOPE_SYS_WIDE:
11726 		return perf_online_sys_mask;
11727 	}
11728 
11729 	return NULL;
11730 }
11731 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)11732 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11733 			    char *buf)
11734 {
11735 	struct pmu *pmu = dev_get_drvdata(dev);
11736 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11737 
11738 	if (mask)
11739 		return cpumap_print_to_pagebuf(true, buf, mask);
11740 	return 0;
11741 }
11742 
11743 static DEVICE_ATTR_RO(cpumask);
11744 
11745 static struct attribute *pmu_dev_attrs[] = {
11746 	&dev_attr_type.attr,
11747 	&dev_attr_perf_event_mux_interval_ms.attr,
11748 	&dev_attr_nr_addr_filters.attr,
11749 	&dev_attr_cpumask.attr,
11750 	NULL,
11751 };
11752 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11753 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11754 {
11755 	struct device *dev = kobj_to_dev(kobj);
11756 	struct pmu *pmu = dev_get_drvdata(dev);
11757 
11758 	if (n == 2 && !pmu->nr_addr_filters)
11759 		return 0;
11760 
11761 	/* cpumask */
11762 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11763 		return 0;
11764 
11765 	return a->mode;
11766 }
11767 
11768 static struct attribute_group pmu_dev_attr_group = {
11769 	.is_visible = pmu_dev_is_visible,
11770 	.attrs = pmu_dev_attrs,
11771 };
11772 
11773 static const struct attribute_group *pmu_dev_groups[] = {
11774 	&pmu_dev_attr_group,
11775 	NULL,
11776 };
11777 
11778 static int pmu_bus_running;
11779 static struct bus_type pmu_bus = {
11780 	.name		= "event_source",
11781 	.dev_groups	= pmu_dev_groups,
11782 };
11783 
pmu_dev_release(struct device * dev)11784 static void pmu_dev_release(struct device *dev)
11785 {
11786 	kfree(dev);
11787 }
11788 
pmu_dev_alloc(struct pmu * pmu)11789 static int pmu_dev_alloc(struct pmu *pmu)
11790 {
11791 	int ret = -ENOMEM;
11792 
11793 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11794 	if (!pmu->dev)
11795 		goto out;
11796 
11797 	pmu->dev->groups = pmu->attr_groups;
11798 	device_initialize(pmu->dev);
11799 
11800 	dev_set_drvdata(pmu->dev, pmu);
11801 	pmu->dev->bus = &pmu_bus;
11802 	pmu->dev->parent = pmu->parent;
11803 	pmu->dev->release = pmu_dev_release;
11804 
11805 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11806 	if (ret)
11807 		goto free_dev;
11808 
11809 	ret = device_add(pmu->dev);
11810 	if (ret)
11811 		goto free_dev;
11812 
11813 	if (pmu->attr_update) {
11814 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11815 		if (ret)
11816 			goto del_dev;
11817 	}
11818 
11819 out:
11820 	return ret;
11821 
11822 del_dev:
11823 	device_del(pmu->dev);
11824 
11825 free_dev:
11826 	put_device(pmu->dev);
11827 	goto out;
11828 }
11829 
11830 static struct lock_class_key cpuctx_mutex;
11831 static struct lock_class_key cpuctx_lock;
11832 
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)11833 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
11834 {
11835 	void *tmp, *val = idr_find(idr, id);
11836 
11837 	if (val != old)
11838 		return false;
11839 
11840 	tmp = idr_replace(idr, new, id);
11841 	if (IS_ERR(tmp))
11842 		return false;
11843 
11844 	WARN_ON_ONCE(tmp != val);
11845 	return true;
11846 }
11847 
perf_pmu_register(struct pmu * pmu,const char * name,int type)11848 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11849 {
11850 	int cpu, ret, max = PERF_TYPE_MAX;
11851 
11852 	mutex_lock(&pmus_lock);
11853 	ret = -ENOMEM;
11854 	pmu->pmu_disable_count = alloc_percpu(int);
11855 	if (!pmu->pmu_disable_count)
11856 		goto unlock;
11857 
11858 	pmu->type = -1;
11859 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11860 		ret = -EINVAL;
11861 		goto free_pdc;
11862 	}
11863 
11864 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11865 		ret = -EINVAL;
11866 		goto free_pdc;
11867 	}
11868 
11869 	pmu->name = name;
11870 
11871 	if (type >= 0)
11872 		max = type;
11873 
11874 	ret = idr_alloc(&pmu_idr, NULL, max, 0, GFP_KERNEL);
11875 	if (ret < 0)
11876 		goto free_pdc;
11877 
11878 	WARN_ON(type >= 0 && ret != type);
11879 
11880 	type = ret;
11881 	pmu->type = type;
11882 	atomic_set(&pmu->exclusive_cnt, 0);
11883 
11884 	if (pmu_bus_running && !pmu->dev) {
11885 		ret = pmu_dev_alloc(pmu);
11886 		if (ret)
11887 			goto free_idr;
11888 	}
11889 
11890 	ret = -ENOMEM;
11891 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11892 	if (!pmu->cpu_pmu_context)
11893 		goto free_dev;
11894 
11895 	for_each_possible_cpu(cpu) {
11896 		struct perf_cpu_pmu_context *cpc;
11897 
11898 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11899 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11900 		__perf_mux_hrtimer_init(cpc, cpu);
11901 	}
11902 
11903 	if (!pmu->start_txn) {
11904 		if (pmu->pmu_enable) {
11905 			/*
11906 			 * If we have pmu_enable/pmu_disable calls, install
11907 			 * transaction stubs that use that to try and batch
11908 			 * hardware accesses.
11909 			 */
11910 			pmu->start_txn  = perf_pmu_start_txn;
11911 			pmu->commit_txn = perf_pmu_commit_txn;
11912 			pmu->cancel_txn = perf_pmu_cancel_txn;
11913 		} else {
11914 			pmu->start_txn  = perf_pmu_nop_txn;
11915 			pmu->commit_txn = perf_pmu_nop_int;
11916 			pmu->cancel_txn = perf_pmu_nop_void;
11917 		}
11918 	}
11919 
11920 	if (!pmu->pmu_enable) {
11921 		pmu->pmu_enable  = perf_pmu_nop_void;
11922 		pmu->pmu_disable = perf_pmu_nop_void;
11923 	}
11924 
11925 	if (!pmu->check_period)
11926 		pmu->check_period = perf_event_nop_int;
11927 
11928 	if (!pmu->event_idx)
11929 		pmu->event_idx = perf_event_idx_default;
11930 
11931 	/*
11932 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
11933 	 */
11934 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
11935 		goto free_context;
11936 	list_add_rcu(&pmu->entry, &pmus);
11937 
11938 	ret = 0;
11939 unlock:
11940 	mutex_unlock(&pmus_lock);
11941 
11942 	return ret;
11943 
11944 free_context:
11945 	free_percpu(pmu->cpu_pmu_context);
11946 
11947 free_dev:
11948 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11949 		device_del(pmu->dev);
11950 		put_device(pmu->dev);
11951 	}
11952 
11953 free_idr:
11954 	idr_remove(&pmu_idr, pmu->type);
11955 
11956 free_pdc:
11957 	free_percpu(pmu->pmu_disable_count);
11958 	goto unlock;
11959 }
11960 EXPORT_SYMBOL_GPL(perf_pmu_register);
11961 
perf_pmu_unregister(struct pmu * pmu)11962 void perf_pmu_unregister(struct pmu *pmu)
11963 {
11964 	mutex_lock(&pmus_lock);
11965 	list_del_rcu(&pmu->entry);
11966 	idr_remove(&pmu_idr, pmu->type);
11967 	mutex_unlock(&pmus_lock);
11968 
11969 	/*
11970 	 * We dereference the pmu list under both SRCU and regular RCU, so
11971 	 * synchronize against both of those.
11972 	 */
11973 	synchronize_srcu(&pmus_srcu);
11974 	synchronize_rcu();
11975 
11976 	free_percpu(pmu->pmu_disable_count);
11977 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11978 		if (pmu->nr_addr_filters)
11979 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11980 		device_del(pmu->dev);
11981 		put_device(pmu->dev);
11982 	}
11983 	free_pmu_context(pmu);
11984 }
11985 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11986 
has_extended_regs(struct perf_event * event)11987 static inline bool has_extended_regs(struct perf_event *event)
11988 {
11989 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11990 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11991 }
11992 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11993 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11994 {
11995 	struct perf_event_context *ctx = NULL;
11996 	int ret;
11997 
11998 	if (!try_module_get(pmu->module))
11999 		return -ENODEV;
12000 
12001 	/*
12002 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12003 	 * for example, validate if the group fits on the PMU. Therefore,
12004 	 * if this is a sibling event, acquire the ctx->mutex to protect
12005 	 * the sibling_list.
12006 	 */
12007 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12008 		/*
12009 		 * This ctx->mutex can nest when we're called through
12010 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12011 		 */
12012 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12013 						 SINGLE_DEPTH_NESTING);
12014 		BUG_ON(!ctx);
12015 	}
12016 
12017 	event->pmu = pmu;
12018 	ret = pmu->event_init(event);
12019 
12020 	if (ctx)
12021 		perf_event_ctx_unlock(event->group_leader, ctx);
12022 
12023 	if (!ret) {
12024 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12025 		    has_extended_regs(event))
12026 			ret = -EOPNOTSUPP;
12027 
12028 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12029 		    event_has_any_exclude_flag(event))
12030 			ret = -EINVAL;
12031 
12032 		if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12033 			const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12034 			struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
12035 			int cpu;
12036 
12037 			if (pmu_cpumask && cpumask) {
12038 				cpu = cpumask_any_and(pmu_cpumask, cpumask);
12039 				if (cpu >= nr_cpu_ids)
12040 					ret = -ENODEV;
12041 				else
12042 					event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12043 			} else {
12044 				ret = -ENODEV;
12045 			}
12046 		}
12047 
12048 		if (ret && event->destroy)
12049 			event->destroy(event);
12050 	}
12051 
12052 	if (ret) {
12053 		event->pmu = NULL;
12054 		module_put(pmu->module);
12055 	}
12056 
12057 	return ret;
12058 }
12059 
perf_init_event(struct perf_event * event)12060 static struct pmu *perf_init_event(struct perf_event *event)
12061 {
12062 	bool extended_type = false;
12063 	int idx, type, ret;
12064 	struct pmu *pmu;
12065 
12066 	idx = srcu_read_lock(&pmus_srcu);
12067 
12068 	/*
12069 	 * Save original type before calling pmu->event_init() since certain
12070 	 * pmus overwrites event->attr.type to forward event to another pmu.
