1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <[email protected]>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/cpu.h>
41 #include <linux/io.h>
42 #include <linux/hardirq.h>
43 #include <linux/atomic.h>
44 #include <linux/iommu.h>
45 #include <linux/ubsan.h>
46 
47 #include <asm/stacktrace.h>
48 #include <asm/processor.h>
49 #include <asm/debugreg.h>
50 #include <asm/realmode.h>
51 #include <asm/text-patching.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
54 #include <asm/desc.h>
55 #include <asm/fred.h>
56 #include <asm/fpu/api.h>
57 #include <asm/cpu.h>
58 #include <asm/cpu_entry_area.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
64 #include <asm/vm86.h>
65 #include <asm/umip.h>
66 #include <asm/insn.h>
67 #include <asm/insn-eval.h>
68 #include <asm/vdso.h>
69 #include <asm/tdx.h>
70 #include <asm/cfi.h>
71 
72 #ifdef CONFIG_X86_64
73 #include <asm/x86_init.h>
74 #else
75 #include <asm/processor-flags.h>
76 #include <asm/setup.h>
77 #endif
78 
79 #include <asm/proto.h>
80 
81 DECLARE_BITMAP(system_vectors, NR_VECTORS);
82 
is_valid_bugaddr(unsigned long addr)83 __always_inline int is_valid_bugaddr(unsigned long addr)
84 {
85 	if (addr < TASK_SIZE_MAX)
86 		return 0;
87 
88 	/*
89 	 * We got #UD, if the text isn't readable we'd have gotten
90 	 * a different exception.
91 	 */
92 	return *(unsigned short *)addr == INSN_UD2;
93 }
94 
95 /*
96  * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
97  * If it's a UD1, get the ModRM byte to pass along to UBSan.
98  */
decode_bug(unsigned long addr,u32 * imm)99 __always_inline int decode_bug(unsigned long addr, u32 *imm)
100 {
101 	u8 v;
102 
103 	if (addr < TASK_SIZE_MAX)
104 		return BUG_NONE;
105 
106 	v = *(u8 *)(addr++);
107 	if (v == INSN_ASOP)
108 		v = *(u8 *)(addr++);
109 	if (v != OPCODE_ESCAPE)
110 		return BUG_NONE;
111 
112 	v = *(u8 *)(addr++);
113 	if (v == SECOND_BYTE_OPCODE_UD2)
114 		return BUG_UD2;
115 
116 	if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1)
117 		return BUG_NONE;
118 
119 	/* Retrieve the immediate (type value) for the UBSAN UD1 */
120 	v = *(u8 *)(addr++);
121 	if (X86_MODRM_RM(v) == 4)
122 		addr++;
123 
124 	*imm = 0;
125 	if (X86_MODRM_MOD(v) == 1)
126 		*imm = *(u8 *)addr;
127 	else if (X86_MODRM_MOD(v) == 2)
128 		*imm = *(u32 *)addr;
129 	else
130 		WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v));
131 
132 	return BUG_UD1;
133 }
134 
135 
136 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)137 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
138 		  struct pt_regs *regs,	long error_code)
139 {
140 	if (v8086_mode(regs)) {
141 		/*
142 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
143 		 * On nmi (interrupt 2), do_trap should not be called.
144 		 */
145 		if (trapnr < X86_TRAP_UD) {
146 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
147 						error_code, trapnr))
148 				return 0;
149 		}
150 	} else if (!user_mode(regs)) {
151 		if (fixup_exception(regs, trapnr, error_code, 0))
152 			return 0;
153 
154 		tsk->thread.error_code = error_code;
155 		tsk->thread.trap_nr = trapnr;
156 		die(str, regs, error_code);
157 	} else {
158 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
159 			return 0;
160 	}
161 
162 	/*
163 	 * We want error_code and trap_nr set for userspace faults and
164 	 * kernelspace faults which result in die(), but not
165 	 * kernelspace faults which are fixed up.  die() gives the
166 	 * process no chance to handle the signal and notice the
167 	 * kernel fault information, so that won't result in polluting
168 	 * the information about previously queued, but not yet
169 	 * delivered, faults.  See also exc_general_protection below.
170 	 */
171 	tsk->thread.error_code = error_code;
172 	tsk->thread.trap_nr = trapnr;
173 
174 	return -1;
175 }
176 
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)177 static void show_signal(struct task_struct *tsk, int signr,
178 			const char *type, const char *desc,
179 			struct pt_regs *regs, long error_code)
180 {
181 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
182 	    printk_ratelimit()) {
183 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
184 			tsk->comm, task_pid_nr(tsk), type, desc,
185 			regs->ip, regs->sp, error_code);
186 		print_vma_addr(KERN_CONT " in ", regs->ip);
187 		pr_cont("\n");
188 	}
189 }
190 
191 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)192 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
193 	long error_code, int sicode, void __user *addr)
194 {
195 	struct task_struct *tsk = current;
196 
197 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
198 		return;
199 
200 	show_signal(tsk, signr, "trap ", str, regs, error_code);
201 
202 	if (!sicode)
203 		force_sig(signr);
204 	else
205 		force_sig_fault(signr, sicode, addr);
206 }
207 NOKPROBE_SYMBOL(do_trap);
208 
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)209 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
210 	unsigned long trapnr, int signr, int sicode, void __user *addr)
211 {
212 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
213 
214 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
215 			NOTIFY_STOP) {
216 		cond_local_irq_enable(regs);
217 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
218 		cond_local_irq_disable(regs);
219 	}
220 }
221 
222 /*
223  * Posix requires to provide the address of the faulting instruction for
224  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
225  *
226  * This address is usually regs->ip, but when an uprobe moved the code out
227  * of line then regs->ip points to the XOL code which would confuse
228  * anything which analyzes the fault address vs. the unmodified binary. If
229  * a trap happened in XOL code then uprobe maps regs->ip back to the
230  * original instruction address.
