1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 struct pagevec;
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (WARN_ON(condition)) \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_SLAB_ALLOC,
60 FAULT_DQUOT_INIT,
61 FAULT_LOCK_OP,
62 FAULT_BLKADDR_VALIDITY,
63 FAULT_BLKADDR_CONSISTENCE,
64 FAULT_NO_SEGMENT,
65 FAULT_MAX,
66 };
67
68 #ifdef CONFIG_F2FS_FAULT_INJECTION
69 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
70
71 struct f2fs_fault_info {
72 atomic_t inject_ops;
73 int inject_rate;
74 unsigned int inject_type;
75 };
76
77 extern const char *f2fs_fault_name[FAULT_MAX];
78 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
79
80 /* maximum retry count for injected failure */
81 #define DEFAULT_FAILURE_RETRY_COUNT 8
82 #else
83 #define DEFAULT_FAILURE_RETRY_COUNT 1
84 #endif
85
86 /*
87 * For mount options
88 */
89 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
90 #define F2FS_MOUNT_DISCARD 0x00000002
91 #define F2FS_MOUNT_NOHEAP 0x00000004
92 #define F2FS_MOUNT_XATTR_USER 0x00000008
93 #define F2FS_MOUNT_POSIX_ACL 0x00000010
94 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
95 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
96 #define F2FS_MOUNT_INLINE_DATA 0x00000080
97 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
98 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
99 #define F2FS_MOUNT_NOBARRIER 0x00000400
100 #define F2FS_MOUNT_FASTBOOT 0x00000800
101 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
102 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
103 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
104 #define F2FS_MOUNT_USRQUOTA 0x00008000
105 #define F2FS_MOUNT_GRPQUOTA 0x00010000
106 #define F2FS_MOUNT_PRJQUOTA 0x00020000
107 #define F2FS_MOUNT_QUOTA 0x00040000
108 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
109 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
110 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
111 #define F2FS_MOUNT_NORECOVERY 0x00400000
112 #define F2FS_MOUNT_ATGC 0x00800000
113 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
114 #define F2FS_MOUNT_GC_MERGE 0x02000000
115 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
116 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
117
118 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
119 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
120 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
121 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
122
123 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
124 typecheck(unsigned long long, b) && \
125 ((long long)((a) - (b)) > 0))
126
127 typedef u32 block_t; /*
128 * should not change u32, since it is the on-disk block
129 * address format, __le32.
130 */
131 typedef u32 nid_t;
132
133 #define COMPRESS_EXT_NUM 16
134
135 enum blkzone_allocation_policy {
136 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
137 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
138 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
139 };
140
141 /*
142 * An implementation of an rwsem that is explicitly unfair to readers. This
143 * prevents priority inversion when a low-priority reader acquires the read lock
144 * while sleeping on the write lock but the write lock is needed by
145 * higher-priority clients.
146 */
147
148 struct f2fs_rwsem {
149 struct rw_semaphore internal_rwsem;
150 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
151 wait_queue_head_t read_waiters;
152 #endif
153 };
154
155 struct f2fs_mount_info {
156 unsigned int opt;
157 block_t root_reserved_blocks; /* root reserved blocks */
158 kuid_t s_resuid; /* reserved blocks for uid */
159 kgid_t s_resgid; /* reserved blocks for gid */
160 int active_logs; /* # of active logs */
161 int inline_xattr_size; /* inline xattr size */
162 #ifdef CONFIG_F2FS_FAULT_INJECTION
163 struct f2fs_fault_info fault_info; /* For fault injection */
164 #endif
165 #ifdef CONFIG_QUOTA
166 /* Names of quota files with journalled quota */
167 char *s_qf_names[MAXQUOTAS];
168 int s_jquota_fmt; /* Format of quota to use */
169 #endif
170 /* For which write hints are passed down to block layer */
171 int alloc_mode; /* segment allocation policy */
172 int fsync_mode; /* fsync policy */
173 int fs_mode; /* fs mode: LFS or ADAPTIVE */
174 int bggc_mode; /* bggc mode: off, on or sync */
175 int memory_mode; /* memory mode */
176 int errors; /* errors parameter */
177 int discard_unit; /*
178 * discard command's offset/size should
179 * be aligned to this unit: block,
180 * segment or section
181 */
182 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
183 block_t unusable_cap_perc; /* percentage for cap */
184 block_t unusable_cap; /* Amount of space allowed to be
185 * unusable when disabling checkpoint
186 */
187
188 /* For compression */
189 unsigned char compress_algorithm; /* algorithm type */
190 unsigned char compress_log_size; /* cluster log size */
191 unsigned char compress_level; /* compress level */
192 bool compress_chksum; /* compressed data chksum */
193 unsigned char compress_ext_cnt; /* extension count */
194 unsigned char nocompress_ext_cnt; /* nocompress extension count */
195 int compress_mode; /* compression mode */
196 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
197 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
198 };
199
200 #define F2FS_FEATURE_ENCRYPT 0x00000001
201 #define F2FS_FEATURE_BLKZONED 0x00000002
202 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
203 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
204 #define F2FS_FEATURE_PRJQUOTA 0x00000010
205 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
206 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
207 #define F2FS_FEATURE_QUOTA_INO 0x00000080
208 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
209 #define F2FS_FEATURE_LOST_FOUND 0x00000200
210 #define F2FS_FEATURE_VERITY 0x00000400
211 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
212 #define F2FS_FEATURE_CASEFOLD 0x00001000
213 #define F2FS_FEATURE_COMPRESSION 0x00002000
214 #define F2FS_FEATURE_RO 0x00004000
215 #define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
216
217 #define __F2FS_HAS_FEATURE(raw_super, mask) \
218 ((raw_super->feature & cpu_to_le32(mask)) != 0)
219 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
220
221 /*
222 * Default values for user and/or group using reserved blocks
223 */
224 #define F2FS_DEF_RESUID 0
225 #define F2FS_DEF_RESGID 0
226
227 /*
228 * For checkpoint manager
229 */
230 enum {
231 NAT_BITMAP,
232 SIT_BITMAP
233 };
234
235 #define CP_UMOUNT 0x00000001
236 #define CP_FASTBOOT 0x00000002
237 #define CP_SYNC 0x00000004
238 #define CP_RECOVERY 0x00000008
239 #define CP_DISCARD 0x00000010
240 #define CP_TRIMMED 0x00000020
241 #define CP_PAUSE 0x00000040
242 #define CP_RESIZE 0x00000080
243
244 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
245 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
246 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
247 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
248 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
249 #define DEF_CP_INTERVAL 60 /* 60 secs */
250 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
251 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
252 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
253 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
254
255 struct cp_control {
256 int reason;
257 __u64 trim_start;
258 __u64 trim_end;
259 __u64 trim_minlen;
260 };
261
262 /*
263 * indicate meta/data type
264 */
265 enum {
266 META_CP,
267 META_NAT,
268 META_SIT,
269 META_SSA,
270 META_MAX,
271 META_POR,
272 DATA_GENERIC, /* check range only */
273 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
274 DATA_GENERIC_ENHANCE_READ, /*
275 * strong check on range and segment
276 * bitmap but no warning due to race
277 * condition of read on truncated area
278 * by extent_cache
279 */
280 DATA_GENERIC_ENHANCE_UPDATE, /*
281 * strong check on range and segment
282 * bitmap for update case
283 */
284 META_GENERIC,
285 };
286
287 /* for the list of ino */
288 enum {
289 ORPHAN_INO, /* for orphan ino list */
290 APPEND_INO, /* for append ino list */
291 UPDATE_INO, /* for update ino list */
292 TRANS_DIR_INO, /* for transactions dir ino list */
293 XATTR_DIR_INO, /* for xattr updated dir ino list */
294 FLUSH_INO, /* for multiple device flushing */
295 MAX_INO_ENTRY, /* max. list */
296 };
297
298 struct ino_entry {
299 struct list_head list; /* list head */
300 nid_t ino; /* inode number */
301 unsigned int dirty_device; /* dirty device bitmap */
302 };
303
304 /* for the list of inodes to be GCed */
305 struct inode_entry {
306 struct list_head list; /* list head */
307 struct inode *inode; /* vfs inode pointer */
308 };
309
310 struct fsync_node_entry {
311 struct list_head list; /* list head */
312 struct page *page; /* warm node page pointer */
313 unsigned int seq_id; /* sequence id */
314 };
315
316 struct ckpt_req {
317 struct completion wait; /* completion for checkpoint done */
318 struct llist_node llnode; /* llist_node to be linked in wait queue */
319 int ret; /* return code of checkpoint */
320 ktime_t queue_time; /* request queued time */
321 };
322
323 struct ckpt_req_control {
324 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
325 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
326 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
327 atomic_t issued_ckpt; /* # of actually issued ckpts */
328 atomic_t total_ckpt; /* # of total ckpts */
329 atomic_t queued_ckpt; /* # of queued ckpts */
330 struct llist_head issue_list; /* list for command issue */
331 spinlock_t stat_lock; /* lock for below checkpoint time stats */
332 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
333 unsigned int peak_time; /* peak wait time in msec until now */
334 };
335
336 /* for the bitmap indicate blocks to be discarded */
337 struct discard_entry {
338 struct list_head list; /* list head */
339 block_t start_blkaddr; /* start blockaddr of current segment */
340 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
341 };
342
343 /* minimum discard granularity, unit: block count */
344 #define MIN_DISCARD_GRANULARITY 1
345 /* default discard granularity of inner discard thread, unit: block count */
346 #define DEFAULT_DISCARD_GRANULARITY 16
347 /* default maximum discard granularity of ordered discard, unit: block count */
348 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
349
350 /* max discard pend list number */
351 #define MAX_PLIST_NUM 512
352 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
353 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
354
355 enum {
356 D_PREP, /* initial */
357 D_PARTIAL, /* partially submitted */
358 D_SUBMIT, /* all submitted */
359 D_DONE, /* finished */
360 };
361
362 struct discard_info {
363 block_t lstart; /* logical start address */
364 block_t len; /* length */
365 block_t start; /* actual start address in dev */
366 };
367
368 struct discard_cmd {
369 struct rb_node rb_node; /* rb node located in rb-tree */
370 struct discard_info di; /* discard info */
371 struct list_head list; /* command list */
372 struct completion wait; /* compleation */
373 struct block_device *bdev; /* bdev */
374 unsigned short ref; /* reference count */
375 unsigned char state; /* state */
376 unsigned char queued; /* queued discard */
377 int error; /* bio error */
378 spinlock_t lock; /* for state/bio_ref updating */
379 unsigned short bio_ref; /* bio reference count */
380 };
381
382 enum {
383 DPOLICY_BG,
384 DPOLICY_FORCE,
385 DPOLICY_FSTRIM,
386 DPOLICY_UMOUNT,
387 MAX_DPOLICY,
388 };
389
390 enum {
391 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
392 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
393 DPOLICY_IO_AWARE_MAX,
394 };
395
396 struct discard_policy {
397 int type; /* type of discard */
398 unsigned int min_interval; /* used for candidates exist */
399 unsigned int mid_interval; /* used for device busy */
400 unsigned int max_interval; /* used for candidates not exist */
401 unsigned int max_requests; /* # of discards issued per round */
402 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
403 bool io_aware; /* issue discard in idle time */
404 bool sync; /* submit discard with REQ_SYNC flag */
405 bool ordered; /* issue discard by lba order */
406 bool timeout; /* discard timeout for put_super */
407 unsigned int granularity; /* discard granularity */
408 };
409
410 struct discard_cmd_control {
411 struct task_struct *f2fs_issue_discard; /* discard thread */
412 struct list_head entry_list; /* 4KB discard entry list */
413 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
414 struct list_head wait_list; /* store on-flushing entries */
415 struct list_head fstrim_list; /* in-flight discard from fstrim */
416 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
417 struct mutex cmd_lock;
418 unsigned int nr_discards; /* # of discards in the list */
419 unsigned int max_discards; /* max. discards to be issued */
420 unsigned int max_discard_request; /* max. discard request per round */
421 unsigned int min_discard_issue_time; /* min. interval between discard issue */
422 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
423 unsigned int max_discard_issue_time; /* max. interval between discard issue */
424 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
425 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
426 unsigned int discard_granularity; /* discard granularity */
427 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
428 unsigned int discard_io_aware; /* io_aware policy */
429 unsigned int undiscard_blks; /* # of undiscard blocks */
430 unsigned int next_pos; /* next discard position */
431 atomic_t issued_discard; /* # of issued discard */
432 atomic_t queued_discard; /* # of queued discard */
433 atomic_t discard_cmd_cnt; /* # of cached cmd count */
434 struct rb_root_cached root; /* root of discard rb-tree */
435 bool rbtree_check; /* config for consistence check */
436 bool discard_wake; /* to wake up discard thread */
437 };
438
439 /* for the list of fsync inodes, used only during recovery */
440 struct fsync_inode_entry {
441 struct list_head list; /* list head */
442 struct inode *inode; /* vfs inode pointer */
443 block_t blkaddr; /* block address locating the last fsync */
444 block_t last_dentry; /* block address locating the last dentry */
445 };
446
447 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
448 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
449
450 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
451 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
452 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
453 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
454
455 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
456 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
457
update_nats_in_cursum(struct f2fs_journal * journal,int i)458 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
459 {
460 int before = nats_in_cursum(journal);
461
462 journal->n_nats = cpu_to_le16(before + i);
463 return before;
464 }
465
update_sits_in_cursum(struct f2fs_journal * journal,int i)466 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
467 {
468 int before = sits_in_cursum(journal);
469
470 journal->n_sits = cpu_to_le16(before + i);
471 return before;
472 }
473
__has_cursum_space(struct f2fs_journal * journal,int size,int type)474 static inline bool __has_cursum_space(struct f2fs_journal *journal,
475 int size, int type)
476 {
477 if (type == NAT_JOURNAL)
478 return size <= MAX_NAT_JENTRIES(journal);
479 return size <= MAX_SIT_JENTRIES(journal);
480 }
481
482 /* for inline stuff */
483 #define DEF_INLINE_RESERVED_SIZE 1
484 static inline int get_extra_isize(struct inode *inode);
485 static inline int get_inline_xattr_addrs(struct inode *inode);
486 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
487 (CUR_ADDRS_PER_INODE(inode) - \
488 get_inline_xattr_addrs(inode) - \
489 DEF_INLINE_RESERVED_SIZE))
490
491 /* for inline dir */
492 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
493 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
494 BITS_PER_BYTE + 1))
495 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
496 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
497 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
498 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
499 NR_INLINE_DENTRY(inode) + \
500 INLINE_DENTRY_BITMAP_SIZE(inode)))
501
502 /*
503 * For INODE and NODE manager
504 */
505 /* for directory operations */
506
507 struct f2fs_filename {
508 /*
509 * The filename the user specified. This is NULL for some
510 * filesystem-internal operations, e.g. converting an inline directory
511 * to a non-inline one, or roll-forward recovering an encrypted dentry.
512 */
513 const struct qstr *usr_fname;
514
515 /*
516 * The on-disk filename. For encrypted directories, this is encrypted.
517 * This may be NULL for lookups in an encrypted dir without the key.
518 */
519 struct fscrypt_str disk_name;
520
521 /* The dirhash of this filename */
522 f2fs_hash_t hash;
523
524 #ifdef CONFIG_FS_ENCRYPTION
525 /*
526 * For lookups in encrypted directories: either the buffer backing
527 * disk_name, or a buffer that holds the decoded no-key name.
528 */
529 struct fscrypt_str crypto_buf;
530 #endif
531 #if IS_ENABLED(CONFIG_UNICODE)
532 /*
533 * For casefolded directories: the casefolded name, but it's left NULL
534 * if the original name is not valid Unicode, if the original name is
535 * "." or "..", if the directory is both casefolded and encrypted and
536 * its encryption key is unavailable, or if the filesystem is doing an
537 * internal operation where usr_fname is also NULL. In all these cases
538 * we fall back to treating the name as an opaque byte sequence.
539 */
540 struct qstr cf_name;
541 #endif
542 };
543
544 struct f2fs_dentry_ptr {
545 struct inode *inode;
546 void *bitmap;
547 struct f2fs_dir_entry *dentry;
548 __u8 (*filename)[F2FS_SLOT_LEN];
549 int max;
550 int nr_bitmap;
551 };
552
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)553 static inline void make_dentry_ptr_block(struct inode *inode,
554 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
555 {
556 d->inode = inode;
557 d->max = NR_DENTRY_IN_BLOCK;
558 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
559 d->bitmap = t->dentry_bitmap;
560 d->dentry = t->dentry;
561 d->filename = t->filename;
562 }
563
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)564 static inline void make_dentry_ptr_inline(struct inode *inode,
565 struct f2fs_dentry_ptr *d, void *t)
566 {
567 int entry_cnt = NR_INLINE_DENTRY(inode);
568 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
569 int reserved_size = INLINE_RESERVED_SIZE(inode);
570
571 d->inode = inode;
572 d->max = entry_cnt;
573 d->nr_bitmap = bitmap_size;
574 d->bitmap = t;
575 d->dentry = t + bitmap_size + reserved_size;
576 d->filename = t + bitmap_size + reserved_size +
577 SIZE_OF_DIR_ENTRY * entry_cnt;
578 }
579
580 /*
581 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
582 * as its node offset to distinguish from index node blocks.
583 * But some bits are used to mark the node block.
584 */
585 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
586 >> OFFSET_BIT_SHIFT)
587 enum {
588 ALLOC_NODE, /* allocate a new node page if needed */
589 LOOKUP_NODE, /* look up a node without readahead */
590 LOOKUP_NODE_RA, /*
591 * look up a node with readahead called
592 * by get_data_block.
