1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "mesh_upper_transport.c" 39 40 #include "mesh/mesh_upper_transport.h" 41 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 46 #include "btstack_util.h" 47 #include "btstack_memory.h" 48 #include "btstack_debug.h" 49 #include "btstack_bool.h" 50 51 #include "mesh/beacon.h" 52 #include "mesh/mesh_iv_index_seq_number.h" 53 #include "mesh/mesh_keys.h" 54 #include "mesh/mesh_lower_transport.h" 55 #include "mesh/mesh_peer.h" 56 #include "mesh/mesh_virtual_addresses.h" 57 58 // TODO: extract mesh_pdu functions into lower transport or network 59 #include "mesh/mesh_access.h" 60 61 // combined key x address iterator for upper transport decryption 62 63 typedef struct { 64 // state 65 mesh_transport_key_iterator_t key_it; 66 mesh_virtual_address_iterator_t address_it; 67 // elements 68 const mesh_transport_key_t * key; 69 const mesh_virtual_address_t * address; 70 // address - might be virtual 71 uint16_t dst; 72 // key info 73 } mesh_transport_key_and_virtual_address_iterator_t; 74 75 static void mesh_upper_transport_validate_access_message(void); 76 static void mesh_upper_transport_run(void); 77 78 // upper transport callbacks - in access layer 79 static void (*mesh_access_message_handler)( mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu); 80 static void (*mesh_control_message_handler)( mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu); 81 82 // 83 static int crypto_active; 84 static uint8_t application_nonce[13]; 85 static btstack_crypto_ccm_t ccm; 86 static mesh_transport_key_and_virtual_address_iterator_t mesh_transport_key_it; 87 88 // incoming segmented (mesh_segmented_pdu_t) or unsegmented (network_pdu_t) 89 static mesh_pdu_t * incoming_access_encrypted; 90 91 // multi-purpose union: segmented control reassembly, decrypted access pdu 92 static union { 93 mesh_control_pdu_t control; 94 mesh_access_pdu_t access; 95 } incoming_pdu_singleton; 96 97 // pointer to incoming_pdu_singleton.access 98 static mesh_access_pdu_t * incoming_access_decrypted; 99 100 // pointer to incoming_pdu_singleton.access 101 static mesh_control_pdu_t * incoming_control_pdu; 102 103 // incoming unsegmented (network) and segmented (transport) control and access messages 104 static btstack_linked_list_t upper_transport_incoming; 105 106 // outgoing unsegmented and segmented control and access messages 107 static btstack_linked_list_t upper_transport_outgoing; 108 109 // outgoing upper transport messages that have been sent to lower transport and wait for sent event 110 static btstack_linked_list_t upper_transport_outgoing_active; 111 112 // TODO: higher layer define used for assert 113 #define MESH_ACCESS_OPCODE_NOT_SET 0xFFFFFFFEu 114 115 static void mesh_print_hex(const char * name, const uint8_t * data, uint16_t len){ 116 printf("%-20s ", name); 117 printf_hexdump(data, len); 118 } 119 // static void mesh_print_x(const char * name, uint32_t value){ 120 // printf("%20s: 0x%x", name, (int) value); 121 // } 122 123 static void mesh_transport_key_and_virtual_address_iterator_init(mesh_transport_key_and_virtual_address_iterator_t *it, 124 uint16_t dst, uint16_t netkey_index, uint8_t akf, 125 uint8_t aid) { 126 printf("KEY_INIT: dst %04x, akf %x, aid %x\n", dst, akf, aid); 127 // config 128 it->dst = dst; 129 // init elements 130 it->key = NULL; 131 it->address = NULL; 132 // init element iterators 133 mesh_transport_key_aid_iterator_init(&it->key_it, netkey_index, akf, aid); 134 // init address iterator 135 if (mesh_network_address_virtual(it->dst)){ 136 mesh_virtual_address_iterator_init(&it->address_it, dst); 137 // get first key 138 if (mesh_transport_key_aid_iterator_has_more(&it->key_it)) { 139 it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it); 140 } 141 } 142 } 143 144 // cartesian product: keys x addressses 145 static int mesh_transport_key_and_virtual_address_iterator_has_more(mesh_transport_key_and_virtual_address_iterator_t * it){ 146 if (mesh_network_address_virtual(it->dst)) { 147 // find next valid entry 148 while (true){ 149 if (mesh_virtual_address_iterator_has_more(&it->address_it)) return 1; 150 if (!mesh_transport_key_aid_iterator_has_more(&it->key_it)) return 0; 151 // get next key 152 it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it); 153 mesh_virtual_address_iterator_init(&it->address_it, it->dst); 154 } 155 } else { 156 return mesh_transport_key_aid_iterator_has_more(&it->key_it); 157 } 158 } 159 160 static void mesh_transport_key_and_virtual_address_iterator_next(mesh_transport_key_and_virtual_address_iterator_t * it){ 161 if (mesh_network_address_virtual(it->dst)) { 162 it->address = mesh_virtual_address_iterator_get_next(&it->address_it); 163 } else { 164 it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it); 165 } 166 } 167 168 // UPPER TRANSPORT 169 170 uint16_t mesh_access_dst(mesh_access_pdu_t * access_pdu){ 171 return big_endian_read_16(access_pdu->network_header, 7); 172 } 173 174 uint16_t mesh_access_ctl(mesh_access_pdu_t * access_pdu){ 175 return access_pdu->network_header[1] >> 7; 176 } 177 178 uint32_t mesh_access_seq(mesh_access_pdu_t * access_pdu){ 179 return big_endian_read_24(access_pdu->network_header, 2); 180 } 181 182 void mesh_access_set_nid_ivi(mesh_access_pdu_t * access_pdu, uint8_t nid_ivi){ 183 access_pdu->network_header[0] = nid_ivi; 184 } 185 void mesh_access_set_ctl_ttl(mesh_access_pdu_t * access_pdu, uint8_t ctl_ttl){ 186 access_pdu->network_header[1] = ctl_ttl; 187 } 188 void mesh_access_set_seq(mesh_access_pdu_t * access_pdu, uint32_t seq){ 189 big_endian_store_24(access_pdu->network_header, 2, seq); 190 } 191 void mesh_access_set_src(mesh_access_pdu_t * access_pdu, uint16_t src){ 192 big_endian_store_16(access_pdu->network_header, 5, src); 193 } 194 void mesh_access_set_dest(mesh_access_pdu_t * access_pdu, uint16_t dest){ 195 big_endian_store_16(access_pdu->network_header, 7, dest); 196 } 197 198 static void mesh_segmented_pdu_flatten(btstack_linked_list_t * segments, uint8_t segment_len, uint8_t * buffer) { 199 // assemble payload 200 btstack_linked_list_iterator_t it; 201 