231  */
error_get_trap_addr(struct pt_regs * regs)232 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
233 {
234 	return (void __user *)uprobe_get_trap_addr(regs);
235 }
236 
DEFINE_IDTENTRY(exc_divide_error)237 DEFINE_IDTENTRY(exc_divide_error)
238 {
239 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
240 		      FPE_INTDIV, error_get_trap_addr(regs));
241 }
242 
DEFINE_IDTENTRY(exc_overflow)243 DEFINE_IDTENTRY(exc_overflow)
244 {
245 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
246 }
247 
248 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)249 void handle_invalid_op(struct pt_regs *regs)
250 #else
251 static inline void handle_invalid_op(struct pt_regs *regs)
252 #endif
253 {
254 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
255 		      ILL_ILLOPN, error_get_trap_addr(regs));
256 }
257 
handle_bug(struct pt_regs * regs)258 static noinstr bool handle_bug(struct pt_regs *regs)
259 {
260 	bool handled = false;
261 	int ud_type;
262 	u32 imm;
263 
264 	ud_type = decode_bug(regs->ip, &imm);
265 	if (ud_type == BUG_NONE)
266 		return handled;
267 
268 	/*
269 	 * All lies, just get the WARN/BUG out.
270 	 */
271 	instrumentation_begin();
272 	/*
273 	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
274 	 * is a rare case that uses @regs without passing them to
275 	 * irqentry_enter().
276 	 */
277 	kmsan_unpoison_entry_regs(regs);
278 	/*
279 	 * Since we're emulating a CALL with exceptions, restore the interrupt
280 	 * state to what it was at the exception site.
281 	 */
282 	if (regs->flags & X86_EFLAGS_IF)
283 		raw_local_irq_enable();
284 	if (ud_type == BUG_UD2) {
285 		if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
286 		    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
287 			regs->ip += LEN_UD2;
288 			handled = true;
289 		}
290 	} else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
291 		pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip);
292 	}
293 	if (regs->flags & X86_EFLAGS_IF)
294 		raw_local_irq_disable();
295 	instrumentation_end();
296 
297 	return handled;
298 }
299 
DEFINE_IDTENTRY_RAW(exc_invalid_op)300 DEFINE_IDTENTRY_RAW(exc_invalid_op)
301 {
302 	irqentry_state_t state;
303 
304 	/*
305 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
306 	 * handle it before exception entry to avoid recursive WARN
307 	 * in case exception entry is the one triggering WARNs.
308 	 */
309 	if (!user_mode(regs) && handle_bug(regs))
310 		return;
311 
312 	state = irqentry_enter(regs);
313 	instrumentation_begin();
314 	handle_invalid_op(regs);
315 	instrumentation_end();
316 	irqentry_exit(regs, state);
317 }
318 
DEFINE_IDTENTRY(exc_coproc_segment_overrun)319 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
320 {
321 	do_error_trap(regs, 0, "coprocessor segment overrun",
322 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
323 }
324 
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)325 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
326 {
327 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
328 		      0, NULL);
329 }
330 
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)331 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
332 {
333 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
334 		      SIGBUS, 0, NULL);
335 }
336 
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)337 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
338 {
339 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
340 		      0, NULL);
341 }
342 
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)343 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
344 {
345 	char *str = "alignment check";
346 
347 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
348 		return;
349 
350 	if (!user_mode(regs))
351 		die("Split lock detected\n", regs, error_code);
352 
353 	local_irq_enable();
354 
355 	if (handle_user_split_lock(regs, error_code))
356 		goto out;
357 
358 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
359 		error_code, BUS_ADRALN, NULL);
360 
361 out:
362 	local_irq_disable();
363 }
364 
365 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)366 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
367 						unsigned long fault_address,
368 						struct stack_info *info)
369 {
370 	const char *name = stack_type_name(info->type);
371 
372 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
373 	       name, (void *)fault_address, info->begin, info->end);
374 
375 	die("stack guard page", regs, 0);
376 
377 	/* Be absolutely certain we don't return. */
378 	panic("%s stack guard hit", name);
379 }
380 #endif
381 
382 /*
383  * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64
384  * version of exc_double_fault() as noreturn.  Otherwise the noreturn mismatch
385  * between configs triggers objtool warnings.
386  *
387  * This is a temporary hack until we have compiler or plugin support for
388  * annotating noreturns.
389  */
390 #ifdef CONFIG_X86_ESPFIX64
391 #define always_true() true
392 #else
393 bool always_true(void);
always_true(void)394 bool __weak always_true(void) { return true; }
395 #endif
396 
397 /*
398  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
399  *
400  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
401  * SDM's warnings about double faults being unrecoverable, returning works as
402  * expected.  Presumably what the SDM actually means is that the CPU may get
403  * the register state wrong on entry, so returning could be a bad idea.
404  *
405  * Various CPU engineers have promised that double faults due to an IRET fault
406  * while the stack is read-only are, in fact, recoverable.
407  *
408  * On x86_32, this is entered through a task gate, and regs are synthesized
409  * from the TSS.  Returning is, in principle, okay, but changes to regs will
410  * be lost.  If, for some reason, we need to return to a context with modified
411  * regs, the shim code could be adjusted to synchronize the registers.
412  *
413  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
414  * to be read before doing anything else.