593 */
594 };
595
596 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
597
598 /* congestion wait timeout value, default: 20ms */
599 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
600
601 /* maximum retry quota flush count */
602 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
603
604 /* maximum retry of EIO'ed page */
605 #define MAX_RETRY_PAGE_EIO 100
606
607 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
608
609 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
610
611 /* dirty segments threshold for triggering CP */
612 #define DEFAULT_DIRTY_THRESHOLD 4
613
614 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
615 #define RECOVERY_MIN_RA_BLOCKS 1
616
617 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
618
619 /* for in-memory extent cache entry */
620 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
621
622 /* number of extent info in extent cache we try to shrink */
623 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
624
625 /* number of age extent info in extent cache we try to shrink */
626 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
627 #define LAST_AGE_WEIGHT 30
628 #define SAME_AGE_REGION 1024
629
630 /*
631 * Define data block with age less than 1GB as hot data
632 * define data block with age less than 10GB but more than 1GB as warm data
633 */
634 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
635 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
636
637 /* default max read extent count per inode */
638 #define DEF_MAX_READ_EXTENT_COUNT 10240
639
640 /* extent cache type */
641 enum extent_type {
642 EX_READ,
643 EX_BLOCK_AGE,
644 NR_EXTENT_CACHES,
645 };
646
647 struct extent_info {
648 unsigned int fofs; /* start offset in a file */
649 unsigned int len; /* length of the extent */
650 union {
651 /* read extent_cache */
652 struct {
653 /* start block address of the extent */
654 block_t blk;
655 #ifdef CONFIG_F2FS_FS_COMPRESSION
656 /* physical extent length of compressed blocks */
657 unsigned int c_len;
658 #endif
659 };
660 /* block age extent_cache */
661 struct {
662 /* block age of the extent */
663 unsigned long long age;
664 /* last total blocks allocated */
665 unsigned long long last_blocks;
666 };
667 };
668 };
669
670 struct extent_node {
671 struct rb_node rb_node; /* rb node located in rb-tree */
672 struct extent_info ei; /* extent info */
673 struct list_head list; /* node in global extent list of sbi */
674 struct extent_tree *et; /* extent tree pointer */
675 };
676
677 struct extent_tree {
678 nid_t ino; /* inode number */
679 enum extent_type type; /* keep the extent tree type */
680 struct rb_root_cached root; /* root of extent info rb-tree */
681 struct extent_node *cached_en; /* recently accessed extent node */
682 struct list_head list; /* to be used by sbi->zombie_list */
683 rwlock_t lock; /* protect extent info rb-tree */
684 atomic_t node_cnt; /* # of extent node in rb-tree*/
685 bool largest_updated; /* largest extent updated */
686 struct extent_info largest; /* largest cached extent for EX_READ */
687 };
688
689 struct extent_tree_info {
690 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
691 struct mutex extent_tree_lock; /* locking extent radix tree */
692 struct list_head extent_list; /* lru list for shrinker */
693 spinlock_t extent_lock; /* locking extent lru list */
694 atomic_t total_ext_tree; /* extent tree count */
695 struct list_head zombie_list; /* extent zombie tree list */
696 atomic_t total_zombie_tree; /* extent zombie tree count */
697 atomic_t total_ext_node; /* extent info count */
698 };
699
700 /*
701 * State of block returned by f2fs_map_blocks.
702 */
703 #define F2FS_MAP_NEW (1U << 0)
704 #define F2FS_MAP_MAPPED (1U << 1)
705 #define F2FS_MAP_DELALLOC (1U << 2)
706 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
707 F2FS_MAP_DELALLOC)
708
709 struct f2fs_map_blocks {
710 struct block_device *m_bdev; /* for multi-device dio */
711 block_t m_pblk;
712 block_t m_lblk;
713 unsigned int m_len;
714 unsigned int m_flags;
715 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
716 pgoff_t *m_next_extent; /* point to next possible extent */
717 int m_seg_type;
718 bool m_may_create; /* indicate it is from write path */
719 bool m_multidev_dio; /* indicate it allows multi-device dio */
720 };
721
722 /* for flag in get_data_block */
723 enum {
724 F2FS_GET_BLOCK_DEFAULT,
725 F2FS_GET_BLOCK_FIEMAP,
726 F2FS_GET_BLOCK_BMAP,
727 F2FS_GET_BLOCK_DIO,
728 F2FS_GET_BLOCK_PRE_DIO,
729 F2FS_GET_BLOCK_PRE_AIO,
730 F2FS_GET_BLOCK_PRECACHE,
731 };
732
733 /*
734 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
735 */
736 #define FADVISE_COLD_BIT 0x01
737 #define FADVISE_LOST_PINO_BIT 0x02
738 #define FADVISE_ENCRYPT_BIT 0x04
739 #define FADVISE_ENC_NAME_BIT 0x08
740 #define FADVISE_KEEP_SIZE_BIT 0x10
741 #define FADVISE_HOT_BIT 0x20
742 #define FADVISE_VERITY_BIT 0x40
743 #define FADVISE_TRUNC_BIT 0x80
744
745 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
746
747 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
748 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
749 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
750
751 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
752 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
753 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
754
755 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
756 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
757
758 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
759 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
760
761 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
762 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
763
764 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
765 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
766 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
767
768 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
769 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
770
771 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
772 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
773 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
774
775 #define DEF_DIR_LEVEL 0
776
777 /* used for f2fs_inode_info->flags */
778 enum {
779 FI_NEW_INODE, /* indicate newly allocated inode */
780 FI_DIRTY_INODE, /* indicate inode is dirty or not */
781 FI_AUTO_RECOVER, /* indicate inode is recoverable */
782 FI_DIRTY_DIR, /* indicate directory has dirty pages */
783 FI_INC_LINK, /* need to increment i_nlink */
784 FI_ACL_MODE, /* indicate acl mode */
785 FI_NO_ALLOC, /* should not allocate any blocks */
786 FI_FREE_NID, /* free allocated nide */
787 FI_NO_EXTENT, /* not to use the extent cache */
788 FI_INLINE_XATTR, /* used for inline xattr */
789 FI_INLINE_DATA, /* used for inline data*/
790 FI_INLINE_DENTRY, /* used for inline dentry */
791 FI_APPEND_WRITE, /* inode has appended data */
792 FI_UPDATE_WRITE, /* inode has in-place-update data */
793 FI_NEED_IPU, /* used for ipu per file */
794 FI_ATOMIC_FILE, /* indicate atomic file */
795 FI_DATA_EXIST, /* indicate data exists */
796 FI_SKIP_WRITES, /* should skip data page writeback */
797 FI_OPU_WRITE, /* used for opu per file */
798 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
799 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
800 FI_HOT_DATA, /* indicate file is hot */
801 FI_EXTRA_ATTR, /* indicate file has extra attribute */
802 FI_PROJ_INHERIT, /* indicate file inherits projectid */
803 FI_PIN_FILE, /* indicate file should not be gced */
804 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
805 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
806 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
807 FI_MMAP_FILE, /* indicate file was mmapped */
808 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
809 FI_COMPRESS_RELEASED, /* compressed blocks were released */
810 FI_ALIGNED_WRITE, /* enable aligned write */
811 FI_COW_FILE, /* indicate COW file */
812 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
813 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
814 FI_ATOMIC_REPLACE, /* indicate atomic replace */
815 FI_OPENED_FILE, /* indicate file has been opened */
816 FI_MAX, /* max flag, never be used */
817 };
818
819 struct f2fs_inode_info {
820 struct inode vfs_inode; /* serve a vfs inode */
821 unsigned long i_flags; /* keep an inode flags for ioctl */
822 unsigned char i_advise; /* use to give file attribute hints */
823 unsigned char i_dir_level; /* use for dentry level for large dir */
824 union {
825 unsigned int i_current_depth; /* only for directory depth */
826 unsigned short i_gc_failures; /* for gc failure statistic */
827 };
828 unsigned int i_pino; /* parent inode number */
829 umode_t i_acl_mode; /* keep file acl mode temporarily */
830
831 /* Use below internally in f2fs*/
832 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
833 struct f2fs_rwsem i_sem; /* protect fi info */
834 atomic_t dirty_pages; /* # of dirty pages */
835 f2fs_hash_t chash; /* hash value of given file name */
836 unsigned int clevel; /* maximum level of given file name */
837 struct task_struct *task; /* lookup and create consistency */
838 struct task_struct *cp_task; /* separate cp/wb IO stats*/
839 struct task_struct *wb_task; /* indicate inode is in context of writeback */
840 nid_t i_xattr_nid; /* node id that contains xattrs */
841 loff_t last_disk_size; /* lastly written file size */
842 spinlock_t i_size_lock; /* protect last_disk_size */
843
844 #ifdef CONFIG_QUOTA
845 struct dquot __rcu *i_dquot[MAXQUOTAS];
846
847 /* quota space reservation, managed internally by quota code */
848 qsize_t i_reserved_quota;
849 #endif
850 struct list_head dirty_list; /* dirty list for dirs and files */
851 struct list_head gdirty_list; /* linked in global dirty list */
852 struct task_struct *atomic_write_task; /* store atomic write task */
853 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
854 /* cached extent_tree entry */
855 union {
856 struct inode *cow_inode; /* copy-on-write inode for atomic write */
857 struct inode *atomic_inode;
858 /* point to atomic_inode, available only for cow_inode */
859 };
860
861 /* avoid racing between foreground op and gc */
862 struct f2fs_rwsem i_gc_rwsem[2];
863 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
864
865 int i_extra_isize; /* size of extra space located in i_addr */
866 kprojid_t i_projid; /* id for project quota */
867 int i_inline_xattr_size; /* inline xattr size */
868 struct timespec64 i_crtime; /* inode creation time */
869 struct timespec64 i_disk_time[3];/* inode disk times */
870
871 /* for file compress */
872 atomic_t i_compr_blocks; /* # of compressed blocks */
873 unsigned char i_compress_algorithm; /* algorithm type */
874 unsigned char i_log_cluster_size; /* log of cluster size */
875 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
876 unsigned char i_compress_flag; /* compress flag */
877 unsigned int i_cluster_size; /* cluster size */
878
879 unsigned int atomic_write_cnt;
880 loff_t original_i_size; /* original i_size before atomic write */
881 };
882
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)883 static inline void get_read_extent_info(struct extent_info *ext,
884 struct f2fs_extent *i_ext)
885 {
886 ext->fofs = le32_to_cpu(i_ext->fofs);
887 ext->blk = le32_to_cpu(i_ext->blk);
888 ext->len = le32_to_cpu(i_ext->len);
889 }
890
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)891 static inline void set_raw_read_extent(struct extent_info *ext,
892 struct f2fs_extent *i_ext)
893 {
894 i_ext->fofs = cpu_to_le32(ext->fofs);
895 i_ext->blk = cpu_to_le32(ext->blk);
896 i_ext->len = cpu_to_le32(ext->len);
897 }
898
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)899 static inline bool __is_discard_mergeable(struct discard_info *back,
900 struct discard_info *front, unsigned int max_len)
901 {
902 return (back->lstart + back->len == front->lstart) &&
903 (back->len + front->len <= max_len);
904 }
905
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)906 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
907 struct discard_info *back, unsigned int max_len)
908 {
909 return __is_discard_mergeable(back, cur, max_len);
910 }
911
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)912 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
913 struct discard_info *front, unsigned int max_len)
914 {
915 return __is_discard_mergeable(cur, front, max_len);
916 }
917
918 /*
919 * For free nid management
920 */
921 enum nid_state {
922 FREE_NID, /* newly added to free nid list */
923 PREALLOC_NID, /* it is preallocated */
924 MAX_NID_STATE,
925 };
926
927 enum nat_state {
928 TOTAL_NAT,
929 DIRTY_NAT,
930 RECLAIMABLE_NAT,
931 MAX_NAT_STATE,
932 };
933
934 struct f2fs_nm_info {
935 block_t nat_blkaddr; /* base disk address of NAT */
936 nid_t max_nid; /* maximum possible node ids */
937 nid_t available_nids; /* # of available node ids */
938 nid_t next_scan_nid; /* the next nid to be scanned */
939 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
940 unsigned int ram_thresh; /* control the memory footprint */
941 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
942 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
943
944 /* NAT cache management */
945 struct radix_tree_root nat_root;/* root of the nat entry cache */
946 struct radix_tree_root nat_set_root;/* root of the nat set cache */
947 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
948 struct list_head nat_entries; /* cached nat entry list (clean) */
949 spinlock_t nat_list_lock; /* protect clean nat entry list */
950 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
951 unsigned int nat_blocks; /* # of nat blocks */
952
953 /* free node ids management */
954 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
955 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
956 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
957 spinlock_t nid_list_lock; /* protect nid lists ops */
958 struct mutex build_lock; /* lock for build free nids */
959 unsigned char **free_nid_bitmap;
960 unsigned char *nat_block_bitmap;
961 unsigned short *free_nid_count; /* free nid count of NAT block */
962
963 /* for checkpoint */
964 char *nat_bitmap; /* NAT bitmap pointer */
965
966 unsigned int nat_bits_blocks; /* # of nat bits blocks */
967 unsigned char *nat_bits; /* NAT bits blocks */
968 unsigned char *full_nat_bits; /* full NAT pages */
969 unsigned char *empty_nat_bits; /* empty NAT pages */
970 #ifdef CONFIG_F2FS_CHECK_FS
971 char *nat_bitmap_mir; /* NAT bitmap mirror */
972 #endif
973 int bitmap_size; /* bitmap size */
974 };
975
976 /*
977 * this structure is used as one of function parameters.
978 * all the information are dedicated to a given direct node block determined
979 * by the data offset in a file.
980 */
981 struct dnode_of_data {
982 struct inode *inode; /* vfs inode pointer */
983 struct page *inode_page; /* its inode page, NULL is possible */
984 struct page *node_page; /* cached direct node page */
985 nid_t nid; /* node id of the direct node block */
986 unsigned int ofs_in_node; /* data offset in the node page */
987 bool inode_page_locked; /* inode page is locked or not */
988 bool node_changed; /* is node block changed */
989 char cur_level; /* level of hole node page */
990 char max_level; /* level of current page located */
991 block_t data_blkaddr; /* block address of the node block */
992 };
993
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)994 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
995 struct page *ipage, struct page *npage, nid_t nid)
996 {
997 memset(dn, 0, sizeof(*dn));
998 dn->inode = inode;
999 dn->inode_page = ipage;
1000 dn->node_page = npage;
1001 dn->nid = nid;
1002 }
1003
1004 /*
1005 * For SIT manager
1006 *
1007 * By default, there are 6 active log areas across the whole main area.
1008 * When considering hot and cold data separation to reduce cleaning overhead,
1009 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1010 * respectively.
1011 * In the current design, you should not change the numbers intentionally.
1012 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1013 * logs individually according to the underlying devices. (default: 6)
1014 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1015 * data and 8 for node logs.
1016 */
1017 #define NR_CURSEG_DATA_TYPE (3)
1018 #define NR_CURSEG_NODE_TYPE (3)
1019 #define NR_CURSEG_INMEM_TYPE (2)
1020 #define NR_CURSEG_RO_TYPE (2)
1021 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1022 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1023
1024 enum log_type {
1025 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1026 CURSEG_WARM_DATA, /* data blocks */
1027 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1028 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1029 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1030 CURSEG_COLD_NODE, /* indirect node blocks */
1031 NR_PERSISTENT_LOG, /* number of persistent log */
1032 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1033 /* pinned file that needs consecutive block address */
1034 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1035 NO_CHECK_TYPE, /* number of persistent & inmem log */
1036 };
1037
1038 struct flush_cmd {
1039 struct completion wait;
1040 struct llist_node llnode;
1041 nid_t ino;
1042 int ret;
1043 };
1044
1045 struct flush_cmd_control {
1046 struct task_struct *f2fs_issue_flush; /* flush thread */
1047 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1048 atomic_t issued_flush; /* # of issued flushes */
1049 atomic_t queued_flush; /* # of queued flushes */
1050 struct llist_head issue_list; /* list for command issue */
1051 struct llist_node *dispatch_list; /* list for command dispatch */
1052 };
1053
1054 struct f2fs_sm_info {
1055 struct sit_info *sit_info; /* whole segment information */
1056 struct free_segmap_info *free_info; /* free segment information */
1057 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1058 struct curseg_info *curseg_array; /* active segment information */
1059
1060 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1061
1062 block_t seg0_blkaddr; /* block address of 0'th segment */
1063 block_t main_blkaddr; /* start block address of main area */
1064 block_t ssa_blkaddr; /* start block address of SSA area */
1065
1066 unsigned int segment_count; /* total # of segments */
1067 unsigned int main_segments; /* # of segments in main area */
1068 unsigned int reserved_segments; /* # of reserved segments */
1069 unsigned int ovp_segments; /* # of overprovision segments */
1070
1071 /* a threshold to reclaim prefree segments */
1072 unsigned int rec_prefree_segments;
1073
1074 struct list_head sit_entry_set; /* sit entry set list */
1075
1076 unsigned int ipu_policy; /* in-place-update policy */
1077 unsigned int min_ipu_util; /* in-place-update threshold */
1078 unsigned int min_fsync_blocks; /* threshold for fsync */
1079 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1080 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1081 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1082
1083 /* for flush command control */
1084 struct flush_cmd_control *fcc_info;
1085
1086 /* for discard command control */
1087 struct discard_cmd_control *dcc_info;
1088 };
1089
1090 /*
1091 * For superblock
1092 */
1093 /*
1094 * COUNT_TYPE for monitoring
1095 *
1096 * f2fs monitors the number of several block types such as on-writeback,
1097 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1098 */
1099 #define WB_DATA_TYPE(p, f) \
1100 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1101 enum count_type {
1102 F2FS_DIRTY_DENTS,
1103 F2FS_DIRTY_DATA,
1104 F2FS_DIRTY_QDATA,
1105 F2FS_DIRTY_NODES,
1106 F2FS_DIRTY_META,
1107 F2FS_DIRTY_IMETA,
1108 F2FS_WB_CP_DATA,
1109 F2FS_WB_DATA,
1110 F2FS_RD_DATA,
1111 F2FS_RD_NODE,
1112 F2FS_RD_META,
1113 F2FS_DIO_WRITE,
1114 F2FS_DIO_READ,
1115 NR_COUNT_TYPE,
1116 };
1117
1118 /*
1119 * The below are the page types of bios used in submit_bio().