12071 	 */
12072 	event->orig_type = event->attr.type;
12073 
12074 	/* Try parent's PMU first: */
12075 	if (event->parent && event->parent->pmu) {
12076 		pmu = event->parent->pmu;
12077 		ret = perf_try_init_event(pmu, event);
12078 		if (!ret)
12079 			goto unlock;
12080 	}
12081 
12082 	/*
12083 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12084 	 * are often aliases for PERF_TYPE_RAW.
12085 	 */
12086 	type = event->attr.type;
12087 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12088 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12089 		if (!type) {
12090 			type = PERF_TYPE_RAW;
12091 		} else {
12092 			extended_type = true;
12093 			event->attr.config &= PERF_HW_EVENT_MASK;
12094 		}
12095 	}
12096 
12097 again:
12098 	rcu_read_lock();
12099 	pmu = idr_find(&pmu_idr, type);
12100 	rcu_read_unlock();
12101 	if (pmu) {
12102 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12103 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12104 			goto fail;
12105 
12106 		ret = perf_try_init_event(pmu, event);
12107 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12108 			type = event->attr.type;
12109 			goto again;
12110 		}
12111 
12112 		if (ret)
12113 			pmu = ERR_PTR(ret);
12114 
12115 		goto unlock;
12116 	}
12117 
12118 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12119 		ret = perf_try_init_event(pmu, event);
12120 		if (!ret)
12121 			goto unlock;
12122 
12123 		if (ret != -ENOENT) {
12124 			pmu = ERR_PTR(ret);
12125 			goto unlock;
12126 		}
12127 	}
12128 fail:
12129 	pmu = ERR_PTR(-ENOENT);
12130 unlock:
12131 	srcu_read_unlock(&pmus_srcu, idx);
12132 
12133 	return pmu;
12134 }
12135 
attach_sb_event(struct perf_event * event)12136 static void attach_sb_event(struct perf_event *event)
12137 {
12138 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12139 
12140 	raw_spin_lock(&pel->lock);
12141 	list_add_rcu(&event->sb_list, &pel->list);
12142 	raw_spin_unlock(&pel->lock);
12143 }
12144 
12145 /*
12146  * We keep a list of all !task (and therefore per-cpu) events
12147  * that need to receive side-band records.
12148  *
12149  * This avoids having to scan all the various PMU per-cpu contexts
12150  * looking for them.
12151  */
account_pmu_sb_event(struct perf_event * event)12152 static void account_pmu_sb_event(struct perf_event *event)
12153 {
12154 	if (is_sb_event(event))
12155 		attach_sb_event(event);
12156 }
12157 
12158 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12159 static void account_freq_event_nohz(void)
12160 {
12161 #ifdef CONFIG_NO_HZ_FULL
12162 	/* Lock so we don't race with concurrent unaccount */
12163 	spin_lock(&nr_freq_lock);
12164 	if (atomic_inc_return(&nr_freq_events) == 1)
12165 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12166 	spin_unlock(&nr_freq_lock);
12167 #endif
12168 }
12169 
account_freq_event(void)12170 static void account_freq_event(void)
12171 {
12172 	if (tick_nohz_full_enabled())
12173 		account_freq_event_nohz();
12174 	else
12175 		atomic_inc(&nr_freq_events);
12176 }
12177 
12178 
account_event(struct perf_event * event)12179 static void account_event(struct perf_event *event)
12180 {
12181 	bool inc = false;
12182 
12183 	if (event->parent)
12184 		return;
12185 
12186 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12187 		inc = true;
12188 	if (event->attr.mmap || event->attr.mmap_data)
12189 		atomic_inc(&nr_mmap_events);
12190 	if (event->attr.build_id)
12191 		atomic_inc(&nr_build_id_events);
12192 	if (event->attr.comm)
12193 		atomic_inc(&nr_comm_events);
12194 	if (event->attr.namespaces)
12195 		atomic_inc(&nr_namespaces_events);
12196 	if (event->attr.cgroup)
12197 		atomic_inc(&nr_cgroup_events);
12198 	if (event->attr.task)
12199 		atomic_inc(&nr_task_events);
12200 	if (event->attr.freq)
12201 		account_freq_event();
12202 	if (event->attr.context_switch) {
12203 		atomic_inc(&nr_switch_events);
12204 		inc = true;
12205 	}
12206 	if (has_branch_stack(event))
12207 		inc = true;
12208 	if (is_cgroup_event(event))
12209 		inc = true;
12210 	if (event->attr.ksymbol)
12211 		atomic_inc(&nr_ksymbol_events);
12212 	if (event->attr.bpf_event)
12213 		atomic_inc(&nr_bpf_events);
12214 	if (event->attr.text_poke)
12215 		atomic_inc(&nr_text_poke_events);
12216 
12217 	if (inc) {
12218 		/*
12219 		 * We need the mutex here because static_branch_enable()
12220 		 * must complete *before* the perf_sched_count increment
12221 		 * becomes visible.
12222 		 */
12223 		if (atomic_inc_not_zero(&perf_sched_count))
12224 			goto enabled;
12225 
12226 		mutex_lock(&perf_sched_mutex);
12227 		if (!atomic_read(&perf_sched_count)) {
12228 			static_branch_enable(&perf_sched_events);
12229 			/*
12230 			 * Guarantee that all CPUs observe they key change and
12231 			 * call the perf scheduling hooks before proceeding to
12232 			 * install events that need them.
12233 			 */
12234 			synchronize_rcu();
12235 		}
12236 		/*
12237 		 * Now that we have waited for the sync_sched(), allow further
12238 		 * increments to by-pass the mutex.
12239 		 */
12240 		atomic_inc(&perf_sched_count);
12241 		mutex_unlock(&perf_sched_mutex);
12242 	}
12243 enabled:
12244 
12245 	account_pmu_sb_event(event);
12246 }
12247 
12248 /*
12249  * Allocate and initialize an event structure
12250  */
12251 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12252 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12253 		 struct task_struct *task,
12254 		 struct perf_event *group_leader,
12255 		 struct perf_event *parent_event,
12256 		 perf_overflow_handler_t overflow_handler,
12257 		 void *context, int cgroup_fd)
12258 {
12259 	struct pmu *pmu;
12260 	struct perf_event *event;
12261 	struct hw_perf_event *hwc;
12262 	long err = -EINVAL;
12263 	int node;
12264 
12265 	if ((unsigned)cpu >= nr_cpu_ids) {
12266 		if (!task || cpu != -1)
12267 			return ERR_PTR(-EINVAL);
12268 	}
12269 	if (attr->sigtrap && !task) {
12270 		/* Requires a task: avoid signalling random tasks. */
12271 		return ERR_PTR(-EINVAL);
12272 	}
12273 
12274 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12275 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12276 				      node);
12277 	if (!event)
12278 		return ERR_PTR(-ENOMEM);
12279 
12280 	/*
12281 	 * Single events are their own group leaders, with an
12282 	 * empty sibling list:
12283 	 */
12284 	if (!group_leader)
12285 		group_leader = event;
12286 
12287 	mutex_init(&event->child_mutex);
12288 	INIT_LIST_HEAD(&event->child_list);
12289 
12290 	INIT_LIST_HEAD(&event->event_entry);
12291 	INIT_LIST_HEAD(&event->sibling_list);
12292 	INIT_LIST_HEAD(&event->active_list);
12293 	init_event_group(event);
12294 	INIT_LIST_HEAD(&event->rb_entry);
12295 	INIT_LIST_HEAD(&event->active_entry);
12296 	INIT_LIST_HEAD(&event->addr_filters.list);
12297 	INIT_HLIST_NODE(&event->hlist_entry);
12298 
12299 
12300 	init_waitqueue_head(&event->waitq);
12301 	init_irq_work(&event->pending_irq, perf_pending_irq);
12302 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12303 	init_task_work(&event->pending_task, perf_pending_task);
12304 
12305 	mutex_init(&event->mmap_mutex);
12306 	raw_spin_lock_init(&event->addr_filters.lock);
12307 
12308 	atomic_long_set(&event->refcount, 1);
12309 	event->cpu		= cpu;
12310 	event->attr		= *attr;
12311 	event->group_leader	= group_leader;
12312 	event->pmu		= NULL;
12313 	event->oncpu		= -1;
12314 
12315 	event->parent		= parent_event;
12316 
12317 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12318 	event->id		= atomic64_inc_return(&perf_event_id);
12319 
12320 	event->state		= PERF_EVENT_STATE_INACTIVE;
12321 
12322 	if (parent_event)
12323 		event->event_caps = parent_event->event_caps;
12324 
12325 	if (task) {
12326 		event->attach_state = PERF_ATTACH_TASK;
12327 		/*
12328 		 * XXX pmu::event_init needs to know what task to account to
12329 		 * and we cannot use the ctx information because we need the
12330 		 * pmu before we get a ctx.
12331 		 */
12332 		event->hw.target = get_task_struct(task);
12333 	}
12334 
12335 	event->clock = &local_clock;
12336 	if (parent_event)
12337 		event->clock = parent_event->clock;
12338 
12339 	if (!overflow_handler && parent_event) {
12340 		overflow_handler = parent_event->overflow_handler;
12341 		context = parent_event->overflow_handler_context;
12342 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12343 		if (parent_event->prog) {
12344 			struct bpf_prog *prog = parent_event->prog;
12345 
12346 			bpf_prog_inc(prog);
12347 			event->prog = prog;
12348 		}
12349 #endif
12350 	}
12351 
12352 	if (overflow_handler) {
12353 		event->overflow_handler	= overflow_handler;
12354 		event->overflow_handler_context = context;
12355 	} else if (is_write_backward(event)){
12356 		event->overflow_handler = perf_event_output_backward;
12357 		event->overflow_handler_context = NULL;
12358 	} else {
12359 		event->overflow_handler = perf_event_output_forward;
12360 		event->overflow_handler_context = NULL;
12361 	}
12362 
12363 	perf_event__state_init(event);
12364 
12365 	pmu = NULL;
12366 
12367 	hwc = &event->hw;
12368 	hwc->sample_period = attr->sample_period;
12369 	if (attr->freq && attr->sample_freq)
12370 		hwc->sample_period = 1;
12371 	hwc->last_period = hwc->sample_period;
12372 
12373 	local64_set(&hwc->period_left, hwc->sample_period);
12374 
12375 	/*
12376 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12377 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12378 	 * collect per-thread samples.