btstack_linked_list_iterator_init(&it, segments); 202 while (btstack_linked_list_iterator_has_next(&it)) { 203 mesh_network_pdu_t *segment = (mesh_network_pdu_t *) btstack_linked_list_iterator_next(&it); 204 btstack_assert(segment->pdu_header.pdu_type == MESH_PDU_TYPE_NETWORK); 205 // get segment n 206 uint8_t *lower_transport_pdu = mesh_network_pdu_data(segment); 207 uint8_t seg_o = (big_endian_read_16(lower_transport_pdu, 2) >> 5) & 0x001f; 208 uint8_t *segment_data = &lower_transport_pdu[4]; 209 (void) memcpy(&buffer[seg_o * segment_len], segment_data, segment_len); 210 } 211 } 212 213 static uint16_t mesh_upper_pdu_flatten(mesh_upper_transport_pdu_t * upper_pdu, uint8_t * buffer, uint16_t buffer_len) { 214 // assemble payload 215 btstack_linked_list_iterator_t it; 216 btstack_linked_list_iterator_init(&it, &upper_pdu->segments); 217 uint16_t offset = 0; 218 while (btstack_linked_list_iterator_has_next(&it)) { 219 mesh_network_pdu_t *segment = (mesh_network_pdu_t *) btstack_linked_list_iterator_next(&it); 220 btstack_assert(segment->pdu_header.pdu_type == MESH_PDU_TYPE_NETWORK); 221 btstack_assert((offset + segment->len) <= buffer_len); 222 (void) memcpy(&buffer[offset], segment->data, segment->len); 223 offset += segment->len; 224 } 225 return offset; 226 } 227 228 // store payload in provided list of network pdus 229 static void mesh_segmented_store_payload(const uint8_t * payload, uint16_t payload_len, btstack_linked_list_t * in_segments, btstack_linked_list_t * out_segments){ 230 uint16_t payload_offset = 0; 231 uint16_t bytes_current_segment = 0; 232 mesh_network_pdu_t * network_pdu = NULL; 233 while (payload_offset < payload_len){ 234 if (bytes_current_segment == 0){ 235 network_pdu = (mesh_network_pdu_t *) btstack_linked_list_pop(in_segments); 236 btstack_assert(network_pdu != NULL); 237 btstack_linked_list_add_tail(out_segments, (btstack_linked_item_t *) network_pdu); 238 bytes_current_segment = MESH_NETWORK_PAYLOAD_MAX; 239 } 240 uint16_t bytes_to_copy = btstack_min(bytes_current_segment, payload_len - payload_offset); 241 (void) memcpy(&network_pdu->data[network_pdu->len], &payload[payload_offset], bytes_to_copy); 242 bytes_current_segment -= bytes_to_copy; 243 network_pdu->len += bytes_to_copy; 244 payload_offset += bytes_to_copy; 245 } 246 } 247 248 // tries allocate and add enough segments to store payload of given size 249 static bool mesh_segmented_allocate_segments(btstack_linked_list_t * segments, uint16_t payload_len){ 250 uint16_t storage_size = btstack_linked_list_count(segments) * MESH_NETWORK_PAYLOAD_MAX; 251 while (storage_size < payload_len){ 252 mesh_network_pdu_t * network_pdu = mesh_network_pdu_get(); 253 if (network_pdu == NULL) break; 254 storage_size += MESH_NETWORK_PAYLOAD_MAX; 255 btstack_linked_list_add(segments, (btstack_linked_item_t *) network_pdu); 256 } 257 return (storage_size >= payload_len); 258 } 259 260 // stub lower transport 261 262 static void mesh_upper_transport_dump_pdus(const char *name, btstack_linked_list_t *list){ 263 printf("List: %s:\n", name); 264 btstack_linked_list_iterator_t it; 265 btstack_linked_list_iterator_init(&it, list); 266 while (btstack_linked_list_iterator_has_next(&it)){ 267 mesh_pdu_t * pdu = (mesh_pdu_t*) btstack_linked_list_iterator_next(&it); 268 printf("- %p\n", pdu); 269 // printf_hexdump( mesh_pdu_data(pdu), mesh_pdu_len(pdu)); 270 } 271 } 272 273 static void mesh_upper_transport_reset_pdus(btstack_linked_list_t *list){ 274 while (!btstack_linked_list_empty(list)){ 275 mesh_upper_transport_pdu_free((mesh_pdu_t *) btstack_linked_list_pop(list)); 276 } 277 } 278 279 void mesh_upper_transport_dump(void){ 280 mesh_upper_transport_dump_pdus("upper_transport_incoming", &upper_transport_incoming); 281 } 282 283 void mesh_upper_transport_reset(void){ 284 crypto_active = 0; 285 mesh_upper_transport_reset_pdus(&upper_transport_incoming); 286 } 287 288 static mesh_transport_key_t * mesh_upper_transport_get_outgoing_appkey(uint16_t netkey_index, uint16_t appkey_index){ 289 // Device Key is fixed 290 if (appkey_index == MESH_DEVICE_KEY_INDEX) { 291 return mesh_transport_key_get(appkey_index); 292 } 293 294 // Get key refresh state from subnet 295 mesh_subnet_t * subnet = mesh_subnet_get_by_netkey_index(netkey_index); 296 if (subnet == NULL) return NULL; 297 298 // identify old and new app keys for given appkey_index 299 mesh_transport_key_t * old_key = NULL; 300 mesh_transport_key_t * new_key = NULL; 301 mesh_transport_key_iterator_t it; 302 mesh_transport_key_iterator_init(&it, netkey_index); 303 while (mesh_transport_key_iterator_has_more(&it)){ 304 mesh_transport_key_t * transport_key = mesh_transport_key_iterator_get_next(&it); 305 if (transport_key->appkey_index != appkey_index) continue; 306 if (transport_key->old_key == 0) { 307 new_key = transport_key; 308 } else { 309 old_key = transport_key; 310 } 311 } 312 313 // if no key is marked as old, just use the current one 314 if (old_key == NULL) return new_key; 315 316 // use new key if it exists in phase two 317 if ((subnet->key_refresh == MESH_KEY_REFRESH_SECOND_PHASE) && (new_key != NULL)){ 318 return new_key; 319 } else { 320 return old_key; 321 } 322 } 323 324 static uint32_t iv_index_for_ivi_nid(uint8_t ivi_nid){ 325 // get IV Index and IVI 326 uint32_t iv_index = mesh_get_iv_index(); 327 int ivi = ivi_nid >> 7; 328 329 // if least significant bit differs, use previous IV Index 330 if ((iv_index & 1 ) ^ ivi){ 331 iv_index--; 332 } 333 return iv_index; 334 } 335 336 static void transport_segmented_setup_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){ 337 mesh_access_pdu_t * access_pdu; 338 mesh_upper_transport_pdu_t * upper_pdu; 339 switch (pdu->pdu_type){ 340 case MESH_PDU_TYPE_ACCESS: 341 access_pdu = (mesh_access_pdu_t *) pdu; 342 nonce[1] = access_pdu->transmic_len == 8 ? 0x80 : 0x00; 343 (void)memcpy(&nonce[2], &access_pdu->network_header[2], 7); 344 big_endian_store_32(nonce, 9, iv_index_for_ivi_nid(access_pdu->network_header[0])); 345 break; 346 case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: 347 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: 348 upper_pdu = (mesh_upper_transport_pdu_t *) pdu; 349 nonce[1] = upper_pdu->transmic_len == 8 ? 