1120 * The available types are:
1121 * DATA User data pages. It operates as async mode.
1122 * NODE Node pages. It operates as async mode.
1123 * META FS metadata pages such as SIT, NAT, CP.
1124 * NR_PAGE_TYPE The number of page types.
1125 * META_FLUSH Make sure the previous pages are written
1126 * with waiting the bio's completion
1127 * ... Only can be used with META.
1128 */
1129 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1130 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1131 enum page_type {
1132 DATA = 0,
1133 NODE = 1, /* should not change this */
1134 META,
1135 NR_PAGE_TYPE,
1136 META_FLUSH,
1137 IPU, /* the below types are used by tracepoints only. */
1138 OPU,
1139 };
1140
1141 enum temp_type {
1142 HOT = 0, /* must be zero for meta bio */
1143 WARM,
1144 COLD,
1145 NR_TEMP_TYPE,
1146 };
1147
1148 enum need_lock_type {
1149 LOCK_REQ = 0,
1150 LOCK_DONE,
1151 LOCK_RETRY,
1152 };
1153
1154 enum cp_reason_type {
1155 CP_NO_NEEDED,
1156 CP_NON_REGULAR,
1157 CP_COMPRESSED,
1158 CP_HARDLINK,
1159 CP_SB_NEED_CP,
1160 CP_WRONG_PINO,
1161 CP_NO_SPC_ROLL,
1162 CP_NODE_NEED_CP,
1163 CP_FASTBOOT_MODE,
1164 CP_SPEC_LOG_NUM,
1165 CP_RECOVER_DIR,
1166 CP_XATTR_DIR,
1167 };
1168
1169 enum iostat_type {
1170 /* WRITE IO */
1171 APP_DIRECT_IO, /* app direct write IOs */
1172 APP_BUFFERED_IO, /* app buffered write IOs */
1173 APP_WRITE_IO, /* app write IOs */
1174 APP_MAPPED_IO, /* app mapped IOs */
1175 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1176 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1177 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1178 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1179 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1180 FS_META_IO, /* meta IOs from kworker/reclaimer */
1181 FS_GC_DATA_IO, /* data IOs from forground gc */
1182 FS_GC_NODE_IO, /* node IOs from forground gc */
1183 FS_CP_DATA_IO, /* data IOs from checkpoint */
1184 FS_CP_NODE_IO, /* node IOs from checkpoint */
1185 FS_CP_META_IO, /* meta IOs from checkpoint */
1186
1187 /* READ IO */
1188 APP_DIRECT_READ_IO, /* app direct read IOs */
1189 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1190 APP_READ_IO, /* app read IOs */
1191 APP_MAPPED_READ_IO, /* app mapped read IOs */
1192 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1193 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1194 FS_DATA_READ_IO, /* data read IOs */
1195 FS_GDATA_READ_IO, /* data read IOs from background gc */
1196 FS_CDATA_READ_IO, /* compressed data read IOs */
1197 FS_NODE_READ_IO, /* node read IOs */
1198 FS_META_READ_IO, /* meta read IOs */
1199
1200 /* other */
1201 FS_DISCARD_IO, /* discard */
1202 FS_FLUSH_IO, /* flush */
1203 FS_ZONE_RESET_IO, /* zone reset */
1204 NR_IO_TYPE,
1205 };
1206
1207 struct f2fs_io_info {
1208 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1209 nid_t ino; /* inode number */
1210 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1211 enum temp_type temp; /* contains HOT/WARM/COLD */
1212 enum req_op op; /* contains REQ_OP_ */
1213 blk_opf_t op_flags; /* req_flag_bits */
1214 block_t new_blkaddr; /* new block address to be written */
1215 block_t old_blkaddr; /* old block address before Cow */
1216 struct page *page; /* page to be written */
1217 struct page *encrypted_page; /* encrypted page */
1218 struct page *compressed_page; /* compressed page */
1219 struct list_head list; /* serialize IOs */
1220 unsigned int compr_blocks; /* # of compressed block addresses */
1221 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1222 unsigned int version:8; /* version of the node */
1223 unsigned int submitted:1; /* indicate IO submission */
1224 unsigned int in_list:1; /* indicate fio is in io_list */
1225 unsigned int is_por:1; /* indicate IO is from recovery or not */
1226 unsigned int encrypted:1; /* indicate file is encrypted */
1227 unsigned int meta_gc:1; /* require meta inode GC */
1228 enum iostat_type io_type; /* io type */
1229 struct writeback_control *io_wbc; /* writeback control */
1230 struct bio **bio; /* bio for ipu */
1231 sector_t *last_block; /* last block number in bio */
1232 };
1233
1234 struct bio_entry {
1235 struct bio *bio;
1236 struct list_head list;
1237 };
1238
1239 #define is_read_io(rw) ((rw) == READ)
1240 struct f2fs_bio_info {
1241 struct f2fs_sb_info *sbi; /* f2fs superblock */
1242 struct bio *bio; /* bios to merge */
1243 sector_t last_block_in_bio; /* last block number */
1244 struct f2fs_io_info fio; /* store buffered io info. */
1245 #ifdef CONFIG_BLK_DEV_ZONED
1246 struct completion zone_wait; /* condition value for the previous open zone to close */
1247 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1248 void *bi_private; /* previous bi_private for pending bio */
1249 #endif
1250 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1251 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1252 struct list_head io_list; /* track fios */
1253 struct list_head bio_list; /* bio entry list head */
1254 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1255 };
1256
1257 #define FDEV(i) (sbi->devs[i])
1258 #define RDEV(i) (raw_super->devs[i])
1259 struct f2fs_dev_info {
1260 struct file *bdev_file;
1261 struct block_device *bdev;
1262 char path[MAX_PATH_LEN];
1263 unsigned int total_segments;
1264 block_t start_blk;
1265 block_t end_blk;
1266 #ifdef CONFIG_BLK_DEV_ZONED
1267 unsigned int nr_blkz; /* Total number of zones */
1268 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1269 #endif
1270 };
1271
1272 enum inode_type {
1273 DIR_INODE, /* for dirty dir inode */
1274 FILE_INODE, /* for dirty regular/symlink inode */
1275 DIRTY_META, /* for all dirtied inode metadata */
1276 NR_INODE_TYPE,
1277 };
1278
1279 /* for inner inode cache management */
1280 struct inode_management {
1281 struct radix_tree_root ino_root; /* ino entry array */
1282 spinlock_t ino_lock; /* for ino entry lock */
1283 struct list_head ino_list; /* inode list head */
1284 unsigned long ino_num; /* number of entries */
1285 };
1286
1287 /* for GC_AT */
1288 struct atgc_management {
1289 bool atgc_enabled; /* ATGC is enabled or not */
1290 struct rb_root_cached root; /* root of victim rb-tree */
1291 struct list_head victim_list; /* linked with all victim entries */
1292 unsigned int victim_count; /* victim count in rb-tree */
1293 unsigned int candidate_ratio; /* candidate ratio */
1294 unsigned int max_candidate_count; /* max candidate count */
1295 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1296 unsigned long long age_threshold; /* age threshold */
1297 };
1298
1299 struct f2fs_gc_control {
1300 unsigned int victim_segno; /* target victim segment number */
1301 int init_gc_type; /* FG_GC or BG_GC */
1302 bool no_bg_gc; /* check the space and stop bg_gc */
1303 bool should_migrate_blocks; /* should migrate blocks */
1304 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1305 bool one_time; /* require one time GC in one migration unit */
1306 unsigned int nr_free_secs; /* # of free sections to do GC */
1307 };
1308
1309 /*
1310 * For s_flag in struct f2fs_sb_info
1311 * Modification on enum should be synchronized with s_flag array
1312 */
1313 enum {
1314 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1315 SBI_IS_CLOSE, /* specify unmounting */
1316 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1317 SBI_POR_DOING, /* recovery is doing or not */
1318 SBI_NEED_SB_WRITE, /* need to recover superblock */
1319 SBI_NEED_CP, /* need to checkpoint */
1320 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1321 SBI_IS_RECOVERED, /* recovered orphan/data */
1322 SBI_CP_DISABLED, /* CP was disabled last mount */
1323 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1324 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1325 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1326 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1327 SBI_IS_RESIZEFS, /* resizefs is in process */
1328 SBI_IS_FREEZING, /* freezefs is in process */
1329 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1330 MAX_SBI_FLAG,
1331 };
1332
1333 enum {
1334 CP_TIME,
1335 REQ_TIME,
1336 DISCARD_TIME,
1337 GC_TIME,
1338 DISABLE_TIME,
1339 UMOUNT_DISCARD_TIMEOUT,
1340 MAX_TIME,
1341 };
1342
1343 /* Note that you need to keep synchronization with this gc_mode_names array */
1344 enum {
1345 GC_NORMAL,
1346 GC_IDLE_CB,
1347 GC_IDLE_GREEDY,
1348 GC_IDLE_AT,
1349 GC_URGENT_HIGH,
1350 GC_URGENT_LOW,
1351 GC_URGENT_MID,
1352 MAX_GC_MODE,
1353 };
1354
1355 enum {
1356 BGGC_MODE_ON, /* background gc is on */
1357 BGGC_MODE_OFF, /* background gc is off */
1358 BGGC_MODE_SYNC, /*
1359 * background gc is on, migrating blocks
1360 * like foreground gc
1361 */
1362 };
1363
1364 enum {
1365 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1366 FS_MODE_LFS, /* use lfs allocation only */
1367 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1368 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1369 };
1370
1371 enum {
1372 ALLOC_MODE_DEFAULT, /* stay default */
1373 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1374 };
1375
1376 enum fsync_mode {
1377 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1378 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1379 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1380 };
1381
1382 enum {
1383 COMPR_MODE_FS, /*
1384 * automatically compress compression
1385 * enabled files
1386 */
1387 COMPR_MODE_USER, /*
1388 * automatical compression is disabled.
1389 * user can control the file compression
1390 * using ioctls
1391 */
1392 };
1393
1394 enum {
1395 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1396 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1397 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1398 };
1399
1400 enum {
1401 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1402 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1403 };
1404
1405 enum errors_option {
1406 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1407 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1408 MOUNT_ERRORS_PANIC, /* panic on errors */
1409 };
1410
1411 enum {
1412 BACKGROUND,
1413 FOREGROUND,
1414 MAX_CALL_TYPE,
1415 TOTAL_CALL = FOREGROUND,
1416 };
1417
1418 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1419 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1420 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1421
1422 /*
1423 * Layout of f2fs page.private:
1424 *
1425 * Layout A: lowest bit should be 1
1426 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1427 * bit 0 PAGE_PRIVATE_NOT_POINTER
1428 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1429 * bit 2 PAGE_PRIVATE_INLINE_INODE
1430 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1431 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1432 * bit 5- f2fs private data
1433 *
1434 * Layout B: lowest bit should be 0
1435 * page.private is a wrapped pointer.
1436 */
1437 enum {
1438 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1439 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1440 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1441 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1442 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1443 PAGE_PRIVATE_MAX
1444 };
1445
1446 /* For compression */
1447 enum compress_algorithm_type {
1448 COMPRESS_LZO,
1449 COMPRESS_LZ4,
1450 COMPRESS_ZSTD,
1451 COMPRESS_LZORLE,
1452 COMPRESS_MAX,
1453 };
1454
1455 enum compress_flag {
1456 COMPRESS_CHKSUM,
1457 COMPRESS_MAX_FLAG,
1458 };
1459
1460 #define COMPRESS_WATERMARK 20
1461 #define COMPRESS_PERCENT 20
1462
1463 #define COMPRESS_DATA_RESERVED_SIZE 4
1464 struct compress_data {
1465 __le32 clen; /* compressed data size */
1466 __le32 chksum; /* compressed data chksum */
1467 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1468 u8 cdata[]; /* compressed data */
1469 };
1470
1471 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1472
1473 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1474
1475 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1476
1477 #define COMPRESS_LEVEL_OFFSET 8
1478
1479 /* compress context */
1480 struct compress_ctx {
1481 struct inode *inode; /* inode the context belong to */
1482 pgoff_t cluster_idx; /* cluster index number */
1483 unsigned int cluster_size; /* page count in cluster */
1484 unsigned int log_cluster_size; /* log of cluster size */
1485 struct page **rpages; /* pages store raw data in cluster */
1486 unsigned int nr_rpages; /* total page number in rpages */
1487 struct page **cpages; /* pages store compressed data in cluster */
1488 unsigned int nr_cpages; /* total page number in cpages */
1489 unsigned int valid_nr_cpages; /* valid page number in cpages */
1490 void *rbuf; /* virtual mapped address on rpages */
1491 struct compress_data *cbuf; /* virtual mapped address on cpages */
1492 size_t rlen; /* valid data length in rbuf */
1493 size_t clen; /* valid data length in cbuf */
1494 void *private; /* payload buffer for specified compression algorithm */
1495 void *private2; /* extra payload buffer */
1496 };
1497
1498 /* compress context for write IO path */
1499 struct compress_io_ctx {
1500 u32 magic; /* magic number to indicate page is compressed */
1501 struct inode *inode; /* inode the context belong to */
1502 struct page **rpages; /* pages store raw data in cluster */
1503 unsigned int nr_rpages; /* total page number in rpages */
1504 atomic_t pending_pages; /* in-flight compressed page count */
1505 };
1506
1507 /* Context for decompressing one cluster on the read IO path */
1508 struct decompress_io_ctx {
1509 u32 magic; /* magic number to indicate page is compressed */
1510 struct inode *inode; /* inode the context belong to */
1511 pgoff_t cluster_idx; /* cluster index number */
1512 unsigned int cluster_size; /* page count in cluster */
1513 unsigned int log_cluster_size; /* log of cluster size */
1514 struct page **rpages; /* pages store raw data in cluster */
1515 unsigned int nr_rpages; /* total page number in rpages */
1516 struct page **cpages; /* pages store compressed data in cluster */
1517 unsigned int nr_cpages; /* total page number in cpages */
1518 struct page **tpages; /* temp pages to pad holes in cluster */
1519 void *rbuf; /* virtual mapped address on rpages */
1520 struct compress_data *cbuf; /* virtual mapped address on cpages */
1521 size_t rlen; /* valid data length in rbuf */
1522 size_t clen; /* valid data length in cbuf */
1523
1524 /*
1525 * The number of compressed pages remaining to be read in this cluster.
1526 * This is initially nr_cpages. It is decremented by 1 each time a page
1527 * has been read (or failed to be read). When it reaches 0, the cluster
1528 * is decompressed (or an error is reported).
1529 *
1530 * If an error occurs before all the pages have been submitted for I/O,
1531 * then this will never reach 0. In this case the I/O submitter is
1532 * responsible for calling f2fs_decompress_end_io() instead.
1533 */
1534 atomic_t remaining_pages;
1535
1536 /*
1537 * Number of references to this decompress_io_ctx.
1538 *
1539 * One reference is held for I/O completion. This reference is dropped
1540 * after the pagecache pages are updated and unlocked -- either after
1541 * decompression (and verity if enabled), or after an error.
1542 *
1543 * In addition, each compressed page holds a reference while it is in a
1544 * bio. These references are necessary prevent compressed pages from
1545 * being freed while they are still in a bio.