415  */
DEFINE_IDTENTRY_DF(exc_double_fault)416 DEFINE_IDTENTRY_DF(exc_double_fault)
417 {
418 	static const char str[] = "double fault";
419 	struct task_struct *tsk = current;
420 
421 #ifdef CONFIG_VMAP_STACK
422 	unsigned long address = read_cr2();
423 	struct stack_info info;
424 #endif
425 
426 #ifdef CONFIG_X86_ESPFIX64
427 	extern unsigned char native_irq_return_iret[];
428 
429 	/*
430 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
431 	 * end up promoting it to a doublefault.  In that case, take
432 	 * advantage of the fact that we're not using the normal (TSS.sp0)
433 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
434 	 * and then modify our own IRET frame so that, when we return,
435 	 * we land directly at the #GP(0) vector with the stack already
436 	 * set up according to its expectations.
437 	 *
438 	 * The net result is that our #GP handler will think that we
439 	 * entered from usermode with the bad user context.
440 	 *
441 	 * No need for nmi_enter() here because we don't use RCU.
442 	 */
443 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
444 		regs->cs == __KERNEL_CS &&
445 		regs->ip == (unsigned long)native_irq_return_iret)
446 	{
447 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
448 		unsigned long *p = (unsigned long *)regs->sp;
449 
450 		/*
451 		 * regs->sp points to the failing IRET frame on the
452 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
453 		 * in gpregs->ss through gpregs->ip.
454 		 *
455 		 */
456 		gpregs->ip	= p[0];
457 		gpregs->cs	= p[1];
458 		gpregs->flags	= p[2];
459 		gpregs->sp	= p[3];
460 		gpregs->ss	= p[4];
461 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
462 
463 		/*
464 		 * Adjust our frame so that we return straight to the #GP
465 		 * vector with the expected RSP value.  This is safe because
466 		 * we won't enable interrupts or schedule before we invoke
467 		 * general_protection, so nothing will clobber the stack
468 		 * frame we just set up.
469 		 *
470 		 * We will enter general_protection with kernel GSBASE,
471 		 * which is what the stub expects, given that the faulting
472 		 * RIP will be the IRET instruction.
473 		 */
474 		regs->ip = (unsigned long)asm_exc_general_protection;
475 		regs->sp = (unsigned long)&gpregs->orig_ax;
476 
477 		return;
478 	}
479 #endif
480 
481 	irqentry_nmi_enter(regs);
482 	instrumentation_begin();
483 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
484 
485 	tsk->thread.error_code = error_code;
486 	tsk->thread.trap_nr = X86_TRAP_DF;
487 
488 #ifdef CONFIG_VMAP_STACK
489 	/*
490 	 * If we overflow the stack into a guard page, the CPU will fail
491 	 * to deliver #PF and will send #DF instead.  Similarly, if we
492 	 * take any non-IST exception while too close to the bottom of
493 	 * the stack, the processor will get a page fault while
494 	 * delivering the exception and will generate a double fault.
495 	 *
496 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
497 	 * Page-Fault Exception (#PF):
498 	 *
499 	 *   Processors update CR2 whenever a page fault is detected. If a
500 	 *   second page fault occurs while an earlier page fault is being
501 	 *   delivered, the faulting linear address of the second fault will
502 	 *   overwrite the contents of CR2 (replacing the previous
503 	 *   address). These updates to CR2 occur even if the page fault
504 	 *   results in a double fault or occurs during the delivery of a
505 	 *   double fault.
506 	 *
507 	 * The logic below has a small possibility of incorrectly diagnosing
508 	 * some errors as stack overflows.  For example, if the IDT or GDT
509 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
510 	 * causing #GP and we hit this condition while CR2 coincidentally
511 	 * points to the stack guard page, we'll think we overflowed the
512 	 * stack.  Given that we're going to panic one way or another
513 	 * if this happens, this isn't necessarily worth fixing.
514 	 *
515 	 * If necessary, we could improve the test by only diagnosing
516 	 * a stack overflow if the saved RSP points within 47 bytes of
517 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
518 	 * take an exception, the stack is already aligned and there
519 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
520 	 * possible error code, so a stack overflow would *not* double
521 	 * fault.  With any less space left, exception delivery could
522 	 * fail, and, as a practical matter, we've overflowed the
523 	 * stack even if the actual trigger for the double fault was
524 	 * something else.
525 	 */
526 	if (get_stack_guard_info((void *)address, &info))
527 		handle_stack_overflow(regs, address, &info);
528 #endif
529 
530 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
531 	die("double fault", regs, error_code);
532 	if (always_true())
533 		panic("Machine halted.");
534 	instrumentation_end();
535 }
536 
DEFINE_IDTENTRY(exc_bounds)537 DEFINE_IDTENTRY(exc_bounds)
538 {
539 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
540 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
541 		return;
542 	cond_local_irq_enable(regs);
543 
544 	if (!user_mode(regs))
545 		die("bounds", regs, 0);
546 
547 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
548 
549 	cond_local_irq_disable(regs);
550 }
551 
552 enum kernel_gp_hint {
553 	GP_NO_HINT,
554 	GP_NON_CANONICAL,
555 	GP_CANONICAL
556 };
557 
558 /*
559  * When an uncaught #GP occurs, try to determine the memory address accessed by
560  * the instruction and return that address to the caller. Also, try to figure
561  * out whether any part of the access to that address was non-canonical.