0x80 : 0x00; 350 // 'network header' 351 big_endian_store_24(nonce, 2, upper_pdu->seq); 352 big_endian_store_16(nonce, 5, upper_pdu->src); 353 big_endian_store_16(nonce, 7, upper_pdu->dst); 354 big_endian_store_32(nonce, 9, iv_index_for_ivi_nid(upper_pdu->ivi_nid)); 355 break; 356 default: 357 btstack_assert(0); 358 break; 359 } 360 } 361 362 static void transport_segmented_setup_application_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){ 363 nonce[0] = 0x01; 364 transport_segmented_setup_nonce(nonce, pdu); 365 mesh_print_hex("AppNonce", nonce, 13); 366 } 367 368 static void transport_segmented_setup_device_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){ 369 nonce[0] = 0x02; 370 transport_segmented_setup_nonce(nonce, pdu); 371 mesh_print_hex("DeviceNonce", nonce, 13); 372 } 373 374 static void mesh_upper_transport_process_access_message_done(mesh_access_pdu_t *access_pdu){ 375 crypto_active = 0; 376 btstack_assert(mesh_access_ctl(access_pdu) == 0); 377 mesh_lower_transport_message_processed_by_higher_layer(incoming_access_encrypted); 378 incoming_access_encrypted = NULL; 379 incoming_access_decrypted = NULL; 380 mesh_upper_transport_run(); 381 } 382 383 static void mesh_upper_transport_process_control_message_done(mesh_control_pdu_t * control_pdu){ 384 crypto_active = 0; 385 incoming_control_pdu = NULL; 386 mesh_upper_transport_run(); 387 } 388 389 static void mesh_upper_transport_validate_access_message_ccm(void * arg){ 390 UNUSED(arg); 391 392 uint8_t * upper_transport_pdu = incoming_access_decrypted->data; 393 uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - incoming_access_decrypted->transmic_len; 394 395 mesh_print_hex("Decrypted PDU", upper_transport_pdu, upper_transport_pdu_len); 396 397 // store TransMIC 398 uint8_t trans_mic[8]; 399 btstack_crypto_ccm_get_authentication_value(&ccm, trans_mic); 400 mesh_print_hex("TransMIC", trans_mic, incoming_access_decrypted->transmic_len); 401 402 if (memcmp(trans_mic, &upper_transport_pdu[upper_transport_pdu_len], incoming_access_decrypted->transmic_len) == 0){ 403 printf("TransMIC matches\n"); 404 405 // remove TransMIC from payload 406 incoming_access_decrypted->len -= incoming_access_decrypted->transmic_len; 407 408 // if virtual address, update dst to pseudo_dst 409 if (mesh_network_address_virtual(mesh_access_dst(incoming_access_decrypted))){ 410 big_endian_store_16(incoming_access_decrypted->network_header, 7, mesh_transport_key_it.address->pseudo_dst); 411 } 412 413 // pass to upper layer 414 btstack_assert(mesh_access_message_handler != NULL); 415 mesh_pdu_t * pdu = (mesh_pdu_t*) incoming_access_decrypted; 416 mesh_access_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, pdu); 417 418 printf("\n"); 419 420 } else { 421 uint8_t akf = incoming_access_decrypted->akf_aid_control & 0x40; 422 if (akf){ 423 printf("TransMIC does not match, try next key\n"); 424 mesh_upper_transport_validate_access_message(); 425 } else { 426 printf("TransMIC does not match device key, done\n"); 427 // done 428 mesh_upper_transport_process_access_message_done(incoming_access_decrypted); 429 } 430 } 431 } 432 433 static void mesh_upper_transport_validate_access_message_digest(void * arg){ 434 UNUSED(arg); 435 uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - incoming_access_decrypted->transmic_len; 436 uint8_t * upper_transport_pdu_data_in = incoming_access_decrypted->data; 437 uint8_t * upper_transport_pdu_data_out = incoming_access_decrypted->data; 438 439 mesh_network_pdu_t * unsegmented_pdu = NULL; 440 mesh_segmented_pdu_t * segmented_pdu = NULL; 441 switch (incoming_access_encrypted->pdu_type){ 442 case MESH_PDU_TYPE_SEGMENTED: 443 segmented_pdu = (mesh_segmented_pdu_t *) incoming_access_encrypted; 444 mesh_segmented_pdu_flatten(&segmented_pdu->segments, 12, upper_transport_pdu_data_out); 445 btstack_crypto_ccm_decrypt_block(&ccm, upper_transport_pdu_len, upper_transport_pdu_data_out, upper_transport_pdu_data_out, 446 &mesh_upper_transport_validate_access_message_ccm, NULL); 447 break; 448 case MESH_PDU_TYPE_UNSEGMENTED: 449 unsegmented_pdu = (mesh_network_pdu_t *) incoming_access_encrypted; 450 (void)memcpy(upper_transport_pdu_data_out, &unsegmented_pdu->data[10], incoming_access_decrypted->len); 451 btstack_crypto_ccm_decrypt_block(&ccm, upper_transport_pdu_len, upper_transport_pdu_data_out, upper_transport_pdu_data_out, 452 &mesh_upper_transport_validate_access_message_ccm, NULL); 453 break; 454 default: 455 btstack_assert(false); 456 break; 457 } 458 459 } 460 461 static void mesh_upper_transport_validate_access_message(void){ 462 uint8_t * upper_transport_pdu_data = incoming_access_decrypted->data; 463 uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - incoming_access_decrypted->transmic_len; 464 465 if (!mesh_transport_key_and_virtual_address_iterator_has_more(&mesh_transport_key_it)){ 466 printf("No valid transport key found\n"); 467 mesh_upper_transport_process_access_message_done(incoming_access_decrypted); 468 return; 469 } 470 mesh_transport_key_and_virtual_address_iterator_next(&mesh_transport_key_it); 471 const mesh_transport_key_t * message_key = mesh_transport_key_it.key; 472 473 if (message_key->akf){ 474 transport_segmented_setup_application_nonce(application_nonce, (mesh_pdu_t *) incoming_access_decrypted); 475 } else { 476 transport_segmented_setup_device_nonce(application_nonce, (mesh_pdu_t *) incoming_access_decrypted); 477 } 478 479 // store application / device key index 480 mesh_print_hex("AppOrDevKey", message_key->key, 16); 481 incoming_access_decrypted->appkey_index = message_key->appkey_index; 482 483 mesh_print_hex("EncAccessPayload", upper_transport_pdu_data, upper_transport_pdu_len); 484 485 // decrypt ccm 486 crypto_active = 1; 487 uint16_t aad_len = 0; 488 if (mesh_network_address_virtual(mesh_access_dst(incoming_access_decrypted))){ 489 aad_len = 16; 490 } 491 btstack_crypto_ccm_init(&ccm, message_key->key, application_nonce, upper_transport_pdu_len, aad_len, incoming_access_decrypted->transmic_len); 