1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 /* 39 * hci.c 40 * 41 * Created by Matthias Ringwald on 4/29/09. 42 * 43 */ 44 45 #include "btstack_config.h" 46 47 48 #ifdef HAVE_TICK 49 #include "btstack_run_loop_embedded.h" 50 #endif 51 52 #ifdef HAVE_PLATFORM_IPHONE_OS 53 #include "../port/ios/src/btstack_control_iphone.h" 54 #endif 55 56 #ifdef ENABLE_BLE 57 #include "gap.h" 58 #endif 59 60 #include <stdarg.h> 61 #include <string.h> 62 #include <stdio.h> 63 #include <inttypes.h> 64 65 #include "btstack_debug.h" 66 #include "btstack_event.h" 67 #include "btstack_linked_list.h" 68 #include "btstack_memory.h" 69 #include "gap.h" 70 #include "hci.h" 71 #include "hci_cmd.h" 72 #include "hci_dump.h" 73 74 75 #define HCI_CONNECTION_TIMEOUT_MS 10000 76 77 // prototypes 78 static void hci_update_scan_enable(void); 79 static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection); 80 static void hci_connection_timeout_handler(btstack_timer_source_t *timer); 81 static void hci_connection_timestamp(hci_connection_t *connection); 82 static int hci_power_control_on(void); 83 static void hci_power_control_off(void); 84 static void hci_state_reset(void); 85 static void hci_emit_connection_complete(hci_connection_t *conn, uint8_t status); 86 static void hci_emit_l2cap_check_timeout(hci_connection_t *conn); 87 static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason); 88 static void hci_emit_nr_connections_changed(void); 89 static void hci_emit_hci_open_failed(void); 90 static void hci_emit_discoverable_enabled(uint8_t enabled); 91 static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level); 92 static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status); 93 static void hci_emit_event(uint8_t * event, uint16_t size, int dump); 94 static void hci_emit_acl_packet(uint8_t * packet, uint16_t size); 95 static void hci_notify_if_sco_can_send_now(void); 96 static void hci_run(void); 97 static int hci_is_le_connection(hci_connection_t * connection); 98 static int hci_number_free_acl_slots_for_connection_type( bd_addr_type_t address_type); 99 static int hci_local_ssp_activated(void); 100 static int hci_remote_ssp_supported(hci_con_handle_t con_handle); 101 102 #ifdef ENABLE_BLE 103 // called from test/ble_client/advertising_data_parser.c 104 void le_handle_advertisement_report(uint8_t *packet, int size); 105 static void hci_remove_from_whitelist(bd_addr_type_t address_type, bd_addr_t address); 106 #endif 107 108 // the STACK is here 109 #ifndef HAVE_MALLOC 110 static hci_stack_t hci_stack_static; 111 #endif 112 static hci_stack_t * hci_stack = NULL; 113 114 // test helper 115 static uint8_t disable_l2cap_timeouts = 0; 116 117 /** 118 * create connection for given address 119 * 120 * @return connection OR NULL, if no memory left 121 */ 122 static hci_connection_t * create_connection_for_bd_addr_and_type(bd_addr_t addr, bd_addr_type_t addr_type){ 123 log_info("create_connection_for_addr %s, type %x", bd_addr_to_str(addr), addr_type); 124 hci_connection_t * conn = btstack_memory_hci_connection_get(); 125 if (!conn) return NULL; 126 memset(conn, 0, sizeof(hci_connection_t)); 127 bd_addr_copy(conn->address, addr); 128 conn->address_type = addr_type; 129 conn->con_handle = 0xffff; 130 conn->authentication_flags = AUTH_FLAGS_NONE; 131 conn->bonding_flags = 0; 132 conn->requested_security_level = LEVEL_0; 133 btstack_run_loop_set_timer_handler(&conn->timeout, hci_connection_timeout_handler); 134 btstack_run_loop_set_timer_context(&conn->timeout, conn); 135 hci_connection_timestamp(conn); 136 conn->acl_recombination_length = 0; 137 conn->acl_recombination_pos = 0; 138 conn->num_acl_packets_sent = 0; 139 conn->num_sco_packets_sent = 0; 140 conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; 141 btstack_linked_list_add(&hci_stack->connections, (btstack_linked_item_t *) conn); 142 return conn; 143 } 144 145 146 /** 147 * get le connection parameter range 148 * 149 * @return le connection parameter range struct 150 */ 151 void gap_get_connection_parameter_range(le_connection_parameter_range_t range){ 152 range = hci_stack->le_connection_parameter_range; 153 } 154 155 /** 156 * set le connection parameter range 157 * 158 */ 159 160 void gap_set_connection_parameter_range(le_connection_parameter_range_t range){ 161 hci_stack->le_connection_parameter_range = range; 162 } 163 164 /** 165 * get hci connections iterator 166 * 167 * @return hci connections iterator 168 */ 169 170 void hci_connections_get_iterator(btstack_linked_list_iterator_t *it){ 171 btstack_linked_list_iterator_init(it, &hci_stack->connections); 172 } 173 174 /** 175 * get connection for a given handle 176 * 177 * @return connection OR NULL, if not found 178 */ 179 hci_connection_t * hci_connection_for_handle(hci_con_handle_t con_handle){ 180 btstack_linked_list_iterator_t it; 181 btstack_linked_list_iterator_init(&it, &hci_stack->connections); 182 while (btstack_linked_list_iterator_has_next(&it)){ 183 hci_connection_t * item = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 184 if ( item->con_handle == con_handle ) { 185 return item; 186 } 187 } 188 return NULL; 189 } 190 191 /** 192 * get connection for given address 193 * 194 * @return connection OR NULL, if not found 195 */ 196 hci_connection_t * hci_connection_for_bd_addr_and_type(bd_addr_t addr, bd_addr_type_t addr_type){ 197 btstack_linked_list_iterator_t it; 198 btstack_linked_list_iterator_init(&it, &hci_stack->connections); 199 while (btstack_linked_list_iterator_has_next(&it)){ 200 hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 201 if (connection->address_type != addr_type) continue; 202 if (memcmp(addr, connection->address, 6) != 0) continue; 203 return connection; 204 } 205 return NULL; 206 } 207 208 static void hci_connection_timeout_handler(btstack_timer_source_t *timer){ 209 hci_connection_t * connection = (hci_connection_t *) btstack_run_loop_get_timer_context(timer); 210 #ifdef HAVE_TIME 211 struct timeval tv; 212 gettimeofday(&tv, NULL); 213 if (tv.tv_sec >= connection->timestamp.tv_sec + HCI_CONNECTION_TIMEOUT_MS/1000) { 214 // connections might be timed out 215 hci_emit_l2cap_check_timeout(connection); 216 } 217 #endif 218 #ifdef HAVE_TICK 219 if (btstack_run_loop_embedded_get_ticks() > connection->timestamp + btstack_run_loop_embedded_ticks_for_ms(HCI_CONNECTION_TIMEOUT_MS)){ 220 // connections might be timed out 221 hci_emit_l2cap_check_timeout(connection); 222 } 223 #endif 224 #ifdef HAVE_TIME_MS 225 if (btstack_run_loop_get_time_ms() > connection->timestamp + HCI_CONNECTION_TIMEOUT_MS){ 226 // connections might be timed out 227 hci_emit_l2cap_check_timeout(connection); 228 } 229 #endif 230 btstack_run_loop_set_timer(timer, HCI_CONNECTION_TIMEOUT_MS); 231 btstack_run_loop_add_timer(timer); 232 } 233 234 static void hci_connection_timestamp(hci_connection_t *connection){ 235 #ifdef HAVE_TIME 236 gettimeofday(&connection->timestamp, NULL); 237 #endif 238 #ifdef HAVE_TICK 239 connection->timestamp = btstack_run_loop_embedded_get_ticks(); 240 #endif 241 #ifdef HAVE_TIME_MS 242 connection->timestamp = btstack_run_loop_get_time_ms(); 243 #endif 244 } 245 246 247 inline static void connectionSetAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ 248 conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags | flags); 249 } 250 251 inline static void connectionClearAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ 252 conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags & ~flags); 253 } 254 255 256 /** 257 * add authentication flags and reset timer 258 * @note: assumes classic connection 259 * @note: bd_addr is passed in as litle endian uint8_t * as it is called from parsing packets 260 */ 261 static void hci_add_connection_flags_for_flipped_bd_addr(uint8_t *bd_addr, hci_authentication_flags_t flags){ 262 bd_addr_t addr; 263 reverse_bd_addr(bd_addr, addr); 264 hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 265 if (conn) { 266 connectionSetAuthenticationFlags(conn, flags); 267 hci_connection_timestamp(conn); 268 } 269 } 270 271 int hci_authentication_active_for_handle(hci_con_handle_t handle){ 272 hci_connection_t * conn = hci_connection_for_handle(handle); 273 if (!conn) return 0; 274 if (conn->authentication_flags & LEGACY_PAIRING_ACTIVE) return 1; 275 if (conn->authentication_flags & SSP_PAIRING_ACTIVE) return 1; 276 return 0; 277 } 278 279 void gap_drop_link_key_for_bd_addr(bd_addr_t addr){ 280 if (hci_stack->link_key_db) { 281 hci_stack->link_key_db->delete_link_key(addr); 282 } 283 } 284 285 static int hci_is_le_connection(hci_connection_t * connection){ 286 return connection->address_type == BD_ADDR_TYPE_LE_PUBLIC || 287 connection->address_type == BD_ADDR_TYPE_LE_RANDOM; 288 } 289 290 291 /** 292 * count connections 293 */ 294 static int nr_hci_connections(void){ 295 int count = 0; 296 btstack_linked_item_t *it; 297 for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next, count++); 298 return count; 299 } 300 301 static int hci_number_free_acl_slots_for_connection_type(bd_addr_type_t address_type){ 302 303 int num_packets_sent_classic = 0; 304 int num_packets_sent_le = 0; 305 306 btstack_linked_item_t *it; 307 for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ 308 hci_connection_t * connection = (hci_connection_t *) it; 309 if (connection->address_type == BD_ADDR_TYPE_CLASSIC){ 310 num_packets_sent_classic += connection->num_acl_packets_sent; 311 } else { 312 num_packets_sent_le += connection->num_acl_packets_sent; 313 } 314 } 315 316 int free_slots_classic = hci_stack->acl_packets_total_num - num_packets_sent_classic; 317 int free_slots_le = 0; 318 319 if (free_slots_classic < 0){ 320 log_error("hci_number_free_acl_slots: outgoing classic packets (%u) > total classic packets (%u)", num_packets_sent_classic, hci_stack->acl_packets_total_num); 321 return 0; 322 } 323 324 if (hci_stack->le_acl_packets_total_num){ 325 // if we have LE slots, they are used 326 free_slots_le = hci_stack->le_acl_packets_total_num - num_packets_sent_le; 327 if (free_slots_le < 0){ 328 log_error("hci_number_free_acl_slots: outgoing le packets (%u) > total le packets (%u)", num_packets_sent_le, hci_stack->le_acl_packets_total_num); 329 return 0; 330 } 331 } else { 332 // otherwise, classic slots are used for LE, too 333 free_slots_classic -= num_packets_sent_le; 334 if (free_slots_classic < 0){ 335 log_error("hci_number_free_acl_slots: outgoing classic + le packets (%u + %u) > total packets (%u)", num_packets_sent_classic, num_packets_sent_le, hci_stack->acl_packets_total_num); 336 return 0; 337 } 338 } 339 340 switch (address_type){ 341 case BD_ADDR_TYPE_UNKNOWN: 342 log_error("hci_number_free_acl_slots: unknown address type"); 343 return 0; 344 345 case BD_ADDR_TYPE_CLASSIC: 346 return free_slots_classic; 347 348 default: 349 if (hci_stack->le_acl_packets_total_num){ 350 return free_slots_le; 351 } 352 return free_slots_classic; 353 } 354 } 355 356 int hci_number_free_acl_slots_for_handle(hci_con_handle_t con_handle){ 357 // get connection type 358 hci_connection_t * connection = hci_connection_for_handle(con_handle); 359 if (!connection){ 360 log_error("hci_number_free_acl_slots: handle 0x%04x not in connection list", con_handle); 361 return 0; 362 } 363 return hci_number_free_acl_slots_for_connection_type(connection->address_type); 364 } 365 366 static int hci_number_free_sco_slots(void){ 367 int num_sco_packets_sent = 0; 368 btstack_linked_item_t *it; 369 for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ 370 hci_connection_t * connection = (hci_connection_t *) it; 371 num_sco_packets_sent += connection->num_sco_packets_sent; 372 } 373 if (num_sco_packets_sent > hci_stack->sco_packets_total_num){ 374 log_info("hci_number_free_sco_slots:packets (%u) > total packets (%u)", num_sco_packets_sent, hci_stack->sco_packets_total_num); 375 return 0; 376 } 377 // log_info("hci_number_free_sco_slots u", handle, num_sco_packets_sent); 378 return hci_stack->sco_packets_total_num - num_sco_packets_sent; 379 } 380 381 // new functions replacing hci_can_send_packet_now[_using_packet_buffer] 382 int hci_can_send_command_packet_now(void){ 383 if (hci_stack->hci_packet_buffer_reserved) return 0; 384 385 // check for async hci transport implementations 386 if (hci_stack->hci_transport->can_send_packet_now){ 387 if (!hci_stack->hci_transport->can_send_packet_now(HCI_COMMAND_DATA_PACKET)){ 388 return 0; 389 } 390 } 391 392 return hci_stack->num_cmd_packets > 0; 393 } 394 395 static int hci_transport_can_send_prepared_packet_now(uint8_t packet_type){ 396 // check for async hci transport implementations 397 if (!hci_stack->hci_transport->can_send_packet_now) return 1; 398 return hci_stack->hci_transport->can_send_packet_now(packet_type); 399 } 400 401 static int hci_can_send_prepared_acl_packet_for_address_type(bd_addr_type_t address_type){ 402 if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return 0; 403 return hci_number_free_acl_slots_for_connection_type(address_type) > 0; 404 } 405 406 int hci_can_send_acl_classic_packet_now(void){ 407 if (hci_stack->hci_packet_buffer_reserved) return 0; 408 return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_CLASSIC); 409 } 410 411 int hci_can_send_acl_le_packet_now(void){ 412 if (hci_stack->hci_packet_buffer_reserved) return 0; 413 return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_LE_PUBLIC); 414 } 415 416 int hci_can_send_prepared_acl_packet_now(hci_con_handle_t con_handle) { 417 if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return 0; 418 return hci_number_free_acl_slots_for_handle(con_handle) > 0; 419 } 420 421 int hci_can_send_acl_packet_now(hci_con_handle_t con_handle){ 422 if (hci_stack->hci_packet_buffer_reserved) return 0; 423 return hci_can_send_prepared_acl_packet_now(con_handle); 424 } 425 426 int hci_can_send_prepared_sco_packet_now(void){ 427 if (!hci_transport_can_send_prepared_packet_now(HCI_SCO_DATA_PACKET)) { 428 hci_stack->sco_waiting_for_can_send_now = 1; 429 return 0; 430 } 431 if (!hci_stack->synchronous_flow_control_enabled) return 1; 432 return hci_number_free_sco_slots() > 0; 433 } 434 435 int hci_can_send_sco_packet_now(void){ 436 if (hci_stack->hci_packet_buffer_reserved) { 437 hci_stack->sco_waiting_for_can_send_now = 1; 438 return 0; 439 } 440 return hci_can_send_prepared_sco_packet_now(); 441 } 442 443 // used for internal checks in l2cap.c 444 int hci_is_packet_buffer_reserved(void){ 445 return hci_stack->hci_packet_buffer_reserved; 446 } 447 448 // reserves outgoing packet buffer. @returns 1 if successful 449 int hci_reserve_packet_buffer(void){ 450 if (hci_stack->hci_packet_buffer_reserved) { 451 log_error("hci_reserve_packet_buffer called but buffer already reserved"); 452 return 0; 453 } 454 hci_stack->hci_packet_buffer_reserved = 1; 455 return 1; 456 } 457 458 void hci_release_packet_buffer(void){ 459 hci_stack->hci_packet_buffer_reserved = 0; 460 } 461 462 // assumption: synchronous implementations don't provide can_send_packet_now as they don't keep the buffer after the call 463 static int hci_transport_synchronous(void){ 464 return hci_stack->hci_transport->can_send_packet_now == NULL; 465 } 466 467 static int hci_send_acl_packet_fragments(hci_connection_t *connection){ 468 469 // log_info("hci_send_acl_packet_fragments %u/%u (con 0x%04x)", hci_stack->acl_fragmentation_pos, hci_stack->acl_fragmentation_total_size, connection->con_handle); 470 471 // max ACL data packet length depends on