12379 	 * See perf_output_read().
12380 	 */
12381 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12382 		goto err;
12383 
12384 	if (!has_branch_stack(event))
12385 		event->attr.branch_sample_type = 0;
12386 
12387 	pmu = perf_init_event(event);
12388 	if (IS_ERR(pmu)) {
12389 		err = PTR_ERR(pmu);
12390 		goto err;
12391 	}
12392 
12393 	/*
12394 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12395 	 * events (they don't make sense as the cgroup will be different
12396 	 * on other CPUs in the uncore mask).
12397 	 */
12398 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12399 		err = -EINVAL;
12400 		goto err;
12401 	}
12402 
12403 	if (event->attr.aux_output &&
12404 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12405 	     event->attr.aux_pause || event->attr.aux_resume)) {
12406 		err = -EOPNOTSUPP;
12407 		goto err;
12408 	}
12409 
12410 	if (event->attr.aux_pause && event->attr.aux_resume) {
12411 		err = -EINVAL;
12412 		goto err;
12413 	}
12414 
12415 	if (event->attr.aux_start_paused) {
12416 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
12417 			err = -EOPNOTSUPP;
12418 			goto err;
12419 		}
12420 		event->hw.aux_paused = 1;
12421 	}
12422 
12423 	if (cgroup_fd != -1) {
12424 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12425 		if (err)
12426 			goto err;
12427 	}
12428 
12429 	err = exclusive_event_init(event);
12430 	if (err)
12431 		goto err;
12432 
12433 	if (has_addr_filter(event)) {
12434 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12435 						    sizeof(struct perf_addr_filter_range),
12436 						    GFP_KERNEL);
12437 		if (!event->addr_filter_ranges) {
12438 			err = -ENOMEM;
12439 			goto err;
12440 		}
12441 
12442 		/*
12443 		 * Clone the parent's vma offsets: they are valid until exec()
12444 		 * even if the mm is not shared with the parent.
12445 		 */
12446 		if (event->parent) {
12447 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12448 
12449 			raw_spin_lock_irq(&ifh->lock);
12450 			memcpy(event->addr_filter_ranges,
12451 			       event->parent->addr_filter_ranges,
12452 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12453 			raw_spin_unlock_irq(&ifh->lock);
12454 		}
12455 
12456 		/* force hw sync on the address filters */
12457 		event->addr_filters_gen = 1;
12458 	}
12459 
12460 	if (!event->parent) {
12461 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12462 			err = get_callchain_buffers(attr->sample_max_stack);
12463 			if (err)
12464 				goto err;
12465 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
12466 		}
12467 	}
12468 
12469 	err = security_perf_event_alloc(event);
12470 	if (err)
12471 		goto err;
12472 
12473 	/* symmetric to unaccount_event() in _free_event() */
12474 	account_event(event);
12475 
12476 	return event;
12477 
12478 err:
12479 	__free_event(event);
12480 	return ERR_PTR(err);
12481 }
12482 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12483 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12484 			  struct perf_event_attr *attr)
12485 {
12486 	u32 size;
12487 	int ret;
12488 
12489 	/* Zero the full structure, so that a short copy will be nice. */
12490 	memset(attr, 0, sizeof(*attr));
12491 
12492 	ret = get_user(size, &uattr->size);
12493 	if (ret)
12494 		return ret;
12495 
12496 	/* ABI compatibility quirk: */
12497 	if (!size)
12498 		size = PERF_ATTR_SIZE_VER0;
12499 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12500 		goto err_size;
12501 
12502 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12503 	if (ret) {
12504 		if (ret == -E2BIG)
12505 			goto err_size;
12506 		return ret;
12507 	}
12508 
12509 	attr->size = size;
12510 
12511 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12512 		return -EINVAL;
12513 
12514 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12515 		return -EINVAL;
12516 
12517 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12518 		return -EINVAL;
12519 
12520 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12521 		u64 mask = attr->branch_sample_type;
12522 
12523 		/* only using defined bits */
12524 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12525 			return -EINVAL;
12526 
12527 		/* at least one branch bit must be set */
12528 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12529 			return -EINVAL;
12530 
12531 		/* propagate priv level, when not set for branch */
12532 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12533 
12534 			/* exclude_kernel checked on syscall entry */
12535 			if (!attr->exclude_kernel)
12536 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12537 
12538 			if (!attr->exclude_user)
12539 				mask |= PERF_SAMPLE_BRANCH_USER;
12540 
12541 			if (!attr->exclude_hv)
12542 				mask |= PERF_SAMPLE_BRANCH_HV;
12543 			/*
12544 			 * adjust user setting (for HW filter setup)
12545 			 */
12546 			attr->branch_sample_type = mask;
12547 		}
12548 		/* privileged levels capture (kernel, hv): check permissions */
12549 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12550 			ret = perf_allow_kernel(attr);
12551 			if (ret)
12552 				return ret;
12553 		}
12554 	}
12555 
12556 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12557 		ret = perf_reg_validate(attr->sample_regs_user);
12558 		if (ret)
12559 			return ret;
12560 	}
12561 
12562 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12563 		if (!arch_perf_have_user_stack_dump())
12564 			return -ENOSYS;
12565 
12566 		/*
12567 		 * We have __u32 type for the size, but so far
12568 		 * we can only use __u16 as maximum due to the
12569 		 * __u16 sample size limit.
12570 		 */
12571 		if (attr->sample_stack_user >= USHRT_MAX)
12572 			return -EINVAL;
12573 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12574 			return -EINVAL;
12575 	}
12576 
12577 	if (!attr->sample_max_stack)
12578 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12579 
12580 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12581 		ret = perf_reg_validate(attr->sample_regs_intr);
12582 
12583 #ifndef CONFIG_CGROUP_PERF
12584 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12585 		return -EINVAL;
12586 #endif
12587 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12588 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12589 		return -EINVAL;
12590 
12591 	if (!attr->inherit && attr->inherit_thread)
12592 		return -EINVAL;
12593 
12594 	if (attr->remove_on_exec && attr->enable_on_exec)
12595 		return -EINVAL;
12596 
12597 	if (attr->sigtrap && !attr->remove_on_exec)
12598 		return -EINVAL;
12599 
12600 out:
12601 	return ret;
12602 
12603 err_size:
12604 	put_user(sizeof(*attr), &uattr->size);
12605 	ret = -E2BIG;
12606 	goto out;
12607 }
12608 
mutex_lock_double(struct mutex * a,struct mutex * b)12609 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12610 {
12611 	if (b < a)
12612 		swap(a, b);
12613 
12614 	mutex_lock(a);
12615 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12616 }
12617 
12618 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12619 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12620 {
12621 	struct perf_buffer *rb = NULL;
12622 	int ret = -EINVAL;
12623 
12624 	if (!output_event) {
12625 		mutex_lock(&event->mmap_mutex);
12626 		goto set;
12627 	}
12628 
12629 	/* don't allow circular references */
12630 	if (event == output_event)
12631 		goto out;
12632 
12633 	/*
12634 	 * Don't allow cross-cpu buffers
12635 	 */
12636 	if (output_event->cpu != event->cpu)
12637 		goto out;
12638 
12639 	/*
12640 	 * If its not a per-cpu rb, it must be the same task.
12641 	 */
12642 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12643 		goto out;
12644 
12645 	/*
12646 	 * Mixing clocks in the same buffer is trouble you don't need.
12647 	 */
12648 	if (output_event->clock != event->clock)
12649 		goto out;
12650 
12651 	/*
12652 	 * Either writing ring buffer from beginning or from end.
12653 	 * Mixing is not allowed.
12654 	 */
12655 	if (is_write_backward(output_event) != is_write_backward(event))
12656 		goto out;
12657 
12658 	/*
12659 	 * If both events generate aux data, they must be on the same PMU
12660 	 */
12661 	if (has_aux(event) && has_aux(output_event) &&
12662 	    event->pmu != output_event->pmu)
12663 		goto out;
12664 
12665 	/*
12666 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12667 	 * output_event is already on rb->event_list, and the list iteration
12668 	 * restarts after every removal, it is guaranteed this new event is
12669 	 * observed *OR* if output_event is already removed, it's guaranteed we
12670 	 * observe !rb->mmap_count.
12671 	 */
12672 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12673 set:
12674 	/* Can't redirect output if we've got an active mmap() */
12675 	if (atomic_read(&event->mmap_count))
12676 		goto unlock;
12677 
12678 	if (output_event) {
12679 		/* get the rb we want to redirect to */
12680 		rb = ring_buffer_get(output_event);
12681 		if (!rb)
12682 			goto unlock;
12683 
12684 		/* did we race against perf_mmap_close() */
12685 		if (!atomic_read(&rb->mmap_count)) {
12686 			ring_buffer_put(rb);
12687 			goto unlock;
12688 		}
12689 	}
12690 
12691 	ring_buffer_attach(event, rb);
12692 
12693 	ret = 0;
12694 unlock:
12695 	mutex_unlock(&event->mmap_mutex);
12696 	if (output_event)
12697 		mutex_unlock(&output_event->mmap_mutex);
12698 
12699 out:
12700 	return ret;
12701 }
12702 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12703 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12704 {
12705 	bool nmi_safe = false;
12706 
12707 	switch (clk_id) {
12708 	case CLOCK_MONOTONIC:
12709 		event->clock = &ktime_get_mono_fast_ns;
12710 		nmi_safe = true;
12711 		break;
12712 
12713 	case CLOCK_MONOTONIC_RAW:
12714 		event->clock = &ktime_get_raw_fast_ns;
12715 		nmi_safe = true;
12716 		break;
12717 
12718 	case CLOCK_REALTIME:
12719 		event->clock = &ktime_get_real_ns;
12720 		break;
12721 
12722 	case CLOCK_BOOTTIME:
12723 		event->clock = &ktime_get_boottime_ns;
12724 		break;
12725 
12726 	case CLOCK_TAI:
12727 		event->clock = &ktime_get_clocktai_ns;
12728 		break;
12729 
12730 	default:
12731 		return -EINVAL;
12732 	}
12733 
12734 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12735 		return -EINVAL;
12736 
12737 	return 0;
12738 }
12739 
12740 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12741 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12742 {
12743 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12744 	bool is_capable = perfmon_capable();
12745 
12746 	if (attr->sigtrap) {
12747 		/*
12748 		 * perf_event_attr::sigtrap sends signals to the other task.