1546 */
1547 refcount_t refcnt;
1548
1549 bool failed; /* IO error occurred before decompression? */
1550 bool need_verity; /* need fs-verity verification after decompression? */
1551 void *private; /* payload buffer for specified decompression algorithm */
1552 void *private2; /* extra payload buffer */
1553 struct work_struct verity_work; /* work to verify the decompressed pages */
1554 struct work_struct free_work; /* work for late free this structure itself */
1555 };
1556
1557 #define NULL_CLUSTER ((unsigned int)(~0))
1558 #define MIN_COMPRESS_LOG_SIZE 2
1559 #define MAX_COMPRESS_LOG_SIZE 8
1560 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1561
1562 struct f2fs_sb_info {
1563 struct super_block *sb; /* pointer to VFS super block */
1564 struct proc_dir_entry *s_proc; /* proc entry */
1565 struct f2fs_super_block *raw_super; /* raw super block pointer */
1566 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1567 int valid_super_block; /* valid super block no */
1568 unsigned long s_flag; /* flags for sbi */
1569 struct mutex writepages; /* mutex for writepages() */
1570
1571 #ifdef CONFIG_BLK_DEV_ZONED
1572 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1573 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1574 /* For adjust the priority writing position of data in zone UFS */
1575 unsigned int blkzone_alloc_policy;
1576 #endif
1577
1578 /* for node-related operations */
1579 struct f2fs_nm_info *nm_info; /* node manager */
1580 struct inode *node_inode; /* cache node blocks */
1581
1582 /* for segment-related operations */
1583 struct f2fs_sm_info *sm_info; /* segment manager */
1584
1585 /* for bio operations */
1586 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1587 /* keep migration IO order for LFS mode */
1588 struct f2fs_rwsem io_order_lock;
1589 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1590 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1591
1592 /* for checkpoint */
1593 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1594 int cur_cp_pack; /* remain current cp pack */
1595 spinlock_t cp_lock; /* for flag in ckpt */
1596 struct inode *meta_inode; /* cache meta blocks */
1597 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1598 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1599 struct f2fs_rwsem node_write; /* locking node writes */
1600 struct f2fs_rwsem node_change; /* locking node change */
1601 wait_queue_head_t cp_wait;
1602 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1603 long interval_time[MAX_TIME]; /* to store thresholds */
1604 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1605
1606 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1607
1608 spinlock_t fsync_node_lock; /* for node entry lock */
1609 struct list_head fsync_node_list; /* node list head */
1610 unsigned int fsync_seg_id; /* sequence id */
1611 unsigned int fsync_node_num; /* number of node entries */
1612
1613 /* for orphan inode, use 0'th array */
1614 unsigned int max_orphans; /* max orphan inodes */
1615
1616 /* for inode management */
1617 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1618 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1619 struct mutex flush_lock; /* for flush exclusion */
1620
1621 /* for extent tree cache */
1622 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1623 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1624 unsigned int max_read_extent_count; /* max read extent count per inode */
1625
1626 /* The threshold used for hot and warm data seperation*/
1627 unsigned int hot_data_age_threshold;
1628 unsigned int warm_data_age_threshold;
1629 unsigned int last_age_weight;
1630
1631 /* basic filesystem units */
1632 unsigned int log_sectors_per_block; /* log2 sectors per block */
1633 unsigned int log_blocksize; /* log2 block size */
1634 unsigned int blocksize; /* block size */
1635 unsigned int root_ino_num; /* root inode number*/
1636 unsigned int node_ino_num; /* node inode number*/
1637 unsigned int meta_ino_num; /* meta inode number*/
1638 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1639 unsigned int blocks_per_seg; /* blocks per segment */
1640 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1641 unsigned int segs_per_sec; /* segments per section */
1642 unsigned int secs_per_zone; /* sections per zone */
1643 unsigned int total_sections; /* total section count */
1644 unsigned int total_node_count; /* total node block count */
1645 unsigned int total_valid_node_count; /* valid node block count */
1646 int dir_level; /* directory level */
1647 bool readdir_ra; /* readahead inode in readdir */
1648 u64 max_io_bytes; /* max io bytes to merge IOs */
1649
1650 block_t user_block_count; /* # of user blocks */
1651 block_t total_valid_block_count; /* # of valid blocks */
1652 block_t discard_blks; /* discard command candidats */
1653 block_t last_valid_block_count; /* for recovery */
1654 block_t reserved_blocks; /* configurable reserved blocks */
1655 block_t current_reserved_blocks; /* current reserved blocks */
1656
1657 /* Additional tracking for no checkpoint mode */
1658 block_t unusable_block_count; /* # of blocks saved by last cp */
1659
1660 unsigned int nquota_files; /* # of quota sysfile */
1661 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1662 struct task_struct *umount_lock_holder; /* s_umount lock holder */
1663
1664 /* # of pages, see count_type */
1665 atomic_t nr_pages[NR_COUNT_TYPE];
1666 /* # of allocated blocks */
1667 struct percpu_counter alloc_valid_block_count;
1668 /* # of node block writes as roll forward recovery */
1669 struct percpu_counter rf_node_block_count;
1670
1671 /* writeback control */
1672 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1673
1674 /* valid inode count */
1675 struct percpu_counter total_valid_inode_count;
1676
1677 struct f2fs_mount_info mount_opt; /* mount options */
1678
1679 /* for cleaning operations */
1680 struct f2fs_rwsem gc_lock; /*
1681 * semaphore for GC, avoid
1682 * race between GC and GC or CP
1683 */
1684 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1685 struct atgc_management am; /* atgc management */
1686 unsigned int cur_victim_sec; /* current victim section num */
1687 unsigned int gc_mode; /* current GC state */
1688 unsigned int next_victim_seg[2]; /* next segment in victim section */
1689 spinlock_t gc_remaining_trials_lock;
1690 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1691 unsigned int gc_remaining_trials;
1692
1693 /* for skip statistic */
1694 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1695
1696 /* threshold for gc trials on pinned files */
1697 unsigned short gc_pin_file_threshold;
1698 struct f2fs_rwsem pin_sem;
1699
1700 /* maximum # of trials to find a victim segment for SSR and GC */
1701 unsigned int max_victim_search;
1702 /* migration granularity of garbage collection, unit: segment */
1703 unsigned int migration_granularity;
1704 /* migration window granularity of garbage collection, unit: segment */
1705 unsigned int migration_window_granularity;
1706
1707 /*
1708 * for stat information.
1709 * one is for the LFS mode, and the other is for the SSR mode.
1710 */
1711 #ifdef CONFIG_F2FS_STAT_FS
1712 struct f2fs_stat_info *stat_info; /* FS status information */
1713 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1714 unsigned int segment_count[2]; /* # of allocated segments */
1715 unsigned int block_count[2]; /* # of allocated blocks */
1716 atomic_t inplace_count; /* # of inplace update */
1717 /* # of lookup extent cache */
1718 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1719 /* # of hit rbtree extent node */
1720 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1721 /* # of hit cached extent node */
1722 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1723 /* # of hit largest extent node in read extent cache */
1724 atomic64_t read_hit_largest;
1725 atomic_t inline_xattr; /* # of inline_xattr inodes */
1726 atomic_t inline_inode; /* # of inline_data inodes */
1727 atomic_t inline_dir; /* # of inline_dentry inodes */
1728 atomic_t compr_inode; /* # of compressed inodes */
1729 atomic64_t compr_blocks; /* # of compressed blocks */
1730 atomic_t swapfile_inode; /* # of swapfile inodes */
1731 atomic_t atomic_files; /* # of opened atomic file */
1732 atomic_t max_aw_cnt; /* max # of atomic writes */
1733 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1734 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1735 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1736 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1737 #endif
1738 spinlock_t stat_lock; /* lock for stat operations */
1739
1740 /* to attach REQ_META|REQ_FUA flags */
1741 unsigned int data_io_flag;
1742 unsigned int node_io_flag;
1743
1744 /* For sysfs support */
1745 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1746 struct completion s_kobj_unregister;
1747
1748 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1749 struct completion s_stat_kobj_unregister;
1750
1751 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1752 struct completion s_feature_list_kobj_unregister;
1753
1754 /* For shrinker support */
1755 struct list_head s_list;
1756 struct mutex umount_mutex;
1757 unsigned int shrinker_run_no;
1758
1759 /* For multi devices */
1760 int s_ndevs; /* number of devices */
1761 struct f2fs_dev_info *devs; /* for device list */
1762 unsigned int dirty_device; /* for checkpoint data flush */
1763 spinlock_t dev_lock; /* protect dirty_device */
1764 bool aligned_blksize; /* all devices has the same logical blksize */
1765 unsigned int first_zoned_segno; /* first zoned segno */
1766
1767 /* For write statistics */
1768 u64 sectors_written_start;
1769 u64 kbytes_written;
1770
1771 /* Precomputed FS UUID checksum for seeding other checksums */
1772 __u32 s_chksum_seed;
1773
1774 struct workqueue_struct *post_read_wq; /* post read workqueue */
1775
1776 /*
1777 * If we are in irq context, let's update error information into
1778 * on-disk superblock in the work.
1779 */
1780 struct work_struct s_error_work;
1781 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1782 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1783 spinlock_t error_lock; /* protect errors/stop_reason array */
1784 bool error_dirty; /* errors of sb is dirty */
1785
1786 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1787 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1788
1789 /* For reclaimed segs statistics per each GC mode */
1790 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1791 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1792
1793 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1794
1795 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1796 int max_fragment_hole; /* max hole size for block fragmentation mode */
1797
1798 /* For atomic write statistics */
1799 atomic64_t current_atomic_write;
1800 s64 peak_atomic_write;
1801 u64 committed_atomic_block;
1802 u64 revoked_atomic_block;
1803
1804 #ifdef CONFIG_F2FS_FS_COMPRESSION
1805 struct kmem_cache *page_array_slab; /* page array entry */
1806 unsigned int page_array_slab_size; /* default page array slab size */
1807
1808 /* For runtime compression statistics */
1809 u64 compr_written_block;
1810 u64 compr_saved_block;
1811 u32 compr_new_inode;
1812
1813 /* For compressed block cache */
1814 struct inode *compress_inode; /* cache compressed blocks */
1815 unsigned int compress_percent; /* cache page percentage */
1816 unsigned int compress_watermark; /* cache page watermark */
1817 atomic_t compress_page_hit; /* cache hit count */
1818 #endif
1819
1820 #ifdef CONFIG_F2FS_IOSTAT
1821 /* For app/fs IO statistics */
1822 spinlock_t iostat_lock;
1823 unsigned long long iostat_count[NR_IO_TYPE];
1824 unsigned long long iostat_bytes[NR_IO_TYPE];
1825 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1826 bool iostat_enable;
1827 unsigned long iostat_next_period;
1828 unsigned int iostat_period_ms;
1829
1830 /* For io latency related statistics info in one iostat period */
1831 spinlock_t iostat_lat_lock;
1832 struct iostat_lat_info *iostat_io_lat;
1833 #endif
1834 };
1835
1836 /* Definitions to access f2fs_sb_info */
1837 #define SEGS_TO_BLKS(sbi, segs) \
1838 ((segs) << (sbi)->log_blocks_per_seg)
1839 #define BLKS_TO_SEGS(sbi, blks) \
1840 ((blks) >> (sbi)->log_blocks_per_seg)
1841
1842 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1843 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1844 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1845
1846 __printf(3, 4)
1847 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1848
1849 #define f2fs_err(sbi, fmt, ...) \
1850 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1851 #define f2fs_warn(sbi, fmt, ...) \
1852 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1853 #define f2fs_notice(sbi, fmt, ...) \
1854 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1855 #define f2fs_info(sbi, fmt, ...) \
1856 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1857 #define f2fs_debug(sbi, fmt, ...) \
1858 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1859
1860 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1861 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1862 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1863 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1864 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1865 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1866
1867 #ifdef CONFIG_F2FS_FAULT_INJECTION
1868 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1869 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1870 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1871 const char *func, const char *parent_func)
1872 {
1873 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1874
1875 if (!ffi->inject_rate)
1876 return false;
1877
1878 if (!IS_FAULT_SET(ffi, type))
1879 return false;
1880
1881 atomic_inc(&ffi->inject_ops);
1882 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1883 atomic_set(&ffi->inject_ops, 0);
1884 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1885 f2fs_fault_name[type], func, parent_func);
1886 return true;
1887 }
1888 return false;
1889 }
1890 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1891 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1892 {
1893 return false;
1894 }
1895 #endif
1896
1897 /*
1898 * Test if the mounted volume is a multi-device volume.
1899 * - For a single regular disk volume, sbi->s_ndevs is 0.
1900 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1901 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1902 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1903 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1904 {
1905 return sbi->s_ndevs > 1;
1906 }
1907
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1908 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1909 {
1910 unsigned long now = jiffies;
1911
1912 sbi->last_time[type] = now;
1913
1914 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1915 if (type == REQ_TIME) {
1916 sbi->last_time[DISCARD_TIME] = now;
1917 sbi->last_time[GC_TIME] = now;
1918 }
1919 }
1920
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1921 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1922 {
1923 unsigned long interval = sbi->interval_time[type] * HZ;
1924
1925 return time_after(jiffies, sbi->last_time[type] + interval);
1926 }
1927
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1928 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1929 int type)
1930 {
1931 unsigned long interval = sbi->interval_time[type] * HZ;
1932 unsigned int wait_ms = 0;
1933 long delta;
1934
1935 delta = (sbi->last_time[type] + interval) - jiffies;
1936 if (delta > 0)
1937 wait_ms = jiffies_to_msecs(delta);
1938
1939 return wait_ms;
1940 }
1941
1942 /*
1943 * Inline functions
1944 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1945 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1946 const void *address, unsigned int length)
1947 {
1948 return crc32(crc, address, length);
1949 }
1950
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1951 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1952 unsigned int length)
1953 {
1954 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1955 }
1956
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1957 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1958 void *buf, size_t buf_size)
1959 {
1960 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1961 }
1962
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1963 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1964 const void *address, unsigned int length)
1965 {
1966 return __f2fs_crc32(sbi, crc, address, length);
1967 }
1968
F2FS_I(struct inode * inode)1969 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1970 {
1971 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1972 }
1973
F2FS_SB(struct super_block * sb)1974 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1975 {
1976 return sb->s_fs_info;
1977 }
1978
F2FS_I_SB(struct inode * inode)1979 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1980 {
1981 return F2FS_SB(inode->i_sb);
1982 }
1983
F2FS_M_SB(struct address_space * mapping)1984 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1985 {
1986 return F2FS_I_SB(mapping->host);
1987 }
1988
F2FS_F_SB(struct folio * folio)1989 static inline struct f2fs_sb_info *F2FS_F_SB(struct folio *folio)
1990 {
1991 return F2FS_M_SB(folio->mapping);
1992 }
1993
F2FS_P_SB(struct page * page)1994 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1995 {
1996 return F2FS_F_SB(page_folio(page));
1997 }
1998
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1999 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2000 {
2001 return (struct f2fs_super_block *)(sbi->raw_super);
2002 }
2003
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2004 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2005 pgoff_t index)
2006 {
2007 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2008
2009 return (struct f2fs_super_block *)
2010 (page_address(folio_page(folio, idx_in_folio)) +
2011 F2FS_SUPER_OFFSET);
2012 }
2013
F2FS_CKPT(struct f2fs_sb_info * sbi)2014 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2015 {
2016 return (struct f2fs_checkpoint *)(sbi->ckpt);
2017 }
2018
F2FS_NODE(struct page * page)2019 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2020 {
2021 return (struct f2fs_node *)page_address(page);
2022 }
2023
F2FS_INODE(struct page * page)2024 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2025 {
2026 return &((struct f2fs_node *)page_address(page))->i;
2027 }
2028
NM_I(struct f2fs_sb_info * sbi)2029 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2030 {
2031 return (struct f2fs_nm_info *)(sbi->nm_info);
2032 }
2033
SM_I(struct f2fs_sb_info * sbi)2034 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2035 {
2036 return (struct f2fs_sm_info *)(sbi->sm_info);
2037 }
2038
SIT_I(struct f2fs_sb_info * sbi)2039 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2040 {
2041 return (struct sit_info *)(SM_I(sbi)->sit_info);
2042 }
2043
FREE_I(struct f2fs_sb_info * sbi)2044 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2045 {
2046 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2047 }
2048
DIRTY_I(struct f2fs_sb_info * sbi)2049 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2050 {
2051 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2052 }
2053
META_MAPPING(struct f2fs_sb_info * sbi)2054 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2055 {
2056 return sbi->meta_inode->i_mapping;
2057 }
2058
NODE_MAPPING(struct f2fs_sb_info * sbi)2059 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2060 {
2061 return sbi->node_inode->i_mapping;
2062 }
2063
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2064 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2065 {
2066 return test_bit(type, &sbi->s_flag);
2067 }
2068
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2069 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2070 {
2071 set_bit(type, &sbi->s_flag);
2072 }
2073
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2074 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2075 {
2076 clear_bit(type, &sbi->s_flag);
2077 }
2078
cur_cp_version(struct f2fs_checkpoint * cp)2079 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2080 {
2081 return le64_to_cpu(cp->checkpoint_ver);
2082 }
2083
f2fs_qf_ino(struct super_block * sb,int type)2084 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2085 {
2086 if (type < F2FS_MAX_QUOTAS)
2087 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2088 return 0;
2089 }
2090
cur_cp_crc(struct f2fs_checkpoint * cp)2091 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2092 {
2093 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2094 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2095 }
2096
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2097 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2098 {
2099 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2100
2101 return ckpt_flags & f;
2102 }
2103
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2104 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2105 {
2106 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2107 }
2108
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2109 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2110 {
2111 unsigned int ckpt_flags;
2112
2113 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2114 ckpt_flags |= f;
2115 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2116 }
2117
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2118 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2119 {
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&sbi->cp_lock, flags);
2123 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2124 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2125 }
2126
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2127 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2128 {
2129 unsigned int ckpt_flags;
2130
2131 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2132 ckpt_flags &= (~f);
2133 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2134 }
2135
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2136 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2137 {
2138 unsigned long flags;
2139
2140 spin_lock_irqsave(&sbi->cp_lock, flags);
2141 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2142 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2143 }
2144
2145 #define init_f2fs_rwsem(sem) \
2146 do { \
2147 static struct lock_class_key __key; \
2148 \
2149 __init_f2fs_rwsem((sem), #sem, &__key); \
2150 } while (0)
2151
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2152 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2153 const char *sem_name, struct lock_class_key *key)
2154 {
2155 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2156 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2157 init_waitqueue_head(&sem->read_waiters);
2158 #endif
2159 }
2160
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2161 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2162 {
2163 return rwsem_is_locked(&sem->internal_rwsem);
2164 }
2165
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2166 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2167 {
2168 return rwsem_is_contended(&sem->internal_rwsem);
2169 }
2170
f2fs_down_read(struct f2fs_rwsem * sem)2171 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2172 {
2173 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2174 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2175 #else
2176 down_read(&sem->internal_rwsem);
2177 #endif
2178 }
2179
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2180 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2181 {
2182 return down_read_trylock(&sem->internal_rwsem);
2183 }
2184
f2fs_up_read(struct f2fs_rwsem * sem)2185 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2186 {
2187 up_read(&sem->internal_rwsem);
2188 }
2189
f2fs_down_write(struct f2fs_rwsem * sem)2190 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2191 {
2192 down_write(&sem->internal_rwsem);
2193 }
2194
2195 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2196 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2197 {
2198 down_read_nested(&sem->internal_rwsem, subclass);
2199 }
2200
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2201 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2202 {
2203 down_write_nested(&sem->internal_rwsem, subclass);
2204 }
2205 #else
2206 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2207 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2208 #endif
2209
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2210 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2211 {
2212 return down_write_trylock(&sem->internal_rwsem);
2213 }
2214
f2fs_up_write(struct f2fs_rwsem * sem)2215 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2216 {
2217 up_write(&sem->internal_rwsem);
2218 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2219 wake_up_all(&sem->read_waiters);
2220 #endif
2221 }
2222
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2223 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2224 {
2225 unsigned long flags;
2226 unsigned char *nat_bits;
2227
2228 /*
2229 * In order to re-enable nat_bits we need to call fsck.f2fs by
2230 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2231 * so let's rely on regular fsck or unclean shutdown.