562  */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)563 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
564 						 unsigned long *addr)
565 {
566 	u8 insn_buf[MAX_INSN_SIZE];
567 	struct insn insn;
568 	int ret;
569 
570 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
571 			MAX_INSN_SIZE))
572 		return GP_NO_HINT;
573 
574 	ret = insn_decode_kernel(&insn, insn_buf);
575 	if (ret < 0)
576 		return GP_NO_HINT;
577 
578 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
579 	if (*addr == -1UL)
580 		return GP_NO_HINT;
581 
582 #ifdef CONFIG_X86_64
583 	/*
584 	 * Check that:
585 	 *  - the operand is not in the kernel half
586 	 *  - the last byte of the operand is not in the user canonical half
587 	 */
588 	if (*addr < ~__VIRTUAL_MASK &&
589 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
590 		return GP_NON_CANONICAL;
591 #endif
592 
593 	return GP_CANONICAL;
594 }
595 
596 #define GPFSTR "general protection fault"
597 
fixup_iopl_exception(struct pt_regs * regs)598 static bool fixup_iopl_exception(struct pt_regs *regs)
599 {
600 	struct thread_struct *t = &current->thread;
601 	unsigned char byte;
602 	unsigned long ip;
603 
604 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
605 		return false;
606 
607 	if (insn_get_effective_ip(regs, &ip))
608 		return false;
609 
610 	if (get_user(byte, (const char __user *)ip))
611 		return false;
612 
613 	if (byte != 0xfa && byte != 0xfb)
614 		return false;
615 
616 	if (!t->iopl_warn && printk_ratelimit()) {
617 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
618 		       current->comm, task_pid_nr(current), ip);
619 		print_vma_addr(KERN_CONT " in ", ip);
620 		pr_cont("\n");
621 		t->iopl_warn = 1;
622 	}
623 
624 	regs->ip += 1;
625 	return true;
626 }
627 
628 /*
629  * The unprivileged ENQCMD instruction generates #GPs if the
630  * IA32_PASID MSR has not been populated.  If possible, populate
631  * the MSR from a PASID previously allocated to the mm.
632  */
try_fixup_enqcmd_gp(void)633 static bool try_fixup_enqcmd_gp(void)
634 {
635 #ifdef CONFIG_ARCH_HAS_CPU_PASID
636 	u32 pasid;
637 
638 	/*
639 	 * MSR_IA32_PASID is managed using XSAVE.  Directly
640 	 * writing to the MSR is only possible when fpregs
641 	 * are valid and the fpstate is not.  This is
642 	 * guaranteed when handling a userspace exception
643 	 * in *before* interrupts are re-enabled.
644 	 */
645 	lockdep_assert_irqs_disabled();
646 
647 	/*
648 	 * Hardware without ENQCMD will not generate
649 	 * #GPs that can be fixed up here.
650 	 */
651 	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
652 		return false;
653 
654 	/*
655 	 * If the mm has not been allocated a
656 	 * PASID, the #GP can not be fixed up.
657 	 */
658 	if (!mm_valid_pasid(current->mm))
659 		return false;
660 
661 	pasid = mm_get_enqcmd_pasid(current->mm);
662 
663 	/*
664 	 * Did this thread already have its PASID activated?
665 	 * If so, the #GP must be from something else.
666 	 */
667 	if (current->pasid_activated)
668 		return false;
669 
670 	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
671 	current->pasid_activated = 1;
672 
673 	return true;
674 #else
675 	return false;
676 #endif
677 }
678 
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str,unsigned long address)679 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
680 				    unsigned long error_code, const char *str,
681 				    unsigned long address)
682 {
683 	if (fixup_exception(regs, trapnr, error_code, address))
684 		return true;
685 
686 	current->thread.error_code = error_code;
687 	current->thread.trap_nr = trapnr;
688 
689 	/*
690 	 * To be potentially processing a kprobe fault and to trust the result
691 	 * from kprobe_running(), we have to be non-preemptible.
692 	 */
693 	if (!preemptible() && kprobe_running() &&
694 	    kprobe_fault_handler(regs, trapnr))
695 		return true;
696 
697 	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
698 }
699 
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)700 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
701 				   unsigned long error_code, const char *str)
702 {
703 	current->thread.error_code = error_code;
704 	current->thread.trap_nr = trapnr;
705 	show_signal(current, SIGSEGV, "", str, regs, error_code);
706 	force_sig(SIGSEGV);
707 }
708 
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)709 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
710 {
711 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
712 	enum kernel_gp_hint hint = GP_NO_HINT;
713 	unsigned long gp_addr;
714 
715 	if (user_mode(regs) && try_fixup_enqcmd_gp())
716 		return;
717 
718 	cond_local_irq_enable(regs);
719 
720 	if (static_cpu_has(X86_FEATURE_UMIP)) {
721 		if (user_mode(regs) && fixup_umip_exception(regs))
722 			goto exit;
723 	}
724 
725 	if (v8086_mode(regs)) {
726 		local_irq_enable();
727 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
728 		local_irq_disable();
729 		return;
730 	}
731 
732 	if (user_mode(regs)) {
733 		if (fixup_iopl_exception(regs))
734 			goto exit;
735 
736 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
737 			goto exit;
738 
739 		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
740 		goto exit;
741 	}
742 
743 	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
744 		goto exit;
745 
746 	if (error_code)
747 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
748 	else
749 		hint = get_kernel_gp_address(regs, &gp_addr);
750 
751 	if (hint != GP_NO_HINT)
752 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
753 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
754 						    : "maybe for address",
755 			 gp_addr);
756 
757 	/*
758 	 * KASAN is interested only in the non-canonical case, clear it
759 	 * otherwise.
760 	 */
761 	if (hint != GP_NON_CANONICAL)
762 		gp_addr = 0;
763 
764 	die_addr(desc, regs, error_code, gp_addr);
765 
766 exit:
767 	cond_local_irq_disable(regs);
768 }
769 
do_int3(struct pt_regs * regs)770 static bool do_int3(struct pt_regs *regs)
771 {
772 	int res;
773 
774 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
775 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
776 			 SIGTRAP) == NOTIFY_STOP)
777 		return true;
778 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
779 
780 #ifdef CONFIG_KPROBES
781 	if (kprobe_int3_handler(regs))
782 		return true;
783 #endif
784 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
785 
786 	return res == NOTIFY_STOP;
787 }
788 NOKPROBE_SYMBOL(do_int3);
789 
do_int3_user(struct pt_regs * regs)790 static void do_int3_user(struct pt_regs *regs)
791 {
792 	if (do_int3(regs))
793 		return;
794 
795 	cond_local_irq_enable(regs);
796 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
797 	cond_local_irq_disable(regs);
798 }
799 
DEFINE_IDTENTRY_RAW(exc_int3)800 DEFINE_IDTENTRY_RAW(exc_int3)
801 {
802 	/*
803 	 * poke_int3_handler() is completely self contained code; it does (and
804 	 * must) *NOT* call out to anything, lest it hits upon yet another
805 	 * INT3.