12749 		 * Require the current task to also have CAP_KILL.
12750 		 */
12751 		rcu_read_lock();
12752 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12753 		rcu_read_unlock();
12754 
12755 		/*
12756 		 * If the required capabilities aren't available, checks for
12757 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12758 		 * can effectively change the target task.
12759 		 */
12760 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12761 	}
12762 
12763 	/*
12764 	 * Preserve ptrace permission check for backwards compatibility. The
12765 	 * ptrace check also includes checks that the current task and other
12766 	 * task have matching uids, and is therefore not done here explicitly.
12767 	 */
12768 	return is_capable || ptrace_may_access(task, ptrace_mode);
12769 }
12770 
12771 /**
12772  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12773  *
12774  * @attr_uptr:	event_id type attributes for monitoring/sampling
12775  * @pid:		target pid
12776  * @cpu:		target cpu
12777  * @group_fd:		group leader event fd
12778  * @flags:		perf event open flags
12779  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12780 SYSCALL_DEFINE5(perf_event_open,
12781 		struct perf_event_attr __user *, attr_uptr,
12782 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12783 {
12784 	struct perf_event *group_leader = NULL, *output_event = NULL;
12785 	struct perf_event_pmu_context *pmu_ctx;
12786 	struct perf_event *event, *sibling;
12787 	struct perf_event_attr attr;
12788 	struct perf_event_context *ctx;
12789 	struct file *event_file = NULL;
12790 	struct task_struct *task = NULL;
12791 	struct pmu *pmu;
12792 	int event_fd;
12793 	int move_group = 0;
12794 	int err;
12795 	int f_flags = O_RDWR;
12796 	int cgroup_fd = -1;
12797 
12798 	/* for future expandability... */
12799 	if (flags & ~PERF_FLAG_ALL)
12800 		return -EINVAL;
12801 
12802 	err = perf_copy_attr(attr_uptr, &attr);
12803 	if (err)
12804 		return err;
12805 
12806 	/* Do we allow access to perf_event_open(2) ? */
12807 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12808 	if (err)
12809 		return err;
12810 
12811 	if (!attr.exclude_kernel) {
12812 		err = perf_allow_kernel(&attr);
12813 		if (err)
12814 			return err;
12815 	}
12816 
12817 	if (attr.namespaces) {
12818 		if (!perfmon_capable())
12819 			return -EACCES;
12820 	}
12821 
12822 	if (attr.freq) {
12823 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12824 			return -EINVAL;
12825 	} else {
12826 		if (attr.sample_period & (1ULL << 63))
12827 			return -EINVAL;
12828 	}
12829 
12830 	/* Only privileged users can get physical addresses */
12831 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12832 		err = perf_allow_kernel(&attr);
12833 		if (err)
12834 			return err;
12835 	}
12836 
12837 	/* REGS_INTR can leak data, lockdown must prevent this */
12838 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12839 		err = security_locked_down(LOCKDOWN_PERF);
12840 		if (err)
12841 			return err;
12842 	}
12843 
12844 	/*
12845 	 * In cgroup mode, the pid argument is used to pass the fd
12846 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12847 	 * designates the cpu on which to monitor threads from that
12848 	 * cgroup.
12849 	 */
12850 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12851 		return -EINVAL;
12852 
12853 	if (flags & PERF_FLAG_FD_CLOEXEC)
12854 		f_flags |= O_CLOEXEC;
12855 
12856 	event_fd = get_unused_fd_flags(f_flags);
12857 	if (event_fd < 0)
12858 		return event_fd;
12859 
12860 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
12861 	if (group_fd != -1) {
12862 		if (!is_perf_file(group)) {
12863 			err = -EBADF;
12864 			goto err_fd;
12865 		}
12866 		group_leader = fd_file(group)->private_data;
12867 		if (flags & PERF_FLAG_FD_OUTPUT)
12868 			output_event = group_leader;
12869 		if (flags & PERF_FLAG_FD_NO_GROUP)
12870 			group_leader = NULL;
12871 	}
12872 
12873 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12874 		task = find_lively_task_by_vpid(pid);
12875 		if (IS_ERR(task)) {
12876 			err = PTR_ERR(task);
12877 			goto err_fd;
12878 		}
12879 	}
12880 
12881 	if (task && group_leader &&
12882 	    group_leader->attr.inherit != attr.inherit) {
12883 		err = -EINVAL;
12884 		goto err_task;
12885 	}
12886 
12887 	if (flags & PERF_FLAG_PID_CGROUP)
12888 		cgroup_fd = pid;
12889 
12890 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12891 				 NULL, NULL, cgroup_fd);
12892 	if (IS_ERR(event)) {
12893 		err = PTR_ERR(event);
12894 		goto err_task;
12895 	}
12896 
12897 	if (is_sampling_event(event)) {
12898 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12899 			err = -EOPNOTSUPP;
12900 			goto err_alloc;
12901 		}
12902 	}
12903 
12904 	/*
12905 	 * Special case software events and allow them to be part of
12906 	 * any hardware group.
12907 	 */
12908 	pmu = event->pmu;
12909 
12910 	if (attr.use_clockid) {
12911 		err = perf_event_set_clock(event, attr.clockid);
12912 		if (err)
12913 			goto err_alloc;
12914 	}
12915 
12916 	if (pmu->task_ctx_nr == perf_sw_context)
12917 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12918 
12919 	if (task) {
12920 		err = down_read_interruptible(&task->signal->exec_update_lock);
12921 		if (err)
12922 			goto err_alloc;
12923 
12924 		/*
12925 		 * We must hold exec_update_lock across this and any potential
12926 		 * perf_install_in_context() call for this new event to
12927 		 * serialize against exec() altering our credentials (and the
12928 		 * perf_event_exit_task() that could imply).
12929 		 */
12930 		err = -EACCES;
12931 		if (!perf_check_permission(&attr, task))
12932 			goto err_cred;
12933 	}
12934 
12935 	/*
12936 	 * Get the target context (task or percpu):
12937 	 */
12938 	ctx = find_get_context(task, event);
12939 	if (IS_ERR(ctx)) {
12940 		err = PTR_ERR(ctx);
12941 		goto err_cred;
12942 	}
12943 
12944 	mutex_lock(&ctx->mutex);
12945 
12946 	if (ctx->task == TASK_TOMBSTONE) {
12947 		err = -ESRCH;
12948 		goto err_locked;
12949 	}
12950 
12951 	if (!task) {
12952 		/*
12953 		 * Check if the @cpu we're creating an event for is online.
12954 		 *
12955 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12956 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12957 		 */
12958 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12959 
12960 		if (!cpuctx->online) {
12961 			err = -ENODEV;
12962 			goto err_locked;
12963 		}
12964 	}
12965 
12966 	if (group_leader) {
12967 		err = -EINVAL;
12968 
12969 		/*
12970 		 * Do not allow a recursive hierarchy (this new sibling
12971 		 * becoming part of another group-sibling):
12972 		 */
12973 		if (group_leader->group_leader != group_leader)
12974 			goto err_locked;
12975 
12976 		/* All events in a group should have the same clock */
12977 		if (group_leader->clock != event->clock)
12978 			goto err_locked;
12979 
12980 		/*
12981 		 * Make sure we're both events for the same CPU;
12982 		 * grouping events for different CPUs is broken; since
12983 		 * you can never concurrently schedule them anyhow.
12984 		 */
12985 		if (group_leader->cpu != event->cpu)
12986 			goto err_locked;
12987 
12988 		/*
12989 		 * Make sure we're both on the same context; either task or cpu.
12990 		 */
12991 		if (group_leader->ctx != ctx)
12992 			goto err_locked;
12993 
12994 		/*
12995 		 * Only a group leader can be exclusive or pinned
12996 		 */
12997 		if (attr.exclusive || attr.pinned)
12998 			goto err_locked;
12999 
13000 		if (is_software_event(event) &&
13001 		    !in_software_context(group_leader)) {
13002 			/*
13003 			 * If the event is a sw event, but the group_leader
13004 			 * is on hw context.
13005 			 *
13006 			 * Allow the addition of software events to hw
13007 			 * groups, this is safe because software events
13008 			 * never fail to schedule.
13009 			 *
13010 			 * Note the comment that goes with struct
13011 			 * perf_event_pmu_context.
13012 			 */
13013 			pmu = group_leader->pmu_ctx->pmu;
13014 		} else if (!is_software_event(event)) {
13015 			if (is_software_event(group_leader) &&
13016 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13017 				/*
13018 				 * In case the group is a pure software group, and we
13019 				 * try to add a hardware event, move the whole group to
13020 				 * the hardware context.
13021 				 */
13022 				move_group = 1;
13023 			}
13024 
13025 			/* Don't allow group of multiple hw events from different pmus */
13026 			if (!in_software_context(group_leader) &&
13027 			    group_leader->pmu_ctx->pmu != pmu)
13028 				goto err_locked;
13029 		}
13030 	}
13031 
13032 	/*
13033 	 * Now that we're certain of the pmu; find the pmu_ctx.
13034 	 */
13035 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13036 	if (IS_ERR(pmu_ctx)) {
13037 		err = PTR_ERR(pmu_ctx);
13038 		goto err_locked;
13039 	}
13040 	event->pmu_ctx = pmu_ctx;
13041 
13042 	if (output_event) {
13043 		err = perf_event_set_output(event, output_event);
13044 		if (err)
13045 			goto err_context;
13046 	}
13047 
13048 	if (!perf_event_validate_size(event)) {
13049 		err = -E2BIG;
13050 		goto err_context;
13051 	}
13052 
13053 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13054 		err = -EINVAL;
13055 		goto err_context;
13056 	}
13057 
13058 	/*
13059 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13060 	 * because we need to serialize with concurrent event creation.