connection type (LE vs. Classic) and available buffers 472 uint16_t max_acl_data_packet_length = hci_stack->acl_data_packet_length; 473 if (hci_is_le_connection(connection) && hci_stack->le_data_packets_length > 0){ 474 max_acl_data_packet_length = hci_stack->le_data_packets_length; 475 } 476 477 // testing: reduce buffer to minimum 478 // max_acl_data_packet_length = 52; 479 480 int err; 481 // multiple packets could be send on a synchronous HCI transport 482 while (1){ 483 484 // get current data 485 const uint16_t acl_header_pos = hci_stack->acl_fragmentation_pos - 4; 486 int current_acl_data_packet_length = hci_stack->acl_fragmentation_total_size - hci_stack->acl_fragmentation_pos; 487 int more_fragments = 0; 488 489 // if ACL packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length 490 if (current_acl_data_packet_length > max_acl_data_packet_length){ 491 more_fragments = 1; 492 current_acl_data_packet_length = max_acl_data_packet_length; 493 } 494 495 // copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragmnent) 496 if (acl_header_pos > 0){ 497 uint16_t handle_and_flags = little_endian_read_16(hci_stack->hci_packet_buffer, 0); 498 handle_and_flags = (handle_and_flags & 0xcfff) | (1 << 12); 499 little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos, handle_and_flags); 500 } 501 502 // update header len 503 little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos + 2, current_acl_data_packet_length); 504 505 // count packet 506 connection->num_acl_packets_sent++; 507 508 // send packet 509 uint8_t * packet = &hci_stack->hci_packet_buffer[acl_header_pos]; 510 const int size = current_acl_data_packet_length + 4; 511 hci_dump_packet(HCI_ACL_DATA_PACKET, 0, packet, size); 512 err = hci_stack->hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size); 513 514 // done yet? 515 if (!more_fragments) break; 516 517 // update start of next fragment to send 518 hci_stack->acl_fragmentation_pos += current_acl_data_packet_length; 519 520 // can send more? 521 if (!hci_can_send_prepared_acl_packet_now(connection->con_handle)) return err; 522 } 523 524 // done 525 hci_stack->acl_fragmentation_pos = 0; 526 hci_stack->acl_fragmentation_total_size = 0; 527 528 // release buffer now for synchronous transport 529 if (hci_transport_synchronous()){ 530 hci_release_packet_buffer(); 531 // notify upper stack that it might be possible to send again 532 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 533 hci_emit_event(&event[0], sizeof(event), 0); // don't dump 534 } 535 536 return err; 537 } 538 539 // pre: caller has reserved the packet buffer 540 int hci_send_acl_packet_buffer(int size){ 541 542 // log_info("hci_send_acl_packet_buffer size %u", size); 543 544 if (!hci_stack->hci_packet_buffer_reserved) { 545 log_error("hci_send_acl_packet_buffer called without reserving packet buffer"); 546 return 0; 547 } 548 549 uint8_t * packet = hci_stack->hci_packet_buffer; 550 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); 551 552 // check for free places on Bluetooth module 553 if (!hci_can_send_prepared_acl_packet_now(con_handle)) { 554 log_error("hci_send_acl_packet_buffer called but no free ACL buffers on controller"); 555 hci_release_packet_buffer(); 556 return BTSTACK_ACL_BUFFERS_FULL; 557 } 558 559 hci_connection_t *connection = hci_connection_for_handle( con_handle); 560 if (!connection) { 561 log_error("hci_send_acl_packet_buffer called but no connection for handle 0x%04x", con_handle); 562 hci_release_packet_buffer(); 563 return 0; 564 } 565 hci_connection_timestamp(connection); 566 567 // hci_dump_packet( HCI_ACL_DATA_PACKET, 0, packet, size); 568 569 // setup data 570 hci_stack->acl_fragmentation_total_size = size; 571 hci_stack->acl_fragmentation_pos = 4; // start of L2CAP packet 572 573 return hci_send_acl_packet_fragments(connection); 574 } 575 576 // pre: caller has reserved the packet buffer 577 int hci_send_sco_packet_buffer(int size){ 578 579 // log_info("hci_send_acl_packet_buffer size %u", size); 580 581 if (!hci_stack->hci_packet_buffer_reserved) { 582 log_error("hci_send_acl_packet_buffer called without reserving packet buffer"); 583 return 0; 584 } 585 586 uint8_t * packet = hci_stack->hci_packet_buffer; 587 588 // skip checks in loopback mode 589 if (!hci_stack->loopback_mode){ 590 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); // same for ACL and SCO 591 592 // check for free places on Bluetooth module 593 if (!hci_can_send_prepared_sco_packet_now()) { 594 log_error("hci_send_sco_packet_buffer called but no free ACL buffers on controller"); 595 hci_release_packet_buffer(); 596 return BTSTACK_ACL_BUFFERS_FULL; 597 } 598 599 // track send packet in connection struct 600 hci_connection_t *connection = hci_connection_for_handle( con_handle); 601 if (!connection) { 602 log_error("hci_send_sco_packet_buffer called but no connection for handle 0x%04x", con_handle); 603 hci_release_packet_buffer(); 604 return 0; 605 } 606 connection->num_sco_packets_sent++; 607 } 608 609 hci_dump_packet( HCI_SCO_DATA_PACKET, 0, packet, size); 610 int err = hci_stack->hci_transport->send_packet(HCI_SCO_DATA_PACKET, packet, size); 611 612 if (hci_transport_synchronous()){ 613 hci_release_packet_buffer(); 614 // notify upper stack that it might be possible to send again 615 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 616 hci_emit_event(&event[0], sizeof(event), 0); // don't dump 617 } 618 619 return err; 620 } 621 622 static void acl_handler(uint8_t *packet, int size){ 623 624 // log_info("acl_handler: size %u", size); 625 626 // get info 627 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); 628 hci_connection_t *conn = hci_connection_for_handle(con_handle); 629 uint8_t acl_flags = READ_ACL_FLAGS(packet); 630 uint16_t acl_length = READ_ACL_LENGTH(packet); 631 632 // ignore non-registered handle 633 if (!conn){ 634 log_error( "hci.c: acl_handler called with non-registered handle %u!" , con_handle); 635 return; 636 } 637 638 // assert packet is complete 639 if (acl_length + 4 != size){ 640 log_error("hci.c: acl_handler called with ACL packet of wrong size %u, expected %u => dropping packet", size, acl_length + 4); 641 return; 642 } 643 644 // update idle timestamp 645 hci_connection_timestamp(conn); 646 647 // handle different packet types 648 switch (acl_flags & 0x03) { 649 650 case 0x01: // continuation fragment 651 652 // sanity checks 653 if (conn->acl_recombination_pos == 0) { 654 log_error( "ACL Cont Fragment but no first fragment for handle 0x%02x", con_handle); 655 return; 656 } 657 if (conn->acl_recombination_pos + acl_length > 4 + HCI_ACL_BUFFER_SIZE){ 658 log_error( "ACL Cont Fragment to large: combined packet %u > buffer size %u for handle 0x%02x", 659 conn->acl_recombination_pos + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); 660 conn->acl_recombination_pos = 0; 661 return; 662 } 663 664 // append fragment payload (header already stored) 665 memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + conn->acl_recombination_pos], &packet[4], acl_length ); 666 conn->acl_recombination_pos += acl_length; 667 668 // log_error( "ACL Cont Fragment: acl_len %u, combined_len %u, l2cap_len %u", acl_length, 669 // conn->acl_recombination_pos, conn->acl_recombination_length); 670 671 // forward complete L2CAP packet if complete. 672 if (conn->acl_recombination_pos >= conn->acl_recombination_length + 4 + 4){ // pos already incl. ACL header 673 hci_emit_acl_packet(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], conn->acl_recombination_pos); 674 // reset recombination buffer 675 conn->acl_recombination_length = 0; 676 conn->acl_recombination_pos = 0; 677 } 678 break; 679 680 case 0x02: { // first fragment 681 682 // sanity check 683 if (conn->acl_recombination_pos) { 684 log_error( "ACL First Fragment but data in buffer for handle 0x%02x, dropping stale fragments", con_handle); 685 conn->acl_recombination_pos = 0; 686 } 687 688 // peek into L2CAP packet! 689 uint16_t l2cap_length = READ_L2CAP_LENGTH( packet ); 690 691 // log_info( "ACL First Fragment: acl_len %u, l2cap_len %u", acl_length, l2cap_length); 692 693 // compare fragment size to L2CAP packet size 694 if (acl_length >= l2cap_length + 4){ 695 // forward fragment as L2CAP packet 696 hci_emit_acl_packet(packet, acl_length + 4); 697 } else { 698 699 if (acl_length > HCI_ACL_BUFFER_SIZE){ 700 log_error( "ACL First Fragment to large: fragment %u > buffer size %u for handle 0x%02x", 701 4 + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); 702 return; 703 } 704 705 // store first fragment and tweak acl length for complete package 706 memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], packet, acl_length + 4); 707 conn->acl_recombination_pos = acl_length + 4; 708 conn->acl_recombination_length = l2cap_length; 709 little_endian_store_16(conn->acl_recombination_buffer, HCI_INCOMING_PRE_BUFFER_SIZE + 2, l2cap_length +4); 710 } 711 break; 712 713 } 714 default: 715 log_error( "hci.c: acl_handler called with invalid packet boundary flags %u", acl_flags & 0x03); 716 return; 717 } 718 719 // execute main loop 720 hci_run(); 721 } 722 723 static void hci_shutdown_connection(hci_connection_t *conn){ 724 log_info("Connection closed: handle 0x%x, %s", conn->con_handle, bd_addr_to_str(conn->address)); 725 726 btstack_run_loop_remove_timer(&conn->timeout); 727 728 btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); 729 btstack_memory_hci_connection_free( conn ); 730 731 // now it's gone 732 hci_emit_nr_connections_changed(); 733 } 734 735 static const uint16_t packet_type_sizes[] = { 736 0, HCI_ACL_2DH1_SIZE, HCI_ACL_3DH1_SIZE, HCI_ACL_DM1_SIZE, 737 HCI_ACL_DH1_SIZE, 0, 0, 0, 738 HCI_ACL_2DH3_SIZE, HCI_ACL_3DH3_SIZE, HCI_ACL_DM3_SIZE, HCI_ACL_DH3_SIZE, 739 HCI_ACL_2DH5_SIZE, HCI_ACL_3DH5_SIZE, HCI_ACL_DM5_SIZE, HCI_ACL_DH5_SIZE 740 }; 741 static const uint8_t packet_type_feature_requirement_bit[] = { 742 0, // 3 slot packets 743 1, // 5 slot packets 744 25, // EDR 2 mpbs 745 26, // EDR 3 mbps 746 39, // 3 slot EDR packts 747 40, // 5 slot EDR packet 748 }; 749 static const uint16_t packet_type_feature_packet_mask[] = { 750 0x0f00, // 3 slot packets 751 0xf000, // 5 slot packets 752 0x1102, // EDR 2 mpbs 753 0x2204, // EDR 3 mbps 754 0x0300, // 3 slot EDR packts 755 0x3000, // 5 slot EDR packet 756 }; 757 758 static uint16_t hci_acl_packet_types_for_buffer_size_and_local_features(uint16_t buffer_size, uint8_t * local_supported_features){ 759 // enable packet types based on size 760 uint16_t packet_types = 0; 761 unsigned int i; 762 for (i=0;i<16;i++){ 763 if (packet_type_sizes[i] == 0) continue; 764 if (packet_type_sizes[i] <= buffer_size){ 765 packet_types |= 1 << i; 766 } 767 } 768 // disable packet types due to missing local supported features 769 for (i=0;i<sizeof(packet_type_feature_requirement_bit);i++){ 770 int bit_idx = packet_type_feature_requirement_bit[i]; 771 int feature_set = (local_supported_features[bit_idx >> 3] & (1<<(bit_idx & 7))) != 0; 772 if (feature_set) continue; 773 log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, packet_type_feature_packet_mask[i]); 774 packet_types &= ~packet_type_feature_packet_mask[i]; 775 } 776 // flip bits for "may not be used" 777 packet_types ^= 0x3306; 778 return packet_types; 779 } 780 781 uint16_t hci_usable_acl_packet_types(void){ 782 return hci_stack->packet_types; 783 } 784 785 uint8_t* hci_get_outgoing_packet_buffer(void){ 786 // hci packet buffer is >= acl data packet length 787 return hci_stack->hci_packet_buffer; 788 } 789 790 uint16_t hci_max_acl_data_packet_length(void){ 791 return hci_stack->acl_data_packet_length; 792 } 793 794 int hci_non_flushable_packet_boundary_flag_supported(void){ 795 // No. 54, byte 6, bit 6 796 return (hci_stack->local_supported_features[6] & (1 << 6)) != 0; 797 } 798 799 static int gap_ssp_supported(void){ 800 // No. 51, byte 6, bit 3 801 return (hci_stack->local_supported_features[6] & (1 << 3)) != 0; 802 } 803 804 static int hci_classic_supported(void){ 805 // No. 37, byte 4, bit 5, = No BR/EDR Support 806 return (hci_stack->local_supported_features[4] & (1 << 5)) == 0; 807 } 808 809 static int hci_le_supported(void){ 810 #ifdef ENABLE_BLE 811 // No. 37, byte 4, bit 6 = LE Supported (Controller) 812 return (hci_stack->local_supported_features[4] & (1 << 6)) != 0; 813 #else 814 return 0; 815 #endif 816 } 817 818 // get addr type and address used in advertisement packets 819 void gap_advertisements_get_address(uint8_t * addr_type, bd_addr_t addr){ 820 *addr_type = hci_stack->adv_addr_type; 821 if (hci_stack->adv_addr_type){ 822 memcpy(addr, hci_stack->adv_address, 6); 823 } else { 824 memcpy(addr, hci_stack->local_bd_addr, 6); 825 } 826 } 827 828 #ifdef ENABLE_BLE 829 void le_handle_advertisement_report(uint8_t *packet, int size){ 830 int offset = 3; 831 int num_reports = packet[offset]; 832 offset += 1; 833 834 int i; 835 log_info("HCI: handle adv report with num reports: %d", num_reports); 836 uint8_t event[12 + LE_ADVERTISING_DATA_SIZE]; // use upper bound to avoid var size automatic var 837 for (i=0; i<num_reports;i++){ 838 uint8_t data_length = packet[offset + 8]; 839 uint8_t event_size = 10 + data_length; 840 int pos = 0; 841 event[pos++] = GAP_LE_EVENT_ADVERTISING_REPORT; 842 event[pos++] = event_size; 843 memcpy(&event[pos], &packet[offset], 1+1+6); // event type + address type + address 844 offset += 8; 845 pos += 8; 846 event[pos++] = packet[offset + 1 + data_length]; // rssi 847 event[pos++] = packet[offset++]; //data_length; 848 memcpy(&event[pos], &packet[offset], data_length); 849 pos += data_length; 850 offset += data_length + 1; // rssi 851 hci_emit_event(event, pos, 1); 852 } 853 } 854 #endif 855 856 static uint32_t hci_transport_uart_get_main_baud_rate(void){ 857 if (!hci_stack->config) return 0; 858 uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; 859 // Limit baud rate for Broadcom chipsets to 3 mbps 860 if (hci_stack->manufacturer == COMPANY_ID_BROADCOM_CORPORATION && baud_rate > 3000000){ 861 baud_rate = 3000000; 862 } 863 return baud_rate; 864 } 865 866 static void hci_initialization_timeout_handler(btstack_timer_source_t * ds){ 867 switch (hci_stack->substate){ 868 case HCI_INIT_W4_SEND_RESET: 869 log_info("Resend HCI Reset"); 870 hci_stack->substate = HCI_INIT_SEND_RESET; 871 hci_stack->num_cmd_packets = 1; 872 hci_run(); 873 break; 874 case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT: 875 log_info("Resend HCI Reset - CSR Warm Boot"); 876 hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT; 877 hci_stack->num_cmd_packets = 1; 878 hci_run(); 879 break; 880 case HCI_INIT_W4_SEND_BAUD_CHANGE: { 881 uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); 882 log_info("Local baud rate change to %"PRIu32"(timeout handler)", baud_rate); 883 hci_stack->hci_transport->set_baudrate(baud_rate); 884 // For CSR, HCI Reset is sent on new baud rate 885 if (hci_stack->manufacturer == COMPANY_ID_CAMBRIDGE_SILICON_RADIO){ 886 hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT; 887 hci_run(); 888 } 889 break; 890 } 891 default: 892 break; 893 } 894 } 895 896 static void hci_initializing_next_state(void){ 897 hci_stack->substate = (hci_substate_t )( ((int) hci_stack->substate) + 1); 898 } 899 900 // assumption: hci_can_send_command_packet_now() == true 901 static void hci_initializing_run(void){ 902 log_info("hci_initializing_run: substate %u", hci_stack->substate); 903 switch (hci_stack->substate){ 904 case