2232 */
2233
2234 if (lock)
2235 spin_lock_irqsave(&sbi->cp_lock, flags);
2236 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2237 nat_bits = NM_I(sbi)->nat_bits;
2238 NM_I(sbi)->nat_bits = NULL;
2239 if (lock)
2240 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2241
2242 kvfree(nat_bits);
2243 }
2244
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2245 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2246 struct cp_control *cpc)
2247 {
2248 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2249
2250 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2251 }
2252
f2fs_lock_op(struct f2fs_sb_info * sbi)2253 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2254 {
2255 f2fs_down_read(&sbi->cp_rwsem);
2256 }
2257
f2fs_trylock_op(struct f2fs_sb_info * sbi)2258 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2259 {
2260 if (time_to_inject(sbi, FAULT_LOCK_OP))
2261 return 0;
2262 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2263 }
2264
f2fs_unlock_op(struct f2fs_sb_info * sbi)2265 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2266 {
2267 f2fs_up_read(&sbi->cp_rwsem);
2268 }
2269
f2fs_lock_all(struct f2fs_sb_info * sbi)2270 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2271 {
2272 f2fs_down_write(&sbi->cp_rwsem);
2273 }
2274
f2fs_unlock_all(struct f2fs_sb_info * sbi)2275 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2276 {
2277 f2fs_up_write(&sbi->cp_rwsem);
2278 }
2279
__get_cp_reason(struct f2fs_sb_info * sbi)2280 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2281 {
2282 int reason = CP_SYNC;
2283
2284 if (test_opt(sbi, FASTBOOT))
2285 reason = CP_FASTBOOT;
2286 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2287 reason = CP_UMOUNT;
2288 return reason;
2289 }
2290
__remain_node_summaries(int reason)2291 static inline bool __remain_node_summaries(int reason)
2292 {
2293 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2294 }
2295
__exist_node_summaries(struct f2fs_sb_info * sbi)2296 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2297 {
2298 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2299 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2300 }
2301
2302 /*
2303 * Check whether the inode has blocks or not
2304 */
F2FS_HAS_BLOCKS(struct inode * inode)2305 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2306 {
2307 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2308
2309 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2310 }
2311
f2fs_has_xattr_block(unsigned int ofs)2312 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2313 {
2314 return ofs == XATTR_NODE_OFFSET;
2315 }
2316
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2317 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2318 struct inode *inode, bool cap)
2319 {
2320 if (!inode)
2321 return true;
2322 if (!test_opt(sbi, RESERVE_ROOT))
2323 return false;
2324 if (IS_NOQUOTA(inode))
2325 return true;
2326 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2327 return true;
2328 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2329 in_group_p(F2FS_OPTION(sbi).s_resgid))
2330 return true;
2331 if (cap && capable(CAP_SYS_RESOURCE))
2332 return true;
2333 return false;
2334 }
2335
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2336 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2337 struct inode *inode, bool cap)
2338 {
2339 block_t avail_user_block_count;
2340
2341 avail_user_block_count = sbi->user_block_count -
2342 sbi->current_reserved_blocks;
2343
2344 if (!__allow_reserved_blocks(sbi, inode, cap))
2345 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2346
2347 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2348 if (avail_user_block_count > sbi->unusable_block_count)
2349 avail_user_block_count -= sbi->unusable_block_count;
2350 else
2351 avail_user_block_count = 0;
2352 }
2353
2354 return avail_user_block_count;
2355 }
2356
2357 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2358 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2359 struct inode *inode, blkcnt_t *count, bool partial)
2360 {
2361 long long diff = 0, release = 0;
2362 block_t avail_user_block_count;
2363 int ret;
2364
2365 ret = dquot_reserve_block(inode, *count);
2366 if (ret)
2367 return ret;
2368
2369 if (time_to_inject(sbi, FAULT_BLOCK)) {
2370 release = *count;
2371 goto release_quota;
2372 }
2373
2374 /*
2375 * let's increase this in prior to actual block count change in order
2376 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2377 */
2378 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2379
2380 spin_lock(&sbi->stat_lock);
2381
2382 avail_user_block_count = get_available_block_count(sbi, inode, true);
2383 diff = (long long)sbi->total_valid_block_count + *count -
2384 avail_user_block_count;
2385 if (unlikely(diff > 0)) {
2386 if (!partial) {
2387 spin_unlock(&sbi->stat_lock);
2388 release = *count;
2389 goto enospc;
2390 }
2391 if (diff > *count)
2392 diff = *count;
2393 *count -= diff;
2394 release = diff;
2395 if (!*count) {
2396 spin_unlock(&sbi->stat_lock);
2397 goto enospc;
2398 }
2399 }
2400 sbi->total_valid_block_count += (block_t)(*count);
2401
2402 spin_unlock(&sbi->stat_lock);
2403
2404 if (unlikely(release)) {
2405 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2406 dquot_release_reservation_block(inode, release);
2407 }
2408 f2fs_i_blocks_write(inode, *count, true, true);
2409 return 0;
2410
2411 enospc:
2412 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2413 release_quota:
2414 dquot_release_reservation_block(inode, release);
2415 return -ENOSPC;
2416 }
2417
2418 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2419 static inline bool page_private_##name(struct page *page) \
2420 { \
2421 return PagePrivate(page) && \
2422 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2423 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2424 }
2425
2426 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2427 static inline void set_page_private_##name(struct page *page) \
2428 { \
2429 if (!PagePrivate(page)) \
2430 attach_page_private(page, (void *)0); \
2431 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2432 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2433 }
2434
2435 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2436 static inline void clear_page_private_##name(struct page *page) \
2437 { \
2438 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2439 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2440 detach_page_private(page); \
2441 }
2442
2443 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2444 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2445 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2446 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2447
2448 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2449 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2450 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2451 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2452
2453 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2454 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2455 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2456 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2457
get_page_private_data(struct page * page)2458 static inline unsigned long get_page_private_data(struct page *page)
2459 {
2460 unsigned long data = page_private(page);
2461
2462 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2463 return 0;
2464 return data >> PAGE_PRIVATE_MAX;
2465 }
2466
set_page_private_data(struct page * page,unsigned long data)2467 static inline void set_page_private_data(struct page *page, unsigned long data)
2468 {
2469 if (!PagePrivate(page))
2470 attach_page_private(page, (void *)0);
2471 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2472 page_private(page) |= data << PAGE_PRIVATE_MAX;
2473 }
2474
clear_page_private_data(struct page * page)2475 static inline void clear_page_private_data(struct page *page)
2476 {
2477 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2478 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2479 detach_page_private(page);
2480 }
2481
clear_page_private_all(struct page * page)2482 static inline void clear_page_private_all(struct page *page)
2483 {
2484 clear_page_private_data(page);
2485 clear_page_private_reference(page);
2486 clear_page_private_gcing(page);
2487 clear_page_private_inline(page);
2488 clear_page_private_atomic(page);
2489
2490 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2491 }
2492
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2493 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2494 struct inode *inode,
2495 block_t count)
2496 {
2497 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2498
2499 spin_lock(&sbi->stat_lock);
2500 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2501 sbi->total_valid_block_count -= (block_t)count;
2502 if (sbi->reserved_blocks &&
2503 sbi->current_reserved_blocks < sbi->reserved_blocks)
2504 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2505 sbi->current_reserved_blocks + count);
2506 spin_unlock(&sbi->stat_lock);
2507 if (unlikely(inode->i_blocks < sectors)) {
2508 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2509 inode->i_ino,
2510 (unsigned long long)inode->i_blocks,
2511 (unsigned long long)sectors);
2512 set_sbi_flag(sbi, SBI_NEED_FSCK);
2513 return;
2514 }
2515 f2fs_i_blocks_write(inode, count, false, true);
2516 }
2517
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2518 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2519 {
2520 atomic_inc(&sbi->nr_pages[count_type]);
2521
2522 if (count_type == F2FS_DIRTY_DENTS ||
2523 count_type == F2FS_DIRTY_NODES ||
2524 count_type == F2FS_DIRTY_META ||
2525 count_type == F2FS_DIRTY_QDATA ||
2526 count_type == F2FS_DIRTY_IMETA)
2527 set_sbi_flag(sbi, SBI_IS_DIRTY);
2528 }
2529
inode_inc_dirty_pages(struct inode * inode)2530 static inline void inode_inc_dirty_pages(struct inode *inode)
2531 {
2532 atomic_inc(&F2FS_I(inode)->dirty_pages);
2533 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2534 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2535 if (IS_NOQUOTA(inode))
2536 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2537 }
2538
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2539 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2540 {
2541 atomic_dec(&sbi->nr_pages[count_type]);
2542 }
2543
inode_dec_dirty_pages(struct inode * inode)2544 static inline void inode_dec_dirty_pages(struct inode *inode)
2545 {
2546 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2547 !S_ISLNK(inode->i_mode))
2548 return;
2549
2550 atomic_dec(&F2FS_I(inode)->dirty_pages);
2551 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2552 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2553 if (IS_NOQUOTA(inode))
2554 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2555 }
2556
inc_atomic_write_cnt(struct inode * inode)2557 static inline void inc_atomic_write_cnt(struct inode *inode)
2558 {
2559 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2560 struct f2fs_inode_info *fi = F2FS_I(inode);
2561 u64 current_write;
2562
2563 fi->atomic_write_cnt++;
2564 atomic64_inc(&sbi->current_atomic_write);
2565 current_write = atomic64_read(&sbi->current_atomic_write);
2566 if (current_write > sbi->peak_atomic_write)
2567 sbi->peak_atomic_write = current_write;
2568 }
2569
release_atomic_write_cnt(struct inode * inode)2570 static inline void release_atomic_write_cnt(struct inode *inode)
2571 {
2572 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2573 struct f2fs_inode_info *fi = F2FS_I(inode);
2574
2575 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2576 fi->atomic_write_cnt = 0;
2577 }
2578
get_pages(struct f2fs_sb_info * sbi,int count_type)2579 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2580 {
2581 return atomic_read(&sbi->nr_pages[count_type]);
2582 }
2583
get_dirty_pages(struct inode * inode)2584 static inline int get_dirty_pages(struct inode *inode)
2585 {
2586 return atomic_read(&F2FS_I(inode)->dirty_pages);
2587 }
2588
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2589 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2590 {
2591 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2592 BLKS_PER_SEC(sbi));
2593 }
2594
valid_user_blocks(struct f2fs_sb_info * sbi)2595 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2596 {
2597 return sbi->total_valid_block_count;
2598 }
2599
discard_blocks(struct f2fs_sb_info * sbi)2600 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2601 {
2602 return sbi->discard_blks;
2603 }
2604
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2605 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2606 {
2607 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2608
2609 /* return NAT or SIT bitmap */
2610 if (flag == NAT_BITMAP)
2611 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2612 else if (flag == SIT_BITMAP)
2613 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2614
2615 return 0;
2616 }
2617
__cp_payload(struct f2fs_sb_info * sbi)2618 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2619 {
2620 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2621 }
2622
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2623 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2624 {
2625 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2626 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2627 int offset;
2628
2629 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2630 offset = (flag == SIT_BITMAP) ?
2631 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2632 /*
2633 * if large_nat_bitmap feature is enabled, leave checksum
2634 * protection for all nat/sit bitmaps.
2635 */
2636 return tmp_ptr + offset + sizeof(__le32);
2637 }
2638
2639 if (__cp_payload(sbi) > 0) {
2640 if (flag == NAT_BITMAP)
2641 return tmp_ptr;
2642 else
2643 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2644 } else {
2645 offset = (flag == NAT_BITMAP) ?
2646 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2647 return tmp_ptr + offset;
2648 }
2649 }
2650
__start_cp_addr(struct f2fs_sb_info * sbi)2651 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2652 {
2653 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2654
2655 if (sbi->cur_cp_pack == 2)
2656 start_addr += BLKS_PER_SEG(sbi);
2657 return start_addr;
2658 }
2659
__start_cp_next_addr(struct f2fs_sb_info * sbi)2660 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2661 {
2662 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2663
2664 if (sbi->cur_cp_pack == 1)
2665 start_addr += BLKS_PER_SEG(sbi);
2666 return start_addr;
2667 }
2668
__set_cp_next_pack(struct f2fs_sb_info * sbi)2669 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2670 {
2671 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2672 }
2673
__start_sum_addr(struct f2fs_sb_info * sbi)2674 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2675 {
2676 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2677 }
2678
2679 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2680 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2681 struct inode *inode, bool is_inode)
2682 {
2683 block_t valid_block_count;
2684 unsigned int valid_node_count;
2685 unsigned int avail_user_block_count;
2686 int err;
2687
2688 if (is_inode) {
2689 if (inode) {
2690 err = dquot_alloc_inode(inode);
2691 if (err)
2692 return err;
2693 }
2694 } else {
2695 err = dquot_reserve_block(inode, 1);
2696 if (err)
2697 return err;
2698 }
2699
2700 if (time_to_inject(sbi, FAULT_BLOCK))
2701 goto enospc;
2702
2703 spin_lock(&sbi->stat_lock);
2704
2705 valid_block_count = sbi->total_valid_block_count + 1;
2706 avail_user_block_count = get_available_block_count(sbi, inode, false);
2707
2708 if (unlikely(valid_block_count > avail_user_block_count)) {
2709 spin_unlock(&sbi->stat_lock);
2710 goto enospc;
2711 }
2712
2713 valid_node_count = sbi->total_valid_node_count + 1;
2714 if (unlikely(valid_node_count > sbi->total_node_count)) {
2715 spin_unlock(&sbi->stat_lock);
2716 goto enospc;
2717 }
2718
2719 sbi->total_valid_node_count++;
2720 sbi->total_valid_block_count++;
2721 spin_unlock(&sbi->stat_lock);
2722
2723 if (inode) {
2724 if (is_inode)
2725 f2fs_mark_inode_dirty_sync(inode, true);
2726 else
2727 f2fs_i_blocks_write(inode, 1, true, true);
2728 }
2729
2730 percpu_counter_inc(&sbi->alloc_valid_block_count);
2731 return 0;
2732
2733 enospc:
2734 if (is_inode) {
2735 if (inode)
2736 dquot_free_inode(inode);
2737 } else {
2738 dquot_release_reservation_block(inode, 1);
2739 }
2740 return -ENOSPC;
2741 }
2742
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2743 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2744 struct inode *inode, bool is_inode)
2745 {
2746 spin_lock(&sbi->stat_lock);
2747
2748 if (unlikely(!sbi->total_valid_block_count ||
2749 !sbi->total_valid_node_count)) {
2750 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2751 sbi->total_valid_block_count,
2752 sbi->total_valid_node_count);
2753 set_sbi_flag(sbi, SBI_NEED_FSCK);
2754 } else {
2755 sbi->total_valid_block_count--;
2756 sbi->total_valid_node_count--;
2757 }
2758
2759 if (sbi->reserved_blocks &&
2760 sbi->current_reserved_blocks < sbi->reserved_blocks)
2761 sbi->current_reserved_blocks++;
2762
2763 spin_unlock(&sbi->stat_lock);
2764
2765 if (is_inode) {
2766 dquot_free_inode(inode);
2767 } else {
2768 if (unlikely(inode->i_blocks == 0)) {
2769 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2770 inode->i_ino,
2771 (unsigned long long)inode->i_blocks);
2772 set_sbi_flag(sbi, SBI_NEED_FSCK);
2773 return;
2774 }
2775 f2fs_i_blocks_write(inode, 1, false, true);
2776 }
2777 }
2778