13061 	 */
13062 	if (!exclusive_event_installable(event, ctx)) {
13063 		err = -EBUSY;
13064 		goto err_context;
13065 	}
13066 
13067 	WARN_ON_ONCE(ctx->parent_ctx);
13068 
13069 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13070 	if (IS_ERR(event_file)) {
13071 		err = PTR_ERR(event_file);
13072 		event_file = NULL;
13073 		goto err_context;
13074 	}
13075 
13076 	/*
13077 	 * This is the point on no return; we cannot fail hereafter. This is
13078 	 * where we start modifying current state.
13079 	 */
13080 
13081 	if (move_group) {
13082 		perf_remove_from_context(group_leader, 0);
13083 		put_pmu_ctx(group_leader->pmu_ctx);
13084 
13085 		for_each_sibling_event(sibling, group_leader) {
13086 			perf_remove_from_context(sibling, 0);
13087 			put_pmu_ctx(sibling->pmu_ctx);
13088 		}
13089 
13090 		/*
13091 		 * Install the group siblings before the group leader.
13092 		 *
13093 		 * Because a group leader will try and install the entire group
13094 		 * (through the sibling list, which is still in-tact), we can
13095 		 * end up with siblings installed in the wrong context.
13096 		 *
13097 		 * By installing siblings first we NO-OP because they're not
13098 		 * reachable through the group lists.
13099 		 */
13100 		for_each_sibling_event(sibling, group_leader) {
13101 			sibling->pmu_ctx = pmu_ctx;
13102 			get_pmu_ctx(pmu_ctx);
13103 			perf_event__state_init(sibling);
13104 			perf_install_in_context(ctx, sibling, sibling->cpu);
13105 		}
13106 
13107 		/*
13108 		 * Removing from the context ends up with disabled
13109 		 * event. What we want here is event in the initial
13110 		 * startup state, ready to be add into new context.
13111 		 */
13112 		group_leader->pmu_ctx = pmu_ctx;
13113 		get_pmu_ctx(pmu_ctx);
13114 		perf_event__state_init(group_leader);
13115 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13116 	}
13117 
13118 	/*
13119 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13120 	 * that we're serialized against further additions and before
13121 	 * perf_install_in_context() which is the point the event is active and
13122 	 * can use these values.
13123 	 */
13124 	perf_event__header_size(event);
13125 	perf_event__id_header_size(event);
13126 
13127 	event->owner = current;
13128 
13129 	perf_install_in_context(ctx, event, event->cpu);
13130 	perf_unpin_context(ctx);
13131 
13132 	mutex_unlock(&ctx->mutex);
13133 
13134 	if (task) {
13135 		up_read(&task->signal->exec_update_lock);
13136 		put_task_struct(task);
13137 	}
13138 
13139 	mutex_lock(&current->perf_event_mutex);
13140 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13141 	mutex_unlock(&current->perf_event_mutex);
13142 
13143 	/*
13144 	 * File reference in group guarantees that group_leader has been
13145 	 * kept alive until we place the new event on the sibling_list.
13146 	 * This ensures destruction of the group leader will find
13147 	 * the pointer to itself in perf_group_detach().
13148 	 */
13149 	fd_install(event_fd, event_file);
13150 	return event_fd;
13151 
13152 err_context:
13153 	put_pmu_ctx(event->pmu_ctx);
13154 	event->pmu_ctx = NULL; /* _free_event() */
13155 err_locked:
13156 	mutex_unlock(&ctx->mutex);
13157 	perf_unpin_context(ctx);
13158 	put_ctx(ctx);
13159 err_cred:
13160 	if (task)
13161 		up_read(&task->signal->exec_update_lock);
13162 err_alloc:
13163 	free_event(event);
13164 err_task:
13165 	if (task)
13166 		put_task_struct(task);
13167 err_fd:
13168 	put_unused_fd(event_fd);
13169 	return err;
13170 }
13171 
13172 /**
13173  * perf_event_create_kernel_counter
13174  *
13175  * @attr: attributes of the counter to create
13176  * @cpu: cpu in which the counter is bound
13177  * @task: task to profile (NULL for percpu)
13178  * @overflow_handler: callback to trigger when we hit the event
13179  * @context: context data could be used in overflow_handler callback
13180  */
13181 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13182 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13183 				 struct task_struct *task,
13184 				 perf_overflow_handler_t overflow_handler,
13185 				 void *context)
13186 {
13187 	struct perf_event_pmu_context *pmu_ctx;
13188 	struct perf_event_context *ctx;
13189 	struct perf_event *event;
13190 	struct pmu *pmu;
13191 	int err;
13192 
13193 	/*
13194 	 * Grouping is not supported for kernel events, neither is 'AUX',
13195 	 * make sure the caller's intentions are adjusted.
13196 	 */
13197 	if (attr->aux_output || attr->aux_action)
13198 		return ERR_PTR(-EINVAL);
13199 
13200 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13201 				 overflow_handler, context, -1);
13202 	if (IS_ERR(event)) {
13203 		err = PTR_ERR(event);
13204 		goto err;
13205 	}
13206 
13207 	/* Mark owner so we could distinguish it from user events. */
13208 	event->owner = TASK_TOMBSTONE;
13209 	pmu = event->pmu;
13210 
13211 	if (pmu->task_ctx_nr == perf_sw_context)
13212 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13213 
13214 	/*
13215 	 * Get the target context (task or percpu):
13216 	 */
13217 	ctx = find_get_context(task, event);
13218 	if (IS_ERR(ctx)) {
13219 		err = PTR_ERR(ctx);
13220 		goto err_alloc;
13221 	}
13222 
13223 	WARN_ON_ONCE(ctx->parent_ctx);
13224 	mutex_lock(&ctx->mutex);
13225 	if (ctx->task == TASK_TOMBSTONE) {
13226 		err = -ESRCH;
13227 		goto err_unlock;
13228 	}
13229 
13230 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13231 	if (IS_ERR(pmu_ctx)) {
13232 		err = PTR_ERR(pmu_ctx);
13233 		goto err_unlock;
13234 	}
13235 	event->pmu_ctx = pmu_ctx;
13236 
13237 	if (!task) {
13238 		/*
13239 		 * Check if the @cpu we're creating an event for is online.
13240 		 *
13241 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13242 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13243 		 */
13244 		struct perf_cpu_context *cpuctx =
13245 			container_of(ctx, struct perf_cpu_context, ctx);
13246 		if (!cpuctx->online) {
13247 			err = -ENODEV;
13248 			goto err_pmu_ctx;
13249 		}
13250 	}
13251 
13252 	if (!exclusive_event_installable(event, ctx)) {
13253 		err = -EBUSY;
13254 		goto err_pmu_ctx;
13255 	}
13256 
13257 	perf_install_in_context(ctx, event, event->cpu);
13258 	perf_unpin_context(ctx);
13259 	mutex_unlock(&ctx->mutex);
13260 
13261 	return event;
13262 
13263 err_pmu_ctx:
13264 	put_pmu_ctx(pmu_ctx);
13265 	event->pmu_ctx = NULL; /* _free_event() */
13266 err_unlock:
13267 	mutex_unlock(&ctx->mutex);
13268 	perf_unpin_context(ctx);
13269 	put_ctx(ctx);
13270 err_alloc:
13271 	free_event(event);
13272 err:
13273 	return ERR_PTR(err);
13274 }
13275 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13276 
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13277 static void __perf_pmu_remove(struct perf_event_context *ctx,
13278 			      int cpu, struct pmu *pmu,
13279 			      struct perf_event_groups *groups,
13280 			      struct list_head *events)
13281 {
13282 	struct perf_event *event, *sibling;
13283 
13284 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13285 		perf_remove_from_context(event, 0);
13286 		put_pmu_ctx(event->pmu_ctx);
13287 		list_add(&event->migrate_entry, events);
13288 
13289 		for_each_sibling_event(sibling, event) {
13290 			perf_remove_from_context(sibling, 0);
13291 			put_pmu_ctx(sibling->pmu_ctx);
13292 			list_add(&sibling->migrate_entry, events);
13293 		}
13294 	}
13295 }
13296 
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13297 static void __perf_pmu_install_event(struct pmu *pmu,
13298 				     struct perf_event_context *ctx,
13299 				     int cpu, struct perf_event *event)
13300 {
13301 	struct perf_event_pmu_context *epc;
13302 	struct perf_event_context *old_ctx = event->ctx;
13303 
13304 	get_ctx(ctx); /* normally find_get_context() */
13305 
13306 	event->cpu = cpu;
13307 	epc = find_get_pmu_context(pmu, ctx, event);
13308 	event->pmu_ctx = epc;
13309 
13310 	if (event->state >= PERF_EVENT_STATE_OFF)
13311 		event->state = PERF_EVENT_STATE_INACTIVE;
13312 	perf_install_in_context(ctx, event, cpu);
13313 
13314 	/*
13315 	 * Now that event->ctx is updated and visible, put the old ctx.
13316 	 */
13317 	put_ctx(old_ctx);
13318 }
13319 
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13320 static void __perf_pmu_install(struct perf_event_context *ctx,
13321 			       int cpu, struct pmu *pmu, struct list_head *events)
13322 {
13323 	struct perf_event *event, *tmp;
13324 
13325 	/*
13326 	 * Re-instate events in 2 passes.
13327 	 *
13328 	 * Skip over group leaders and only install siblings on this first
13329 	 * pass, siblings will not get enabled without a leader, however a
13330 	 * leader will enable its siblings, even if those are still on the old
13331 	 * context.
13332 	 */
13333 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13334 		if (event->group_leader == event)
13335 			continue;
13336 
13337 		list_del(&event->migrate_entry);
13338 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13339 	}
13340 
13341 	/*
13342 	 * Once all the siblings are setup properly, install the group leaders
13343 	 * to make it go.
13344 	 */
13345 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13346 		list_del(&event->migrate_entry);
13347 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13348 	}
13349 }
13350 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13351 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13352 {
13353 	struct perf_event_context *src_ctx, *dst_ctx;
13354 	LIST_HEAD(events);
13355 
13356 	/*
13357 	 * Since per-cpu context is persistent, no need to grab an extra
13358 	 * reference.
13359 	 */
13360 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13361 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13362 
13363 	/*
13364 	 * See perf_event_ctx_lock() for comments on the details
13365 	 * of swizzling perf_event::ctx.