492 493 if (aad_len){ 494 btstack_crypto_ccm_digest(&ccm, (uint8_t *) mesh_transport_key_it.address->label_uuid, aad_len, 495 &mesh_upper_transport_validate_access_message_digest, NULL); 496 } else { 497 mesh_upper_transport_validate_access_message_digest(NULL); 498 } 499 } 500 501 static void mesh_upper_transport_process_access_message(void){ 502 uint8_t * upper_transport_pdu = incoming_access_decrypted->data; 503 uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - incoming_access_decrypted->transmic_len; 504 mesh_print_hex("Upper Transport pdu", upper_transport_pdu, upper_transport_pdu_len); 505 506 uint8_t aid = incoming_access_decrypted->akf_aid_control & 0x3f; 507 uint8_t akf = (incoming_access_decrypted->akf_aid_control & 0x40) >> 6; 508 509 printf("AKF: %u\n", akf); 510 printf("AID: %02x\n", aid); 511 512 mesh_transport_key_and_virtual_address_iterator_init(&mesh_transport_key_it, mesh_access_dst(incoming_access_decrypted), 513 incoming_access_decrypted->netkey_index, akf, aid); 514 mesh_upper_transport_validate_access_message(); 515 } 516 517 static void mesh_upper_transport_message_received(mesh_pdu_t * pdu){ 518 btstack_linked_list_add_tail(&upper_transport_incoming, (btstack_linked_item_t*) pdu); 519 mesh_upper_transport_run(); 520 } 521 522 static void mesh_upper_transport_send_access_segmented(mesh_upper_transport_pdu_t * upper_pdu){ 523 524 mesh_segmented_pdu_t * segmented_pdu = (mesh_segmented_pdu_t *) upper_pdu->lower_pdu; 525 segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED; 526 527 // convert mesh_access_pdu_t into mesh_segmented_pdu_t 528 btstack_linked_list_t free_segments = segmented_pdu->segments; 529 segmented_pdu->segments = NULL; 530 mesh_segmented_store_payload(incoming_pdu_singleton.access.data, upper_pdu->len, &free_segments, &segmented_pdu->segments); 531 532 // copy meta 533 segmented_pdu->len = upper_pdu->len; 534 segmented_pdu->netkey_index = upper_pdu->netkey_index; 535 segmented_pdu->transmic_len = upper_pdu->transmic_len; 536 segmented_pdu->akf_aid_control = upper_pdu->akf_aid_control; 537 segmented_pdu->flags = upper_pdu->flags; 538 539 // setup segmented_pdu header 540 // (void)memcpy(segmented_pdu->network_header, upper_pdu->network_header, 9); 541 // TODO: use fields in mesh_segmented_pdu_t and setup network header in lower transport 542 segmented_pdu->network_header[0] = upper_pdu->ivi_nid; 543 segmented_pdu->network_header[1] = upper_pdu->ctl_ttl; 544 big_endian_store_24(segmented_pdu->network_header, 2, upper_pdu->seq); 545 big_endian_store_16(segmented_pdu->network_header, 5, upper_pdu->src); 546 big_endian_store_16(segmented_pdu->network_header, 7, upper_pdu->dst); 547 548 // queue up 549 upper_pdu->lower_pdu = (mesh_pdu_t *) segmented_pdu; 550 btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu); 551 552 mesh_lower_transport_send_pdu((mesh_pdu_t*) segmented_pdu); 553 } 554 555 static void mesh_upper_transport_send_access_unsegmented(mesh_upper_transport_pdu_t * upper_pdu){ 556 557 // provide segment 558 mesh_network_pdu_t * network_pdu = (mesh_network_pdu_t *) upper_pdu->lower_pdu; 559 560 // setup network pdu 561 network_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS; 562 network_pdu->data[0] = upper_pdu->ivi_nid; 563 network_pdu->data[1] = upper_pdu->ctl_ttl; 564 big_endian_store_24(network_pdu->data, 2, upper_pdu->seq); 565 big_endian_store_16(network_pdu->data, 5, upper_pdu->src); 566 big_endian_store_16(network_pdu->data, 7, upper_pdu->dst); 567 network_pdu->netkey_index = upper_pdu->netkey_index; 568 569 // setup access message 570 network_pdu->data[9] = upper_pdu->akf_aid_control; 571 btstack_assert(upper_pdu->len < 15); 572 (void)memcpy(&network_pdu->data[10], &incoming_pdu_singleton.access.data, upper_pdu->len); 573 network_pdu->len = 10 + upper_pdu->len; 574 network_pdu->flags = 0; 575 576 // queue up 577 btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu); 578 579 mesh_lower_transport_send_pdu((mesh_pdu_t*) network_pdu); 580 } 581 582 static void mesh_upper_transport_send_access_ccm(void * arg){ 583 crypto_active = 0; 584 585 mesh_upper_transport_pdu_t * upper_pdu = (mesh_upper_transport_pdu_t *) arg; 586 mesh_print_hex("EncAccessPayload", incoming_pdu_singleton.access.data, upper_pdu->len); 587 // store TransMIC 588 btstack_crypto_ccm_get_authentication_value(&ccm, &incoming_pdu_singleton.access.data[upper_pdu->len]); 589 mesh_print_hex("TransMIC", &incoming_pdu_singleton.access.data[upper_pdu->len], upper_pdu->transmic_len); 590 upper_pdu->len += upper_pdu->transmic_len; 591 mesh_print_hex("UpperTransportPDU", incoming_pdu_singleton.access.data, upper_pdu->len); 592 switch (upper_pdu->pdu_header.pdu_type){ 593 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: 594 mesh_upper_transport_send_access_unsegmented(upper_pdu); 595 break; 596 case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: 597 mesh_upper_transport_send_access_segmented(upper_pdu); 598 break; 599 default: 600 btstack_assert(false); 601 } 602 } 603 604 static void mesh_upper_transport_send_access_digest(void *arg){ 605 mesh_upper_transport_pdu_t * upper_pdu = (mesh_upper_transport_pdu_t *) arg; 606 uint16_t access_pdu_len = upper_pdu->len; 607 btstack_crypto_ccm_encrypt_block(&ccm, access_pdu_len, incoming_pdu_singleton.access.data, incoming_pdu_singleton.access.data, 608 &mesh_upper_transport_send_access_ccm, upper_pdu); 609 } 610 611 static void mesh_upper_transport_send_access(mesh_upper_transport_pdu_t * upper_pdu){ 612 613 // if dst is virtual address, lookup label uuid and hash 614 uint16_t aad_len = 0; 615 mesh_virtual_address_t * virtual_address = NULL; 616 if (mesh_network_address_virtual(upper_pdu->dst)){ 617 virtual_address = mesh_virtual_address_for_pseudo_dst(upper_pdu->dst); 618 if (!virtual_address){ 619 printf("No virtual address register for pseudo dst %4x\n", upper_pdu->dst); 620 mesh_access_message_handler(MESH_TRANSPORT_PDU_SENT, MESH_TRANSPORT_STATUS_SEND_FAILED, (mesh_pdu_t *) upper_pdu); 621 return; 622 } 623 // printf("Using hash %4x with LabelUUID: ", virtual_address->hash); 624 // printf_hexdump(virtual_address->label_uuid, 16); 625 aad_len = 16; 626 upper_pdu->dst = virtual_address->hash; 627 } 628 629 // get app or device key 630 uint16_t appkey_index = upper_pdu->appkey_index; 631 const mesh_transport_key_t * appkey = mesh_upper_transport_get_outgoing_appkey(upper_pdu->netkey_index, appkey_index); 632 if (appkey == NULL){ 633 printf("AppKey %04x not found, drop message\n", appkey_index); 634 mesh_access_message_handler(MESH_TRANSPORT_PDU_SENT, MESH_TRANSPORT_STATUS_SEND_FAILED, (mesh_pdu_t *) upper_pdu); 635 return; 636 } 637 638 // reserve slot 639 mesh_lower_transport_reserve_slot(); 640 641 // reserve one sequence number, which is also used to encrypt access payload 642 uint32_t seq = mesh_sequence_number_next(); 643 upper_pdu->flags |= MESH_TRANSPORT_FLAG_SEQ_RESERVED; 644 upper_pdu->seq = seq; 645 646 // also reserves crypto_buffer 647 crypto_active = 1; 648 649 // flatten segmented pdu into crypto buffer 650 uint16_t payload_len = mesh_upper_pdu_flatten(upper_pdu, incoming_pdu_singleton.access.data, sizeof(incoming_pdu_singleton.access.data)); 651 btstack_assert(payload_len == upper_pdu->len); 652 653 // Dump PDU 654 printf("[+] Upper transport, send upper (un)segmented Access PDU - dest %04x, seq %06x\n", upper_pdu->dst, upper_pdu->seq); 655 mesh_print_hex("Access Payload", incoming_pdu_singleton.access.data, upper_pdu->len); 656 657 // setup nonce - uses dst, so after pseudo address translation 658 if (appkey_index == MESH_DEVICE_KEY_INDEX){ 659 transport_segmented_setup_device_nonce(application_nonce, (mesh_pdu_t *) upper_pdu); 660 } else { 661 transport_segmented_setup_application_nonce(application_nonce, (mesh_pdu_t *) upper_pdu); 662 } 663 664 // Dump key 665 mesh_print_hex("AppOrDevKey", appkey->key, 16); 666 667 // encrypt ccm 668 uint8_t transmic_len = upper_pdu->transmic_len; 669 uint16_t access_pdu_len = upper_pdu->len; 670 btstack_crypto_ccm_init(&ccm, appkey->key, application_nonce, access_pdu_len, aad_len, transmic_len); 671 if (virtual_address){ 672 mesh_print_hex("LabelUUID", virtual_address->label_uuid, 16); 673 btstack_crypto_ccm_digest(&ccm, virtual_address->label_uuid, 16, 674 &mesh_upper_transport_send_access_digest, upper_pdu); 675 } else { 676 mesh_upper_transport_send_access_digest(upper_pdu); 677 } 678 } 679 680 static void mesh_upper_transport_send_unsegmented_control_pdu(mesh_network_pdu_t * network_pdu){ 681 // reserve slot 682 mesh_lower_transport_reserve_slot(); 683 // reserve sequence number 684 uint32_t seq = mesh_sequence_number_next(); 685 mesh_network_pdu_set_seq(network_pdu, seq); 686 // Dump PDU 687 uint8_t opcode = network_pdu->data[9]; 688 printf("[+] Upper transport, send unsegmented Control PDU %p - seq %06x opcode %02x\n", network_pdu, seq, opcode); 689 mesh_print_hex("Access Payload", &network_pdu->data[10], network_pdu->len - 10); 690 691 // send 692 mesh_lower_transport_send_pdu((mesh_pdu_t *) network_pdu); 693 } 694 695 static void mesh_upper_transport_send_segmented_control_pdu(mesh_upper_transport_pdu_t * upper_pdu){ 696 // reserve slot 697 mesh_lower_transport_reserve_slot(); 698 // reserve sequence number 699 uint32_t seq = mesh_sequence_number_next(); 700 upper_pdu->flags |= MESH_TRANSPORT_FLAG_SEQ_RESERVED; 701 upper_pdu->seq = seq; 702 // Dump PDU 703 // uint8_t opcode = upper_pdu->data[0]; 704 // printf("[+] Upper transport, send segmented Control PDU %p - seq %06x opcode %02x\n", upper_pdu, seq, opcode); 705 // mesh_print_hex("Access Payload", &upper_pdu->data[1], upper_pdu->len - 1); 706 // send 707 mesh_segmented_pdu_t * segmented_pdu = (mesh_segmented_pdu_t *) upper_pdu->lower_pdu; 708 segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED; 709 710 // lend segments to lower transport pdu 711 segmented_pdu->segments = upper_pdu->segments; 712 upper_pdu->segments = NULL; 713 714 // copy meta 715 segmented_pdu->len = upper_pdu->len; 716 segmented_pdu->netkey_index = upper_pdu->netkey_index; 717 segmented_pdu->transmic_len = 0; // no TransMIC for control 718 segmented_pdu->akf_aid_control = upper_pdu->akf_aid_control; 719 segmented_pdu->flags = upper_pdu->flags; 720 721 // setup segmented_pdu header 722 // TODO: use fields in mesh_segmented_pdu_t and setup network header in lower transport 723 segmented_pdu->network_header[0] = upper_pdu->ivi_nid; 724 segmented_pdu->network_header[1] = upper_pdu->ctl_ttl; 725 big_endian_store_24(segmented_pdu->network_header, 2, upper_pdu->seq); 726 big_endian_store_16(segmented_pdu->network_header, 5, upper_pdu->src); 727 big_endian_store_16(segmented_pdu->network_header, 7, upper_pdu->dst); 728 729 // queue up 730 upper_pdu->lower_pdu = (mesh_pdu_t *) segmented_pdu; 731 btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu); 732 733 mesh_lower_transport_send_pdu((mesh_pdu_t *) segmented_pdu); 734 } 735 736 static void mesh_upper_transport_run(void){ 737 738 while(!btstack_linked_list_empty(&upper_transport_incoming)){ 739 740 if (crypto_active) return; 741 742 // get next message 743 mesh_pdu_t * pdu = (mesh_pdu_t *) btstack_linked_list_pop(&upper_transport_incoming); 744 mesh_network_pdu_t * network_pdu; 745 mesh_segmented_pdu_t * message_pdu; 746 switch (pdu->pdu_type){ 747 case MESH_PDU_TYPE_UNSEGMENTED: 748 network_pdu = (mesh_network_pdu_t *) pdu; 749 // control? 