valid_node_count(struct f2fs_sb_info * sbi)2779 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2780 {
2781 return sbi->total_valid_node_count;
2782 }
2783
inc_valid_inode_count(struct f2fs_sb_info * sbi)2784 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2785 {
2786 percpu_counter_inc(&sbi->total_valid_inode_count);
2787 }
2788
dec_valid_inode_count(struct f2fs_sb_info * sbi)2789 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2790 {
2791 percpu_counter_dec(&sbi->total_valid_inode_count);
2792 }
2793
valid_inode_count(struct f2fs_sb_info * sbi)2794 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2795 {
2796 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2797 }
2798
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2799 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2800 pgoff_t index, bool for_write)
2801 {
2802 struct page *page;
2803 unsigned int flags;
2804
2805 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2806 if (!for_write)
2807 page = find_get_page_flags(mapping, index,
2808 FGP_LOCK | FGP_ACCESSED);
2809 else
2810 page = find_lock_page(mapping, index);
2811 if (page)
2812 return page;
2813
2814 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2815 return NULL;
2816 }
2817
2818 if (!for_write)
2819 return grab_cache_page(mapping, index);
2820
2821 flags = memalloc_nofs_save();
2822 page = grab_cache_page_write_begin(mapping, index);
2823 memalloc_nofs_restore(flags);
2824
2825 return page;
2826 }
2827
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2828 static inline struct page *f2fs_pagecache_get_page(
2829 struct address_space *mapping, pgoff_t index,
2830 fgf_t fgp_flags, gfp_t gfp_mask)
2831 {
2832 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2833 return NULL;
2834
2835 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2836 }
2837
f2fs_put_page(struct page * page,int unlock)2838 static inline void f2fs_put_page(struct page *page, int unlock)
2839 {
2840 if (!page)
2841 return;
2842
2843 if (unlock) {
2844 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2845 unlock_page(page);
2846 }
2847 put_page(page);
2848 }
2849
f2fs_put_dnode(struct dnode_of_data * dn)2850 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2851 {
2852 if (dn->node_page)
2853 f2fs_put_page(dn->node_page, 1);
2854 if (dn->inode_page && dn->node_page != dn->inode_page)
2855 f2fs_put_page(dn->inode_page, 0);
2856 dn->node_page = NULL;
2857 dn->inode_page = NULL;
2858 }
2859
f2fs_kmem_cache_create(const char * name,size_t size)2860 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2861 size_t size)
2862 {
2863 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2864 }
2865
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2866 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2867 gfp_t flags)
2868 {
2869 void *entry;
2870
2871 entry = kmem_cache_alloc(cachep, flags);
2872 if (!entry)
2873 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2874 return entry;
2875 }
2876
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2877 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2878 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2879 {
2880 if (nofail)
2881 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2882
2883 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2884 return NULL;
2885
2886 return kmem_cache_alloc(cachep, flags);
2887 }
2888
is_inflight_io(struct f2fs_sb_info * sbi,int type)2889 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2890 {
2891 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2892 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2893 get_pages(sbi, F2FS_WB_CP_DATA) ||
2894 get_pages(sbi, F2FS_DIO_READ) ||
2895 get_pages(sbi, F2FS_DIO_WRITE))
2896 return true;
2897
2898 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2899 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2900 return true;
2901
2902 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2903 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2904 return true;
2905 return false;
2906 }
2907
is_inflight_read_io(struct f2fs_sb_info * sbi)2908 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2909 {
2910 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2911 }
2912
is_idle(struct f2fs_sb_info * sbi,int type)2913 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2914 {
2915 bool zoned_gc = (type == GC_TIME &&
2916 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2917
2918 if (sbi->gc_mode == GC_URGENT_HIGH)
2919 return true;
2920
2921 if (zoned_gc) {
2922 if (is_inflight_read_io(sbi))
2923 return false;
2924 } else {
2925 if (is_inflight_io(sbi, type))
2926 return false;
2927 }
2928
2929 if (sbi->gc_mode == GC_URGENT_MID)
2930 return true;
2931
2932 if (sbi->gc_mode == GC_URGENT_LOW &&
2933 (type == DISCARD_TIME || type == GC_TIME))
2934 return true;
2935
2936 if (zoned_gc)
2937 return true;
2938
2939 return f2fs_time_over(sbi, type);
2940 }
2941
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2942 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2943 unsigned long index, void *item)
2944 {
2945 while (radix_tree_insert(root, index, item))
2946 cond_resched();
2947 }
2948
2949 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2950
IS_INODE(struct page * page)2951 static inline bool IS_INODE(struct page *page)
2952 {
2953 struct f2fs_node *p = F2FS_NODE(page);
2954
2955 return RAW_IS_INODE(p);
2956 }
2957
offset_in_addr(struct f2fs_inode * i)2958 static inline int offset_in_addr(struct f2fs_inode *i)
2959 {
2960 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2961 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2962 }
2963
blkaddr_in_node(struct f2fs_node * node)2964 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2965 {
2966 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2967 }
2968
2969 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct page * node_page)2970 static inline unsigned int get_dnode_base(struct inode *inode,
2971 struct page *node_page)
2972 {
2973 if (!IS_INODE(node_page))
2974 return 0;
2975
2976 return inode ? get_extra_isize(inode) :
2977 offset_in_addr(&F2FS_NODE(node_page)->i);
2978 }
2979
get_dnode_addr(struct inode * inode,struct page * node_page)2980 static inline __le32 *get_dnode_addr(struct inode *inode,
2981 struct page *node_page)
2982 {
2983 return blkaddr_in_node(F2FS_NODE(node_page)) +
2984 get_dnode_base(inode, node_page);
2985 }
2986
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2987 static inline block_t data_blkaddr(struct inode *inode,
2988 struct page *node_page, unsigned int offset)
2989 {
2990 return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
2991 }
2992
f2fs_data_blkaddr(struct dnode_of_data * dn)2993 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2994 {
2995 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2996 }
2997
f2fs_test_bit(unsigned int nr,char * addr)2998 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2999 {
3000 int mask;
3001
3002 addr += (nr >> 3);
3003 mask = BIT(7 - (nr & 0x07));
3004 return mask & *addr;
3005 }
3006
f2fs_set_bit(unsigned int nr,char * addr)3007 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3008 {
3009 int mask;
3010
3011 addr += (nr >> 3);
3012 mask = BIT(7 - (nr & 0x07));
3013 *addr |= mask;
3014 }
3015
f2fs_clear_bit(unsigned int nr,char * addr)3016 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3017 {
3018 int mask;
3019
3020 addr += (nr >> 3);
3021 mask = BIT(7 - (nr & 0x07));
3022 *addr &= ~mask;
3023 }
3024
f2fs_test_and_set_bit(unsigned int nr,char * addr)3025 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3026 {
3027 int mask;
3028 int ret;
3029
3030 addr += (nr >> 3);
3031 mask = BIT(7 - (nr & 0x07));
3032 ret = mask & *addr;
3033 *addr |= mask;
3034 return ret;
3035 }
3036
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3037 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3038 {
3039 int mask;
3040 int ret;
3041
3042 addr += (nr >> 3);
3043 mask = BIT(7 - (nr & 0x07));
3044 ret = mask & *addr;
3045 *addr &= ~mask;
3046 return ret;
3047 }
3048
f2fs_change_bit(unsigned int nr,char * addr)3049 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3050 {
3051 int mask;
3052
3053 addr += (nr >> 3);
3054 mask = BIT(7 - (nr & 0x07));
3055 *addr ^= mask;
3056 }
3057
3058 /*
3059 * On-disk inode flags (f2fs_inode::i_flags)
3060 */
3061 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
3062 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3063 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3064 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3065 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3066 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3067 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3068 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3069 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3070 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3071 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3072 #define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3073
3074 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3075
3076 /* Flags that should be inherited by new inodes from their parent. */
3077 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3078 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3079 F2FS_CASEFOLD_FL)
3080
3081 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3082 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3083 F2FS_CASEFOLD_FL))
3084
3085 /* Flags that are appropriate for non-directories/regular files. */
3086 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3087
3088 #define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3089
f2fs_mask_flags(umode_t mode,__u32 flags)3090 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3091 {
3092 if (S_ISDIR(mode))
3093 return flags;
3094 else if (S_ISREG(mode))
3095 return flags & F2FS_REG_FLMASK;
3096 else
3097 return flags & F2FS_OTHER_FLMASK;
3098 }
3099
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3100 static inline void __mark_inode_dirty_flag(struct inode *inode,
3101 int flag, bool set)
3102 {
3103 switch (flag) {
3104 case FI_INLINE_XATTR:
3105 case FI_INLINE_DATA:
3106 case FI_INLINE_DENTRY:
3107 case FI_NEW_INODE:
3108 if (set)
3109 return;
3110 fallthrough;
3111 case FI_DATA_EXIST:
3112 case FI_PIN_FILE:
3113 case FI_COMPRESS_RELEASED:
3114 f2fs_mark_inode_dirty_sync(inode, true);
3115 }
3116 }
3117
set_inode_flag(struct inode * inode,int flag)3118 static inline void set_inode_flag(struct inode *inode, int flag)
3119 {
3120 set_bit(flag, F2FS_I(inode)->flags);
3121 __mark_inode_dirty_flag(inode, flag, true);
3122 }
3123
is_inode_flag_set(struct inode * inode,int flag)3124 static inline int is_inode_flag_set(struct inode *inode, int flag)
3125 {
3126 return test_bit(flag, F2FS_I(inode)->flags);
3127 }
3128
clear_inode_flag(struct inode * inode,int flag)3129 static inline void clear_inode_flag(struct inode *inode, int flag)
3130 {
3131 clear_bit(flag, F2FS_I(inode)->flags);
3132 __mark_inode_dirty_flag(inode, flag, false);
3133 }
3134
f2fs_verity_in_progress(struct inode * inode)3135 static inline bool f2fs_verity_in_progress(struct inode *inode)
3136 {
3137 return IS_ENABLED(CONFIG_FS_VERITY) &&
3138 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3139 }
3140
set_acl_inode(struct inode * inode,umode_t mode)3141 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3142 {
3143 F2FS_I(inode)->i_acl_mode = mode;
3144 set_inode_flag(inode, FI_ACL_MODE);
3145 f2fs_mark_inode_dirty_sync(inode, false);
3146 }
3147
f2fs_i_links_write(struct inode * inode,bool inc)3148 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3149 {
3150 if (inc)
3151 inc_nlink(inode);
3152 else
3153 drop_nlink(inode);
3154 f2fs_mark_inode_dirty_sync(inode, true);
3155 }
3156
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3157 static inline void f2fs_i_blocks_write(struct inode *inode,
3158 block_t diff, bool add, bool claim)
3159 {
3160 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3161 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3162
3163 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3164 if (add) {
3165 if (claim)
3166 dquot_claim_block(inode, diff);
3167 else
3168 dquot_alloc_block_nofail(inode, diff);
3169 } else {
3170 dquot_free_block(inode, diff);
3171 }
3172
3173 f2fs_mark_inode_dirty_sync(inode, true);
3174 if (clean || recover)
3175 set_inode_flag(inode, FI_AUTO_RECOVER);
3176 }
3177
3178 static inline bool f2fs_is_atomic_file(struct inode *inode);
3179
f2fs_i_size_write(struct inode * inode,loff_t i_size)3180 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3181 {
3182 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3183 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3184
3185 if (i_size_read(inode) == i_size)
3186 return;
3187
3188 i_size_write(inode, i_size);
3189
3190 if (f2fs_is_atomic_file(inode))
3191 return;
3192
3193 f2fs_mark_inode_dirty_sync(inode, true);
3194 if (clean || recover)
3195 set_inode_flag(inode, FI_AUTO_RECOVER);
3196 }
3197
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3198 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3199 {
3200 F2FS_I(inode)->i_current_depth = depth;
3201 f2fs_mark_inode_dirty_sync(inode, true);
3202 }
3203
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3204 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3205 unsigned int count)
3206 {
3207 F2FS_I(inode)->i_gc_failures = count;
3208 f2fs_mark_inode_dirty_sync(inode, true);
3209 }
3210
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3211 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3212 {
3213 F2FS_I(inode)->i_xattr_nid = xnid;
3214 f2fs_mark_inode_dirty_sync(inode, true);
3215 }
3216
f2fs_i_pino_write(struct inode * inode,nid_t pino)3217 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3218 {
3219 F2FS_I(inode)->i_pino = pino;
3220 f2fs_mark_inode_dirty_sync(inode, true);
3221 }
3222
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3223 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3224 {
3225 struct f2fs_inode_info *fi = F2FS_I(inode);
3226
3227 if (ri->i_inline & F2FS_INLINE_XATTR)
3228 set_bit(FI_INLINE_XATTR, fi->flags);
3229 if (ri->i_inline & F2FS_INLINE_DATA)
3230 set_bit(FI_INLINE_DATA, fi->flags);
3231 if (ri->i_inline & F2FS_INLINE_DENTRY)
3232 set_bit(FI_INLINE_DENTRY, fi->flags);
3233 if (ri->i_inline & F2FS_DATA_EXIST)
3234 set_bit(FI_DATA_EXIST, fi->flags);
3235 if (ri->i_inline & F2FS_EXTRA_ATTR)
3236 set_bit(FI_EXTRA_ATTR, fi->flags);
3237 if (ri->i_inline & F2FS_PIN_FILE)
3238 set_bit(FI_PIN_FILE, fi->flags);
3239 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3240 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3241 }
3242
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3243 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3244 {
3245 ri->i_inline = 0;
3246
3247 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3248 ri->i_inline |= F2FS_INLINE_XATTR;
3249 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3250 ri->i_inline |= F2FS_INLINE_DATA;
3251 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3252 ri->i_inline |= F2FS_INLINE_DENTRY;
3253 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3254 ri->i_inline |= F2FS_DATA_EXIST;
3255 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3256 ri->i_inline |= F2FS_EXTRA_ATTR;
3257 if (is_inode_flag_set(inode, FI_PIN_FILE))
3258 ri->i_inline |= F2FS_PIN_FILE;
3259 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3260 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3261 }
3262
f2fs_has_extra_attr(struct inode * inode)3263 static inline int f2fs_has_extra_attr(struct inode *inode)
3264 {
3265 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3266 }
3267
f2fs_has_inline_xattr(struct inode * inode)3268 static inline int f2fs_has_inline_xattr(struct inode *inode)
3269 {
3270 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3271 }
3272
f2fs_compressed_file(struct inode * inode)3273 static inline int f2fs_compressed_file(struct inode *inode)
3274 {
3275 return S_ISREG(inode->i_mode) &&
3276 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3277 }
3278
f2fs_need_compress_data(struct inode * inode)3279 static inline bool f2fs_need_compress_data(struct inode *inode)
3280 {
3281 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3282
3283 if (!f2fs_compressed_file(inode))
3284 return false;
3285
3286 if (compress_mode == COMPR_MODE_FS)
3287 return true;
3288 else if (compress_mode == COMPR_MODE_USER &&
3289 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3290 return true;
3291
3292 return false;
3293 }
3294
addrs_per_page(struct inode * inode,bool is_inode)3295 static inline unsigned int addrs_per_page(struct inode *inode,
3296 bool is_inode)
3297 {
3298 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3299 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3300
3301 if (f2fs_compressed_file(inode))
3302 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3303 return addrs;
3304 }
3305
inline_xattr_addr(struct inode * inode,struct page * page)3306 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3307 {
3308 struct f2fs_inode *ri = F2FS_INODE(page);
3309
3310 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3311 get_inline_xattr_addrs(inode)]);
3312 }
3313
inline_xattr_size(struct inode * inode)3314 static inline int inline_xattr_size(struct inode *inode)
3315 {
3316 if (f2fs_has_inline_xattr(inode))
3317 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3318 return 0;
3319 }
3320
3321 /*
3322 * Notice: check inline_data flag without inode page lock is unsafe.
3323 * It could change at any time by f2fs_convert_inline_page().