HCI_INIT_SEND_RESET: 905 hci_state_reset(); 906 907 #ifndef HAVE_PLATFORM_IPHONE_OS 908 // prepare reset if command complete not received in 100ms 909 btstack_run_loop_set_timer(&hci_stack->timeout, 100); 910 btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); 911 btstack_run_loop_add_timer(&hci_stack->timeout); 912 #endif 913 // send command 914 hci_stack->substate = HCI_INIT_W4_SEND_RESET; 915 hci_send_cmd(&hci_reset); 916 break; 917 case HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION: 918 hci_send_cmd(&hci_read_local_version_information); 919 hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION; 920 break; 921 case HCI_INIT_SEND_RESET_CSR_WARM_BOOT: 922 hci_state_reset(); 923 // prepare reset if command complete not received in 100ms 924 btstack_run_loop_set_timer(&hci_stack->timeout, 100); 925 btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); 926 btstack_run_loop_add_timer(&hci_stack->timeout); 927 // send command 928 hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT; 929 hci_send_cmd(&hci_reset); 930 break; 931 case HCI_INIT_SEND_RESET_ST_WARM_BOOT: 932 hci_state_reset(); 933 hci_stack->substate = HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT; 934 hci_send_cmd(&hci_reset); 935 break; 936 case HCI_INIT_SEND_BAUD_CHANGE: { 937 uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); 938 hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer); 939 hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); 940 hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE; 941 hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); 942 // STLC25000D: baudrate change happens within 0.5 s after command was send, 943 // use timer to update baud rate after 100 ms (knowing exactly, when command was sent is non-trivial) 944 if (hci_stack->manufacturer == COMPANY_ID_ST_MICROELECTRONICS){ 945 btstack_run_loop_set_timer(&hci_stack->timeout, 100); 946 btstack_run_loop_add_timer(&hci_stack->timeout); 947 } 948 break; 949 } 950 case HCI_INIT_SEND_BAUD_CHANGE_BCM: { 951 uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); 952 hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer); 953 hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); 954 hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE_BCM; 955 hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); 956 break; 957 } 958 case HCI_INIT_CUSTOM_INIT: 959 log_info("Custom init"); 960 // Custom initialization 961 if (hci_stack->chipset && hci_stack->chipset->next_command){ 962 int valid_cmd = (*hci_stack->chipset->next_command)(hci_stack->hci_packet_buffer); 963 if (valid_cmd){ 964 int size = 3 + hci_stack->hci_packet_buffer[2]; 965 hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); 966 hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, hci_stack->hci_packet_buffer, size); 967 switch (valid_cmd) { 968 case 1: 969 default: 970 hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT; 971 break; 972 case 2: // CSR Warm Boot: Wait a bit, then send HCI Reset until HCI Command Complete 973 log_info("CSR Warm Boot"); 974 btstack_run_loop_set_timer(&hci_stack->timeout, 100); 975 btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); 976 btstack_run_loop_add_timer(&hci_stack->timeout); 977 if (hci_stack->manufacturer == COMPANY_ID_CAMBRIDGE_SILICON_RADIO 978 && hci_stack->config 979 && hci_stack->chipset 980 // && hci_stack->chipset->set_baudrate_command -- there's no such command 981 && hci_stack->hci_transport->set_baudrate 982 && hci_transport_uart_get_main_baud_rate()){ 983 hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE; 984 } else { 985 hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT; 986 } 987 break; 988 } 989 hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, hci_stack->hci_packet_buffer, size); 990 break; 991 } 992 log_info("hci_run: init script done"); 993 994 // Init script download causes baud rate to reset on Broadcom chipsets, restore UART baud rate if needed 995 if (hci_stack->manufacturer == COMPANY_ID_BROADCOM_CORPORATION){ 996 int need_baud_change = hci_stack->config 997 && hci_stack->chipset 998 && hci_stack->chipset->set_baudrate_command 999 && hci_stack->hci_transport->set_baudrate 1000 && ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; 1001 if (need_baud_change) { 1002 uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_init; 1003 log_info("Local baud rate change to %"PRIu32" after init script (bcm)", baud_rate); 1004 hci_stack->hci_transport->set_baudrate(baud_rate); 1005 } 1006 } 1007 } 1008 // otherwise continue 1009 hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS; 1010 hci_send_cmd(&hci_read_local_supported_commands); 1011 break; 1012 case HCI_INIT_SET_BD_ADDR: 1013 log_info("Set Public BD ADDR to %s", bd_addr_to_str(hci_stack->custom_bd_addr)); 1014 hci_stack->chipset->set_bd_addr_command(hci_stack->custom_bd_addr, hci_stack->hci_packet_buffer); 1015 hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); 1016 hci_stack->substate = HCI_INIT_W4_SET_BD_ADDR; 1017 hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); 1018 break; 1019 case HCI_INIT_READ_BD_ADDR: 1020 hci_stack->substate = HCI_INIT_W4_READ_BD_ADDR; 1021 hci_send_cmd(&hci_read_bd_addr); 1022 break; 1023 case HCI_INIT_READ_BUFFER_SIZE: 1024 hci_stack->substate = HCI_INIT_W4_READ_BUFFER_SIZE; 1025 hci_send_cmd(&hci_read_buffer_size); 1026 break; 1027 case HCI_INIT_READ_LOCAL_SUPPORTED_FEATURES: 1028 hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_FEATURES; 1029 hci_send_cmd(&hci_read_local_supported_features); 1030 break; 1031 case HCI_INIT_SET_EVENT_MASK: 1032 hci_stack->substate = HCI_INIT_W4_SET_EVENT_MASK; 1033 if (hci_le_supported()){ 1034 hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x3FFFFFFF); 1035 } else { 1036 // Kensington Bluetooth 2.1 USB Dongle (CSR Chipset) returns an error for 0xffff... 1037 hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x1FFFFFFF); 1038 } 1039 break; 1040 case HCI_INIT_WRITE_SIMPLE_PAIRING_MODE: 1041 hci_stack->substate = HCI_INIT_W4_WRITE_SIMPLE_PAIRING_MODE; 1042 hci_send_cmd(&hci_write_simple_pairing_mode, hci_stack->ssp_enable); 1043 break; 1044 case HCI_INIT_WRITE_PAGE_TIMEOUT: 1045 hci_stack->substate = HCI_INIT_W4_WRITE_PAGE_TIMEOUT; 1046 hci_send_cmd(&hci_write_page_timeout, 0x6000); // ca. 15 sec 1047 break; 1048 case HCI_INIT_WRITE_CLASS_OF_DEVICE: 1049 hci_stack->substate = HCI_INIT_W4_WRITE_CLASS_OF_DEVICE; 1050 hci_send_cmd(&hci_write_class_of_device, hci_stack->class_of_device); 1051 break; 1052 case HCI_INIT_WRITE_LOCAL_NAME: 1053 hci_stack->substate = HCI_INIT_W4_WRITE_LOCAL_NAME; 1054 if (hci_stack->local_name){ 1055 hci_send_cmd(&hci_write_local_name, hci_stack->local_name); 1056 } else { 1057 char local_name[30]; 1058 // BTstack-11:22:33:44:55:66 1059 strcpy(local_name, "BTstack "); 1060 strcat(local_name, bd_addr_to_str(hci_stack->local_bd_addr)); 1061 log_info("---> Name %s", local_name); 1062 hci_send_cmd(&hci_write_local_name, local_name); 1063 } 1064 break; 1065 case HCI_INIT_WRITE_SCAN_ENABLE: 1066 hci_send_cmd(&hci_write_scan_enable, (hci_stack->connectable << 1) | hci_stack->discoverable); // page scan 1067 hci_stack->substate = HCI_INIT_W4_WRITE_SCAN_ENABLE; 1068 break; 1069 case HCI_INIT_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE: 1070 hci_stack->substate = HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE; 1071 hci_send_cmd(&hci_write_synchronous_flow_control_enable, 1); // SCO tracking enabled 1072 break; 1073 #ifdef ENABLE_BLE 1074 // LE INIT 1075 case HCI_INIT_LE_READ_BUFFER_SIZE: 1076 hci_stack->substate = HCI_INIT_W4_LE_READ_BUFFER_SIZE; 1077 hci_send_cmd(&hci_le_read_buffer_size); 1078 break; 1079 case HCI_INIT_WRITE_LE_HOST_SUPPORTED: 1080 // LE Supported Host = 1, Simultaneous Host = 0 1081 hci_stack->substate = HCI_INIT_W4_WRITE_LE_HOST_SUPPORTED; 1082 hci_send_cmd(&hci_write_le_host_supported, 1, 0); 1083 break; 1084 case HCI_INIT_READ_WHITE_LIST_SIZE: 1085 hci_stack->substate = HCI_INIT_W4_READ_WHITE_LIST_SIZE; 1086 hci_send_cmd(&hci_le_read_white_list_size); 1087 break; 1088 case HCI_INIT_LE_SET_SCAN_PARAMETERS: 1089 // LE Scan Parameters: active scanning, 300 ms interval, 30 ms window, public address, accept all advs 1090 hci_stack->substate = HCI_INIT_W4_LE_SET_SCAN_PARAMETERS; 1091 hci_send_cmd(&hci_le_set_scan_parameters, 1, 0x1e0, 0x30, 0, 0); 1092 break; 1093 #endif 1094 default: 1095 return; 1096 } 1097 } 1098 1099 static void hci_init_done(void){ 1100 // done. tell the app 1101 log_info("hci_init_done -> HCI_STATE_WORKING"); 1102 hci_stack->state = HCI_STATE_WORKING; 1103 hci_emit_state(); 1104 hci_run(); 1105 } 1106 1107 static void hci_initializing_event_handler(uint8_t * packet, uint16_t size){ 1108 uint8_t command_completed = 0; 1109 1110 if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE){ 1111 uint16_t opcode = little_endian_read_16(packet,3); 1112 if (opcode == hci_stack->last_cmd_opcode){ 1113 command_completed = 1; 1114 log_info("Command complete for expected opcode %04x at substate %u", opcode, hci_stack->substate); 1115 } else { 1116 log_info("Command complete for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode); 1117 } 1118 } 1119 1120 if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_STATUS){ 1121 uint8_t status = packet[2]; 1122 uint16_t opcode = little_endian_read_16(packet,4); 1123 if (opcode == hci_stack->last_cmd_opcode){ 1124 if (status){ 1125 command_completed = 1; 1126 log_error("Command status error 0x%02x for expected opcode %04x at substate %u", status, opcode, hci_stack->substate); 1127 } else { 1128 log_info("Command status OK for expected opcode %04x, waiting for command complete", opcode); 1129 } 1130 } else { 1131 log_info("Command status for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode); 1132 } 1133 } 1134 1135 // Vendor == CSR 1136 if (hci_stack->substate == HCI_INIT_W4_CUSTOM_INIT && hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC){ 1137 // TODO: track actual command 1138 command_completed = 1; 1139 } 1140 1141 // Vendor == Toshiba 1142 if (hci_stack->substate == HCI_INIT_W4_SEND_BAUD_CHANGE && hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC){ 1143 // TODO: track actual command 1144 command_completed = 1; 1145 } 1146 1147 // Late response (> 100 ms) for HCI Reset e.g. on Toshiba TC35661: 1148 // Command complete for HCI Reset arrives after we've resent the HCI Reset command 1149 // 1150 // HCI Reset 1151 // Timeout 100 ms 1152 // HCI Reset 1153 // Command Complete Reset 1154 // HCI Read Local Version Information 1155 // Command Complete Reset - but we expected Command Complete Read Local Version Information 1156 // hang... 1157 // 1158 // Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend 1159 if (!command_completed 1160 && hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE 1161 && hci_stack->substate == HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION){ 1162 1163 uint16_t opcode = little_endian_read_16(packet,3); 1164 if (opcode == hci_reset.opcode){ 1165 hci_stack->substate = HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION; 1166 return; 1167 } 1168 } 1169 1170 1171 1172 if (!command_completed) return; 1173 1174 int need_baud_change = hci_stack->config 1175 && hci_stack->chipset 1176 && hci_stack->chipset->set_baudrate_command 1177 && hci_stack->hci_transport->set_baudrate 1178 && ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; 1179 1180 int need_addr_change = hci_stack->custom_bd_addr_set 1181 && hci_stack->chipset 1182 && hci_stack->chipset->set_bd_addr_command; 1183 1184 switch(hci_stack->substate){ 1185 case HCI_INIT_W4_SEND_RESET: 1186 btstack_run_loop_remove_timer(&hci_stack->timeout); 1187 break; 1188 case HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION: 1189 log_info("Received local version info, need baud change %u", need_baud_change); 1190 if (need_baud_change){ 1191 hci_stack->substate = HCI_INIT_SEND_BAUD_CHANGE; 1192 return; 1193 } 1194 // skip baud change 1195 hci_stack->substate = HCI_INIT_CUSTOM_INIT; 1196 return; 1197 case HCI_INIT_W4_SEND_BAUD_CHANGE: 1198 // for STLC2500D, baud rate change already happened. 1199 // for others, baud rate gets changed now 1200 if (hci_stack->manufacturer != COMPANY_ID_ST_MICROELECTRONICS){ 1201 uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); 1202 log_info("Local baud rate change to %"PRIu32"(w4_send_baud_change)", baud_rate); 1203 hci_stack->hci_transport->set_baudrate(baud_rate); 1204 } 1205 hci_stack->substate = HCI_INIT_CUSTOM_INIT; 1206 return; 1207 case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT: 1208 btstack_run_loop_remove_timer(&hci_stack->timeout); 1209 hci_stack->substate = HCI_INIT_CUSTOM_INIT; 1210 return; 1211 case HCI_INIT_W4_CUSTOM_INIT: 1212 // repeat custom init 1213 hci_stack->substate = HCI_INIT_CUSTOM_INIT; 1214 return; 1215 case HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS: 1216 if (need_baud_change && hci_stack->manufacturer == COMPANY_ID_BROADCOM_CORPORATION){ 1217 hci_stack->substate = HCI_INIT_SEND_BAUD_CHANGE_BCM; 1218 return; 1219 } 1220 if (need_addr_change){ 1221 hci_stack->substate = HCI_INIT_SET_BD_ADDR; 1222 return; 1223 } 1224 hci_stack->substate = HCI_INIT_READ_BD_ADDR; 1225 return; 1226 case HCI_INIT_W4_SEND_BAUD_CHANGE_BCM: { 1227 uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); 1228 log_info("Local baud rate change to %"PRIu32"(w4_send_baud_change_bcm))", baud_rate); 1229 hci_stack->hci_transport->set_baudrate(baud_rate); 1230 if (need_addr_change){ 1231 hci_stack->substate = HCI_INIT_SET_BD_ADDR; 1232 return; 1233 } 1234 hci_stack->substate = HCI_INIT_READ_BD_ADDR; 1235 return; 1236 } 1237 case HCI_INIT_W4_SET_BD_ADDR: 1238 // for STLC2500D, bd addr change only gets active after sending reset command 1239 if (hci_stack->manufacturer == COMPANY_ID_ST_MICROELECTRONICS){ 1240 hci_stack->substate = HCI_INIT_SEND_RESET_ST_WARM_BOOT; 1241 return; 1242 } 1243 // skipping st warm boot 1244 hci_stack->substate = HCI_INIT_READ_BD_ADDR; 1245 return; 1246 case HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT: 1247 hci_stack->substate = HCI_INIT_READ_BD_ADDR; 1248 return; 1249 case HCI_INIT_W4_READ_BD_ADDR: 1250 // only read buffer size if supported 1251 if (hci_stack->local_supported_commands[0] & 0x01) { 1252 hci_stack->substate = HCI_INIT_READ_BUFFER_SIZE; 1253 return; 1254 } 1255 // skipping read buffer size 1256 hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_FEATURES; 1257 return; 1258 case HCI_INIT_W4_SET_EVENT_MASK: 1259 // skip Classic init commands for LE only chipsets 1260 if (!hci_classic_supported()){ 1261 if (hci_le_supported()){ 1262 hci_stack->substate = HCI_INIT_LE_READ_BUFFER_SIZE; // skip all classic command 1263 return; 1264 } else { 1265 log_error("Neither BR/EDR nor LE supported"); 1266 hci_init_done(); 1267 return; 1268 } 1269 } 1270 if (!gap_ssp_supported()){ 1271 hci_stack->substate = HCI_INIT_WRITE_PAGE_TIMEOUT; 1272 return; 1273 } 1274 break; 1275 case HCI_INIT_W4_WRITE_PAGE_TIMEOUT: 1276 break; 1277 case HCI_INIT_W4_LE_READ_BUFFER_SIZE: 1278 // skip write le host if not supported (e.g. on LE only EM9301) 1279 if (hci_stack->local_supported_commands[0] & 0x02) break; 1280 hci_stack->substate = HCI_INIT_LE_SET_SCAN_PARAMETERS; 1281 return; 1282 1283 #ifdef ENABLE_SCO_OVER_HCI 1284 case HCI_INIT_W4_WRITE_SCAN_ENABLE: 1285 // just go to next state 1286 break; 1287 case HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE: 