806 	 */
807 	if (poke_int3_handler(regs))
808 		return;
809 
810 	/*
811 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
812 	 * and therefore can trigger INT3, hence poke_int3_handler() must
813 	 * be done before. If the entry came from kernel mode, then use
814 	 * nmi_enter() because the INT3 could have been hit in any context
815 	 * including NMI.
816 	 */
817 	if (user_mode(regs)) {
818 		irqentry_enter_from_user_mode(regs);
819 		instrumentation_begin();
820 		do_int3_user(regs);
821 		instrumentation_end();
822 		irqentry_exit_to_user_mode(regs);
823 	} else {
824 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
825 
826 		instrumentation_begin();
827 		if (!do_int3(regs))
828 			die("int3", regs, 0);
829 		instrumentation_end();
830 		irqentry_nmi_exit(regs, irq_state);
831 	}
832 }
833 
834 #ifdef CONFIG_X86_64
835 /*
836  * Help handler running on a per-cpu (IST or entry trampoline) stack
837  * to switch to the normal thread stack if the interrupted code was in
838  * user mode. The actual stack switch is done in entry_64.S
839  */
sync_regs(struct pt_regs * eregs)840 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
841 {
842 	struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
843 	if (regs != eregs)
844 		*regs = *eregs;
845 	return regs;
846 }
847 
848 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)849 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
850 {
851 	unsigned long sp, *stack;
852 	struct stack_info info;
853 	struct pt_regs *regs_ret;
854 
855 	/*
856 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
857 	 * trust it and switch to the current kernel stack
858 	 */
859 	if (ip_within_syscall_gap(regs)) {
860 		sp = current_top_of_stack();
861 		goto sync;
862 	}
863 
864 	/*
865 	 * From here on the RSP value is trusted. Now check whether entry
866 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
867 	 * use the fall-back stack instead in this case.
868 	 */
869 	sp    = regs->sp;
870 	stack = (unsigned long *)sp;
871 
872 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
873 	    info.type > STACK_TYPE_EXCEPTION_LAST)
874 		sp = __this_cpu_ist_top_va(VC2);
875 
876 sync:
877 	/*
878 	 * Found a safe stack - switch to it as if the entry didn't happen via
879 	 * IST stack. The code below only copies pt_regs, the real switch happens
880 	 * in assembly code.
881 	 */
882 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
883 
884 	regs_ret = (struct pt_regs *)sp;
885 	*regs_ret = *regs;
886 
887 	return regs_ret;
888 }
889 #endif
890 
fixup_bad_iret(struct pt_regs * bad_regs)891 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
892 {
893 	struct pt_regs tmp, *new_stack;
894 
895 	/*
896 	 * This is called from entry_64.S early in handling a fault
897 	 * caused by a bad iret to user mode.  To handle the fault
898 	 * correctly, we want to move our stack frame to where it would
899 	 * be had we entered directly on the entry stack (rather than
900 	 * just below the IRET frame) and we want to pretend that the
901 	 * exception came from the IRET target.
902 	 */
903 	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
904 
905 	/* Copy the IRET target to the temporary storage. */
906 	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
907 
908 	/* Copy the remainder of the stack from the current stack. */
909 	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
910 
911 	/* Update the entry stack */
912 	__memcpy(new_stack, &tmp, sizeof(tmp));
913 
914 	BUG_ON(!user_mode(new_stack));
915 	return new_stack;
916 }
917 #endif
918 
is_sysenter_singlestep(struct pt_regs * regs)919 static bool is_sysenter_singlestep(struct pt_regs *regs)
920 {
921 	/*
922 	 * We don't try for precision here.  If we're anywhere in the region of
923 	 * code that can be single-stepped in the SYSENTER entry path, then
924 	 * assume that this is a useless single-step trap due to SYSENTER
925 	 * being invoked with TF set.  (We don't know in advance exactly
926 	 * which instructions will be hit because BTF could plausibly
927 	 * be set.)
928 	 */
929 #ifdef CONFIG_X86_32
930 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
931 		(unsigned long)__end_SYSENTER_singlestep_region -
932 		(unsigned long)__begin_SYSENTER_singlestep_region;
933 #elif defined(CONFIG_IA32_EMULATION)
934 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
935 		(unsigned long)__end_entry_SYSENTER_compat -
936 		(unsigned long)entry_SYSENTER_compat;
937 #else
938 	return false;
939 #endif
940 }
941 
debug_read_clear_dr6(void)942 static __always_inline unsigned long debug_read_clear_dr6(void)
943 {
944 	unsigned long dr6;
945 
946 	/*
947 	 * The Intel SDM says:
948 	 *
949 	 *   Certain debug exceptions may clear bits 0-3. The remaining
950 	 *   contents of the DR6 register are never cleared by the
951 	 *   processor. To avoid confusion in identifying debug
952 	 *   exceptions, debug handlers should clear the register before
953 	 *   returning to the interrupted task.
954 	 *
955 	 * Keep it simple: clear DR6 immediately.
956 	 */
957 	get_debugreg(dr6, 6);
958 	set_debugreg(DR6_RESERVED, 6);
959 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
960 
961 	return dr6;
962 }
963 
964 /*
965  * Our handling of the processor debug registers is non-trivial.
966  * We do not clear them on entry and exit from the kernel. Therefore
967  * it is possible to get a watchpoint trap here from inside the kernel.