3324 */
f2fs_has_inline_data(struct inode * inode)3325 static inline int f2fs_has_inline_data(struct inode *inode)
3326 {
3327 return is_inode_flag_set(inode, FI_INLINE_DATA);
3328 }
3329
f2fs_exist_data(struct inode * inode)3330 static inline int f2fs_exist_data(struct inode *inode)
3331 {
3332 return is_inode_flag_set(inode, FI_DATA_EXIST);
3333 }
3334
f2fs_is_mmap_file(struct inode * inode)3335 static inline int f2fs_is_mmap_file(struct inode *inode)
3336 {
3337 return is_inode_flag_set(inode, FI_MMAP_FILE);
3338 }
3339
f2fs_is_pinned_file(struct inode * inode)3340 static inline bool f2fs_is_pinned_file(struct inode *inode)
3341 {
3342 return is_inode_flag_set(inode, FI_PIN_FILE);
3343 }
3344
f2fs_is_atomic_file(struct inode * inode)3345 static inline bool f2fs_is_atomic_file(struct inode *inode)
3346 {
3347 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3348 }
3349
f2fs_is_cow_file(struct inode * inode)3350 static inline bool f2fs_is_cow_file(struct inode *inode)
3351 {
3352 return is_inode_flag_set(inode, FI_COW_FILE);
3353 }
3354
inline_data_addr(struct inode * inode,struct page * page)3355 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3356 {
3357 __le32 *addr = get_dnode_addr(inode, page);
3358
3359 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3360 }
3361
f2fs_has_inline_dentry(struct inode * inode)3362 static inline int f2fs_has_inline_dentry(struct inode *inode)
3363 {
3364 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3365 }
3366
is_file(struct inode * inode,int type)3367 static inline int is_file(struct inode *inode, int type)
3368 {
3369 return F2FS_I(inode)->i_advise & type;
3370 }
3371
set_file(struct inode * inode,int type)3372 static inline void set_file(struct inode *inode, int type)
3373 {
3374 if (is_file(inode, type))
3375 return;
3376 F2FS_I(inode)->i_advise |= type;
3377 f2fs_mark_inode_dirty_sync(inode, true);
3378 }
3379
clear_file(struct inode * inode,int type)3380 static inline void clear_file(struct inode *inode, int type)
3381 {
3382 if (!is_file(inode, type))
3383 return;
3384 F2FS_I(inode)->i_advise &= ~type;
3385 f2fs_mark_inode_dirty_sync(inode, true);
3386 }
3387
f2fs_is_time_consistent(struct inode * inode)3388 static inline bool f2fs_is_time_consistent(struct inode *inode)
3389 {
3390 struct timespec64 ts = inode_get_atime(inode);
3391
3392 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3393 return false;
3394 ts = inode_get_ctime(inode);
3395 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3396 return false;
3397 ts = inode_get_mtime(inode);
3398 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3399 return false;
3400 return true;
3401 }
3402
f2fs_skip_inode_update(struct inode * inode,int dsync)3403 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3404 {
3405 bool ret;
3406
3407 if (dsync) {
3408 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3409
3410 spin_lock(&sbi->inode_lock[DIRTY_META]);
3411 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3412 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3413 return ret;
3414 }
3415 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3416 file_keep_isize(inode) ||
3417 i_size_read(inode) & ~PAGE_MASK)
3418 return false;
3419
3420 if (!f2fs_is_time_consistent(inode))
3421 return false;
3422
3423 spin_lock(&F2FS_I(inode)->i_size_lock);
3424 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3425 spin_unlock(&F2FS_I(inode)->i_size_lock);
3426
3427 return ret;
3428 }
3429
f2fs_readonly(struct super_block * sb)3430 static inline bool f2fs_readonly(struct super_block *sb)
3431 {
3432 return sb_rdonly(sb);
3433 }
3434
f2fs_cp_error(struct f2fs_sb_info * sbi)3435 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3436 {
3437 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3438 }
3439
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3440 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3441 size_t size, gfp_t flags)
3442 {
3443 if (time_to_inject(sbi, FAULT_KMALLOC))
3444 return NULL;
3445
3446 return kmalloc(size, flags);
3447 }
3448
f2fs_getname(struct f2fs_sb_info * sbi)3449 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3450 {
3451 if (time_to_inject(sbi, FAULT_KMALLOC))
3452 return NULL;
3453
3454 return __getname();
3455 }
3456
f2fs_putname(char * buf)3457 static inline void f2fs_putname(char *buf)
3458 {
3459 __putname(buf);
3460 }
3461
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3462 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3463 size_t size, gfp_t flags)
3464 {
3465 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3466 }
3467
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3468 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3469 size_t size, gfp_t flags)
3470 {
3471 if (time_to_inject(sbi, FAULT_KVMALLOC))
3472 return NULL;
3473
3474 return kvmalloc(size, flags);
3475 }
3476
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3477 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3478 size_t size, gfp_t flags)
3479 {
3480 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3481 }
3482
get_extra_isize(struct inode * inode)3483 static inline int get_extra_isize(struct inode *inode)
3484 {
3485 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3486 }
3487
get_inline_xattr_addrs(struct inode * inode)3488 static inline int get_inline_xattr_addrs(struct inode *inode)
3489 {
3490 return F2FS_I(inode)->i_inline_xattr_size;
3491 }
3492
3493 #define f2fs_get_inode_mode(i) \
3494 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3495 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3496
3497 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3498
3499 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3500 (offsetof(struct f2fs_inode, i_extra_end) - \
3501 offsetof(struct f2fs_inode, i_extra_isize)) \
3502
3503 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3504 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3505 ((offsetof(typeof(*(f2fs_inode)), field) + \
3506 sizeof((f2fs_inode)->field)) \
3507 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3508
3509 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3510
3511 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3512
3513 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3514 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3515 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3516 block_t blkaddr, int type)
3517 {
3518 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3519 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3520 blkaddr, type);
3521 }
3522
__is_valid_data_blkaddr(block_t blkaddr)3523 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3524 {
3525 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3526 blkaddr == COMPRESS_ADDR)
3527 return false;
3528 return true;
3529 }
3530
3531 /*
3532 * file.c
3533 */
3534 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3535 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3536 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3537 int f2fs_truncate(struct inode *inode);
3538 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3539 struct kstat *stat, u32 request_mask, unsigned int flags);
3540 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3541 struct iattr *attr);
3542 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3543 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3544 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3545 bool readonly, bool need_lock);
3546 int f2fs_precache_extents(struct inode *inode);
3547 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3548 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3549 struct dentry *dentry, struct fileattr *fa);
3550 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3551 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3552 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3553 int f2fs_pin_file_control(struct inode *inode, bool inc);
3554
3555 /*
3556 * inode.c
3557 */
3558 void f2fs_set_inode_flags(struct inode *inode);
3559 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3560 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3561 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3562 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3563 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3564 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3565 void f2fs_update_inode_page(struct inode *inode);
3566 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3567 void f2fs_evict_inode(struct inode *inode);
3568 void f2fs_handle_failed_inode(struct inode *inode);
3569
3570 /*
3571 * namei.c
3572 */
3573 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3574 bool hot, bool set);
3575 struct dentry *f2fs_get_parent(struct dentry *child);
3576 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3577 struct inode **new_inode);
3578
3579 /*
3580 * dir.c
3581 */
3582 #if IS_ENABLED(CONFIG_UNICODE)
3583 int f2fs_init_casefolded_name(const struct inode *dir,
3584 struct f2fs_filename *fname);
3585 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3586 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3587 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3588 struct f2fs_filename *fname)
3589 {
3590 return 0;
3591 }
3592
f2fs_free_casefolded_name(struct f2fs_filename * fname)3593 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3594 {
3595 }
3596 #endif /* CONFIG_UNICODE */
3597
3598 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3599 int lookup, struct f2fs_filename *fname);
3600 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3601 struct f2fs_filename *fname);
3602 void f2fs_free_filename(struct f2fs_filename *fname);
3603 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3604 const struct f2fs_filename *fname, int *max_slots,
3605 bool use_hash);
3606 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3607 unsigned int start_pos, struct fscrypt_str *fstr);
3608 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3609 struct f2fs_dentry_ptr *d);
3610 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3611 const struct f2fs_filename *fname, struct page *dpage);
3612 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3613 unsigned int current_depth);
3614 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3615 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3616 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3617 const struct f2fs_filename *fname,
3618 struct page **res_page);
3619 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3620 const struct qstr *child, struct page **res_page);
3621 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3622 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3623 struct page **page);
3624 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3625 struct page *page, struct inode *inode);
3626 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3627 const struct f2fs_filename *fname);
3628 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3629 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3630 unsigned int bit_pos);
3631 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3632 struct inode *inode, nid_t ino, umode_t mode);
3633 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3634 struct inode *inode, nid_t ino, umode_t mode);
3635 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3636 struct inode *inode, nid_t ino, umode_t mode);
3637 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3638 struct inode *dir, struct inode *inode);
3639 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3640 struct f2fs_filename *fname);
3641 bool f2fs_empty_dir(struct inode *dir);
3642
f2fs_add_link(struct dentry * dentry,struct inode * inode)3643 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3644 {
3645 if (fscrypt_is_nokey_name(dentry))
3646 return -ENOKEY;
3647 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3648 inode, inode->i_ino, inode->i_mode);
3649 }
3650
3651 /*
3652 * super.c
3653 */
3654 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3655 void f2fs_inode_synced(struct inode *inode);
3656 int f2fs_dquot_initialize(struct inode *inode);
3657 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3658 int f2fs_do_quota_sync(struct super_block *sb, int type);
3659 loff_t max_file_blocks(struct inode *inode);
3660 void f2fs_quota_off_umount(struct super_block *sb);
3661 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3662 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3663 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3664 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3665 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3666 int f2fs_sync_fs(struct super_block *sb, int sync);
3667 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3668
3669 /*
3670 * hash.c
3671 */
3672 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3673
3674 /*
3675 * node.c
3676 */
3677 struct node_info;
3678
3679 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3680 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3681 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3682 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3683 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3684 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3685 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3686 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3687 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3688 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3689 struct node_info *ni, bool checkpoint_context);
3690 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3691 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3692 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3693 int f2fs_truncate_xattr_node(struct inode *inode);
3694 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3695 unsigned int seq_id);
3696 int f2fs_remove_inode_page(struct inode *inode);
3697 struct page *f2fs_new_inode_page(struct inode *inode);
3698 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3699 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3700 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3701 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3702 int f2fs_move_node_page(struct page *node_page, int gc_type);
3703 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3704 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3705 struct writeback_control *wbc, bool atomic,
3706 unsigned int *seq_id);
3707 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3708 struct writeback_control *wbc,
3709 bool do_balance, enum iostat_type io_type);
3710 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3711 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3712 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3713 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3714 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3715 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3716 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3717 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3718 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3719 unsigned int segno, struct f2fs_summary_block *sum);
3720 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3721 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3722 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3723 int __init f2fs_create_node_manager_caches(void);
3724 void f2fs_destroy_node_manager_caches(void);
3725
3726 /*
3727 * segment.c
3728 */
3729 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3730 int f2fs_commit_atomic_write(struct inode *inode);
3731 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3732 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3733 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3734 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3735 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3736 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3737 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3738 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3739 unsigned int len);
3740 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3741 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3742 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3743 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3744 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3745 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3746 struct cp_control *cpc);
3747 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3748 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3749 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3750 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3751 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3752 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3753 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3754 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3755 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3756 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3757 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3758 unsigned int start, unsigned int end);
3759 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3760 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3761 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3762 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3763 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3764 struct cp_control *cpc);
3765 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3766 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3767 block_t blk_addr);
3768 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3769 enum iostat_type io_type);
3770 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3771 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3772 struct f2fs_io_info *fio);
3773 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3774 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3775 block_t old_blkaddr, block_t new_blkaddr,
3776 bool recover_curseg, bool recover_newaddr,
3777 bool from_gc);
3778 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3779 block_t old_addr, block_t new_addr,
3780 unsigned char version, bool recover_curseg,
3781 bool recover_newaddr);
3782 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3783 enum log_type seg_type);
3784 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3785 block_t old_blkaddr, block_t *new_blkaddr,
3786 struct f2fs_summary *sum, int type,
3787 struct f2fs_io_info *fio);
3788 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3789 block_t blkaddr, unsigned int blkcnt);
3790 void f2fs_wait_on_page_writeback(struct page *page,
3791 enum page_type type, bool ordered, bool locked);
3792 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3793 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3794 block_t len);
3795 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3796 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3797 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3798 unsigned int val, int alloc);
3799 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3800 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3801 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3802 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3803 int __init f2fs_create_segment_manager_caches(void);
3804 void f2fs_destroy_segment_manager_caches(void);
3805 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3806 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3807 enum page_type type, enum temp_type temp);
3808 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3809 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3810 unsigned int segno);
3811 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3812 unsigned int segno);
3813
3814 #define DEF_FRAGMENT_SIZE 4
3815 #define MIN_FRAGMENT_SIZE 1
3816 #define MAX_FRAGMENT_SIZE 512
3817
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3818 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3819 {
3820 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3821 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3822 }
3823
3824 /*
3825 * checkpoint.c
3826 */
3827 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3828 unsigned char reason);
3829 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3830 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3831 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3832 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3833 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3834 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3835 block_t blkaddr, int type);
3836 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3837 block_t blkaddr, int type);
3838 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3839 int type, bool sync);
3840 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3841 unsigned int ra_blocks);
3842 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3843 long nr_to_write, enum iostat_type io_type);
3844 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3845 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3846 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3847 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3848 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3849 unsigned int devidx, int type);
3850 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3851 unsigned int devidx, int type);
3852 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3853 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3854 void f2fs_add_orphan_inode(struct inode *inode);
3855 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3856 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3857 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3858 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3859 void f2fs_remove_dirty_inode(struct inode *inode);
3860 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3861 bool from_cp);
3862 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3863 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3864 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3865 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3866 int __init f2fs_create_checkpoint_caches(void);
3867 void f2fs_destroy_checkpoint_caches(void);
3868 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3869 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3870 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3871 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3872
3873 /*
3874 * data.c
3875 */
3876 int __init f2fs_init_bioset(void);
3877 void f2fs_destroy_bioset(void);
3878 bool f2fs_is_cp_guaranteed(struct page *page);
3879 int f2fs_init_bio_entry_cache(void);
3880 void f2fs_destroy_bio_entry_cache(void);
3881 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3882 enum page_type type);
3883 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3884 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3885 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3886 struct inode *inode, struct page *page,
3887 nid_t ino, enum page_type type);
3888 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3889 struct bio **bio, struct page *page);
3890 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3891 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3892 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3893 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3894 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3895 block_t blk_addr, sector_t *sector);
3896 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3897 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3898 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3899 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3900 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3901 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3902 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3903 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3904 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3905 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3906 pgoff_t *next_pgofs);
3907 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3908 bool for_write);
3909 struct page *f2fs_get_new_data_page(struct inode *inode,
3910 struct page *ipage, pgoff_t index, bool new_i_size);
3911 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3912 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3913 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3914 u64 start, u64 len);
3915 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3916 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3917 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3918 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3919 struct bio **bio, sector_t *last_block,
3920 struct writeback_control *wbc,
3921 enum iostat_type io_type,
3922 int compr_blocks, bool allow_balance);
3923 void f2fs_write_failed(struct inode *inode, loff_t to);
3924 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3925 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3926 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3927 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
3928 int f2fs_init_post_read_processing(void);
3929 void f2fs_destroy_post_read_processing(void);
3930 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3931 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3932 extern const struct iomap_ops f2fs_iomap_ops;
3933
3934 /*
3935 * gc.c
3936 */
3937 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3938 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3939 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3940 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3941 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3942 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3943 unsigned int start_seg, unsigned int end_seg,
3944 bool dry_run, unsigned int dry_run_sections);
3945 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3946 int __init f2fs_create_garbage_collection_cache(void);
3947 void f2fs_destroy_garbage_collection_cache(void);
3948 /* victim selection function for cleaning and SSR */
3949 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3950 int gc_type, int type, char alloc_mode,
3951 unsigned long long age, bool one_time);
3952
3953 /*
3954 * recovery.c
3955 */
3956 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3957 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3958 int __init f2fs_create_recovery_cache(void);
3959 void f2fs_destroy_recovery_cache(void);
3960
3961 /*
3962 * debug.c
3963 */
3964 #ifdef CONFIG_F2FS_STAT_FS
3965 enum {
3966 DEVSTAT_INUSE,
3967 DEVSTAT_DIRTY,
3968 DEVSTAT_FULL,
3969 DEVSTAT_FREE,
3970 DEVSTAT_PREFREE,
3971 DEVSTAT_MAX,
3972 };
3973
3974 struct f2fs_dev_stats {
3975 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
3976 };
3977
3978 struct f2fs_stat_info {
3979 struct list_head stat_list;
3980 struct f2fs_sb_info *sbi;
3981 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3982 int main_area_segs, main_area_sections, main_area_zones;
3983 unsigned long long hit_cached[NR_EXTENT_CACHES];
3984 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3985 unsigned long long total_ext[NR_EXTENT_CACHES];
3986 unsigned long long hit_total[NR_EXTENT_CACHES];
3987 int ext_tree[NR_EXTENT_CACHES];
3988 int zombie_tree[NR_EXTENT_CACHES];
3989 int ext_node[NR_EXTENT_CACHES];
3990 /* to count memory footprint */
3991 unsigned long long ext_mem[NR_EXTENT_CACHES];
3992 /* for read extent cache */
3993 unsigned long long hit_largest;
3994 /* for block age extent cache */
3995 unsigned long long allocated_data_blocks;
3996 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3997 int ndirty_data, ndirty_qdata;
3998 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3999 int nats, dirty_nats, sits, dirty_sits;
4000 int free_nids, avail_nids, alloc_nids;
4001 int total_count, utilization;
4002 int nr_wb_cp_data, nr_wb_data;
4003 int nr_rd_data, nr_rd_node, nr_rd_meta;
4004 int nr_dio_read, nr_dio_write;
4005 unsigned int io_skip_bggc, other_skip_bggc;
4006 int nr_flushing, nr_flushed, flush_list_empty;
4007 int nr_discarding, nr_discarded;
4008 int nr_discard_cmd;
4009 unsigned int undiscard_blks;
4010 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4011 unsigned int cur_ckpt_time, peak_ckpt_time;
4012 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4013 int compr_inode, swapfile_inode;
4014 unsigned long long compr_blocks;
4015 int aw_cnt, max_aw_cnt;
4016 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4017 unsigned int bimodal, avg_vblocks;
4018 int util_free, util_valid, util_invalid;
4019 int rsvd_segs, overp_segs;
4020 int dirty_count, node_pages, meta_pages, compress_pages;
4021 int compress_page_hit;
4022 int prefree_count, free_segs, free_secs;
4023 int cp_call_count[MAX_CALL_TYPE], cp_count;
4024 int gc_call_count[MAX_CALL_TYPE];
4025 int gc_segs[2][2];
4026 int gc_secs[2][2];
4027 int tot_blks, data_blks, node_blks;
4028 int bg_data_blks, bg_node_blks;
4029 int curseg[NR_CURSEG_TYPE];
4030 int cursec[NR_CURSEG_TYPE];
4031 int curzone[NR_CURSEG_TYPE];
4032 unsigned int dirty_seg[NR_CURSEG_TYPE];
4033 unsigned int full_seg[NR_CURSEG_TYPE];
4034 unsigned int valid_blks[NR_CURSEG_TYPE];
4035
4036 unsigned int meta_count[META_MAX];
4037 unsigned int segment_count[2];
4038 unsigned int block_count[2];
4039 unsigned int inplace_count;