13366 	 */
13367 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13368 
13369 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13370 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13371 
13372 	if (!list_empty(&events)) {
13373 		/*
13374 		 * Wait for the events to quiesce before re-instating them.
13375 		 */
13376 		synchronize_rcu();
13377 
13378 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13379 	}
13380 
13381 	mutex_unlock(&dst_ctx->mutex);
13382 	mutex_unlock(&src_ctx->mutex);
13383 }
13384 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13385 
sync_child_event(struct perf_event * child_event)13386 static void sync_child_event(struct perf_event *child_event)
13387 {
13388 	struct perf_event *parent_event = child_event->parent;
13389 	u64 child_val;
13390 
13391 	if (child_event->attr.inherit_stat) {
13392 		struct task_struct *task = child_event->ctx->task;
13393 
13394 		if (task && task != TASK_TOMBSTONE)
13395 			perf_event_read_event(child_event, task);
13396 	}
13397 
13398 	child_val = perf_event_count(child_event, false);
13399 
13400 	/*
13401 	 * Add back the child's count to the parent's count:
13402 	 */
13403 	atomic64_add(child_val, &parent_event->child_count);
13404 	atomic64_add(child_event->total_time_enabled,
13405 		     &parent_event->child_total_time_enabled);
13406 	atomic64_add(child_event->total_time_running,
13407 		     &parent_event->child_total_time_running);
13408 }
13409 
13410 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13411 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13412 {
13413 	struct perf_event *parent_event = event->parent;
13414 	unsigned long detach_flags = 0;
13415 
13416 	if (parent_event) {
13417 		/*
13418 		 * Do not destroy the 'original' grouping; because of the
13419 		 * context switch optimization the original events could've
13420 		 * ended up in a random child task.
13421 		 *
13422 		 * If we were to destroy the original group, all group related
13423 		 * operations would cease to function properly after this
13424 		 * random child dies.
13425 		 *
13426 		 * Do destroy all inherited groups, we don't care about those
13427 		 * and being thorough is better.
13428 		 */
13429 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13430 		mutex_lock(&parent_event->child_mutex);
13431 	}
13432 
13433 	perf_remove_from_context(event, detach_flags | DETACH_EXIT);
13434 
13435 	/*
13436 	 * Child events can be freed.
13437 	 */
13438 	if (parent_event) {
13439 		mutex_unlock(&parent_event->child_mutex);
13440 		/*
13441 		 * Kick perf_poll() for is_event_hup();
13442 		 */
13443 		perf_event_wakeup(parent_event);
13444 		put_event(event);
13445 		return;
13446 	}
13447 
13448 	/*
13449 	 * Parent events are governed by their filedesc, retain them.
13450 	 */
13451 	perf_event_wakeup(event);
13452 }
13453 
perf_event_exit_task_context(struct task_struct * child)13454 static void perf_event_exit_task_context(struct task_struct *child)
13455 {
13456 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13457 	struct perf_event *child_event, *next;
13458 
13459 	WARN_ON_ONCE(child != current);
13460 
13461 	child_ctx = perf_pin_task_context(child);
13462 	if (!child_ctx)
13463 		return;
13464 
13465 	/*
13466 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13467 	 * ctx::mutex over the entire thing. This serializes against almost
13468 	 * everything that wants to access the ctx.
13469 	 *
13470 	 * The exception is sys_perf_event_open() /
13471 	 * perf_event_create_kernel_count() which does find_get_context()
13472 	 * without ctx::mutex (it cannot because of the move_group double mutex
13473 	 * lock thing). See the comments in perf_install_in_context().
13474 	 */
13475 	mutex_lock(&child_ctx->mutex);
13476 
13477 	/*
13478 	 * In a single ctx::lock section, de-schedule the events and detach the
13479 	 * context from the task such that we cannot ever get it scheduled back
13480 	 * in.
13481 	 */
13482 	raw_spin_lock_irq(&child_ctx->lock);
13483 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13484 
13485 	/*
13486 	 * Now that the context is inactive, destroy the task <-> ctx relation
13487 	 * and mark the context dead.
13488 	 */
13489 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13490 	put_ctx(child_ctx); /* cannot be last */
13491 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13492 	put_task_struct(current); /* cannot be last */
13493 
13494 	clone_ctx = unclone_ctx(child_ctx);
13495 	raw_spin_unlock_irq(&child_ctx->lock);
13496 
13497 	if (clone_ctx)
13498 		put_ctx(clone_ctx);
13499 
13500 	/*
13501 	 * Report the task dead after unscheduling the events so that we
13502 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13503 	 * get a few PERF_RECORD_READ events.
13504 	 */
13505 	perf_event_task(child, child_ctx, 0);
13506 
13507 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13508 		perf_event_exit_event(child_event, child_ctx);
13509 
13510 	mutex_unlock(&child_ctx->mutex);
13511 
13512 	put_ctx(child_ctx);
13513 }
13514 
13515 /*
13516  * When a child task exits, feed back event values to parent events.
13517  *
13518  * Can be called with exec_update_lock held when called from
13519  * setup_new_exec().
13520  */
perf_event_exit_task(struct task_struct * child)13521 void perf_event_exit_task(struct task_struct *child)
13522 {
13523 	struct perf_event *event, *tmp;
13524 
13525 	mutex_lock(&child->perf_event_mutex);
13526 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13527 				 owner_entry) {
13528 		list_del_init(&event->owner_entry);
13529 
13530 		/*
13531 		 * Ensure the list deletion is visible before we clear
13532 		 * the owner, closes a race against perf_release() where
13533 		 * we need to serialize on the owner->perf_event_mutex.
13534 		 */
13535 		smp_store_release(&event->owner, NULL);
13536 	}
13537 	mutex_unlock(&child->perf_event_mutex);
13538 
13539 	perf_event_exit_task_context(child);
13540 
13541 	/*
13542 	 * The perf_event_exit_task_context calls perf_event_task
13543 	 * with child's task_ctx, which generates EXIT events for
13544 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13545 	 * At this point we need to send EXIT events to cpu contexts.
13546 	 */
13547 	perf_event_task(child, NULL, 0);
13548 }
13549 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13550 static void perf_free_event(struct perf_event *event,
13551 			    struct perf_event_context *ctx)
13552 {
13553 	struct perf_event *parent = event->parent;
13554 
13555 	if (WARN_ON_ONCE(!parent))
13556 		return;
13557 
13558 	mutex_lock(&parent->child_mutex);
13559 	list_del_init(&event->child_list);
13560 	mutex_unlock(&parent->child_mutex);
13561 
13562 	raw_spin_lock_irq(&ctx->lock);
13563 	perf_group_detach(event);
13564 	list_del_event(event, ctx);
13565 	raw_spin_unlock_irq(&ctx->lock);
13566 	put_event(event);
13567 }
13568 
13569 /*
13570  * Free a context as created by inheritance by perf_event_init_task() below,
13571  * used by fork() in case of fail.
13572  *
13573  * Even though the task has never lived, the context and events have been
13574  * exposed through the child_list, so we must take care tearing it all down.
13575  */
perf_event_free_task(struct task_struct * task)13576 void perf_event_free_task(struct task_struct *task)
13577 {
13578 	struct perf_event_context *ctx;
13579 	struct perf_event *event, *tmp;
13580 
13581 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13582 	if (!ctx)
13583 		return;
13584 
13585 	mutex_lock(&ctx->mutex);
13586 	raw_spin_lock_irq(&ctx->lock);
13587 	/*
13588 	 * Destroy the task <-> ctx relation and mark the context dead.
13589 	 *
13590 	 * This is important because even though the task hasn't been
13591 	 * exposed yet the context has been (through child_list).
13592 	 */
13593 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13594 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13595 	put_task_struct(task); /* cannot be last */
13596 	raw_spin_unlock_irq(&ctx->lock);
13597 
13598 
13599 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13600 		perf_free_event(event, ctx);
13601 
13602 	mutex_unlock(&ctx->mutex);
13603 
13604 	/*
13605 	 * perf_event_release_kernel() could've stolen some of our
13606 	 * child events and still have them on its free_list. In that
13607 	 * case we must wait for these events to have been freed (in
13608 	 * particular all their references to this task must've been
13609 	 * dropped).
13610 	 *
13611 	 * Without this copy_process() will unconditionally free this
13612 	 * task (irrespective of its reference count) and
13613 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13614 	 * use-after-free.
13615 	 *
13616 	 * Wait for all events to drop their context reference.
13617 	 */
13618 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13619 	put_ctx(ctx); /* must be last */
13620 }
13621 
perf_event_delayed_put(struct task_struct * task)13622 void perf_event_delayed_put(struct task_struct *task)
13623 {
13624 	WARN_ON_ONCE(task->perf_event_ctxp);
13625 }
13626 
perf_event_get(unsigned int fd)13627 struct file *perf_event_get(unsigned int fd)
13628 {
13629 	struct file *file = fget(fd);
13630 	if (!file)
13631 		return ERR_PTR(-EBADF);
13632 
13633 	if (file->f_op != &perf_fops) {
13634 		fput(file);
13635 		return ERR_PTR(-EBADF);
13636 	}
13637 
13638 	return file;
13639 }
13640 
perf_get_event(struct file * file)13641 const struct perf_event *perf_get_event(struct file *file)
13642 {
13643 	if (file->f_op != &perf_fops)
13644 		return ERR_PTR(-EINVAL);
13645 
13646 	return file->private_data;
13647 }
13648 
perf_event_attrs(struct perf_event * event)13649 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13650 {
13651 	if (!event)
13652 		return ERR_PTR(-EINVAL);
13653 
13654 	return &event->attr;
13655 }
13656 
perf_allow_kernel(struct perf_event_attr * attr)13657 int perf_allow_kernel(struct perf_event_attr *attr)
13658 {
13659 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13660 		return -EACCES;
13661 
13662 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13663 }
13664 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13665 
13666 /*
13667  * Inherit an event from parent task to child task.