750 if (mesh_network_control(network_pdu)) { 751 752 incoming_control_pdu = &incoming_pdu_singleton.control; 753 incoming_control_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_CONTROL; 754 incoming_control_pdu->len = network_pdu->len; 755 incoming_control_pdu->netkey_index = network_pdu->netkey_index; 756 757 uint8_t * lower_transport_pdu = mesh_network_pdu_data(network_pdu); 758 759 incoming_control_pdu->akf_aid_control = lower_transport_pdu[0]; 760 incoming_control_pdu->len = network_pdu->len - 10; // 9 header + 1 opcode 761 (void)memcpy(incoming_control_pdu->data, &lower_transport_pdu[1], incoming_control_pdu->len); 762 763 // copy meta data into encrypted pdu buffer 764 (void)memcpy(incoming_control_pdu->network_header, network_pdu->data, 9); 765 766 mesh_print_hex("Assembled payload", incoming_control_pdu->data, incoming_control_pdu->len); 767 768 // free mesh message 769 mesh_lower_transport_message_processed_by_higher_layer(pdu); 770 771 btstack_assert(mesh_control_message_handler != NULL); 772 mesh_pdu_t * pdu = (mesh_pdu_t*) incoming_control_pdu; 773 mesh_control_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, pdu); 774 775 } else { 776 777 incoming_access_encrypted = (mesh_pdu_t *) network_pdu; 778 779 incoming_access_decrypted = &incoming_pdu_singleton.access; 780 incoming_access_decrypted->pdu_header.pdu_type = MESH_PDU_TYPE_ACCESS; 781 incoming_access_decrypted->netkey_index = network_pdu->netkey_index; 782 incoming_access_decrypted->transmic_len = 4; 783 incoming_access_decrypted->akf_aid_control = network_pdu->data[9]; 784 incoming_access_decrypted->len = network_pdu->len - 10; // 9 header + 1 AID 785 (void)memcpy(incoming_access_decrypted->network_header, network_pdu->data, 9); 786 787 mesh_upper_transport_process_access_message(); 788 } 789 break; 790 case MESH_PDU_TYPE_SEGMENTED: 791 message_pdu = (mesh_segmented_pdu_t *) pdu; 792 uint8_t ctl = mesh_message_ctl(message_pdu); 793 if (ctl){ 794 incoming_control_pdu= &incoming_pdu_singleton.control; 795 incoming_control_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_CONTROL; 796 797 // flatten 798 mesh_segmented_pdu_flatten(&message_pdu->segments, 8, incoming_control_pdu->data); 799 800 // copy meta data into encrypted pdu buffer 801 incoming_control_pdu->len = message_pdu->len; 802 incoming_access_decrypted->netkey_index = message_pdu->netkey_index; 803 incoming_control_pdu->akf_aid_control = message_pdu->akf_aid_control; 804 incoming_control_pdu->flags = 0; 805 (void)memcpy(incoming_control_pdu->network_header, message_pdu->network_header, 9); 806 807 mesh_print_hex("Assembled payload", incoming_control_pdu->data, incoming_control_pdu->len); 808 809 // free mesh message 810 mesh_lower_transport_message_processed_by_higher_layer((mesh_pdu_t *)message_pdu); 811 812 btstack_assert(mesh_control_message_handler != NULL); 813 mesh_pdu_t * pdu = (mesh_pdu_t*) incoming_control_pdu; 814 mesh_access_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, pdu); 815 816 } else { 817 818 incoming_access_encrypted = (mesh_pdu_t *) message_pdu; 819 820 incoming_access_decrypted = &incoming_pdu_singleton.access; 821 incoming_access_decrypted->pdu_header.pdu_type = MESH_PDU_TYPE_ACCESS; 822 incoming_access_decrypted->len = message_pdu->len; 823 incoming_access_decrypted->netkey_index = message_pdu->netkey_index; 824 incoming_access_decrypted->transmic_len = message_pdu->transmic_len; 825 incoming_access_decrypted->akf_aid_control = message_pdu->akf_aid_control; 826 (void)memcpy(incoming_access_decrypted->network_header, message_pdu->network_header, 9); 827 828 mesh_upper_transport_process_access_message(); 829 } 830 break; 831 default: 832 btstack_assert(0); 833 break; 834 } 835 } 836 837 while (!btstack_linked_list_empty(&upper_transport_outgoing)){ 838 839 if (crypto_active) break; 840 841 mesh_pdu_t * pdu = (mesh_pdu_t *) btstack_linked_list_get_first_item(&upper_transport_outgoing); 842 if (mesh_lower_transport_can_send_to_dest(mesh_pdu_dst(pdu)) == 0) break; 843 844 mesh_upper_transport_pdu_t * upper_pdu; 845 mesh_segmented_pdu_t * segmented_pdu; 846 bool ok; 847 848 switch (pdu->pdu_type){ 849 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL: 850 // control pdus can go through directly 851 btstack_assert(mesh_pdu_ctl(pdu) != 0); 852 (void) btstack_linked_list_pop(&upper_transport_outgoing); 853 mesh_upper_transport_send_unsegmented_control_pdu((mesh_network_pdu_t *) pdu); 854 break; 855 case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: 856 // control pdus can go through directly 857 btstack_assert(mesh_pdu_ctl(pdu) != 0); 858 (void) btstack_linked_list_pop(&upper_transport_outgoing); 859 mesh_upper_transport_send_segmented_control_pdu((mesh_upper_transport_pdu_t *) pdu); 860 break; 861 case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: 862 // segmented access pdus required a mesh-segmented-pdu 863 upper_pdu = (mesh_upper_transport_pdu_t *) pdu; 864 if (upper_pdu->lower_pdu == NULL){ 865 segmented_pdu = btstack_memory_mesh_segmented_pdu_get(); 866 } 867 if (segmented_pdu == NULL) break; 868 upper_pdu->lower_pdu = (mesh_pdu_t *) segmented_pdu; 869 segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED; 870 // and a mesh-network-pdu for each segment in upper pdu 871 ok = mesh_segmented_allocate_segments(&segmented_pdu->segments, upper_pdu->len + upper_pdu->transmic_len); 872 if (!ok) break; 873 // all buffers available, get started 874 (void) btstack_linked_list_pop(&upper_transport_outgoing); 875 mesh_upper_transport_send_access(upper_pdu); 876 break; 877 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: 878 // unsegmented access pdus require a single mesh-network-dpu 879 upper_pdu = (mesh_upper_transport_pdu_t *) pdu; 880 if (upper_pdu->lower_pdu == NULL){ 881 upper_pdu->lower_pdu = (mesh_pdu_t *) mesh_network_pdu_get(); 882 } 883 if (upper_pdu->lower_pdu == NULL) break; 884 (void) btstack_linked_list_pop(&upper_transport_outgoing); 885 mesh_upper_transport_send_access((mesh_upper_transport_pdu_t *) pdu); 886 break; 887 default: 888 btstack_assert(false); 889 break; 890 } 891 } 892 } 893 894 static mesh_upper_transport_pdu_t * mesh_upper_transport_find_pdu_for_lower(mesh_pdu_t * pdu_to_find){ 895 btstack_linked_list_iterator_t it; 896 btstack_linked_list_iterator_init(&it, &upper_transport_outgoing_active); 897 mesh_upper_transport_pdu_t * upper_pdu; 898 while (btstack_linked_list_iterator_has_next(&it)){ 899 mesh_pdu_t * mesh_pdu = (mesh_pdu_t *) btstack_linked_list_iterator_next(&it); 900 switch (mesh_pdu->pdu_type){ 901 case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: 902 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: 903 case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: 904 upper_pdu = (mesh_upper_transport_pdu_t *) mesh_pdu; 905 if (upper_pdu->lower_pdu == pdu_to_find){ 906 btstack_linked_list_iterator_remove(&it); 907 return upper_pdu; 908 } 909 break; 