1288 if (!hci_le_supported()){ 1289 // SKIP LE init for Classic only configuration 1290 hci_init_done(); 1291 return; 1292 } 1293 break; 1294 #else 1295 case HCI_INIT_W4_WRITE_SCAN_ENABLE: 1296 if (!hci_le_supported()){ 1297 // SKIP LE init for Classic only configuration 1298 hci_init_done(); 1299 return; 1300 } 1301 #endif 1302 break; 1303 // Response to command before init done state -> init done 1304 case (HCI_INIT_DONE-1): 1305 hci_init_done(); 1306 return; 1307 1308 default: 1309 break; 1310 } 1311 hci_initializing_next_state(); 1312 } 1313 1314 static void event_handler(uint8_t *packet, int size){ 1315 1316 uint16_t event_length = packet[1]; 1317 1318 // assert packet is complete 1319 if (size != event_length + 2){ 1320 log_error("hci.c: event_handler called with event packet of wrong size %u, expected %u => dropping packet", size, event_length + 2); 1321 return; 1322 } 1323 1324 bd_addr_t addr; 1325 bd_addr_type_t addr_type; 1326 uint8_t link_type; 1327 hci_con_handle_t handle; 1328 hci_connection_t * conn; 1329 int i; 1330 1331 // log_info("HCI:EVENT:%02x", hci_event_packet_get_type(packet)); 1332 1333 switch (hci_event_packet_get_type(packet)) { 1334 1335 case HCI_EVENT_COMMAND_COMPLETE: 1336 // get num cmd packets 1337 // log_info("HCI_EVENT_COMMAND_COMPLETE cmds old %u - new %u", hci_stack->num_cmd_packets, packet[2]); 1338 hci_stack->num_cmd_packets = packet[2]; 1339 1340 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_buffer_size)){ 1341 // from offset 5 1342 // status 1343 // "The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets" 1344 hci_stack->acl_data_packet_length = little_endian_read_16(packet, 6); 1345 hci_stack->sco_data_packet_length = packet[8]; 1346 hci_stack->acl_packets_total_num = little_endian_read_16(packet, 9); 1347 hci_stack->sco_packets_total_num = little_endian_read_16(packet, 11); 1348 1349 if (hci_stack->state == HCI_STATE_INITIALIZING){ 1350 // determine usable ACL payload size 1351 if (HCI_ACL_PAYLOAD_SIZE < hci_stack->acl_data_packet_length){ 1352 hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; 1353 } 1354 log_info("hci_read_buffer_size: acl used size %u, count %u / sco size %u, count %u", 1355 hci_stack->acl_data_packet_length, hci_stack->acl_packets_total_num, 1356 hci_stack->sco_data_packet_length, hci_stack->sco_packets_total_num); 1357 } 1358 } 1359 #ifdef ENABLE_BLE 1360 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_read_buffer_size)){ 1361 hci_stack->le_data_packets_length = little_endian_read_16(packet, 6); 1362 hci_stack->le_acl_packets_total_num = packet[8]; 1363 // determine usable ACL payload size 1364 if (HCI_ACL_PAYLOAD_SIZE < hci_stack->le_data_packets_length){ 1365 hci_stack->le_data_packets_length = HCI_ACL_PAYLOAD_SIZE; 1366 } 1367 log_info("hci_le_read_buffer_size: size %u, count %u", hci_stack->le_data_packets_length, hci_stack->le_acl_packets_total_num); 1368 } 1369 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_read_white_list_size)){ 1370 hci_stack->le_whitelist_capacity = little_endian_read_16(packet, 6); 1371 log_info("hci_le_read_white_list_size: size %u", hci_stack->le_whitelist_capacity); 1372 } 1373 #endif 1374 // Dump local address 1375 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)) { 1376 reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], 1377 hci_stack->local_bd_addr); 1378 log_info("Local Address, Status: 0x%02x: Addr: %s", 1379 packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE], bd_addr_to_str(hci_stack->local_bd_addr)); 1380 } 1381 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_write_scan_enable)){ 1382 hci_emit_discoverable_enabled(hci_stack->discoverable); 1383 } 1384 // Note: HCI init checks 1385 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_features)){ 1386 memcpy(hci_stack->local_supported_features, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1], 8); 1387 1388 // determine usable ACL packet types based on host buffer size and supported features 1389 hci_stack->packet_types = hci_acl_packet_types_for_buffer_size_and_local_features(HCI_ACL_PAYLOAD_SIZE, &hci_stack->local_supported_features[0]); 1390 log_info("packet types %04x", hci_stack->packet_types); 1391 1392 // Classic/LE 1393 log_info("BR/EDR support %u, LE support %u", hci_classic_supported(), hci_le_supported()); 1394 } 1395 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_version_information)){ 1396 // hci_stack->hci_version = little_endian_read_16(packet, 4); 1397 // hci_stack->hci_revision = little_endian_read_16(packet, 6); 1398 // hci_stack->lmp_version = little_endian_read_16(packet, 8); 1399 hci_stack->manufacturer = little_endian_read_16(packet, 10); 1400 // hci_stack->lmp_subversion = little_endian_read_16(packet, 12); 1401 log_info("Manufacturer: 0x%04x", hci_stack->manufacturer); 1402 } 1403 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_commands)){ 1404 hci_stack->local_supported_commands[0] = 1405 (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+14] & 0X80) >> 7 | // Octet 14, bit 7 1406 (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+24] & 0x40) >> 5; // Octet 24, bit 6 1407 } 1408 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_write_synchronous_flow_control_enable)){ 1409 if (packet[5] == 0){ 1410 hci_stack->synchronous_flow_control_enabled = 1; 1411 } 1412 } 1413 break; 1414 1415 case HCI_EVENT_COMMAND_STATUS: 1416 // get num cmd packets 1417 // log_info("HCI_EVENT_COMMAND_STATUS cmds - old %u - new %u", hci_stack->num_cmd_packets, packet[3]); 1418 hci_stack->num_cmd_packets = packet[3]; 1419 break; 1420 1421 case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS:{ 1422 int offset = 3; 1423 for (i=0; i<packet[2];i++){ 1424 handle = little_endian_read_16(packet, offset); 1425 offset += 2; 1426 uint16_t num_packets = little_endian_read_16(packet, offset); 1427 offset += 2; 1428 1429 conn = hci_connection_for_handle(handle); 1430 if (!conn){ 1431 log_error("hci_number_completed_packet lists unused con handle %u", handle); 1432 continue; 1433 } 1434 1435 if (conn->address_type == BD_ADDR_TYPE_SCO){ 1436 if (conn->num_sco_packets_sent >= num_packets){ 1437 conn->num_sco_packets_sent -= num_packets; 1438 } else { 1439 log_error("hci_number_completed_packets, more sco slots freed then sent."); 1440 conn->num_sco_packets_sent = 0; 1441 } 1442 hci_notify_if_sco_can_send_now(); 1443 } else { 1444 if (conn->num_acl_packets_sent >= num_packets){ 1445 conn->num_acl_packets_sent -= num_packets; 1446 } else { 1447 log_error("hci_number_completed_packets, more acl slots freed then sent."); 1448 conn->num_acl_packets_sent = 0; 1449 } 1450 } 1451 // log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u", num_packets, handle, conn->num_acl_packets_sent); 1452 } 1453 break; 1454 } 1455 case HCI_EVENT_CONNECTION_REQUEST: 1456 reverse_bd_addr(&packet[2], addr); 1457 // TODO: eval COD 8-10 1458 link_type = packet[11]; 1459 log_info("Connection_incoming: %s, type %u", bd_addr_to_str(addr), link_type); 1460 addr_type = link_type == 1 ? BD_ADDR_TYPE_CLASSIC : BD_ADDR_TYPE_SCO; 1461 conn = hci_connection_for_bd_addr_and_type(addr, addr_type); 1462 if (!conn) { 1463 conn = create_connection_for_bd_addr_and_type(addr, addr_type); 1464 } 1465 if (!conn) { 1466 // CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D) 1467 hci_stack->decline_reason = 0x0d; 1468 bd_addr_copy(hci_stack->decline_addr, addr); 1469 break; 1470 } 1471 conn->role = HCI_ROLE_SLAVE; 1472 conn->state = RECEIVED_CONNECTION_REQUEST; 1473 // store info about eSCO 1474 if (link_type == 0x02){ 1475 conn->remote_supported_feature_eSCO = 1; 1476 } 1477 hci_run(); 1478 break; 1479 1480 case HCI_EVENT_CONNECTION_COMPLETE: 1481 // Connection management 1482 reverse_bd_addr(&packet[5], addr); 1483 log_info("Connection_complete (status=%u) %s", packet[2], bd_addr_to_str(addr)); 1484 addr_type = BD_ADDR_TYPE_CLASSIC; 1485 conn = hci_connection_for_bd_addr_and_type(addr, addr_type); 1486 if (conn) { 1487 if (!packet[2]){ 1488 conn->state = OPEN; 1489 conn->con_handle = little_endian_read_16(packet, 3); 1490 conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES; 1491 1492 // restart timer 1493 btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); 1494 btstack_run_loop_add_timer(&conn->timeout); 1495 1496 log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); 1497 1498 hci_emit_nr_connections_changed(); 1499 } else { 1500 int notify_dedicated_bonding_failed = conn->bonding_flags & BONDING_DEDICATED; 1501 uint8_t status = packet[2]; 1502 bd_addr_t bd_address; 1503 memcpy(&bd_address, conn->address, 6); 1504 1505 // connection failed, remove entry 1506 btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); 1507 btstack_memory_hci_connection_free( conn ); 1508 1509 // notify client if dedicated bonding 1510 if (notify_dedicated_bonding_failed){ 1511 log_info("hci notify_dedicated_bonding_failed"); 1512 hci_emit_dedicated_bonding_result(bd_address, status); 1513 } 1514 1515 // if authentication error, also delete link key 1516 if (packet[2] == 0x05) { 1517 gap_drop_link_key_for_bd_addr(addr); 1518 } 1519 } 1520 } 1521 break; 1522 1523 case HCI_EVENT_SYNCHRONOUS_CONNECTION_COMPLETE: 1524 reverse_bd_addr(&packet[5], addr); 1525 log_info("Synchronous Connection Complete (status=%u) %s", packet[2], bd_addr_to_str(addr)); 1526 if (packet[2]){ 1527 // connection failed 1528 break; 1529 } 1530 conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO); 1531 if (!conn) { 1532 conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO); 1533 } 1534 if (!conn) { 1535 break; 1536 } 1537 conn->state = OPEN; 1538 conn->con_handle = little_endian_read_16(packet, 3); 1539 break; 1540 1541 case HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE: 1542 handle = little_endian_read_16(packet, 3); 1543 conn = hci_connection_for_handle(handle); 1544 if (!conn) break; 1545 if (!packet[2]){ 1546 uint8_t * features = &packet[5]; 1547 if (features[6] & (1 << 3)){ 1548 conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP; 1549 } 1550 if (features[3] & (1<<7)){ 1551 conn->remote_supported_feature_eSCO = 1; 1552 } 1553 } 1554 conn->bonding_flags |= BONDING_RECEIVED_REMOTE_FEATURES; 1555 log_info("HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE, bonding flags %x, eSCO %u", conn->bonding_flags, conn->remote_supported_feature_eSCO); 1556 if (conn->bonding_flags & BONDING_DEDICATED){ 1557 conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; 1558 } 1559 break; 1560 1561 case HCI_EVENT_LINK_KEY_REQUEST: 1562 log_info("HCI_EVENT_LINK_KEY_REQUEST"); 1563 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_LINK_KEY_REQUEST); 1564 // non-bondable mode: link key negative reply will be sent by HANDLE_LINK_KEY_REQUEST 1565 if (hci_stack->bondable && !hci_stack->link_key_db) break; 1566 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], HANDLE_LINK_KEY_REQUEST); 1567 hci_run(); 1568 // request handled by hci_run() as HANDLE_LINK_KEY_REQUEST gets set 1569 return; 1570 1571 case HCI_EVENT_LINK_KEY_NOTIFICATION: { 1572 reverse_bd_addr(&packet[2], addr); 1573 conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 1574 if (!conn) break; 1575 conn->authentication_flags |= RECV_LINK_KEY_NOTIFICATION; 1576 link_key_type_t link_key_type = (link_key_type_t)packet[24]; 1577 // Change Connection Encryption keeps link key type 1578 if (link_key_type != CHANGED_COMBINATION_KEY){ 1579 conn->link_key_type = link_key_type; 1580 } 1581 if (!hci_stack->link_key_db) break; 1582 hci_stack->link_key_db->put_link_key(addr, &packet[8], conn->link_key_type); 1583 // still forward event to allow dismiss of pairing dialog 1584 break; 1585 } 1586 1587 case HCI_EVENT_PIN_CODE_REQUEST: 1588 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], LEGACY_PAIRING_ACTIVE); 1589 // non-bondable mode: pin code negative reply will be sent 1590 if (!hci_stack->bondable){ 1591 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], DENY_PIN_CODE_REQUEST); 1592 hci_run(); 1593 return; 1594 } 1595 // PIN CODE REQUEST means the link key request didn't succee -> delete stored link key 1596 if (!hci_stack->link_key_db) break; 1597 reverse_bd_addr(&packet[2], addr); 1598 hci_stack->link_key_db->delete_link_key(addr); 1599 break; 1600 1601 case HCI_EVENT_IO_CAPABILITY_REQUEST: 1602 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_IO_CAPABILITIES_REQUEST); 1603 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_IO_CAPABILITIES_REPLY); 1604 break; 1605 1606 case HCI_EVENT_USER_CONFIRMATION_REQUEST: 1607 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); 1608 if (!hci_stack->ssp_auto_accept) break; 1609 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_CONFIRM_REPLY); 1610 break; 1611 1612 case HCI_EVENT_USER_PASSKEY_REQUEST: 1613 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); 1614 if (!hci_stack->ssp_auto_accept) break; 1615 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_PASSKEY_REPLY); 1616 break; 1617 1618 case HCI_EVENT_ENCRYPTION_CHANGE: 1619 handle = little_endian_read_16(packet, 3); 1620 conn = hci_connection_for_handle(handle); 1621 if (!conn) break; 1622 if (packet[2] == 0) { 1623 if (packet[5]){ 1624 conn->authentication_flags |= CONNECTION_ENCRYPTED; 1625 } else { 1626 conn->authentication_flags &= ~CONNECTION_ENCRYPTED; 1627 } 1628 } 1629 hci_emit_security_level(handle, gap_security_level_for_connection(conn)); 1630 break; 1631 1632 case HCI_EVENT_AUTHENTICATION_COMPLETE_EVENT: 1633 handle = little_endian_read_16(packet, 3); 1634 conn = hci_connection_for_handle(handle); 1635 if (!conn) break; 1636 1637 // dedicated bonding: send result and disconnect 1638 if (conn->bonding_flags & BONDING_DEDICATED){ 1639 conn->bonding_flags &= ~BONDING_DEDICATED; 1640 conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE; 1641 conn->bonding_status = packet[2]; 1642 break; 1643 } 1644 1645 if (packet[2] == 0 && gap_security_level_for_link_key_type(conn->link_key_type) >= conn->requested_security_level){ 1646 // link key sufficient for requested security 1647 conn->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; 1648 break; 1649 } 1650 // not enough 1651 hci_emit_security_level(handle, gap_security_level_for_connection(conn)); 1652 break; 1653 1654 // HCI_EVENT_DISCONNECTION_COMPLETE 1655 // has been split, to first notify stack before shutting connection down 1656 // see end of function, too. 1657 case HCI_EVENT_DISCONNECTION_COMPLETE: 1658 if (packet[2]) break; // status != 0 1659 handle = little_endian_read_16(packet, 3); 1660 conn = hci_connection_for_handle(handle); 1661 if (!conn) break; // no conn struct anymore 1662 // re-enable advertisements for le connections if active 1663 if (hci_is_le_connection(conn) && hci_stack->le_advertisements_enabled){ 1664 hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_ENABLE; 1665 } 1666 conn->state = RECEIVED_DISCONNECTION_COMPLETE; 1667 break; 1668 1669 case HCI_EVENT_HARDWARE_ERROR: 1670 if (hci_stack->hardware_error_callback){ 1671 (*hci_stack->hardware_error_callback)(); 1672 } else { 1673 // if no special requests, just reboot stack 1674 hci_power_control_off(); 1675 hci_power_control_on(); 1676 } 1677 break; 1678 1679 case HCI_EVENT_ROLE_CHANGE: 1680 if (packet[2]) break; // status != 0 1681 handle = little_endian_read_16(packet, 3); 1682 conn = hci_connection_for_handle(handle); 1683 if (!conn) break; // no conn 1684 conn->role = packet[9]; 1685 break; 1686 1687 case HCI_EVENT_TRANSPORT_PACKET_SENT: 