968  * However, the code in ./ptrace.c has ensured that the user can
969  * only set watchpoints on userspace addresses. Therefore the in-kernel
970  * watchpoint trap can only occur in code which is reading/writing
971  * from user space. Such code must not hold kernel locks (since it
972  * can equally take a page fault), therefore it is safe to call
973  * force_sig_info even though that claims and releases locks.
974  *
975  * Code in ./signal.c ensures that the debug control register
976  * is restored before we deliver any signal, and therefore that
977  * user code runs with the correct debug control register even though
978  * we clear it here.
979  *
980  * Being careful here means that we don't have to be as careful in a
981  * lot of more complicated places (task switching can be a bit lazy
982  * about restoring all the debug state, and ptrace doesn't have to
983  * find every occurrence of the TF bit that could be saved away even
984  * by user code)
985  *
986  * May run on IST stack.
987  */
988 
notify_debug(struct pt_regs * regs,unsigned long * dr6)989 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
990 {
991 	/*
992 	 * Notifiers will clear bits in @dr6 to indicate the event has been
993 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
994 	 *
995 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
996 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
997 	 */
998 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
999 		return true;
1000 
1001 	return false;
1002 }
1003 
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)1004 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
1005 {
1006 	/*
1007 	 * Disable breakpoints during exception handling; recursive exceptions
1008 	 * are exceedingly 'fun'.
1009 	 *
1010 	 * Since this function is NOKPROBE, and that also applies to
1011 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1012 	 * HW_BREAKPOINT_W on our stack)
1013 	 *
1014 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1015 	 * includes the entry stack is excluded for everything.
1016 	 *
1017 	 * For FRED, nested #DB should just work fine. But when a watchpoint or
1018 	 * breakpoint is set in the code path which is executed by #DB handler,
1019 	 * it results in an endless recursion and stack overflow. Thus we stay
1020 	 * with the IDT approach, i.e., save DR7 and disable #DB.
1021 	 */
1022 	unsigned long dr7 = local_db_save();
1023 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1024 	instrumentation_begin();
1025 
1026 	/*
1027 	 * If something gets miswired and we end up here for a user mode
1028 	 * #DB, we will malfunction.
1029 	 */
1030 	WARN_ON_ONCE(user_mode(regs));
1031 
1032 	if (test_thread_flag(TIF_BLOCKSTEP)) {
1033 		/*
1034 		 * The SDM says "The processor clears the BTF flag when it
1035 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1036 		 * it for userspace, but we just took a kernel #DB, so re-set
1037 		 * BTF.
1038 		 */
1039 		unsigned long debugctl;
1040 
1041 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1042 		debugctl |= DEBUGCTLMSR_BTF;
1043 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1044 	}
1045 
1046 	/*
1047 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1048 	 * watchpoint at the same time then that will still be handled.
1049 	 */
1050 	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
1051 	    (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1052 		dr6 &= ~DR_STEP;
1053 
1054 	/*
1055 	 * The kernel doesn't use INT1
1056 	 */
1057 	if (!dr6)
1058 		goto out;
1059 
1060 	if (notify_debug(regs, &dr6))
1061 		goto out;
1062 
1063 	/*
1064 	 * The kernel doesn't use TF single-step outside of:
1065 	 *
1066 	 *  - Kprobes, consumed through kprobe_debug_handler()
1067 	 *  - KGDB, consumed through notify_debug()
1068 	 *
1069 	 * So if we get here with DR_STEP set, something is wonky.
1070 	 *
1071 	 * A known way to trigger this is through QEMU's GDB stub,
1072 	 * which leaks #DB into the guest and causes IST recursion.
1073 	 */
1074 	if (WARN_ON_ONCE(dr6 & DR_STEP))
1075 		regs->flags &= ~X86_EFLAGS_TF;
1076 out:
1077 	instrumentation_end();
1078 	irqentry_nmi_exit(regs, irq_state);
1079 
1080 	local_db_restore(dr7);
1081 }
1082 
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1083 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1084 {
1085 	bool icebp;
1086 
1087 	/*
1088 	 * If something gets miswired and we end up here for a kernel mode
1089 	 * #DB, we will malfunction.
1090 	 */
1091 	WARN_ON_ONCE(!user_mode(regs));
1092 
1093 	/*
1094 	 * NB: We can't easily clear DR7 here because
1095 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1096 	 * user memory, etc.  This means that a recursive #DB is possible.  If
1097 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1098 	 * Since we're not on the IST stack right now, everything will be
1099 	 * fine.
1100 	 */
1101 
1102 	irqentry_enter_from_user_mode(regs);
1103 	instrumentation_begin();
1104 
1105 	/*
1106 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1107 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1108 	 *
1109 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1110 	 * even if it is not the result of PTRACE_SINGLESTEP.
1111 	 */
1112 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1113 
1114 	/*
1115 	 * The SDM says "The processor clears the BTF flag when it
1116 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1117 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1118 	 */
1119 	clear_thread_flag(TIF_BLOCKSTEP);
1120 
1121 	/*
1122 	 * If dr6 has no reason to give us about the origin of this trap,
1123 	 * then it's very likely the result of an icebp/int01 trap.
1124 	 * User wants a sigtrap for that.