910 default: 911 break; 912 } 913 } 914 return NULL; 915 } 916 917 static void mesh_upper_transport_pdu_handler(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu){ 918 mesh_upper_transport_pdu_t * upper_pdu; 919 mesh_network_pdu_t * network_pdu; 920 mesh_segmented_pdu_t * segmented_pdu; 921 switch (callback_type){ 922 case MESH_TRANSPORT_PDU_RECEIVED: 923 mesh_upper_transport_message_received(pdu); 924 break; 925 case MESH_TRANSPORT_PDU_SENT: 926 switch (pdu->pdu_type){ 927 case MESH_PDU_TYPE_SEGMENTED: 928 // try to find in outgoing active 929 upper_pdu = mesh_upper_transport_find_pdu_for_lower(pdu); 930 btstack_assert(upper_pdu != NULL); 931 segmented_pdu = (mesh_segmented_pdu_t *) pdu; 932 // free chunks 933 while (!btstack_linked_list_empty(&segmented_pdu->segments)){ 934 mesh_network_pdu_t * network_pdu = (mesh_network_pdu_t *) btstack_linked_list_pop(&segmented_pdu->segments); 935 mesh_network_pdu_free(network_pdu); 936 } 937 // free segmented pdu 938 btstack_memory_mesh_segmented_pdu_free(segmented_pdu); 939 // TODO: free segmented_pdu 940 upper_pdu->lower_pdu = NULL; 941 switch (upper_pdu->pdu_header.pdu_type){ 942 case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: 943 mesh_control_message_handler(callback_type, status, (mesh_pdu_t *) upper_pdu); 944 break; 945 case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: 946 mesh_access_message_handler(callback_type, status, (mesh_pdu_t *) upper_pdu); 947 break; 948 default: 949 btstack_assert(false); 950 break; 951 } 952 break; 953 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: 954 // find corresponding upper transport pdu and free single segment 955 upper_pdu = mesh_upper_transport_find_pdu_for_lower(pdu); 956 btstack_assert(upper_pdu != NULL); 957 btstack_assert(upper_pdu->lower_pdu == (mesh_pdu_t *) pdu); 958 mesh_network_pdu_free((mesh_network_pdu_t *) pdu); 959 upper_pdu->lower_pdu = NULL; 960 mesh_access_message_handler(callback_type, status, (mesh_pdu_t*) upper_pdu); 961 break; 962 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL: 963 mesh_access_message_handler(callback_type, status, pdu); 964 break; 965 default: 966 btstack_assert(false); 967 break; 968 } 969 mesh_upper_transport_run(); 970 break; 971 default: 972 break; 973 } 974 } 975 976 void mesh_upper_transport_pdu_free(mesh_pdu_t * pdu){ 977 mesh_network_pdu_t * network_pdu; 978 mesh_segmented_pdu_t * message_pdu; 979 switch (pdu->pdu_type) { 980 case MESH_PDU_TYPE_NETWORK: 981 network_pdu = (mesh_network_pdu_t *) pdu; 982 mesh_network_pdu_free(network_pdu); 983 break; 984 case MESH_PDU_TYPE_SEGMENTED: 985 message_pdu = (mesh_segmented_pdu_t *) pdu; 986 mesh_message_pdu_free(message_pdu); 987 default: 988 btstack_assert(false); 989 break; 990 } 991 } 992 993 void mesh_upper_transport_message_processed_by_higher_layer(mesh_pdu_t * pdu){ 994 crypto_active = 0; 995 switch (pdu->pdu_type){ 996 case MESH_PDU_TYPE_ACCESS: 997 mesh_upper_transport_process_access_message_done((mesh_access_pdu_t *) pdu); 998 case MESH_PDU_TYPE_CONTROL: 999 mesh_upper_transport_process_control_message_done((mesh_control_pdu_t *) pdu); 1000 break; 1001 default: 1002 btstack_assert(0); 1003 break; 1004 } 1005 } 1006 1007 void mesh_upper_transport_send_access_pdu(mesh_pdu_t *pdu){ 1008 switch (pdu->pdu_type){ 1009 case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: 1010 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: 1011 break; 1012 default: 1013 btstack_assert(false); 1014 break; 1015 } 1016 1017 btstack_assert(((mesh_upper_transport_pdu_t *) pdu)->lower_pdu == NULL); 1018 1019 btstack_linked_list_add_tail(&upper_transport_outgoing, (btstack_linked_item_t*) pdu); 1020 mesh_upper_transport_run(); 1021 } 1022 1023 void mesh_upper_transport_send_control_pdu(mesh_pdu_t * pdu){ 1024 switch (pdu->pdu_type){ 1025 case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: 1026 break; 1027 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL: 1028 btstack_assert( ((mesh_network_pdu_t *) pdu)->len >= 9); 1029 break; 1030 default: 1031 btstack_assert(false); 1032 break; 1033 } 1034 1035 btstack_linked_list_add_tail(&upper_transport_outgoing, (btstack_linked_item_t*) pdu); 1036 mesh_upper_transport_run(); 1037 } 1038 1039 static uint8_t mesh_upper_transport_setup_unsegmented_control_pdu(mesh_network_pdu_t * network_pdu, uint16_t netkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t opcode, 1040 const uint8_t * control_pdu_data, uint16_t control_pdu_len){ 1041 1042 if (control_pdu_len > 11) return 1; 1043 1044 const mesh_network_key_t * network_key = mesh_network_key_list_get(netkey_index); 1045 if (!network_key) return 1; 1046 1047 uint8_t transport_pdu_data[12]; 1048 transport_pdu_data[0] = opcode; 1049 (void)memcpy(&transport_pdu_data[1], control_pdu_data, control_pdu_len); 1050 uint16_t transport_pdu_len = control_pdu_len + 1; 1051 1052 // setup network_pdu 1053 mesh_network_setup_pdu(network_pdu, netkey_index, network_key->nid, 1, ttl, 0, src, dest, transport_pdu_data, transport_pdu_len); 1054 1055 return 0; 1056 } 1057 1058 static uint8_t mesh_upper_transport_setup_segmented_control_pdu(mesh_upper_transport_pdu_t * upper_pdu, uint16_t netkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t opcode, 1059 const uint8_t * control_pdu_data, uint16_t control_pdu_len){ 1060 1061 if (control_pdu_len > 256) return 1; 1062 1063 const mesh_network_key_t * network_key = mesh_network_key_list_get(netkey_index); 1064 if (!network_key) return 1; 1065 1066 upper_pdu->ivi_nid = network_key->nid | ((mesh_get_iv_index_for_tx() & 1) << 7); 1067 upper_pdu->ctl_ttl = ttl; 1068 upper_pdu->src = src; 1069 upper_pdu->dst = dest; 1070 upper_pdu->transmic_len = 0; // no TransMIC for control 1071 upper_pdu->netkey_index = netkey_index; 1072 upper_pdu->akf_aid_control = opcode; 1073 1074 // allocate segments 1075 btstack_linked_list_t free_segments = NULL; 1076 bool ok = mesh_segmented_allocate_segments( &free_segments, control_pdu_len); 1077 if (!ok) return 1; 1078 // store control pdu 1079 mesh_segmented_store_payload(control_pdu_data, control_pdu_len, &free_segments, &upper_pdu->segments); 