1688 // release packet buffer only for asynchronous transport and if there are not further fragements 1689 if (hci_transport_synchronous()) { 1690 log_error("Synchronous HCI Transport shouldn't send HCI_EVENT_TRANSPORT_PACKET_SENT"); 1691 return; // instead of break: to avoid re-entering hci_run() 1692 } 1693 if (hci_stack->acl_fragmentation_total_size) break; 1694 hci_release_packet_buffer(); 1695 1696 // L2CAP receives this event via the hci_emit_event below 1697 1698 // For SCO, we do the can_send_now_check here 1699 hci_notify_if_sco_can_send_now(); 1700 break; 1701 1702 case HCI_EVENT_SCO_CAN_SEND_NOW: 1703 // For SCO, we do the can_send_now_check here 1704 hci_notify_if_sco_can_send_now(); 1705 return; 1706 1707 #ifdef ENABLE_BLE 1708 case HCI_EVENT_LE_META: 1709 switch (packet[2]){ 1710 case HCI_SUBEVENT_LE_ADVERTISING_REPORT: 1711 log_info("advertising report received"); 1712 if (hci_stack->le_scanning_state != LE_SCANNING) break; 1713 le_handle_advertisement_report(packet, size); 1714 break; 1715 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 1716 // Connection management 1717 reverse_bd_addr(&packet[8], addr); 1718 addr_type = (bd_addr_type_t)packet[7]; 1719 log_info("LE Connection_complete (status=%u) type %u, %s", packet[3], addr_type, bd_addr_to_str(addr)); 1720 conn = hci_connection_for_bd_addr_and_type(addr, addr_type); 1721 // if auto-connect, remove from whitelist in both roles 1722 if (hci_stack->le_connecting_state == LE_CONNECTING_WHITELIST){ 1723 hci_remove_from_whitelist(addr_type, addr); 1724 } 1725 // handle error: error is reported only to the initiator -> outgoing connection 1726 if (packet[3]){ 1727 // outgoing connection establishment is done 1728 hci_stack->le_connecting_state = LE_CONNECTING_IDLE; 1729 // remove entry 1730 if (conn){ 1731 btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); 1732 btstack_memory_hci_connection_free( conn ); 1733 } 1734 break; 1735 } 1736 // on success, both hosts receive connection complete event 1737 if (packet[6] == HCI_ROLE_MASTER){ 1738 // if we're master, it was an outgoing connection and we're done with it 1739 hci_stack->le_connecting_state = LE_CONNECTING_IDLE; 1740 } else { 1741 // if we're slave, it was an incoming connection, advertisements have stopped 1742 hci_stack->le_advertisements_active = 0; 1743 } 1744 // LE connections are auto-accepted, so just create a connection if there isn't one already 1745 if (!conn){ 1746 conn = create_connection_for_bd_addr_and_type(addr, addr_type); 1747 } 1748 // no memory, sorry. 1749 if (!conn){ 1750 break; 1751 } 1752 1753 conn->state = OPEN; 1754 conn->role = packet[6]; 1755 conn->con_handle = little_endian_read_16(packet, 4); 1756 1757 // TODO: store - role, peer address type, conn_interval, conn_latency, supervision timeout, master clock 1758 1759 // restart timer 1760 // btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); 1761 // btstack_run_loop_add_timer(&conn->timeout); 1762 1763 log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); 1764 1765 hci_emit_nr_connections_changed(); 1766 break; 1767 1768 // log_info("LE buffer size: %u, count %u", little_endian_read_16(packet,6), packet[8]); 1769 1770 default: 1771 break; 1772 } 1773 break; 1774 #endif 1775 default: 1776 break; 1777 } 1778 1779 // handle BT initialization 1780 if (hci_stack->state == HCI_STATE_INITIALIZING){ 1781 hci_initializing_event_handler(packet, size); 1782 } 1783 1784 // help with BT sleep 1785 if (hci_stack->state == HCI_STATE_FALLING_ASLEEP 1786 && hci_stack->substate == HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE 1787 && HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_write_scan_enable)){ 1788 hci_initializing_next_state(); 1789 } 1790 1791 // notify upper stack 1792 hci_emit_event(packet, size, 0); // don't dump, already happened in packet handler 1793 1794 // moved here to give upper stack a chance to close down everything with hci_connection_t intact 1795 if (hci_event_packet_get_type(packet) == HCI_EVENT_DISCONNECTION_COMPLETE){ 1796 if (!packet[2]){ 1797 handle = little_endian_read_16(packet, 3); 1798 hci_connection_t * aConn = hci_connection_for_handle(handle); 1799 if (aConn) { 1800 uint8_t status = aConn->bonding_status; 1801 uint16_t flags = aConn->bonding_flags; 1802 bd_addr_t bd_address; 1803 memcpy(&bd_address, aConn->address, 6); 1804 hci_shutdown_connection(aConn); 1805 // connection struct is gone, don't access anymore 1806 if (flags & BONDING_EMIT_COMPLETE_ON_DISCONNECT){ 1807 hci_emit_dedicated_bonding_result(bd_address, status); 1808 } 1809 } 1810 } 1811 } 1812 1813 // execute main loop 1814 hci_run(); 1815 } 1816 1817 static void sco_handler(uint8_t * packet, uint16_t size){ 1818 if (!hci_stack->sco_packet_handler) return; 1819 hci_stack->sco_packet_handler(HCI_SCO_DATA_PACKET, packet, size); 1820 } 1821 1822 static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1823 hci_dump_packet(packet_type, 1, packet, size); 1824 switch (packet_type) { 1825 case HCI_EVENT_PACKET: 1826 event_handler(packet, size); 1827 break; 1828 case HCI_ACL_DATA_PACKET: 1829 acl_handler(packet, size); 1830 break; 1831 case HCI_SCO_DATA_PACKET: 1832 sco_handler(packet, size); 1833 default: 1834 break; 1835 } 1836 } 1837 1838 /** 1839 * @brief Add event packet handler. 1840 */ 1841 void hci_add_event_handler(btstack_packet_callback_registration_t * callback_handler){ 1842 btstack_linked_list_add_tail(&hci_stack->event_handlers, (btstack_linked_item_t*) callback_handler); 1843 } 1844 1845 1846 /** Register HCI packet handlers */ 1847 void hci_register_acl_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1848 hci_stack->acl_packet_handler = handler; 1849 } 1850 1851 /** 1852 * @brief Registers a packet handler for SCO data. Used for HSP and HFP profiles. 1853 */ 1854 void hci_register_sco_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1855 hci_stack->sco_packet_handler = handler; 1856 } 1857 1858 static void hci_state_reset(void){ 1859 // no connections yet 1860 hci_stack->connections = NULL; 1861 1862 // keep discoverable/connectable as this has been requested by the client(s) 1863 // hci_stack->discoverable = 0; 1864 // hci_stack->connectable = 0; 1865 // hci_stack->bondable = 1; 1866 1867 // buffer is free 1868 hci_stack->hci_packet_buffer_reserved = 0; 1869 1870 // no pending cmds 1871 hci_stack->decline_reason = 0; 1872 hci_stack->new_scan_enable_value = 0xff; 1873 1874 // LE 1875 hci_stack->adv_addr_type = 0; 1876 memset(hci_stack->adv_address, 0, 6); 1877 hci_stack->le_scanning_state = LE_SCAN_IDLE; 1878 hci_stack->le_scan_type = 0xff; 1879 hci_stack->le_connecting_state = LE_CONNECTING_IDLE; 1880 hci_stack->le_whitelist = 0; 1881 hci_stack->le_whitelist_capacity = 0; 1882 hci_stack->le_connection_parameter_range.le_conn_interval_min = 6; 1883 hci_stack->le_connection_parameter_range.le_conn_interval_max = 3200; 1884 hci_stack->le_connection_parameter_range.le_conn_latency_min = 0; 1885 hci_stack->le_connection_parameter_range.le_conn_latency_max = 500; 1886 hci_stack->le_connection_parameter_range.le_supervision_timeout_min = 10; 1887 hci_stack->le_connection_parameter_range.le_supervision_timeout_max = 3200; 1888 } 1889 1890 /** 1891 * @brief Configure Bluetooth hardware control. Has to be called before power on. 1892 */ 1893 void hci_set_link_key_db(btstack_link_key_db_t const * link_key_db){ 1894 // store and open remote device db 1895 hci_stack->link_key_db = link_key_db; 1896 if (hci_stack->link_key_db) { 1897 hci_stack->link_key_db->open(); 1898 } 1899 } 1900 1901 void hci_init(const hci_transport_t *transport, const void *config){ 1902 1903 #ifdef HAVE_MALLOC 1904 if (!hci_stack) { 1905 hci_stack = (hci_stack_t*) malloc(sizeof(hci_stack_t)); 1906 } 1907 #else 1908 hci_stack = &hci_stack_static; 1909 #endif 1910 memset(hci_stack, 0, sizeof(hci_stack_t)); 1911 1912 // reference to use transport layer implementation 1913 hci_stack->hci_transport = transport; 1914 1915 // reference to used config 1916 hci_stack->config = config; 1917 1918 // max acl payload size defined in config.h 1919 hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; 1920 1921 // register packet handlers with transport 1922 transport->register_packet_handler(&packet_handler); 1923 1924 hci_stack->state = HCI_STATE_OFF; 1925 1926 // class of device 1927 hci_stack->class_of_device = 0x007a020c; // Smartphone 1928 1929 // bondable by default 1930 hci_stack->bondable = 1; 1931 1932 // Secure Simple Pairing default: enable, no I/O capabilities, general bonding, mitm not required, auto accept 1933 hci_stack->ssp_enable = 1; 1934 hci_stack->ssp_io_capability = SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT; 1935 hci_stack->ssp_authentication_requirement = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING; 1936 hci_stack->ssp_auto_accept = 1; 1937 1938 // voice setting - signed 8 bit pcm data with CVSD over the air 1939 hci_stack->sco_voice_setting = 0x40; 1940 1941 hci_state_reset(); 1942 } 1943 1944 /** 1945 * @brief Configure Bluetooth chipset driver. Has to be called before power on, or right after receiving the local version information 1946 */ 1947 void hci_set_chipset(const btstack_chipset_t *chipset_driver){ 1948 hci_stack->chipset = chipset_driver; 1949 1950 // reset chipset driver - init is also called on power_up 1951 if (hci_stack->chipset && hci_stack->chipset->init){ 1952 hci_stack->chipset->init(hci_stack->config); 1953 } 1954 } 1955 1956 /** 1957 * @brief Configure Bluetooth hardware control. Has to be called after hci_init() but before power on. 1958 */ 1959 void hci_set_control(const btstack_control_t *hardware_control){ 1960 // references to used control implementation 1961 hci_stack->control = hardware_control; 1962 // init with transport config 1963 hardware_control->init(hci_stack->config); 1964 } 1965 1966 void hci_close(void){ 1967 // close remote device db 1968 if (hci_stack->link_key_db) { 1969 hci_stack->link_key_db->close(); 1970 } 1971 while (hci_stack->connections) { 1972 // cancel all l2cap connections 1973 hci_emit_disconnection_complete(((hci_connection_t *) hci_stack->connections)->con_handle, 0x16); // terminated by local host 1974 hci_shutdown_connection((hci_connection_t *) hci_stack->connections); 1975 } 1976 hci_power_control(HCI_POWER_OFF); 1977 1978 #ifdef HAVE_MALLOC 1979 free(hci_stack); 1980 #endif 1981 hci_stack = NULL; 1982 } 1983 1984 void hci_set_class_of_device(uint32_t class_of_device){ 1985 hci_stack->class_of_device = class_of_device; 1986 } 1987 1988 // Set Public BD ADDR - passed on to Bluetooth chipset if supported in bt_control_h 1989 void hci_set_bd_addr(bd_addr_t addr){ 1990 memcpy(hci_stack->custom_bd_addr, addr, 6); 1991 hci_stack->custom_bd_addr_set = 1; 1992 } 1993 1994 void hci_disable_l2cap_timeout_check(void){ 1995 disable_l2cap_timeouts = 1; 1996 } 1997 // State-Module-Driver overview 1998 // state module low-level 1999 // HCI_STATE_OFF off close 2000 // HCI_STATE_INITIALIZING, on open 2001 // HCI_STATE_WORKING, on open 2002 // HCI_STATE_HALTING, on open 2003 // HCI_STATE_SLEEPING, off/sleep close 2004 // HCI_STATE_FALLING_ASLEEP on open 2005 2006 static int hci_power_control_on(void){ 2007 2008 // power on 2009 int err = 0; 2010 if (hci_stack->control && hci_stack->control->on){ 2011 err = (*hci_stack->control->on)(); 2012 } 2013 if (err){ 2014 log_error( "POWER_ON failed"); 2015 hci_emit_hci_open_failed(); 2016 return err; 2017 } 2018 2019 // int chipset driver 2020 if (hci_stack->chipset && hci_stack->chipset->init){ 2021 hci_stack->chipset->init(hci_stack->config); 2022 } 2023 2024 // init transport 2025 if (hci_stack->hci_transport->init){ 2026 hci_stack->hci_transport->init(hci_stack->config); 2027 } 2028 2029 // open transport 2030 err = hci_stack->hci_transport->open(); 2031 if (err){ 2032 log_error( "HCI_INIT failed, turning Bluetooth off again"); 2033 if (hci_stack->control && hci_stack->control->off){ 2034 (*hci_stack->control->off)(); 2035 } 2036 hci_emit_hci_open_failed(); 2037 return err; 2038 } 2039 return 0; 2040 } 2041 2042 static void hci_power_control_off(void){ 2043 2044 log_info("hci_power_control_off"); 2045 2046 // close low-level device 2047 hci_stack->hci_transport->close(); 2048 2049 log_info("hci_power_control_off - hci_transport closed"); 2050 2051 // power off 2052 if (hci_stack->control && hci_stack->control->off){ 2053 (*hci_stack->control->off)(); 2054 } 2055 2056 log_info("hci_power_control_off - control closed"); 2057 2058 hci_stack->state = HCI_STATE_OFF; 2059 } 2060 2061 static void hci_power_control_sleep(void){ 2062 2063 log_info("hci_power_control_sleep"); 2064 2065 #if 0 2066 // don't close serial port during sleep 2067 2068 // close low-level device 2069 hci_stack->hci_transport->close(hci_stack->config); 2070 #endif 2071 2072 // sleep mode 2073 if (hci_stack->control && hci_stack->control->sleep){ 2074 (*hci_stack->control->sleep)(); 2075 } 2076 2077 hci_stack->state = HCI_STATE_SLEEPING; 2078 } 2079 2080 static int hci_power_control_wake(void){ 2081 2082 log_info("hci_power_control_wake"); 2083 2084 // wake on 2085 if (hci_stack->control && hci_stack->control->wake){ 2086 (*hci_stack->control->wake)(); 2087 } 2088 2089 #if 0 2090 // open low-level device 2091 int err = hci_stack->hci_transport->open(hci_stack->config); 2092 if (err){ 2093 log_error( "HCI_INIT failed, turning Bluetooth off again"); 2094 if (hci_stack->control && hci_stack->control->off){ 2095 (*hci_stack->control->off)(); 2096 } 2097 hci_emit_hci_open_failed(); 2098 return err; 2099 } 2100 #endif 2101 2102 return 0; 2103 } 2104 2105 static void hci_power_transition_to_initializing(void){ 2106 // set up state machine 2107 hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent 2108 hci_stack->hci_packet_buffer_reserved = 0; 2109 hci_stack->state = HCI_STATE_INITIALIZING; 2110 hci_stack->substate = HCI_INIT_SEND_RESET; 2111 } 2112 2113 int hci_power_control(HCI_POWER_MODE power_mode){ 2114 2115 log_info("hci_power_control: %u, current mode %u", power_mode, hci_stack->state); 2116 2117 int err = 0; 2118 switch (hci_stack->state){ 2119 2120 case HCI_STATE_OFF: 2121 switch (power_mode){ 2122 case HCI_POWER_ON: 2123 err = hci_power_control_on(); 2124 if (err) { 2125 log_error("hci_power_control_on() error %u", err); 2126 return err; 2127 } 2128 hci_power_transition_to_initializing(); 2129 break; 2130 case HCI_POWER_OFF: 2131 // do nothing 2132 break; 2133 case HCI_POWER_SLEEP: 2134 // do nothing (with SLEEP == OFF) 2135 break; 2136 } 2137 break; 2138 2139 case HCI_STATE_INITIALIZING: 2140 switch (power_mode){ 2141 case HCI_POWER_ON: 2142 // do nothing 2143 break; 2144 case HCI_POWER_OFF: 2145 // no connections yet, just turn it off 2146 hci_power_control_off(); 2147 break; 2148 case HCI_POWER_SLEEP: 2149 // no connections yet, just turn it off 2150 hci_power_control_sleep(); 2151 break; 2152 } 2153 break; 2154 2155 case HCI_STATE_WORKING: 2156 switch (power_mode){ 2157 case HCI_POWER_ON: 2158 // do nothing 2159 break; 2160 case HCI_POWER_OFF: 2161 // see hci_run 2162 hci_stack->state = HCI_STATE_HALTING; 2163 break; 2164 case HCI_POWER_SLEEP: 2165 // see hci_run 2166 hci_stack->state = HCI_STATE_FALLING_ASLEEP; 2167 hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT; 2168 break; 2169 } 2170 break; 2171 2172 case HCI_STATE_HALTING: 2173 switch (power_mode){ 2174 case HCI_POWER_ON: 2175 hci_power_transition_to_initializing(); 2176 break; 2177 