1125 	 */
1126 	icebp = !dr6;
1127 
1128 	if (notify_debug(regs, &dr6))
1129 		goto out;
1130 
1131 	/* It's safe to allow irq's after DR6 has been saved */
1132 	local_irq_enable();
1133 
1134 	if (v8086_mode(regs)) {
1135 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1136 		goto out_irq;
1137 	}
1138 
1139 	/* #DB for bus lock can only be triggered from userspace. */
1140 	if (dr6 & DR_BUS_LOCK)
1141 		handle_bus_lock(regs);
1142 
1143 	/* Add the virtual_dr6 bits for signals. */
1144 	dr6 |= current->thread.virtual_dr6;
1145 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1146 		send_sigtrap(regs, 0, get_si_code(dr6));
1147 
1148 out_irq:
1149 	local_irq_disable();
1150 out:
1151 	instrumentation_end();
1152 	irqentry_exit_to_user_mode(regs);
1153 }
1154 
1155 #ifdef CONFIG_X86_64
1156 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1157 DEFINE_IDTENTRY_DEBUG(exc_debug)
1158 {
1159 	exc_debug_kernel(regs, debug_read_clear_dr6());
1160 }
1161 
1162 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1163 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1164 {
1165 	exc_debug_user(regs, debug_read_clear_dr6());
1166 }
1167 
1168 #ifdef CONFIG_X86_FRED
1169 /*
1170  * When occurred on different ring level, i.e., from user or kernel
1171  * context, #DB needs to be handled on different stack: User #DB on
1172  * current task stack, while kernel #DB on a dedicated stack.
1173  *
1174  * This is exactly how FRED event delivery invokes an exception
1175  * handler: ring 3 event on level 0 stack, i.e., current task stack;
1176  * ring 0 event on the #DB dedicated stack specified in the
1177  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1178  * entry stub doesn't do stack switch.
1179  */
DEFINE_FREDENTRY_DEBUG(exc_debug)1180 DEFINE_FREDENTRY_DEBUG(exc_debug)
1181 {
1182 	/*
1183 	 * FRED #DB stores DR6 on the stack in the format which
1184 	 * debug_read_clear_dr6() returns for the IDT entry points.
1185 	 */
1186 	unsigned long dr6 = fred_event_data(regs);
1187 
1188 	if (user_mode(regs))
1189 		exc_debug_user(regs, dr6);
1190 	else
1191 		exc_debug_kernel(regs, dr6);
1192 }
1193 #endif /* CONFIG_X86_FRED */
1194 
1195 #else
1196 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1197 DEFINE_IDTENTRY_RAW(exc_debug)
1198 {
1199 	unsigned long dr6 = debug_read_clear_dr6();
1200 
1201 	if (user_mode(regs))
1202 		exc_debug_user(regs, dr6);
1203 	else
1204 		exc_debug_kernel(regs, dr6);
1205 }
1206 #endif
1207 
1208 /*
1209  * Note that we play around with the 'TS' bit in an attempt to get
1210  * the correct behaviour even in the presence of the asynchronous
1211  * IRQ13 behaviour
1212  */
math_error(struct pt_regs * regs,int trapnr)1213 static void math_error(struct pt_regs *regs, int trapnr)
1214 {
1215 	struct task_struct *task = current;
1216 	struct fpu *fpu = &task->thread.fpu;
1217 	int si_code;
1218 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1219 						"simd exception";
1220 
1221 	cond_local_irq_enable(regs);
1222 
1223 	if (!user_mode(regs)) {
1224 		if (fixup_exception(regs, trapnr, 0, 0))
1225 			goto exit;
1226 
1227 		task->thread.error_code = 0;
1228 		task->thread.trap_nr = trapnr;
1229 
1230 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1231 			       SIGFPE) != NOTIFY_STOP)
1232 			die(str, regs, 0);
1233 		goto exit;
1234 	}
1235 
1236 	/*
1237 	 * Synchronize the FPU register state to the memory register state
1238 	 * if necessary. This allows the exception handler to inspect it.
1239 	 */
1240 	fpu_sync_fpstate(fpu);
1241 
1242 	task->thread.trap_nr	= trapnr;
1243 	task->thread.error_code = 0;
1244 
1245 	si_code = fpu__exception_code(fpu, trapnr);
1246 	/* Retry when we get spurious exceptions: */
1247 	if (!si_code)
1248 		goto exit;
1249 
1250 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1251 		goto exit;
1252 
1253 	force_sig_fault(SIGFPE, si_code,
1254 			(void __user *)uprobe_get_trap_addr(regs));
1255 exit:
1256 	cond_local_irq_disable(regs);
1257 }
1258 
DEFINE_IDTENTRY(exc_coprocessor_error)1259 DEFINE_IDTENTRY(exc_coprocessor_error)
1260 {
1261 	math_error(regs, X86_TRAP_MF);
1262 }
1263 
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1264 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1265 {
1266 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1267 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1268 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1269 			__exc_general_protection(regs, 0);
1270 			return;
1271 		}
1272 	}
1273 	math_error(regs, X86_TRAP_XF);
1274 }
1275 
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1276 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1277 {
1278 	/*
1279 	 * This addresses a Pentium Pro Erratum:
1280 	 *
1281 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1282 	 * Virtual Wire mode implemented through the local APIC, an
1283 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1284 	 * generated by the local APIC (Int 15).  This vector may be
1285 	 * generated upon receipt of a spurious interrupt (an interrupt
1286 	 * which is removed before the system receives the INTA sequence)
1287 	 * instead of the programmed 8259 spurious interrupt vector.
1288 	 *
1289 	 * IMPLICATION: The spurious interrupt vector programmed in the
1290 	 * 8259 is normally handled by an operating system's spurious
1291 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1292 	 * operating systems, which would crash if this erratum occurred.
1293 	 *
1294 	 * In theory this could be limited to 32bit, but the handler is not
1295 	 * hurting and who knows which other CPUs suffer from this.