13668  *
13669  * Returns:
13670  *  - valid pointer on success
13671  *  - NULL for orphaned events
13672  *  - IS_ERR() on error
13673  */
13674 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13675 inherit_event(struct perf_event *parent_event,
13676 	      struct task_struct *parent,
13677 	      struct perf_event_context *parent_ctx,
13678 	      struct task_struct *child,
13679 	      struct perf_event *group_leader,
13680 	      struct perf_event_context *child_ctx)
13681 {
13682 	enum perf_event_state parent_state = parent_event->state;
13683 	struct perf_event_pmu_context *pmu_ctx;
13684 	struct perf_event *child_event;
13685 	unsigned long flags;
13686 
13687 	/*
13688 	 * Instead of creating recursive hierarchies of events,
13689 	 * we link inherited events back to the original parent,
13690 	 * which has a filp for sure, which we use as the reference
13691 	 * count:
13692 	 */
13693 	if (parent_event->parent)
13694 		parent_event = parent_event->parent;
13695 
13696 	child_event = perf_event_alloc(&parent_event->attr,
13697 					   parent_event->cpu,
13698 					   child,
13699 					   group_leader, parent_event,
13700 					   NULL, NULL, -1);
13701 	if (IS_ERR(child_event))
13702 		return child_event;
13703 
13704 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13705 	if (IS_ERR(pmu_ctx)) {
13706 		free_event(child_event);
13707 		return ERR_CAST(pmu_ctx);
13708 	}
13709 	child_event->pmu_ctx = pmu_ctx;
13710 
13711 	/*
13712 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13713 	 * must be under the same lock in order to serialize against
13714 	 * perf_event_release_kernel(), such that either we must observe
13715 	 * is_orphaned_event() or they will observe us on the child_list.
13716 	 */
13717 	mutex_lock(&parent_event->child_mutex);
13718 	if (is_orphaned_event(parent_event) ||
13719 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13720 		mutex_unlock(&parent_event->child_mutex);
13721 		/* task_ctx_data is freed with child_ctx */
13722 		free_event(child_event);
13723 		return NULL;
13724 	}
13725 
13726 	get_ctx(child_ctx);
13727 
13728 	/*
13729 	 * Make the child state follow the state of the parent event,
13730 	 * not its attr.disabled bit.  We hold the parent's mutex,
13731 	 * so we won't race with perf_event_{en, dis}able_family.
13732 	 */
13733 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13734 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13735 	else
13736 		child_event->state = PERF_EVENT_STATE_OFF;
13737 
13738 	if (parent_event->attr.freq) {
13739 		u64 sample_period = parent_event->hw.sample_period;
13740 		struct hw_perf_event *hwc = &child_event->hw;
13741 
13742 		hwc->sample_period = sample_period;
13743 		hwc->last_period   = sample_period;
13744 
13745 		local64_set(&hwc->period_left, sample_period);
13746 	}
13747 
13748 	child_event->ctx = child_ctx;
13749 	child_event->overflow_handler = parent_event->overflow_handler;
13750 	child_event->overflow_handler_context
13751 		= parent_event->overflow_handler_context;
13752 
13753 	/*
13754 	 * Precalculate sample_data sizes
13755 	 */
13756 	perf_event__header_size(child_event);
13757 	perf_event__id_header_size(child_event);
13758 
13759 	/*
13760 	 * Link it up in the child's context:
13761 	 */
13762 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13763 	add_event_to_ctx(child_event, child_ctx);
13764 	child_event->attach_state |= PERF_ATTACH_CHILD;
13765 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13766 
13767 	/*
13768 	 * Link this into the parent event's child list
13769 	 */
13770 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13771 	mutex_unlock(&parent_event->child_mutex);
13772 
13773 	return child_event;
13774 }
13775 
13776 /*
13777  * Inherits an event group.
13778  *
13779  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13780  * This matches with perf_event_release_kernel() removing all child events.
13781  *
13782  * Returns:
13783  *  - 0 on success
13784  *  - <0 on error
13785  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13786 static int inherit_group(struct perf_event *parent_event,
13787 	      struct task_struct *parent,
13788 	      struct perf_event_context *parent_ctx,
13789 	      struct task_struct *child,
13790 	      struct perf_event_context *child_ctx)
13791 {
13792 	struct perf_event *leader;
13793 	struct perf_event *sub;
13794 	struct perf_event *child_ctr;
13795 
13796 	leader = inherit_event(parent_event, parent, parent_ctx,
13797 				 child, NULL, child_ctx);
13798 	if (IS_ERR(leader))
13799 		return PTR_ERR(leader);
13800 	/*
13801 	 * @leader can be NULL here because of is_orphaned_event(). In this
13802 	 * case inherit_event() will create individual events, similar to what
13803 	 * perf_group_detach() would do anyway.
13804 	 */
13805 	for_each_sibling_event(sub, parent_event) {
13806 		child_ctr = inherit_event(sub, parent, parent_ctx,
13807 					    child, leader, child_ctx);
13808 		if (IS_ERR(child_ctr))
13809 			return PTR_ERR(child_ctr);
13810 
13811 		if (sub->aux_event == parent_event && child_ctr &&
13812 		    !perf_get_aux_event(child_ctr, leader))
13813 			return -EINVAL;
13814 	}
13815 	if (leader)
13816 		leader->group_generation = parent_event->group_generation;
13817 	return 0;
13818 }
13819 
13820 /*
13821  * Creates the child task context and tries to inherit the event-group.
13822  *
13823  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13824  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13825  * consistent with perf_event_release_kernel() removing all child events.
13826  *
13827  * Returns:
13828  *  - 0 on success
13829  *  - <0 on error
13830  */
13831 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13832 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13833 		   struct perf_event_context *parent_ctx,
13834 		   struct task_struct *child,
13835 		   u64 clone_flags, int *inherited_all)
13836 {
13837 	struct perf_event_context *child_ctx;
13838 	int ret;
13839 
13840 	if (!event->attr.inherit ||
13841 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13842 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13843 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13844 		*inherited_all = 0;
13845 		return 0;
13846 	}
13847 
13848 	child_ctx = child->perf_event_ctxp;
13849 	if (!child_ctx) {
13850 		/*
13851 		 * This is executed from the parent task context, so
13852 		 * inherit events that have been marked for cloning.
13853 		 * First allocate and initialize a context for the
13854 		 * child.
13855 		 */
13856 		child_ctx = alloc_perf_context(child);
13857 		if (!child_ctx)
13858 			return -ENOMEM;
13859 
13860 		child->perf_event_ctxp = child_ctx;
13861 	}
13862 
13863 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13864 	if (ret)
13865 		*inherited_all = 0;
13866 
13867 	return ret;
13868 }
13869 
13870 /*
13871  * Initialize the perf_event context in task_struct
13872  */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13873 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13874 {
13875 	struct perf_event_context *child_ctx, *parent_ctx;
13876 	struct perf_event_context *cloned_ctx;
13877 	struct perf_event *event;
13878 	struct task_struct *parent = current;
13879 	int inherited_all = 1;
13880 	unsigned long flags;
13881 	int ret = 0;
13882 
13883 	if (likely(!parent->perf_event_ctxp))
13884 		return 0;
13885 
13886 	/*
13887 	 * If the parent's context is a clone, pin it so it won't get
13888 	 * swapped under us.
13889 	 */
13890 	parent_ctx = perf_pin_task_context(parent);
13891 	if (!parent_ctx)
13892 		return 0;
13893 
13894 	/*
13895 	 * No need to check if parent_ctx != NULL here; since we saw
13896 	 * it non-NULL earlier, the only reason for it to become NULL
13897 	 * is if we exit, and since we're currently in the middle of
13898 	 * a fork we can't be exiting at the same time.
13899 	 */
13900 
13901 	/*
13902 	 * Lock the parent list. No need to lock the child - not PID
13903 	 * hashed yet and not running, so nobody can access it.
13904 	 */
13905 	mutex_lock(&parent_ctx->mutex);
13906 
13907 	/*
13908 	 * We dont have to disable NMIs - we are only looking at
13909 	 * the list, not manipulating it:
13910 	 */
13911 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13912 		ret = inherit_task_group(event, parent, parent_ctx,
13913 					 child, clone_flags, &inherited_all);
13914 		if (ret)
13915 			goto out_unlock;
13916 	}
13917 
13918 	/*
13919 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13920 	 * to allocations, but we need to prevent rotation because
13921 	 * rotate_ctx() will change the list from interrupt context.
13922 	 */
13923 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13924 	parent_ctx->rotate_disable = 1;
13925 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13926 
13927 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13928 		ret = inherit_task_group(event, parent, parent_ctx,
13929 					 child, clone_flags, &inherited_all);
13930 		if (ret)
13931 			goto out_unlock;
13932 	}
13933 
13934 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13935 	parent_ctx->rotate_disable = 0;
13936 
13937 	child_ctx = child->perf_event_ctxp;
13938 
13939 	if (child_ctx && inherited_all) {
13940 		/*
13941 		 * Mark the child context as a clone of the parent
13942 		 * context, or of whatever the parent is a clone of.
13943 		 *
13944 		 * Note that if the parent is a clone, the holding of
13945 		 * parent_ctx->lock avoids it from being uncloned.