case HCI_POWER_OFF: 2178 // do nothing 2179 break; 2180 case HCI_POWER_SLEEP: 2181 // see hci_run 2182 hci_stack->state = HCI_STATE_FALLING_ASLEEP; 2183 hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT; 2184 break; 2185 } 2186 break; 2187 2188 case HCI_STATE_FALLING_ASLEEP: 2189 switch (power_mode){ 2190 case HCI_POWER_ON: 2191 2192 #ifdef HAVE_PLATFORM_IPHONE_OS 2193 // nothing to do, if H4 supports power management 2194 if (btstack_control_iphone_power_management_enabled()){ 2195 hci_stack->state = HCI_STATE_INITIALIZING; 2196 hci_stack->substate = HCI_INIT_WRITE_SCAN_ENABLE; // init after sleep 2197 break; 2198 } 2199 #endif 2200 hci_power_transition_to_initializing(); 2201 break; 2202 case HCI_POWER_OFF: 2203 // see hci_run 2204 hci_stack->state = HCI_STATE_HALTING; 2205 break; 2206 case HCI_POWER_SLEEP: 2207 // do nothing 2208 break; 2209 } 2210 break; 2211 2212 case HCI_STATE_SLEEPING: 2213 switch (power_mode){ 2214 case HCI_POWER_ON: 2215 2216 #ifdef HAVE_PLATFORM_IPHONE_OS 2217 // nothing to do, if H4 supports power management 2218 if (btstack_control_iphone_power_management_enabled()){ 2219 hci_stack->state = HCI_STATE_INITIALIZING; 2220 hci_stack->substate = HCI_INIT_AFTER_SLEEP; 2221 hci_update_scan_enable(); 2222 break; 2223 } 2224 #endif 2225 err = hci_power_control_wake(); 2226 if (err) return err; 2227 hci_power_transition_to_initializing(); 2228 break; 2229 case HCI_POWER_OFF: 2230 hci_stack->state = HCI_STATE_HALTING; 2231 break; 2232 case HCI_POWER_SLEEP: 2233 // do nothing 2234 break; 2235 } 2236 break; 2237 } 2238 2239 // create internal event 2240 hci_emit_state(); 2241 2242 // trigger next/first action 2243 hci_run(); 2244 2245 return 0; 2246 } 2247 2248 static void hci_update_scan_enable(void){ 2249 // 2 = page scan, 1 = inq scan 2250 hci_stack->new_scan_enable_value = hci_stack->connectable << 1 | hci_stack->discoverable; 2251 hci_run(); 2252 } 2253 2254 void gap_discoverable_control(uint8_t enable){ 2255 if (enable) enable = 1; // normalize argument 2256 2257 if (hci_stack->discoverable == enable){ 2258 hci_emit_discoverable_enabled(hci_stack->discoverable); 2259 return; 2260 } 2261 2262 hci_stack->discoverable = enable; 2263 hci_update_scan_enable(); 2264 } 2265 2266 void gap_connectable_control(uint8_t enable){ 2267 if (enable) enable = 1; // normalize argument 2268 2269 // don't emit event 2270 if (hci_stack->connectable == enable) return; 2271 2272 hci_stack->connectable = enable; 2273 hci_update_scan_enable(); 2274 } 2275 2276 void gap_local_bd_addr(bd_addr_t address_buffer){ 2277 memcpy(address_buffer, hci_stack->local_bd_addr, 6); 2278 } 2279 2280 static void hci_run(void){ 2281 2282 // log_info("hci_run: entered"); 2283 btstack_linked_item_t * it; 2284 2285 // send continuation fragments first, as they block the prepared packet buffer 2286 if (hci_stack->acl_fragmentation_total_size > 0) { 2287 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer); 2288 if (hci_can_send_prepared_acl_packet_now(con_handle)){ 2289 hci_connection_t *connection = hci_connection_for_handle(con_handle); 2290 if (connection) { 2291 hci_send_acl_packet_fragments(connection); 2292 return; 2293 } 2294 // connection gone -> discard further fragments 2295 hci_stack->acl_fragmentation_total_size = 0; 2296 hci_stack->acl_fragmentation_pos = 0; 2297 } 2298 } 2299 2300 if (!hci_can_send_command_packet_now()) return; 2301 2302 // global/non-connection oriented commands 2303 2304 // decline incoming connections 2305 if (hci_stack->decline_reason){ 2306 uint8_t reason = hci_stack->decline_reason; 2307 hci_stack->decline_reason = 0; 2308 hci_send_cmd(&hci_reject_connection_request, hci_stack->decline_addr, reason); 2309 return; 2310 } 2311 2312 // send scan enable 2313 if (hci_stack->state == HCI_STATE_WORKING && hci_stack->new_scan_enable_value != 0xff && hci_classic_supported()){ 2314 hci_send_cmd(&hci_write_scan_enable, hci_stack->new_scan_enable_value); 2315 hci_stack->new_scan_enable_value = 0xff; 2316 return; 2317 } 2318 2319 #ifdef ENABLE_BLE 2320 if (hci_stack->state == HCI_STATE_WORKING){ 2321 // handle le scan 2322 switch(hci_stack->le_scanning_state){ 2323 case LE_START_SCAN: 2324 hci_stack->le_scanning_state = LE_SCANNING; 2325 hci_send_cmd(&hci_le_set_scan_enable, 1, 0); 2326 return; 2327 2328 case LE_STOP_SCAN: 2329 hci_stack->le_scanning_state = LE_SCAN_IDLE; 2330 hci_send_cmd(&hci_le_set_scan_enable, 0, 0); 2331 return; 2332 default: 2333 break; 2334 } 2335 if (hci_stack->le_scan_type != 0xff){ 2336 // defaults: active scanning, accept all advertisement packets 2337 int scan_type = hci_stack->le_scan_type; 2338 hci_stack->le_scan_type = 0xff; 2339 hci_send_cmd(&hci_le_set_scan_parameters, scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window, hci_stack->adv_addr_type, 0); 2340 return; 2341 } 2342 // le advertisement control 2343 if (hci_stack->le_advertisements_todo){ 2344 log_info("hci_run: gap_le: adv todo: %x", hci_stack->le_advertisements_todo ); 2345 } 2346 if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_DISABLE){ 2347 hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_DISABLE; 2348 hci_send_cmd(&hci_le_set_advertise_enable, 0); 2349 return; 2350 } 2351 if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_PARAMS){ 2352 hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_PARAMS; 2353 hci_send_cmd(&hci_le_set_advertising_parameters, 2354 hci_stack->le_advertisements_interval_min, 2355 hci_stack->le_advertisements_interval_max, 2356 hci_stack->le_advertisements_type, 2357 hci_stack->le_advertisements_own_address_type, 2358 hci_stack->le_advertisements_direct_address_type, 2359 hci_stack->le_advertisements_direct_address, 2360 hci_stack->le_advertisements_channel_map, 2361 hci_stack->le_advertisements_filter_policy); 2362 return; 2363 } 2364 if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_DATA){ 2365 hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_DATA; 2366 hci_send_cmd(&hci_le_set_advertising_data, hci_stack->le_advertisements_data_len, 2367 hci_stack->le_advertisements_data); 2368 return; 2369 } 2370 if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_ENABLE){ 2371 hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_ENABLE; 2372 hci_send_cmd(&hci_le_set_advertise_enable, 1); 2373 return; 2374 } 2375 2376 // 2377 // LE Whitelist Management 2378 // 2379 2380 // check if whitelist needs modification 2381 btstack_linked_list_iterator_t lit; 2382 int modification_pending = 0; 2383 btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); 2384 while (btstack_linked_list_iterator_has_next(&lit)){ 2385 whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit); 2386 if (entry->state & (LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER)){ 2387 modification_pending = 1; 2388 break; 2389 } 2390 } 2391 2392 if (modification_pending){ 2393 // stop connnecting if modification pending 2394 if (hci_stack->le_connecting_state != LE_CONNECTING_IDLE){ 2395 hci_send_cmd(&hci_le_create_connection_cancel); 2396 return; 2397 } 2398 2399 // add/remove entries 2400 btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); 2401 while (btstack_linked_list_iterator_has_next(&lit)){ 2402 whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit); 2403 if (entry->state & LE_WHITELIST_ADD_TO_CONTROLLER){ 2404 entry->state = LE_WHITELIST_ON_CONTROLLER; 2405 hci_send_cmd(&hci_le_add_device_to_white_list, entry->address_type, entry->address); 2406 return; 2407 2408 } 2409 if (entry->state & LE_WHITELIST_REMOVE_FROM_CONTROLLER){ 2410 bd_addr_t address; 2411 bd_addr_type_t address_type = entry->address_type; 2412 memcpy(address, entry->address, 6); 2413 btstack_linked_list_remove(&hci_stack->le_whitelist, (btstack_linked_item_t *) entry); 2414 btstack_memory_whitelist_entry_free(entry); 2415 hci_send_cmd(&hci_le_remove_device_from_white_list, address_type, address); 2416 return; 2417 } 2418 } 2419 } 2420 2421 // start connecting 2422 if ( hci_stack->le_connecting_state == LE_CONNECTING_IDLE && 2423 !btstack_linked_list_empty(&hci_stack->le_whitelist)){ 2424 bd_addr_t null_addr; 2425 memset(null_addr, 0, 6); 2426 hci_send_cmd(&hci_le_create_connection, 2427 0x0060, // scan interval: 60 ms 2428 0x0030, // scan interval: 30 ms 2429 1, // use whitelist 2430 0, // peer address type 2431 null_addr, // peer bd addr 2432 hci_stack->adv_addr_type, // our addr type: 2433 0x0008, // conn interval min 2434 0x0018, // conn interval max 2435 0, // conn latency 2436 0x0048, // supervision timeout 2437 0x0001, // min ce length 2438 0x0001 // max ce length 2439 ); 2440 return; 2441 } 2442 } 2443 #endif 2444 2445 // send pending HCI commands 2446 for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ 2447 hci_connection_t * connection = (hci_connection_t *) it; 2448 2449 switch(connection->state){ 2450 case SEND_CREATE_CONNECTION: 2451 switch(connection->address_type){ 2452 case BD_ADDR_TYPE_CLASSIC: 2453 log_info("sending hci_create_connection"); 2454 hci_send_cmd(&hci_create_connection, connection->address, hci_usable_acl_packet_types(), 0, 0, 0, 1); 2455 break; 2456 default: 2457 #ifdef ENABLE_BLE 2458 log_info("sending hci_le_create_connection"); 2459 hci_send_cmd(&hci_le_create_connection, 2460 0x0060, // scan interval: 60 ms 2461 0x0030, // scan interval: 30 ms 2462 0, // don't use whitelist 2463 connection->address_type, // peer address type 2464 connection->address, // peer bd addr 2465 hci_stack->adv_addr_type, // our addr type: 2466 0x0008, // conn interval min 2467 0x0018, // conn interval max 2468 0, // conn latency 2469 0x0048, // supervision timeout 2470 0x0001, // min ce length 2471 0x0001 // max ce length 2472 ); 2473 2474 connection->state = SENT_CREATE_CONNECTION; 2475 #endif 2476 break; 2477 } 2478 return; 2479 2480 case RECEIVED_CONNECTION_REQUEST: 2481 log_info("sending hci_accept_connection_request, remote eSCO %u", connection->remote_supported_feature_eSCO); 2482 connection->state = ACCEPTED_CONNECTION_REQUEST; 2483 connection->role = HCI_ROLE_SLAVE; 2484 if (connection->address_type == BD_ADDR_TYPE_CLASSIC){ 2485 hci_send_cmd(&hci_accept_connection_request, connection->address, 1); 2486 } else { 2487 // remote supported feature eSCO is set if link type is eSCO 2488 uint16_t max_latency; 2489 uint8_t retransmission_effort; 2490 uint16_t packet_types; 2491 // remote supported feature eSCO is set if link type is eSCO 2492 if (connection->remote_supported_feature_eSCO){ 2493 // eSCO: S4 - max latency == transmission interval = 0x000c == 12 ms, 2494 max_latency = 0x000c; 2495 retransmission_effort = 0x02; 2496 packet_types = 0x388; 2497 } else { 2498 // SCO: max latency, retransmission interval: N/A. any packet type 2499 max_latency = 0xffff; 2500 retransmission_effort = 0xff; 2501 packet_types = 0x003f; 2502 } 2503 hci_send_cmd(&hci_accept_synchronous_connection, connection->address, 8000, 8000, max_latency, hci_stack->sco_voice_setting, retransmission_effort, packet_types); 2504 } 2505 return; 2506 2507 #ifdef ENABLE_BLE 2508 case SEND_CANCEL_CONNECTION: 2509 connection->state = SENT_CANCEL_CONNECTION; 2510 hci_send_cmd(&hci_le_create_connection_cancel); 2511 return; 2512 #endif 2513 case SEND_DISCONNECT: 2514 connection->state = SENT_DISCONNECT; 2515 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection 2516 return; 2517 2518 default: 2519 break; 2520 } 2521 2522 if (connection->authentication_flags & HANDLE_LINK_KEY_REQUEST){ 2523 log_info("responding to link key request"); 2524 connectionClearAuthenticationFlags(connection, HANDLE_LINK_KEY_REQUEST); 2525 link_key_t link_key; 2526 link_key_type_t link_key_type; 2527 if ( hci_stack->link_key_db 2528 && hci_stack->link_key_db->get_link_key(connection->address, link_key, &link_key_type) 2529 && gap_security_level_for_link_key_type(link_key_type) >= connection->requested_security_level){ 2530 connection->link_key_type = link_key_type; 2531 hci_send_cmd(&hci_link_key_request_reply, connection->address, &link_key); 2532 } else { 2533 hci_send_cmd(&hci_link_key_request_negative_reply, connection->address); 2534 } 2535 return; 2536 } 2537 2538 if (connection->authentication_flags & DENY_PIN_CODE_REQUEST){ 2539 log_info("denying to pin request"); 2540 connectionClearAuthenticationFlags(connection, DENY_PIN_CODE_REQUEST); 2541 hci_send_cmd(&hci_pin_code_request_negative_reply, connection->address); 2542 return; 2543 } 2544 2545 if (connection->authentication_flags & SEND_IO_CAPABILITIES_REPLY){ 2546 connectionClearAuthenticationFlags(connection, SEND_IO_CAPABILITIES_REPLY); 2547 log_info("IO Capability Request received, stack bondable %u, io cap %u", hci_stack->bondable, hci_stack->ssp_io_capability); 2548 if (hci_stack->bondable && (hci_stack->ssp_io_capability != SSP_IO_CAPABILITY_UNKNOWN)){ 2549 // tweak authentication requirements 2550 uint8_t authreq = hci_stack->ssp_authentication_requirement; 2551 if (connection->bonding_flags & BONDING_DEDICATED){ 2552 authreq = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING; 2553 } 2554 if (gap_mitm_protection_required_for_security_level(connection->requested_security_level)){ 2555 authreq |= 1; 2556 } 2557 hci_send_cmd(&hci_io_capability_request_reply, &connection->address, hci_stack->ssp_io_capability, NULL, authreq); 2558 } else { 2559 hci_send_cmd(&hci_io_capability_request_negative_reply, &connection->address, ERROR_CODE_PAIRING_NOT_ALLOWED); 2560 } 2561 return; 2562 } 2563 2564 if (connection->authentication_flags & SEND_USER_CONFIRM_REPLY){ 2565 connectionClearAuthenticationFlags(connection, SEND_USER_CONFIRM_REPLY); 2566 hci_send_cmd(&hci_user_confirmation_request_reply, &connection->address); 2567 return; 2568 } 2569 2570 if (connection->authentication_flags & SEND_USER_PASSKEY_REPLY){ 2571 connectionClearAuthenticationFlags(connection, SEND_USER_PASSKEY_REPLY); 2572 hci_send_cmd(&hci_user_passkey_request_reply, &connection->address, 000000); 2573 return; 2574 } 2575 2576 if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES){ 2577 connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES; 2578 hci_send_cmd(&hci_read_remote_supported_features_command, connection->con_handle); 2579 return; 2580 } 2581 2582 if (connection->bonding_flags & BONDING_DISCONNECT_SECURITY_BLOCK){ 2583 connection->bonding_flags &= ~BONDING_DISCONNECT_SECURITY_BLOCK; 2584 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x0005); // authentication failure 2585 return; 2586 } 2587 if (connection->bonding_flags & BONDING_DISCONNECT_DEDICATED_DONE){ 2588 connection->bonding_flags &= ~BONDING_DISCONNECT_DEDICATED_DONE; 2589 connection->bonding_flags |= BONDING_EMIT_COMPLETE_ON_DISCONNECT; 2590 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // authentication done 2591 return; 2592 } 2593 if (connection->bonding_flags & BONDING_SEND_AUTHENTICATE_REQUEST){ 2594 connection->bonding_flags &= ~BONDING_SEND_AUTHENTICATE_REQUEST; 2595 hci_send_cmd(&hci_authentication_requested, connection->con_handle); 2596 return; 2597 } 2598 if (connection->bonding_flags & BONDING_SEND_ENCRYPTION_REQUEST){ 2599 connection->bonding_flags &= ~BONDING_SEND_ENCRYPTION_REQUEST; 2600 hci_send_cmd(&hci_set_connection_encryption, connection->con_handle, 1); 2601 return; 2602 } 2603 2604 #ifdef ENABLE_BLE 2605 if (connection->le_con_parameter_update_state == CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS){ 2606 connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; 2607 2608 uint16_t connection_interval_min = connection->le_conn_interval_min; 2609 connection->le_conn_interval_min = 0; 2610 hci_send_cmd(&hci_le_connection_update, connection->con_handle, connection_interval_min, 2611 connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout, 2612 0x0000, 0xffff); 2613 } 2614 #endif 2615 } 2616 2617 hci_connection_t * connection; 2618 switch (hci_stack->state){ 2619 case HCI_STATE_INITIALIZING: 2620 hci_initializing_run(); 2621 break; 2622 2623 case HCI_STATE_HALTING: 2624 2625 log_info("HCI_STATE_HALTING"); 2626 2627 // free whitelist entries 2628 #ifdef ENABLE_BLE 2629 { 2630 btstack_linked_list_iterator_t lit; 2631 btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); 2632 while (btstack_linked_list_iterator_has_next(&lit)){ 2633 whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit); 2634 btstack_linked_list_remove(&hci_stack->le_whitelist, (btstack_linked_item_t *) entry); 2635 btstack_memory_whitelist_entry_free(entry); 2636 } 2637 } 2638 #endif 2639 // close all open connections 2640 connection = (hci_connection_t *) hci_stack->connections; 2641 if (connection){ 2642 hci_con_handle_t con_handle = (uint16_t) connection->con_handle; 2643 if (!hci_can_send_command_packet_now()) return; 2644 2645 log_info("HCI_STATE_HALTING, connection %p, handle %u", connection, con_handle); 2646 2647 // cancel all l2cap connections right away instead of waiting for disconnection complete event ... 