1296 	 */
1297 }
1298 
handle_xfd_event(struct pt_regs * regs)1299 static bool handle_xfd_event(struct pt_regs *regs)
1300 {
1301 	u64 xfd_err;
1302 	int err;
1303 
1304 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1305 		return false;
1306 
1307 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1308 	if (!xfd_err)
1309 		return false;
1310 
1311 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1312 
1313 	/* Die if that happens in kernel space */
1314 	if (WARN_ON(!user_mode(regs)))
1315 		return false;
1316 
1317 	local_irq_enable();
1318 
1319 	err = xfd_enable_feature(xfd_err);
1320 
1321 	switch (err) {
1322 	case -EPERM:
1323 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1324 		break;
1325 	case -EFAULT:
1326 		force_sig(SIGSEGV);
1327 		break;
1328 	}
1329 
1330 	local_irq_disable();
1331 	return true;
1332 }
1333 
DEFINE_IDTENTRY(exc_device_not_available)1334 DEFINE_IDTENTRY(exc_device_not_available)
1335 {
1336 	unsigned long cr0 = read_cr0();
1337 
1338 	if (handle_xfd_event(regs))
1339 		return;
1340 
1341 #ifdef CONFIG_MATH_EMULATION
1342 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1343 		struct math_emu_info info = { };
1344 
1345 		cond_local_irq_enable(regs);
1346 
1347 		info.regs = regs;
1348 		math_emulate(&info);
1349 
1350 		cond_local_irq_disable(regs);
1351 		return;
1352 	}
1353 #endif
1354 
1355 	/* This should not happen. */
1356 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1357 		/* Try to fix it up and carry on. */
1358 		write_cr0(cr0 & ~X86_CR0_TS);
1359 	} else {
1360 		/*
1361 		 * Something terrible happened, and we're better off trying
1362 		 * to kill the task than getting stuck in a never-ending
1363 		 * loop of #NM faults.
1364 		 */
1365 		die("unexpected #NM exception", regs, 0);
1366 	}
1367 }
1368 
1369 #ifdef CONFIG_INTEL_TDX_GUEST
1370 
1371 #define VE_FAULT_STR "VE fault"
1372 
ve_raise_fault(struct pt_regs * regs,long error_code,unsigned long address)1373 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1374 			   unsigned long address)
1375 {
1376 	if (user_mode(regs)) {
1377 		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1378 		return;
1379 	}
1380 
1381 	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1382 				    VE_FAULT_STR, address)) {
1383 		return;
1384 	}
1385 
1386 	die_addr(VE_FAULT_STR, regs, error_code, address);
1387 }
1388 
1389 /*
1390  * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1391  * specific guest actions which may happen in either user space or the
1392  * kernel:
1393  *
1394  *  * Specific instructions (WBINVD, for example)
1395  *  * Specific MSR accesses
1396  *  * Specific CPUID leaf accesses
1397  *  * Access to specific guest physical addresses
1398  *
1399  * In the settings that Linux will run in, virtualization exceptions are
1400  * never generated on accesses to normal, TD-private memory that has been
1401  * accepted (by BIOS or with tdx_enc_status_changed()).
1402  *
1403  * Syscall entry code has a critical window where the kernel stack is not
1404  * yet set up. Any exception in this window leads to hard to debug issues
1405  * and can be exploited for privilege escalation. Exceptions in the NMI
1406  * entry code also cause issues. Returning from the exception handler with
1407  * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1408  *
1409  * For these reasons, the kernel avoids #VEs during the syscall gap and
1410  * the NMI entry code. Entry code paths do not access TD-shared memory,
1411  * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1412  * that might generate #VE. VMM can remove memory from TD at any point,
1413  * but access to unaccepted (or missing) private memory leads to VM
1414  * termination, not to #VE.
1415  *
1416  * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1417  * handlers once the kernel is ready to deal with nested NMIs.
1418  *
1419  * During #VE delivery, all interrupts, including NMIs, are blocked until
1420  * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1421  * the VE info.
1422  *
1423  * If a guest kernel action which would normally cause a #VE occurs in
1424  * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1425  * exception) is delivered to the guest which will result in an oops.
1426  *
1427  * The entry code has been audited carefully for following these expectations.
1428  * Changes in the entry code have to be audited for correctness vs. this
1429  * aspect. Similarly to #PF, #VE in these places will expose kernel to
1430  * privilege escalation or may lead to random crashes.
1431  */
DEFINE_IDTENTRY(exc_virtualization_exception)1432 DEFINE_IDTENTRY(exc_virtualization_exception)
1433 {
1434 	struct ve_info ve;
1435 
1436 	/*
1437 	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1438 	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1439 	 * info cannot be overwritten by a nested #VE.
1440 	 */
1441 	tdx_get_ve_info(&ve);
1442 
1443 	cond_local_irq_enable(regs);
1444 
1445 	/*
1446 	 * If tdx_handle_virt_exception() could not process
1447 	 * it successfully, treat it as #GP(0) and handle it.
1448 	 */
1449 	if (!tdx_handle_virt_exception(regs, &ve))
1450 		ve_raise_fault(regs, 0, ve.gla);
1451 
1452 	cond_local_irq_disable(regs);
1453 }
1454 
1455 #endif
1456 
1457 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1458 DEFINE_IDTENTRY_SW(iret_error)
1459 {
1460 	local_irq_enable();
1461 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1462 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1463 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1464 			ILL_BADSTK, (void __user *)NULL);
1465 	}
1466 	local_irq_disable();
1467 }
1468 #endif
1469 
trap_init(void)1470 void __init trap_init(void)
1471 {
1472 	/* Init cpu_entry_area before IST entries are set up */
1473 	setup_cpu_entry_areas();
1474 
1475 	/* Init GHCB memory pages when running as an SEV-ES guest */
1476 	sev_es_init_vc_handling();
1477 
1478 	/* Initialize TSS before setting up traps so ISTs work */
1479 	cpu_init_exception_handling(true);
1480 
1481 	/* Setup traps as cpu_init() might #GP */
1482 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1483 		idt_setup_traps();
1484 
1485 	cpu_init();
1486 }
1487