4040 unsigned long long base_mem, cache_mem, page_mem;
4041 struct f2fs_dev_stats *dev_stats;
4042 };
4043
F2FS_STAT(struct f2fs_sb_info * sbi)4044 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4045 {
4046 return (struct f2fs_stat_info *)sbi->stat_info;
4047 }
4048
4049 #define stat_inc_cp_call_count(sbi, foreground) \
4050 atomic_inc(&sbi->cp_call_count[(foreground)])
4051 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4052 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4053 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4054 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4055 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4056 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4057 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4058 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4059 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4060 #define stat_inc_inline_xattr(inode) \
4061 do { \
4062 if (f2fs_has_inline_xattr(inode)) \
4063 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4064 } while (0)
4065 #define stat_dec_inline_xattr(inode) \
4066 do { \
4067 if (f2fs_has_inline_xattr(inode)) \
4068 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4069 } while (0)
4070 #define stat_inc_inline_inode(inode) \
4071 do { \
4072 if (f2fs_has_inline_data(inode)) \
4073 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4074 } while (0)
4075 #define stat_dec_inline_inode(inode) \
4076 do { \
4077 if (f2fs_has_inline_data(inode)) \
4078 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4079 } while (0)
4080 #define stat_inc_inline_dir(inode) \
4081 do { \
4082 if (f2fs_has_inline_dentry(inode)) \
4083 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4084 } while (0)
4085 #define stat_dec_inline_dir(inode) \
4086 do { \
4087 if (f2fs_has_inline_dentry(inode)) \
4088 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4089 } while (0)
4090 #define stat_inc_compr_inode(inode) \
4091 do { \
4092 if (f2fs_compressed_file(inode)) \
4093 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4094 } while (0)
4095 #define stat_dec_compr_inode(inode) \
4096 do { \
4097 if (f2fs_compressed_file(inode)) \
4098 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4099 } while (0)
4100 #define stat_add_compr_blocks(inode, blocks) \
4101 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4102 #define stat_sub_compr_blocks(inode, blocks) \
4103 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4104 #define stat_inc_swapfile_inode(inode) \
4105 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4106 #define stat_dec_swapfile_inode(inode) \
4107 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4108 #define stat_inc_atomic_inode(inode) \
4109 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4110 #define stat_dec_atomic_inode(inode) \
4111 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4112 #define stat_inc_meta_count(sbi, blkaddr) \
4113 do { \
4114 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4115 atomic_inc(&(sbi)->meta_count[META_CP]); \
4116 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4117 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4118 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4119 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4120 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4121 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4122 } while (0)
4123 #define stat_inc_seg_type(sbi, curseg) \
4124 ((sbi)->segment_count[(curseg)->alloc_type]++)
4125 #define stat_inc_block_count(sbi, curseg) \
4126 ((sbi)->block_count[(curseg)->alloc_type]++)
4127 #define stat_inc_inplace_blocks(sbi) \
4128 (atomic_inc(&(sbi)->inplace_count))
4129 #define stat_update_max_atomic_write(inode) \
4130 do { \
4131 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4132 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4133 if (cur > max) \
4134 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4135 } while (0)
4136 #define stat_inc_gc_call_count(sbi, foreground) \
4137 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4138 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4139 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4140 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4141 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4142
4143 #define stat_inc_tot_blk_count(si, blks) \
4144 ((si)->tot_blks += (blks))
4145
4146 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4147 do { \
4148 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4149 stat_inc_tot_blk_count(si, blks); \
4150 si->data_blks += (blks); \
4151 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4152 } while (0)
4153
4154 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4155 do { \
4156 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4157 stat_inc_tot_blk_count(si, blks); \
4158 si->node_blks += (blks); \
4159 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4160 } while (0)
4161
4162 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4163 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4164 void __init f2fs_create_root_stats(void);
4165 void f2fs_destroy_root_stats(void);
4166 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4167 #else
4168 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4169 #define stat_inc_cp_count(sbi) do { } while (0)
4170 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4171 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4172 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4173 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4174 #define stat_inc_total_hit(sbi, type) do { } while (0)
4175 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4176 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4177 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4178 #define stat_inc_inline_xattr(inode) do { } while (0)
4179 #define stat_dec_inline_xattr(inode) do { } while (0)
4180 #define stat_inc_inline_inode(inode) do { } while (0)
4181 #define stat_dec_inline_inode(inode) do { } while (0)
4182 #define stat_inc_inline_dir(inode) do { } while (0)
4183 #define stat_dec_inline_dir(inode) do { } while (0)
4184 #define stat_inc_compr_inode(inode) do { } while (0)
4185 #define stat_dec_compr_inode(inode) do { } while (0)
4186 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4187 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4188 #define stat_inc_swapfile_inode(inode) do { } while (0)
4189 #define stat_dec_swapfile_inode(inode) do { } while (0)
4190 #define stat_inc_atomic_inode(inode) do { } while (0)
4191 #define stat_dec_atomic_inode(inode) do { } while (0)
4192 #define stat_update_max_atomic_write(inode) do { } while (0)
4193 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4194 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4195 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4196 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4197 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4198 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4199 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4200 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4201 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4202 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4203
f2fs_build_stats(struct f2fs_sb_info * sbi)4204 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4205 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4206 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4207 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4208 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4209 #endif
4210
4211 extern const struct file_operations f2fs_dir_operations;
4212 extern const struct file_operations f2fs_file_operations;
4213 extern const struct inode_operations f2fs_file_inode_operations;
4214 extern const struct address_space_operations f2fs_dblock_aops;
4215 extern const struct address_space_operations f2fs_node_aops;
4216 extern const struct address_space_operations f2fs_meta_aops;
4217 extern const struct inode_operations f2fs_dir_inode_operations;
4218 extern const struct inode_operations f2fs_symlink_inode_operations;
4219 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4220 extern const struct inode_operations f2fs_special_inode_operations;
4221 extern struct kmem_cache *f2fs_inode_entry_slab;
4222
4223 /*
4224 * inline.c
4225 */
4226 bool f2fs_may_inline_data(struct inode *inode);
4227 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4228 bool f2fs_may_inline_dentry(struct inode *inode);
4229 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4230 void f2fs_truncate_inline_inode(struct inode *inode,
4231 struct page *ipage, u64 from);
4232 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4233 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4234 int f2fs_convert_inline_inode(struct inode *inode);
4235 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4236 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4237 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4238 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4239 const struct f2fs_filename *fname,
4240 struct page **res_page,
4241 bool use_hash);
4242 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4243 struct page *ipage);
4244 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4245 struct inode *inode, nid_t ino, umode_t mode);
4246 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4247 struct page *page, struct inode *dir,
4248 struct inode *inode);
4249 bool f2fs_empty_inline_dir(struct inode *dir);
4250 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4251 struct fscrypt_str *fstr);
4252 int f2fs_inline_data_fiemap(struct inode *inode,
4253 struct fiemap_extent_info *fieinfo,
4254 __u64 start, __u64 len);
4255
4256 /*
4257 * shrinker.c
4258 */
4259 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4260 struct shrink_control *sc);
4261 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4262 struct shrink_control *sc);
4263 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4264 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4265
4266 /*
4267 * extent_cache.c
4268 */
4269 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4270 void f2fs_init_extent_tree(struct inode *inode);
4271 void f2fs_drop_extent_tree(struct inode *inode);
4272 void f2fs_destroy_extent_node(struct inode *inode);
4273 void f2fs_destroy_extent_tree(struct inode *inode);
4274 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4275 int __init f2fs_create_extent_cache(void);
4276 void f2fs_destroy_extent_cache(void);
4277
4278 /* read extent cache ops */
4279 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4280 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4281 struct extent_info *ei);
4282 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4283 block_t *blkaddr);
4284 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4285 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4286 pgoff_t fofs, block_t blkaddr, unsigned int len);
4287 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4288 int nr_shrink);
4289
4290 /* block age extent cache ops */
4291 void f2fs_init_age_extent_tree(struct inode *inode);
4292 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4293 struct extent_info *ei);
4294 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4295 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4296 pgoff_t fofs, unsigned int len);
4297 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4298 int nr_shrink);
4299
4300 /*
4301 * sysfs.c
4302 */
4303 #define MIN_RA_MUL 2
4304 #define MAX_RA_MUL 256
4305
4306 int __init f2fs_init_sysfs(void);
4307 void f2fs_exit_sysfs(void);
4308 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4309 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4310
4311 /* verity.c */
4312 extern const struct fsverity_operations f2fs_verityops;
4313
4314 /*
4315 * crypto support
4316 */
f2fs_encrypted_file(struct inode * inode)4317 static inline bool f2fs_encrypted_file(struct inode *inode)
4318 {
4319 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4320 }
4321
f2fs_set_encrypted_inode(struct inode * inode)4322 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4323 {
4324 #ifdef CONFIG_FS_ENCRYPTION
4325 file_set_encrypt(inode);
4326 f2fs_set_inode_flags(inode);
4327 #endif
4328 }
4329
4330 /*
4331 * Returns true if the reads of the inode's data need to undergo some
4332 * postprocessing step, like decryption or authenticity verification.
4333 */
f2fs_post_read_required(struct inode * inode)4334 static inline bool f2fs_post_read_required(struct inode *inode)
4335 {
4336 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4337 f2fs_compressed_file(inode);
4338 }
4339
f2fs_used_in_atomic_write(struct inode * inode)4340 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4341 {
4342 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4343 }
4344
f2fs_meta_inode_gc_required(struct inode * inode)4345 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4346 {
4347 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4348 }
4349
4350 /*
4351 * compress.c
4352 */
4353 #ifdef CONFIG_F2FS_FS_COMPRESSION
4354 enum cluster_check_type {
4355 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4356 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4357 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4358 };
4359 bool f2fs_is_compressed_page(struct page *page);
4360 struct page *f2fs_compress_control_page(struct page *page);
4361 int f2fs_prepare_compress_overwrite(struct inode *inode,
4362 struct page **pagep, pgoff_t index, void **fsdata);
4363 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4364 pgoff_t index, unsigned copied);
4365 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4366 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4367 bool f2fs_is_compress_backend_ready(struct inode *inode);
4368 bool f2fs_is_compress_level_valid(int alg, int lvl);
4369 int __init f2fs_init_compress_mempool(void);
4370 void f2fs_destroy_compress_mempool(void);
4371 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4372 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4373 block_t blkaddr, bool in_task);
4374 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4375 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4376 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4377 int index, int nr_pages, bool uptodate);
4378 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4379 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4380 int f2fs_write_multi_pages(struct compress_ctx *cc,
4381 int *submitted,
4382 struct writeback_control *wbc,
4383 enum iostat_type io_type);
4384 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4385 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4386 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4387 pgoff_t fofs, block_t blkaddr,
4388 unsigned int llen, unsigned int c_len);
4389 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4390 unsigned nr_pages, sector_t *last_block_in_bio,
4391 struct readahead_control *rac, bool for_write);
4392 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4393 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4394 bool in_task);
4395 void f2fs_put_page_dic(struct page *page, bool in_task);
4396 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4397 unsigned int ofs_in_node);
4398 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4399 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4400 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4401 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4402 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4403 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4404 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4405 int __init f2fs_init_compress_cache(void);
4406 void f2fs_destroy_compress_cache(void);
4407 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4408 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4409 block_t blkaddr, unsigned int len);
4410 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4411 nid_t ino, block_t blkaddr);
4412 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4413 block_t blkaddr);
4414 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4415 #define inc_compr_inode_stat(inode) \
4416 do { \
4417 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4418 sbi->compr_new_inode++; \
4419 } while (0)
4420 #define add_compr_block_stat(inode, blocks) \
4421 do { \
4422 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4423 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4424 sbi->compr_written_block += blocks; \
4425 sbi->compr_saved_block += diff; \
4426 } while (0)
4427 #else
f2fs_is_compressed_page(struct page * page)4428 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4429 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4430 {
4431 if (!f2fs_compressed_file(inode))
4432 return true;
4433 /* not support compression */
4434 return false;
4435 }
f2fs_is_compress_level_valid(int alg,int lvl)4436 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4437 static inline struct page *f2fs_compress_control_page(struct page *page)
4438 {
4439 WARN_ON_ONCE(1);
4440 return ERR_PTR(-EINVAL);
4441 }
f2fs_init_compress_mempool(void)4442 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4443 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4444 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4445 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4446 static inline void f2fs_end_read_compressed_page(struct page *page,
4447 bool failed, block_t blkaddr, bool in_task)
4448 {
4449 WARN_ON_ONCE(1);
4450 }
f2fs_put_page_dic(struct page * page,bool in_task)4451 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4452 {
4453 WARN_ON_ONCE(1);
4454 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4455 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4456 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4457 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4458 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4459 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4460 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4461 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4462 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4463 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4464 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4465 block_t blkaddr, unsigned int len) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4466 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4467 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4468 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4469 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4470 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4471 nid_t ino) { }
4472 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4473 static inline int f2fs_is_compressed_cluster(
4474 struct inode *inode,
4475 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4476 static inline bool f2fs_is_sparse_cluster(
4477 struct inode *inode,
4478 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4479 static inline void f2fs_update_read_extent_tree_range_compressed(
4480 struct inode *inode,
4481 pgoff_t fofs, block_t blkaddr,
4482 unsigned int llen, unsigned int c_len) { }
4483 #endif
4484
set_compress_context(struct inode * inode)4485 static inline int set_compress_context(struct inode *inode)
4486 {
4487 #ifdef CONFIG_F2FS_FS_COMPRESSION
4488 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4489 struct f2fs_inode_info *fi = F2FS_I(inode);
4490
4491 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4492 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4493 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4494 BIT(COMPRESS_CHKSUM) : 0;
4495 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4496 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4497 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4498 F2FS_OPTION(sbi).compress_level)
4499 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4500 fi->i_flags |= F2FS_COMPR_FL;
4501 set_inode_flag(inode, FI_COMPRESSED_FILE);
4502 stat_inc_compr_inode(inode);
4503 inc_compr_inode_stat(inode);
4504 f2fs_mark_inode_dirty_sync(inode, true);
4505 return 0;
4506 #else
4507 return -EOPNOTSUPP;
4508 #endif
4509 }
4510
f2fs_disable_compressed_file(struct inode * inode)4511 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4512 {
4513 struct f2fs_inode_info *fi = F2FS_I(inode);
4514
4515 f2fs_down_write(&fi->i_sem);
4516
4517 if (!f2fs_compressed_file(inode)) {
4518 f2fs_up_write(&fi->i_sem);
4519 return true;
4520 }
4521 if (f2fs_is_mmap_file(inode) ||
4522 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4523 f2fs_up_write(&fi->i_sem);
4524 return false;
4525 }
4526
4527 fi->i_flags &= ~F2FS_COMPR_FL;
4528 stat_dec_compr_inode(inode);
4529 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4530 f2fs_mark_inode_dirty_sync(inode, true);
4531
4532 f2fs_up_write(&fi->i_sem);
4533 return true;
4534 }
4535
4536 #define F2FS_FEATURE_FUNCS(name, flagname) \
4537 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4538 { \
4539 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4540 }
4541
4542 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4543 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4544 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4545 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4546 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4547 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4548 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4549 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4550 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4551 F2FS_FEATURE_FUNCS(verity, VERITY);
4552 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4553 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4554 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4555 F2FS_FEATURE_FUNCS(readonly, RO);
4556 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4557
4558 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4559 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4560 block_t blkaddr)
4561 {
4562 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4563
4564 return test_bit(zno, FDEV(devi).blkz_seq);
4565 }
4566 #endif
4567
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4568 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4569 struct block_device *bdev)
4570 {
4571 int i;
4572
4573 if (!f2fs_is_multi_device(sbi))
4574 return 0;
4575
4576 for (i = 0; i < sbi->s_ndevs; i++)
4577 if (FDEV(i).bdev == bdev)
4578 return i;
4579
4580 WARN_ON(1);
4581 return -1;
4582 }
4583
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4584 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4585 {
4586 return f2fs_sb_has_blkzoned(sbi);
4587 }
4588
f2fs_bdev_support_discard(struct block_device * bdev)4589 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4590 {
4591 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4592 }
4593
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4594 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4595 {
4596 int i;
4597
4598 if (!f2fs_is_multi_device(sbi))
4599 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4600
4601 for (i = 0; i < sbi->s_ndevs; i++)
4602 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4603 return true;
4604 return false;
4605 }
4606
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4607 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4608 {
4609 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4610 f2fs_hw_should_discard(sbi);
4611 }
4612
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4613 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4614 {
4615 int i;
4616
4617 if (!f2fs_is_multi_device(sbi))
4618 return bdev_read_only(sbi->sb->s_bdev);
4619
4620 for (i = 0; i < sbi->s_ndevs; i++)
4621 if (bdev_read_only(FDEV(i).bdev))
4622 return true;
4623 return false;
4624 }
4625
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4626 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4627 {
4628 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4629 }
4630
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4631 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4632 {
4633 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4634 }
4635
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4636 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4637 block_t blkaddr)
4638 {
4639 if (f2fs_sb_has_blkzoned(sbi)) {
4640 int devi = f2fs_target_device_index(sbi, blkaddr);
4641
4642 return !bdev_is_zoned(FDEV(devi).bdev);
4643 }
4644 return true;
4645 }
4646
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4647 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4648 {
4649 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4650 }
4651
f2fs_may_compress(struct inode * inode)4652 static inline bool f2fs_may_compress(struct inode *inode)
4653 {
4654 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4655 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4656 f2fs_is_mmap_file(inode))
4657 return false;
4658 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4659 }
4660
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4661 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4662 u64 blocks, bool add)
4663 {
4664 struct f2fs_inode_info *fi = F2FS_I(inode);
4665 int diff = fi->i_cluster_size - blocks;
4666
4667 /* don't update i_compr_blocks if saved blocks were released */
4668 if (!add && !atomic_read(&fi->i_compr_blocks))
4669 return;
4670
4671 if (add) {
4672 atomic_add(diff, &fi->i_compr_blocks);
4673 stat_add_compr_blocks(inode, diff);
4674 } else {
4675 atomic_sub(diff, &fi->i_compr_blocks);
4676 stat_sub_compr_blocks(inode, diff);
4677 }
4678 f2fs_mark_inode_dirty_sync(inode, true);
4679 }
4680
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4681 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4682 int flag)
4683 {
4684 if (!f2fs_is_multi_device(sbi))
4685 return false;
4686 if (flag != F2FS_GET_BLOCK_DIO)
4687 return false;
4688 return sbi->aligned_blksize;
4689 }
4690
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4691 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4692 {
4693 return fsverity_active(inode) &&
4694 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4695 }
4696
4697 #ifdef CONFIG_F2FS_FAULT_INJECTION
4698 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4699 unsigned long type);
4700 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4701 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4702 unsigned long rate, unsigned long type)
4703 {
4704 return 0;
4705 }
4706 #endif
4707
is_journalled_quota(struct f2fs_sb_info * sbi)4708 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4709 {
4710 #ifdef CONFIG_QUOTA
4711 if (f2fs_sb_has_quota_ino(sbi))
4712 return true;
4713 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4714 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4715 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4716 return true;
4717 #endif
4718 return false;
4719 }
4720
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4721 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4722 {
4723 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4724 }
4725
f2fs_io_schedule_timeout(long timeout)4726 static inline void f2fs_io_schedule_timeout(long timeout)
4727 {
4728 set_current_state(TASK_UNINTERRUPTIBLE);
4729 io_schedule_timeout(timeout);
4730 }
4731
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4732 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4733 struct folio *folio, enum page_type type)
4734 {
4735 pgoff_t ofs = folio->index;
4736
4737 if (unlikely(f2fs_cp_error(sbi)))
4738 return;
4739
4740 if (ofs == sbi->page_eio_ofs[type]) {
4741 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4742 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4743 } else {
4744 sbi->page_eio_ofs[type] = ofs;
4745 sbi->page_eio_cnt[type] = 0;
4746 }
4747 }
4748
f2fs_is_readonly(struct f2fs_sb_info * sbi)4749 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4750 {
4751 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4752 }
4753
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4754 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4755 block_t blkaddr, unsigned int cnt)
4756 {
4757 bool need_submit = false;
4758 int i = 0;
4759
4760 do {
4761 struct page *page;
4762
4763 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4764 if (page) {
4765 if (folio_test_writeback(page_folio(page)))
4766 need_submit = true;
4767 f2fs_put_page(page, 0);
4768 }
4769 } while (++i < cnt && !need_submit);
4770
4771 if (need_submit)
4772 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4773 NULL, 0, DATA);
4774
4775 truncate_inode_pages_range(META_MAPPING(sbi),
4776 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4777 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4778 }
4779
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4780 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4781 block_t blkaddr, unsigned int len)
4782 {
4783 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4784 f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
4785 }
4786
4787 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4788 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4789
4790 #endif /* _LINUX_F2FS_H */
4791