2648 hci_emit_disconnection_complete(con_handle, 0x16); // terminated by local host 2649 2650 // ... which would be ignored anyway as we shutdown (free) the connection now 2651 hci_shutdown_connection(connection); 2652 2653 // finally, send the disconnect command 2654 hci_send_cmd(&hci_disconnect, con_handle, 0x13); // remote closed connection 2655 return; 2656 } 2657 log_info("HCI_STATE_HALTING, calling off"); 2658 2659 // switch mode 2660 hci_power_control_off(); 2661 2662 log_info("HCI_STATE_HALTING, emitting state"); 2663 hci_emit_state(); 2664 log_info("HCI_STATE_HALTING, done"); 2665 break; 2666 2667 case HCI_STATE_FALLING_ASLEEP: 2668 switch(hci_stack->substate) { 2669 case HCI_FALLING_ASLEEP_DISCONNECT: 2670 log_info("HCI_STATE_FALLING_ASLEEP"); 2671 // close all open connections 2672 connection = (hci_connection_t *) hci_stack->connections; 2673 2674 #ifdef HAVE_PLATFORM_IPHONE_OS 2675 // don't close connections, if H4 supports power management 2676 if (btstack_control_iphone_power_management_enabled()){ 2677 connection = NULL; 2678 } 2679 #endif 2680 if (connection){ 2681 2682 // send disconnect 2683 if (!hci_can_send_command_packet_now()) return; 2684 2685 log_info("HCI_STATE_FALLING_ASLEEP, connection %p, handle %u", connection, (uint16_t)connection->con_handle); 2686 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection 2687 2688 // send disconnected event right away - causes higher layer connections to get closed, too. 2689 hci_shutdown_connection(connection); 2690 return; 2691 } 2692 2693 if (hci_classic_supported()){ 2694 // disable page and inquiry scan 2695 if (!hci_can_send_command_packet_now()) return; 2696 2697 log_info("HCI_STATE_HALTING, disabling inq scans"); 2698 hci_send_cmd(&hci_write_scan_enable, hci_stack->connectable << 1); // drop inquiry scan but keep page scan 2699 2700 // continue in next sub state 2701 hci_stack->substate = HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE; 2702 break; 2703 } 2704 // fall through for ble-only chips 2705 2706 case HCI_FALLING_ASLEEP_COMPLETE: 2707 log_info("HCI_STATE_HALTING, calling sleep"); 2708 #ifdef HAVE_PLATFORM_IPHONE_OS 2709 // don't actually go to sleep, if H4 supports power management 2710 if (btstack_control_iphone_power_management_enabled()){ 2711 // SLEEP MODE reached 2712 hci_stack->state = HCI_STATE_SLEEPING; 2713 hci_emit_state(); 2714 break; 2715 } 2716 #endif 2717 // switch mode 2718 hci_power_control_sleep(); // changes hci_stack->state to SLEEP 2719 hci_emit_state(); 2720 break; 2721 2722 default: 2723 break; 2724 } 2725 break; 2726 2727 default: 2728 break; 2729 } 2730 } 2731 2732 int hci_send_cmd_packet(uint8_t *packet, int size){ 2733 bd_addr_t addr; 2734 hci_connection_t * conn; 2735 // house-keeping 2736 2737 // create_connection? 2738 if (IS_COMMAND(packet, hci_create_connection)){ 2739 reverse_bd_addr(&packet[3], addr); 2740 log_info("Create_connection to %s", bd_addr_to_str(addr)); 2741 2742 conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 2743 if (!conn){ 2744 conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 2745 if (!conn){ 2746 // notify client that alloc failed 2747 hci_emit_connection_complete(conn, BTSTACK_MEMORY_ALLOC_FAILED); 2748 return 0; // don't sent packet to controller 2749 } 2750 conn->state = SEND_CREATE_CONNECTION; 2751 } 2752 log_info("conn state %u", conn->state); 2753 switch (conn->state){ 2754 // if connection active exists 2755 case OPEN: 2756 // and OPEN, emit connection complete command, don't send to controller 2757 hci_emit_connection_complete(conn, 0); 2758 return 0; 2759 case SEND_CREATE_CONNECTION: 2760 // connection created by hci, e.g. dedicated bonding 2761 break; 2762 default: 2763 // otherwise, just ignore as it is already in the open process 2764 return 0; 2765 } 2766 conn->state = SENT_CREATE_CONNECTION; 2767 } 2768 if (IS_COMMAND(packet, hci_link_key_request_reply)){ 2769 hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_REPLY); 2770 } 2771 if (IS_COMMAND(packet, hci_link_key_request_negative_reply)){ 2772 hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_NEGATIVE_REQUEST); 2773 } 2774 2775 if (IS_COMMAND(packet, hci_delete_stored_link_key)){ 2776 if (hci_stack->link_key_db){ 2777 reverse_bd_addr(&packet[3], addr); 2778 hci_stack->link_key_db->delete_link_key(addr); 2779 } 2780 } 2781 2782 if (IS_COMMAND(packet, hci_pin_code_request_negative_reply) 2783 || IS_COMMAND(packet, hci_pin_code_request_reply)){ 2784 reverse_bd_addr(&packet[3], addr); 2785 conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 2786 if (conn){ 2787 connectionClearAuthenticationFlags(conn, LEGACY_PAIRING_ACTIVE); 2788 } 2789 } 2790 2791 if (IS_COMMAND(packet, hci_user_confirmation_request_negative_reply) 2792 || IS_COMMAND(packet, hci_user_confirmation_request_reply) 2793 || IS_COMMAND(packet, hci_user_passkey_request_negative_reply) 2794 || IS_COMMAND(packet, hci_user_passkey_request_reply)) { 2795 reverse_bd_addr(&packet[3], addr); 2796 conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 2797 if (conn){ 2798 connectionClearAuthenticationFlags(conn, SSP_PAIRING_ACTIVE); 2799 } 2800 } 2801 2802 if (IS_COMMAND(packet, hci_write_loopback_mode)){ 2803 hci_stack->loopback_mode = packet[3]; 2804 } 2805 2806 #ifdef ENABLE_BLE 2807 if (IS_COMMAND(packet, hci_le_set_advertising_parameters)){ 2808 hci_stack->adv_addr_type = packet[8]; 2809 } 2810 if (IS_COMMAND(packet, hci_le_set_random_address)){ 2811 reverse_bd_addr(&packet[3], hci_stack->adv_address); 2812 } 2813 if (IS_COMMAND(packet, hci_le_set_advertise_enable)){ 2814 hci_stack->le_advertisements_active = packet[3]; 2815 } 2816 if (IS_COMMAND(packet, hci_le_create_connection)){ 2817 // white list used? 2818 uint8_t initiator_filter_policy = packet[7]; 2819 switch (initiator_filter_policy){ 2820 case 0: 2821 // whitelist not used 2822 hci_stack->le_connecting_state = LE_CONNECTING_DIRECT; 2823 break; 2824 case 1: 2825 hci_stack->le_connecting_state = LE_CONNECTING_WHITELIST; 2826 break; 2827 default: 2828 log_error("Invalid initiator_filter_policy in LE Create Connection %u", initiator_filter_policy); 2829 break; 2830 } 2831 } 2832 if (IS_COMMAND(packet, hci_le_create_connection_cancel)){ 2833 hci_stack->le_connecting_state = LE_CONNECTING_IDLE; 2834 } 2835 #endif 2836 2837 hci_stack->num_cmd_packets--; 2838 2839 hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size); 2840 int err = hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); 2841 2842 // release packet buffer for synchronous transport implementations 2843 if (hci_transport_synchronous() && (packet == hci_stack->hci_packet_buffer)){ 2844 hci_stack->hci_packet_buffer_reserved = 0; 2845 } 2846 2847 return err; 2848 } 2849 2850 // disconnect because of security block 2851 void hci_disconnect_security_block(hci_con_handle_t con_handle){ 2852 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2853 if (!connection) return; 2854 connection->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK; 2855 } 2856 2857 2858 // Configure Secure Simple Pairing 2859 2860 // enable will enable SSP during init 2861 void gap_ssp_set_enable(int enable){ 2862 hci_stack->ssp_enable = enable; 2863 } 2864 2865 static int hci_local_ssp_activated(void){ 2866 return gap_ssp_supported() && hci_stack->ssp_enable; 2867 } 2868 2869 // if set, BTstack will respond to io capability request using authentication requirement 2870 void gap_ssp_set_io_capability(int io_capability){ 2871 hci_stack->ssp_io_capability = io_capability; 2872 } 2873 void gap_ssp_set_authentication_requirement(int authentication_requirement){ 2874 hci_stack->ssp_authentication_requirement = authentication_requirement; 2875 } 2876 2877 // if set, BTstack will confirm a numberic comparion and enter '000000' if requested 2878 void gap_ssp_set_auto_accept(int auto_accept){ 2879 hci_stack->ssp_auto_accept = auto_accept; 2880 } 2881 2882 /** 2883 * pre: numcmds >= 0 - it's allowed to send a command to the controller 2884 */ 2885 int hci_send_cmd(const hci_cmd_t *cmd, ...){ 2886 2887 if (!hci_can_send_command_packet_now()){ 2888 log_error("hci_send_cmd called but cannot send packet now"); 2889 return 0; 2890 } 2891 2892 // for HCI INITIALIZATION 2893 // log_info("hci_send_cmd: opcode %04x", cmd->opcode); 2894 hci_stack->last_cmd_opcode = cmd->opcode; 2895 2896 hci_reserve_packet_buffer(); 2897 uint8_t * packet = hci_stack->hci_packet_buffer; 2898 2899 va_list argptr; 2900 va_start(argptr, cmd); 2901 uint16_t size = hci_cmd_create_from_template(packet, cmd, argptr); 2902 va_end(argptr); 2903 2904 return hci_send_cmd_packet(packet, size); 2905 } 2906 2907 // Create various non-HCI events. 2908 // TODO: generalize, use table similar to hci_create_command 2909 2910 static void hci_emit_event(uint8_t * event, uint16_t size, int dump){ 2911 // dump packet 2912 if (dump) { 2913 hci_dump_packet( HCI_EVENT_PACKET, 0, event, size); 2914 } 2915 2916 // dispatch to all event handlers 2917 btstack_linked_list_iterator_t it; 2918 btstack_linked_list_iterator_init(&it, &hci_stack->event_handlers); 2919 while (btstack_linked_list_iterator_has_next(&it)){ 2920 btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it); 2921 entry->callback(HCI_EVENT_PACKET, 0, event, size); 2922 } 2923 } 2924 2925 static void hci_emit_acl_packet(uint8_t * packet, uint16_t size){ 2926 if (!hci_stack->acl_packet_handler) return; 2927 hci_stack->acl_packet_handler(HCI_ACL_DATA_PACKET, packet, size); 2928 } 2929 2930 static void hci_notify_if_sco_can_send_now(void){ 2931 // notify SCO sender if waiting 2932 if (!hci_stack->sco_waiting_for_can_send_now) return; 2933 if (hci_can_send_sco_packet_now()){ 2934 hci_stack->sco_waiting_for_can_send_now = 0; 2935 uint8_t event[2] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0 }; 2936 hci_dump_packet(HCI_EVENT_PACKET, 1, event, sizeof(event)); 2937 hci_stack->sco_packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2938 } 2939 } 2940 2941 void hci_emit_state(void){ 2942 log_info("BTSTACK_EVENT_STATE %u", hci_stack->state); 2943 uint8_t event[3]; 2944 event[0] = BTSTACK_EVENT_STATE; 2945 event[1] = sizeof(event) - 2; 2946 event[2] = hci_stack->state; 2947 hci_emit_event(event, sizeof(event), 1); 2948 } 2949 2950 static void hci_emit_connection_complete(hci_connection_t *conn, uint8_t status){ 2951 uint8_t event[13]; 2952 event[0] = HCI_EVENT_CONNECTION_COMPLETE; 2953 event[1] = sizeof(event) - 2; 2954 event[2] = status; 2955 little_endian_store_16(event, 3, conn->con_handle); 2956 reverse_bd_addr(conn->address, &event[5]); 2957 event[11] = 1; // ACL connection 2958 event[12] = 0; // encryption disabled 2959 hci_emit_event(event, sizeof(event), 1); 2960 } 2961 2962 static void hci_emit_le_connection_complete(uint8_t address_type, bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){ 2963 uint8_t event[21]; 2964 event[0] = HCI_EVENT_LE_META; 2965 event[1] = sizeof(event) - 2; 2966 event[2] = HCI_SUBEVENT_LE_CONNECTION_COMPLETE; 2967 event[3] = status; 2968 little_endian_store_16(event, 4, con_handle); 2969 event[6] = 0; // TODO: role 2970 event[7] = address_type; 2971 reverse_bd_addr(address, &event[8]); 2972 little_endian_store_16(event, 14, 0); // interval 2973 little_endian_store_16(event, 16, 0); // latency 2974 little_endian_store_16(event, 18, 0); // supervision timeout 2975 event[20] = 0; // master clock accuracy 2976 hci_emit_event(event, sizeof(event), 1); 2977 } 2978 2979 static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason){ 2980 uint8_t event[6]; 2981 event[0] = HCI_EVENT_DISCONNECTION_COMPLETE; 2982 event[1] = sizeof(event) - 2; 2983 event[2] = 0; // status = OK 2984 little_endian_store_16(event, 3, con_handle); 2985 event[5] = reason; 2986 hci_emit_event(event, sizeof(event), 1); 2987 } 2988 2989 static void hci_emit_l2cap_check_timeout(hci_connection_t *conn){ 2990 if (disable_l2cap_timeouts) return; 2991 log_info("L2CAP_EVENT_TIMEOUT_CHECK"); 2992 uint8_t event[4]; 2993 event[0] = L2CAP_EVENT_TIMEOUT_CHECK; 2994 event[1] = sizeof(event) - 2; 2995 little_endian_store_16(event, 2, conn->con_handle); 2996 hci_emit_event(event, sizeof(event), 1); 2997 } 2998 2999 static void hci_emit_nr_connections_changed(void){ 3000 log_info("BTSTACK_EVENT_NR_CONNECTIONS_CHANGED %u", nr_hci_connections()); 3001 uint8_t event[3]; 3002 event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED; 3003 event[1] = sizeof(event) - 2; 3004 event[2] = nr_hci_connections(); 3005 hci_emit_event(event, sizeof(event), 1); 3006 } 3007 3008 static void hci_emit_hci_open_failed(void){ 3009 log_info("BTSTACK_EVENT_POWERON_FAILED"); 3010 uint8_t event[2]; 3011 event[0] = BTSTACK_EVENT_POWERON_FAILED; 3012 event[1] = sizeof(event) - 2; 3013 hci_emit_event(event, sizeof(event), 1); 3014 } 3015 3016 static void hci_emit_discoverable_enabled(uint8_t enabled){ 3017 log_info("BTSTACK_EVENT_DISCOVERABLE_ENABLED %u", enabled); 3018 uint8_t event[3]; 3019 event[0] = BTSTACK_EVENT_DISCOVERABLE_ENABLED; 3020 event[1] = sizeof(event) - 2; 3021 event[2] = enabled; 3022 hci_emit_event(event, sizeof(event), 1); 3023 } 3024 3025 static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level){ 3026 log_info("hci_emit_security_level %u for handle %x", level, con_handle); 3027 uint8_t event[5]; 3028 int pos = 0; 3029 event[pos++] = GAP_EVENT_SECURITY_LEVEL; 3030 event[pos++] = sizeof(event) - 2; 3031 little_endian_store_16(event, 2, con_handle); 3032 pos += 2; 3033 event[pos++] = level; 3034 hci_emit_event(event, sizeof(event), 1); 3035 } 3036 3037 static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status){ 3038 log_info("hci_emit_dedicated_bonding_result %u ", status); 3039 uint8_t event[9]; 3040 int pos = 0; 3041 event[pos++] = GAP_EVENT_DEDICATED_BONDING_COMPLETED; 3042 event[pos++] = sizeof(event) - 2; 3043 event[pos++] = status; 3044 reverse_bd_addr(address, &event[pos]); 3045 pos += 6; 3046 hci_emit_event(event, sizeof(event), 1); 3047 } 3048 3049 // query if remote side supports eSCO 3050 int hci_remote_esco_supported(hci_con_handle_t con_handle){ 3051 hci_connection_t * connection = hci_connection_for_handle(con_handle); 3052 if (!connection) return 0; 3053 return connection->remote_supported_feature_eSCO; 3054 } 3055 3056 // query if remote side supports SSP 3057 int hci_remote_ssp_supported(hci_con_handle_t con_handle){ 3058 hci_connection_t * connection = hci_connection_for_handle(con_handle); 3059 if (!connection) return 0; 3060 return (connection->bonding_flags & BONDING_REMOTE_SUPPORTS_SSP) ? 