13946 		 */
13947 		cloned_ctx = parent_ctx->parent_ctx;
13948 		if (cloned_ctx) {
13949 			child_ctx->parent_ctx = cloned_ctx;
13950 			child_ctx->parent_gen = parent_ctx->parent_gen;
13951 		} else {
13952 			child_ctx->parent_ctx = parent_ctx;
13953 			child_ctx->parent_gen = parent_ctx->generation;
13954 		}
13955 		get_ctx(child_ctx->parent_ctx);
13956 	}
13957 
13958 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13959 out_unlock:
13960 	mutex_unlock(&parent_ctx->mutex);
13961 
13962 	perf_unpin_context(parent_ctx);
13963 	put_ctx(parent_ctx);
13964 
13965 	return ret;
13966 }
13967 
13968 /*
13969  * Initialize the perf_event context in task_struct
13970  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13971 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13972 {
13973 	int ret;
13974 
13975 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13976 	child->perf_event_ctxp = NULL;
13977 	mutex_init(&child->perf_event_mutex);
13978 	INIT_LIST_HEAD(&child->perf_event_list);
13979 	child->perf_ctx_data = NULL;
13980 
13981 	ret = perf_event_init_context(child, clone_flags);
13982 	if (ret) {
13983 		perf_event_free_task(child);
13984 		return ret;
13985 	}
13986 
13987 	return 0;
13988 }
13989 
perf_event_init_all_cpus(void)13990 static void __init perf_event_init_all_cpus(void)
13991 {
13992 	struct swevent_htable *swhash;
13993 	struct perf_cpu_context *cpuctx;
13994 	int cpu;
13995 
13996 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13997 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
13998 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
13999 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14000 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14001 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14002 
14003 
14004 	for_each_possible_cpu(cpu) {
14005 		swhash = &per_cpu(swevent_htable, cpu);
14006 		mutex_init(&swhash->hlist_mutex);
14007 
14008 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14009 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14010 
14011 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14012 
14013 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14014 		__perf_event_init_context(&cpuctx->ctx);
14015 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14016 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14017 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14018 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14019 		cpuctx->heap = cpuctx->heap_default;
14020 	}
14021 }
14022 
perf_swevent_init_cpu(unsigned int cpu)14023 static void perf_swevent_init_cpu(unsigned int cpu)
14024 {
14025 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14026 
14027 	mutex_lock(&swhash->hlist_mutex);
14028 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14029 		struct swevent_hlist *hlist;
14030 
14031 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14032 		WARN_ON(!hlist);
14033 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14034 	}
14035 	mutex_unlock(&swhash->hlist_mutex);
14036 }
14037 
14038 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14039 static void __perf_event_exit_context(void *__info)
14040 {
14041 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14042 	struct perf_event_context *ctx = __info;
14043 	struct perf_event *event;
14044 
14045 	raw_spin_lock(&ctx->lock);
14046 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14047 	list_for_each_entry(event, &ctx->event_list, event_entry)
14048 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14049 	raw_spin_unlock(&ctx->lock);
14050 }
14051 
perf_event_clear_cpumask(unsigned int cpu)14052 static void perf_event_clear_cpumask(unsigned int cpu)
14053 {
14054 	int target[PERF_PMU_MAX_SCOPE];
14055 	unsigned int scope;
14056 	struct pmu *pmu;
14057 
14058 	cpumask_clear_cpu(cpu, perf_online_mask);
14059 
14060 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14061 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14062 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14063 
14064 		target[scope] = -1;
14065 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14066 			continue;
14067 
14068 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14069 			continue;
14070 		target[scope] = cpumask_any_but(cpumask, cpu);
14071 		if (target[scope] < nr_cpu_ids)
14072 			cpumask_set_cpu(target[scope], pmu_cpumask);
14073 	}
14074 
14075 	/* migrate */
14076 	list_for_each_entry(pmu, &pmus, entry) {
14077 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14078 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14079 			continue;
14080 
14081 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14082 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14083 	}
14084 }
14085 
perf_event_exit_cpu_context(int cpu)14086 static void perf_event_exit_cpu_context(int cpu)
14087 {
14088 	struct perf_cpu_context *cpuctx;
14089 	struct perf_event_context *ctx;
14090 
14091 	// XXX simplify cpuctx->online
14092 	mutex_lock(&pmus_lock);
14093 	/*
14094 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14095 	 * Must be invoked before the __perf_event_exit_context.
14096 	 */
14097 	perf_event_clear_cpumask(cpu);
14098 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14099 	ctx = &cpuctx->ctx;
14100 
14101 	mutex_lock(&ctx->mutex);
14102 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14103 	cpuctx->online = 0;
14104 	mutex_unlock(&ctx->mutex);
14105 	mutex_unlock(&pmus_lock);
14106 }
14107 #else
14108 
perf_event_exit_cpu_context(int cpu)14109 static void perf_event_exit_cpu_context(int cpu) { }
14110 
14111 #endif
14112 
perf_event_setup_cpumask(unsigned int cpu)14113 static void perf_event_setup_cpumask(unsigned int cpu)
14114 {
14115 	struct cpumask *pmu_cpumask;
14116 	unsigned int scope;
14117 
14118 	/*
14119 	 * Early boot stage, the cpumask hasn't been set yet.
14120 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14121 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14122 	 */
14123 	if (cpumask_empty(perf_online_mask)) {
14124 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14125 			pmu_cpumask = perf_scope_cpumask(scope);
14126 			if (WARN_ON_ONCE(!pmu_cpumask))
14127 				continue;
14128 			cpumask_set_cpu(cpu, pmu_cpumask);
14129 		}
14130 		goto end;
14131 	}
14132 
14133 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14134 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14135 
14136 		pmu_cpumask = perf_scope_cpumask(scope);
14137 
14138 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14139 			continue;
14140 
14141 		if (!cpumask_empty(cpumask) &&
14142 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14143 			cpumask_set_cpu(cpu, pmu_cpumask);
14144 	}
14145 end:
14146 	cpumask_set_cpu(cpu, perf_online_mask);
14147 }
14148 
perf_event_init_cpu(unsigned int cpu)14149 int perf_event_init_cpu(unsigned int cpu)
14150 {
14151 	struct perf_cpu_context *cpuctx;
14152 	struct perf_event_context *ctx;
14153 
14154 	perf_swevent_init_cpu(cpu);
14155 
14156 	mutex_lock(&pmus_lock);
14157 	perf_event_setup_cpumask(cpu);
14158 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14159 	ctx = &cpuctx->ctx;
14160 
14161 	mutex_lock(&ctx->mutex);
14162 	cpuctx->online = 1;
14163 	mutex_unlock(&ctx->mutex);
14164 	mutex_unlock(&pmus_lock);
14165 
14166 	return 0;
14167 }
14168 
perf_event_exit_cpu(unsigned int cpu)14169 int perf_event_exit_cpu(unsigned int cpu)
14170 {
14171 	perf_event_exit_cpu_context(cpu);
14172 	return 0;
14173 }
14174 
14175 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14176 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14177 {
14178 	int cpu;
14179 
14180 	for_each_online_cpu(cpu)
14181 		perf_event_exit_cpu(cpu);
14182 
14183 	return NOTIFY_OK;
14184 }
14185 
14186 /*
14187  * Run the perf reboot notifier at the very last possible moment so that
14188  * the generic watchdog code runs as long as possible.
14189  */
14190 static struct notifier_block perf_reboot_notifier = {
14191 	.notifier_call = perf_reboot,
14192 	.priority = INT_MIN,
14193 };
14194 
perf_event_init(void)14195 void __init perf_event_init(void)
14196 {
14197 	int ret;
14198 
14199 	idr_init(&pmu_idr);
14200 
14201 	perf_event_init_all_cpus();
14202 	init_srcu_struct(&pmus_srcu);
14203 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14204 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14205 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14206 	perf_tp_register();
14207 	perf_event_init_cpu(smp_processor_id());
14208 	register_reboot_notifier(&perf_reboot_notifier);
14209 
14210 	ret = init_hw_breakpoint();
14211 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14212 
14213 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14214 
14215 	/*
14216 	 * Build time assertion that we keep the data_head at the intended
14217 	 * location.  IOW, validation we got the __reserved[] size right.
14218 	 */
14219 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14220 		     != 1024);
14221 }
14222 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14223 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14224 			      char *page)
14225 {
14226 	struct perf_pmu_events_attr *pmu_attr =
14227 		container_of(attr, struct perf_pmu_events_attr, attr);
14228 
14229 	if (pmu_attr->event_str)
14230 		return sprintf(page, "%s\n", pmu_attr->event_str);
14231 
14232 	return 0;
14233 }
14234 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14235 
perf_event_sysfs_init(void)14236 static int __init perf_event_sysfs_init(void)
14237 {
14238 	struct pmu *pmu;
14239 	int ret;
14240 
14241 	mutex_lock(&pmus_lock);
14242 
14243 	ret = bus_register(&pmu_bus);
14244 	if (ret)
14245 		goto unlock;
14246 
14247 	list_for_each_entry(pmu, &pmus, entry) {
14248 		if (pmu->dev)
14249 			continue;
14250 
14251 		ret = pmu_dev_alloc(pmu);
14252 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14253 	}
14254 	pmu_bus_running = 1;
14255 	ret = 0;
14256 
14257 unlock:
14258 	mutex_unlock(&pmus_lock);
14259 
14260 	return ret;
14261 }
14262 device_initcall(perf_event_sysfs_init);
14263 
14264 #ifdef CONFIG_CGROUP_PERF
14265 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14266 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14267 {
14268 	struct perf_cgroup *jc;
14269 
14270 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14271 	if (!jc)
14272 		return ERR_PTR(-ENOMEM);
14273 
14274 	jc->info = alloc_percpu(struct perf_cgroup_info);
14275 	if (!jc->info) {
14276 		kfree(jc);
14277 		return ERR_PTR(-ENOMEM);
14278 	}
14279 
14280 	return &jc->css;
14281 }
14282 
perf_cgroup_css_free(struct cgroup_subsys_state * css)14283 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14284 {
14285 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14286 
14287 	free_percpu(jc->info);
14288 	kfree(jc);
14289 }
14290 
perf_cgroup_css_online(struct cgroup_subsys_state * css)14291 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14292 {
14293 	perf_event_cgroup(css->cgroup);
14294 	return 0;
14295 }
14296 
__perf_cgroup_move(void * info)14297 static int __perf_cgroup_move(void *info)
14298 {
14299 	struct task_struct *task = info;
14300 
14301 	preempt_disable();
14302 	perf_cgroup_switch(task);
14303 	preempt_enable();
14304 
14305 	return 0;
14306 }
14307 
perf_cgroup_attach(struct cgroup_taskset * tset)14308 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14309 {
14310 	struct task_struct *task;
14311 	struct cgroup_subsys_state *css;
14312 
14313 	cgroup_taskset_for_each(task, css, tset)
14314 		task_function_call(task, __perf_cgroup_move, task);
14315 }
14316 
14317 struct cgroup_subsys perf_event_cgrp_subsys = {
14318 	.css_alloc	= perf_cgroup_css_alloc,
14319 	.css_free	= perf_cgroup_css_free,
14320 	.css_online	= perf_cgroup_css_online,
14321 	.attach		= perf_cgroup_attach,
14322 	/*
14323 	 * Implicitly enable on dfl hierarchy so that perf events can
14324 	 * always be filtered by cgroup2 path as long as perf_event
14325 	 * controller is not mounted on a legacy hierarchy.
14326 	 */
14327 	.implicit_on_dfl = true,
14328 	.threaded	= true,
14329 };
14330 #endif /* CONFIG_CGROUP_PERF */
14331 
14332 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14333