1080 upper_pdu->len = control_pdu_len; 1081 return 0; 1082 } 1083 1084 uint8_t mesh_upper_transport_setup_control_pdu(mesh_pdu_t * pdu, uint16_t netkey_index, 1085 uint8_t ttl, uint16_t src, uint16_t dest, uint8_t opcode, const uint8_t * control_pdu_data, uint16_t control_pdu_len){ 1086 switch (pdu->pdu_type){ 1087 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL: 1088 return mesh_upper_transport_setup_unsegmented_control_pdu((mesh_network_pdu_t *) pdu, netkey_index, ttl, src, dest, opcode, control_pdu_data, control_pdu_len); 1089 case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL: 1090 return mesh_upper_transport_setup_segmented_control_pdu((mesh_upper_transport_pdu_t *) pdu, netkey_index, ttl, src, dest, opcode, control_pdu_data, control_pdu_len); 1091 default: 1092 btstack_assert(0); 1093 return 1; 1094 } 1095 } 1096 1097 static uint8_t mesh_upper_transport_setup_segmented_access_pdu_header(mesh_access_pdu_t * access_pdu, uint16_t netkey_index, 1098 uint16_t appkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t szmic){ 1099 1100 // get app or device key 1101 const mesh_transport_key_t *appkey; 1102 appkey = mesh_transport_key_get(appkey_index); 1103 if (appkey == NULL) { 1104 printf("[!] Upper transport, setup segmented Access PDU - appkey_index %x unknown\n", appkey_index); 1105 return 1; 1106 } 1107 uint8_t akf_aid = (appkey->akf << 6) | appkey->aid; 1108 1109 // lookup network by netkey_index 1110 const mesh_network_key_t *network_key = mesh_network_key_list_get(netkey_index); 1111 if (!network_key) return 1; 1112 if (network_key == NULL) { 1113 printf("[!] Upper transport, setup segmented Access PDU - netkey_index %x unknown\n", appkey_index); 1114 return 1; 1115 } 1116 1117 const uint8_t trans_mic_len = szmic ? 8 : 4; 1118 1119 // store in transport pdu 1120 access_pdu->transmic_len = trans_mic_len; 1121 access_pdu->netkey_index = netkey_index; 1122 access_pdu->appkey_index = appkey_index; 1123 access_pdu->akf_aid_control = akf_aid; 1124 mesh_access_set_nid_ivi(access_pdu, network_key->nid | ((mesh_get_iv_index_for_tx() & 1) << 7)); 1125 mesh_access_set_src(access_pdu, src); 1126 mesh_access_set_dest(access_pdu, dest); 1127 mesh_access_set_ctl_ttl(access_pdu, ttl); 1128 return 0; 1129 } 1130 1131 static uint8_t mesh_upper_transport_setup_upper_access_pdu_header(mesh_upper_transport_pdu_t * upper_pdu, uint16_t netkey_index, 1132 uint16_t appkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t szmic){ 1133 1134 // get app or device key 1135 const mesh_transport_key_t *appkey; 1136 appkey = mesh_transport_key_get(appkey_index); 1137 if (appkey == NULL) { 1138 printf("[!] Upper transport, setup segmented Access PDU - appkey_index %x unknown\n", appkey_index); 1139 return 1; 1140 } 1141 uint8_t akf_aid = (appkey->akf << 6) | appkey->aid; 1142 1143 // lookup network by netkey_index 1144 const mesh_network_key_t *network_key = mesh_network_key_list_get(netkey_index); 1145 if (!network_key) return 1; 1146 if (network_key == NULL) { 1147 printf("[!] Upper transport, setup segmented Access PDU - netkey_index %x unknown\n", appkey_index); 1148 return 1; 1149 } 1150 1151 const uint8_t trans_mic_len = szmic ? 8 : 4; 1152 1153 // store in transport pdu 1154 upper_pdu->ivi_nid = network_key->nid | ((mesh_get_iv_index_for_tx() & 1) << 7); 1155 upper_pdu->ctl_ttl = ttl; 1156 upper_pdu->src = src; 1157 upper_pdu->dst = dest; 1158 upper_pdu->transmic_len = trans_mic_len; 1159 upper_pdu->netkey_index = netkey_index; 1160 upper_pdu->appkey_index = appkey_index; 1161 upper_pdu->akf_aid_control = akf_aid; 1162 return 0; 1163 } 1164 1165 static uint8_t mesh_upper_transport_setup_upper_access_pdu(mesh_upper_transport_pdu_t * upper_pdu, uint16_t netkey_index, uint16_t appkey_index, uint8_t ttl, uint16_t src, uint16_t dest, 1166 uint8_t szmic, const uint8_t * access_pdu_data, uint8_t access_pdu_len){ 1167 int status = mesh_upper_transport_setup_upper_access_pdu_header(upper_pdu, netkey_index, appkey_index, ttl, src, 1168 dest, szmic); 1169 if (status) return status; 1170 1171 // allocate segments 1172 btstack_linked_list_t free_segments = NULL; 1173 bool ok = mesh_segmented_allocate_segments( &free_segments, access_pdu_len); 1174 if (!ok) return 1; 1175 // store control pdu 1176 mesh_segmented_store_payload(access_pdu_data, access_pdu_len, &free_segments, &upper_pdu->segments); 1177 upper_pdu->len = access_pdu_len; 1178 return 0; 1179 } 1180 1181 1182 uint8_t mesh_upper_transport_setup_access_pdu_header(mesh_pdu_t * pdu, uint16_t netkey_index, uint16_t appkey_index, 1183 uint8_t ttl, uint16_t src, uint16_t dest, uint8_t szmic){ 1184 switch (pdu->pdu_type){ 1185 case MESH_PDU_TYPE_ACCESS: 1186 return mesh_upper_transport_setup_segmented_access_pdu_header((mesh_access_pdu_t *) pdu, netkey_index, appkey_index, ttl, src, dest, szmic); 1187 default: 1188 btstack_assert(false); 1189 return 1; 1190 } 1191 } 1192 1193 uint8_t mesh_upper_transport_setup_access_pdu(mesh_pdu_t * pdu, uint16_t netkey_index, uint16_t appkey_index, 1194 uint8_t ttl, uint16_t src, uint16_t dest, uint8_t szmic, 1195 const uint8_t * access_pdu_data, uint8_t access_pdu_len){ 1196 switch (pdu->pdu_type){ 1197 case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS: 1198 case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS: 1199 return mesh_upper_transport_setup_upper_access_pdu((mesh_upper_transport_pdu_t *) pdu, netkey_index, 1200 appkey_index, ttl, src, dest, szmic, access_pdu_data, 1201 access_pdu_len); 1202 default: 1203 btstack_assert(false); 1204 return 1; 1205 } 1206 } 1207 1208 void mesh_upper_transport_register_access_message_handler(void (*callback)(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu)) { 1209 mesh_access_message_handler = callback; 1210 } 1211 1212 void mesh_upper_transport_register_control_message_handler(void (*callback)(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu)){ 1213 mesh_control_message_handler = callback; 1214 } 1215 1216 void mesh_upper_transport_init(){ 1217 mesh_lower_transport_set_higher_layer_handler(&mesh_upper_transport_pdu_handler); 1218 } 1219