1 : 0; 3061 } 3062 3063 int gap_ssp_supported_on_both_sides(hci_con_handle_t handle){ 3064 return hci_local_ssp_activated() && hci_remote_ssp_supported(handle); 3065 } 3066 3067 // GAP API 3068 /** 3069 * @bbrief enable/disable bonding. default is enabled 3070 * @praram enabled 3071 */ 3072 void gap_set_bondable_mode(int enable){ 3073 hci_stack->bondable = enable ? 1 : 0; 3074 } 3075 /** 3076 * @brief Get bondable mode. 3077 * @return 1 if bondable 3078 */ 3079 int gap_get_bondable_mode(void){ 3080 return hci_stack->bondable; 3081 } 3082 3083 /** 3084 * @brief map link keys to security levels 3085 */ 3086 gap_security_level_t gap_security_level_for_link_key_type(link_key_type_t link_key_type){ 3087 switch (link_key_type){ 3088 case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: 3089 return LEVEL_4; 3090 case COMBINATION_KEY: 3091 case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192: 3092 return LEVEL_3; 3093 default: 3094 return LEVEL_2; 3095 } 3096 } 3097 3098 static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection){ 3099 if (!connection) return LEVEL_0; 3100 if ((connection->authentication_flags & CONNECTION_ENCRYPTED) == 0) return LEVEL_0; 3101 return gap_security_level_for_link_key_type(connection->link_key_type); 3102 } 3103 3104 3105 int gap_mitm_protection_required_for_security_level(gap_security_level_t level){ 3106 log_info("gap_mitm_protection_required_for_security_level %u", level); 3107 return level > LEVEL_2; 3108 } 3109 3110 /** 3111 * @brief get current security level 3112 */ 3113 gap_security_level_t gap_security_level(hci_con_handle_t con_handle){ 3114 hci_connection_t * connection = hci_connection_for_handle(con_handle); 3115 if (!connection) return LEVEL_0; 3116 return gap_security_level_for_connection(connection); 3117 } 3118 3119 /** 3120 * @brief request connection to device to 3121 * @result GAP_AUTHENTICATION_RESULT 3122 */ 3123 void gap_request_security_level(hci_con_handle_t con_handle, gap_security_level_t requested_level){ 3124 hci_connection_t * connection = hci_connection_for_handle(con_handle); 3125 if (!connection){ 3126 hci_emit_security_level(con_handle, LEVEL_0); 3127 return; 3128 } 3129 gap_security_level_t current_level = gap_security_level(con_handle); 3130 log_info("gap_request_security_level %u, current level %u", requested_level, current_level); 3131 if (current_level >= requested_level){ 3132 hci_emit_security_level(con_handle, current_level); 3133 return; 3134 } 3135 3136 connection->requested_security_level = requested_level; 3137 3138 #if 0 3139 // sending encryption request without a link key results in an error. 3140 // TODO: figure out how to use it properly 3141 3142 // would enabling ecnryption suffice (>= LEVEL_2)? 3143 if (hci_stack->link_key_db){ 3144 link_key_type_t link_key_type; 3145 link_key_t link_key; 3146 if (hci_stack->link_key_db->get_link_key( &connection->address, &link_key, &link_key_type)){ 3147 if (gap_security_level_for_link_key_type(link_key_type) >= requested_level){ 3148 connection->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; 3149 return; 3150 } 3151 } 3152 } 3153 #endif 3154 3155 // try to authenticate connection 3156 connection->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; 3157 hci_run(); 3158 } 3159 3160 /** 3161 * @brief start dedicated bonding with device. disconnect after bonding 3162 * @param device 3163 * @param request MITM protection 3164 * @result GAP_DEDICATED_BONDING_COMPLETE 3165 */ 3166 int gap_dedicated_bonding(bd_addr_t device, int mitm_protection_required){ 3167 3168 // create connection state machine 3169 hci_connection_t * connection = create_connection_for_bd_addr_and_type(device, BD_ADDR_TYPE_CLASSIC); 3170 3171 if (!connection){ 3172 return BTSTACK_MEMORY_ALLOC_FAILED; 3173 } 3174 3175 // delete linkn key 3176 gap_drop_link_key_for_bd_addr(device); 3177 3178 // configure LEVEL_2/3, dedicated bonding 3179 connection->state = SEND_CREATE_CONNECTION; 3180 connection->requested_security_level = mitm_protection_required ? LEVEL_3 : LEVEL_2; 3181 log_info("gap_dedicated_bonding, mitm %u -> level %u", mitm_protection_required, connection->requested_security_level); 3182 connection->bonding_flags = BONDING_DEDICATED; 3183 3184 // wait for GAP Security Result and send GAP Dedicated Bonding complete 3185 3186 // handle: connnection failure (connection complete != ok) 3187 // handle: authentication failure 3188 // handle: disconnect on done 3189 3190 hci_run(); 3191 3192 return 0; 3193 } 3194 3195 void gap_set_local_name(const char * local_name){ 3196 hci_stack->local_name = local_name; 3197 } 3198 3199 void gap_start_scan(void){ 3200 if (hci_stack->le_scanning_state == LE_SCANNING) return; 3201 hci_stack->le_scanning_state = LE_START_SCAN; 3202 hci_run(); 3203 } 3204 3205 void gap_stop_scan(void){ 3206 if ( hci_stack->le_scanning_state == LE_SCAN_IDLE) return; 3207 hci_stack->le_scanning_state = LE_STOP_SCAN; 3208 hci_run(); 3209 } 3210 3211 void gap_set_scan_parameters(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window){ 3212 hci_stack->le_scan_type = scan_type; 3213 hci_stack->le_scan_interval = scan_interval; 3214 hci_stack->le_scan_window = scan_window; 3215 hci_run(); 3216 } 3217 3218 uint8_t gap_connect(bd_addr_t addr, bd_addr_type_t addr_type){ 3219 hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type); 3220 if (!conn){ 3221 log_info("gap_connect: no connection exists yet, creating context"); 3222 conn = create_connection_for_bd_addr_and_type(addr, addr_type); 3223 if (!conn){ 3224 // notify client that alloc failed 3225 hci_emit_le_connection_complete(addr_type, addr, 0, BTSTACK_MEMORY_ALLOC_FAILED); 3226 log_info("gap_connect: failed to alloc hci_connection_t"); 3227 return GATT_CLIENT_NOT_CONNECTED; // don't sent packet to controller 3228 } 3229 conn->state = SEND_CREATE_CONNECTION; 3230 log_info("gap_connect: send create connection next"); 3231 hci_run(); 3232 return 0; 3233 } 3234 3235 if (!hci_is_le_connection(conn) || 3236 conn->state == SEND_CREATE_CONNECTION || 3237 conn->state == SENT_CREATE_CONNECTION) { 3238 hci_emit_le_connection_complete(conn->address_type, conn->address, 0, ERROR_CODE_COMMAND_DISALLOWED); 3239 log_error("gap_connect: classic connection or connect is already being created"); 3240 return GATT_CLIENT_IN_WRONG_STATE; 3241 } 3242 3243 log_info("gap_connect: context exists with state %u", conn->state); 3244 hci_emit_le_connection_complete(conn->address_type, conn->address, conn->con_handle, 0); 3245 hci_run(); 3246 return 0; 3247 } 3248 3249 // @assumption: only a single outgoing LE Connection exists 3250 static hci_connection_t * gap_get_outgoing_connection(void){ 3251 btstack_linked_item_t *it; 3252 for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ 3253 hci_connection_t * conn = (hci_connection_t *) it; 3254 if (!hci_is_le_connection(conn)) continue; 3255 switch (conn->state){ 3256 case SEND_CREATE_CONNECTION: 3257 case SENT_CREATE_CONNECTION: 3258 return conn; 3259 default: 3260 break; 3261 }; 3262 } 3263 return NULL; 3264 } 3265 3266 uint8_t gap_connect_cancel(void){ 3267 hci_connection_t * conn = gap_get_outgoing_connection(); 3268 if (!conn) return 0; 3269 switch (conn->state){ 3270 case SEND_CREATE_CONNECTION: 3271 // skip sending create connection and emit event instead 3272 hci_emit_le_connection_complete(conn->address_type, conn->address, 0, ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER); 3273 btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); 3274 btstack_memory_hci_connection_free( conn ); 3275 break; 3276 case SENT_CREATE_CONNECTION: 3277 // request to send cancel connection 3278 conn->state = SEND_CANCEL_CONNECTION; 3279 hci_run(); 3280 break; 3281 default: 3282 break; 3283 } 3284 return 0; 3285 } 3286 3287 /** 3288 * @brief Updates the connection parameters for a given LE connection 3289 * @param handle 3290 * @param conn_interval_min (unit: 1.25ms) 3291 * @param conn_interval_max (unit: 1.25ms) 3292 * @param conn_latency 3293 * @param supervision_timeout (unit: 10ms) 3294 * @returns 0 if ok 3295 */ 3296 int gap_update_connection_parameters(hci_con_handle_t con_handle, uint16_t conn_interval_min, 3297 uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){ 3298 hci_connection_t * connection = hci_connection_for_handle(con_handle); 3299 if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; 3300 connection->le_conn_interval_min = conn_interval_min; 3301 connection->le_conn_interval_max = conn_interval_max; 3302 connection->le_conn_latency = conn_latency; 3303 connection->le_supervision_timeout = supervision_timeout; 3304 connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS; 3305 hci_run(); 3306 return 0; 3307 } 3308 3309 /** 3310 * @brief Request an update of the connection parameter for a given LE connection 3311 * @param handle 3312 * @param conn_interval_min (unit: 1.25ms) 3313 * @param conn_interval_max (unit: 1.25ms) 3314 * @param conn_latency 3315 * @param supervision_timeout (unit: 10ms) 3316 * @returns 0 if ok 3317 */ 3318 int gap_request_connection_parameter_update(hci_con_handle_t con_handle, uint16_t conn_interval_min, 3319 uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){ 3320 hci_connection_t * connection = hci_connection_for_handle(con_handle); 3321 if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; 3322 connection->le_conn_interval_min = conn_interval_min; 3323 connection->le_conn_interval_max = conn_interval_max; 3324 connection->le_conn_latency = conn_latency; 3325 connection->le_supervision_timeout = supervision_timeout; 3326 connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_SEND_REQUEST; 3327 hci_run(); 3328 return 0; 3329 } 3330 3331 /** 3332 * @brief Set Advertisement Data 3333 * @param advertising_data_length 3334 * @param advertising_data (max 31 octets) 3335 * @note data is not copied, pointer has to stay valid 3336 */ 3337 void gap_advertisements_set_data(uint8_t advertising_data_length, uint8_t * advertising_data){ 3338 hci_stack->le_advertisements_data_len = advertising_data_length; 3339 hci_stack->le_advertisements_data = advertising_data; 3340 hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_DATA; 3341 // disable advertisements before setting data 3342 if (hci_stack->le_advertisements_active){ 3343 hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_DISABLE | LE_ADVERTISEMENT_TASKS_ENABLE; 3344 } 3345 hci_run(); 3346 } 3347 3348 /** 3349 * @brief Set Advertisement Parameters 3350 * @param adv_int_min 3351 * @param adv_int_max 3352 * @param adv_type 3353 * @param own_address_type 3354 * @param direct_address_type 3355 * @param direct_address 3356 * @param channel_map 3357 * @param filter_policy 3358 * 3359 * @note internal use. use gap_advertisements_set_params from gap_le.h instead. 3360 */ 3361 void hci_le_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type, 3362 uint8_t own_address_type, uint8_t direct_address_typ, bd_addr_t direct_address, 3363 uint8_t channel_map, uint8_t filter_policy) { 3364 3365 hci_stack->le_advertisements_interval_min = adv_int_min; 3366 hci_stack->le_advertisements_interval_max = adv_int_max; 3367 hci_stack->le_advertisements_type = adv_type; 3368 hci_stack->le_advertisements_own_address_type = own_address_type; 3369 hci_stack->le_advertisements_direct_address_type = direct_address_typ; 3370 hci_stack->le_advertisements_channel_map = channel_map; 3371 hci_stack->le_advertisements_filter_policy = filter_policy; 3372 memcpy(hci_stack->le_advertisements_direct_address, direct_address, 6); 3373 3374 hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; 3375 // disable advertisements before changing params 3376 if (hci_stack->le_advertisements_active){ 3377 hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_DISABLE | LE_ADVERTISEMENT_TASKS_ENABLE; 3378 } 3379 hci_run(); 3380 } 3381 3382 /** 3383 * @brief Enable/Disable Advertisements 3384 * @param enabled 3385 */ 3386 void gap_advertisements_enable(int enabled){ 3387 hci_stack->le_advertisements_enabled = enabled; 3388 if (enabled && !hci_stack->le_advertisements_active){ 3389 hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_ENABLE; 3390 } 3391 if (!enabled && hci_stack->le_advertisements_active){ 3392 hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_DISABLE; 3393 } 3394 hci_run(); 3395 } 3396 3397 3398 uint8_t gap_disconnect(hci_con_handle_t handle){ 3399 hci_connection_t * conn = hci_connection_for_handle(handle); 3400 if (!conn){ 3401 hci_emit_disconnection_complete(handle, 0); 3402 return 0; 3403 } 3404 conn->state = SEND_DISCONNECT; 3405 hci_run(); 3406 return 0; 3407 } 3408 3409 /** 3410 * @brief Get connection type 3411 * @param con_handle 3412 * @result connection_type 3413 */ 3414 gap_connection_type_t gap_get_connection_type(hci_con_handle_t connection_handle){ 3415 hci_connection_t * conn = hci_connection_for_handle(connection_handle); 3416 if (!conn) return GAP_CONNECTION_INVALID; 3417 switch (conn->address_type){ 3418 case BD_ADDR_TYPE_LE_PUBLIC: 3419 case BD_ADDR_TYPE_LE_RANDOM: 3420 return GAP_CONNECTION_LE; 3421 case BD_ADDR_TYPE_SCO: 3422 return GAP_CONNECTION_SCO; 3423 case BD_ADDR_TYPE_CLASSIC: 3424 return GAP_CONNECTION_ACL; 3425 default: 3426 return GAP_CONNECTION_INVALID; 3427 } 3428 } 3429 3430 #ifdef ENABLE_BLE 3431 3432 /** 3433 * @brief Auto Connection Establishment - Start Connecting to device 3434 * @param address_typ 3435 * @param address 3436 * @returns 0 if ok 3437 */ 3438 int gap_auto_connection_start(bd_addr_type_t address_type, bd_addr_t address){ 3439 // check capacity 3440 int num_entries = btstack_linked_list_count(&hci_stack->le_whitelist); 3441 if (num_entries >= hci_stack->le_whitelist_capacity) return ERROR_CODE_MEMORY_CAPACITY_EXCEEDED; 3442 whitelist_entry_t * entry = btstack_memory_whitelist_entry_get(); 3443 if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED; 3444 entry->address_type = address_type; 3445 memcpy(entry->address, address, 6); 3446 entry->state = LE_WHITELIST_ADD_TO_CONTROLLER; 3447 btstack_linked_list_add(&hci_stack->le_whitelist, (btstack_linked_item_t*) entry); 3448 hci_run(); 3449 return 0; 3450 } 3451 3452 static void hci_remove_from_whitelist(bd_addr_type_t address_type, bd_addr_t address){ 3453 btstack_linked_list_iterator_t it; 3454 btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist); 3455 while (btstack_linked_list_iterator_has_next(&it)){ 3456 whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it); 3457 if (entry->address_type != address_type) continue; 3458 if (memcmp(entry->address, address, 6) != 0) continue; 3459 if (entry->state & LE_WHITELIST_ON_CONTROLLER){ 3460 // remove from controller if already present 3461 entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER; 3462 continue; 3463 } 3464 // direclty remove entry from whitelist 3465 btstack_linked_list_iterator_remove(&it); 3466 btstack_memory_whitelist_entry_free(entry); 3467 } 3468 } 3469 3470 /** 3471 * @brief Auto Connection Establishment - Stop Connecting to device 3472 * @param address_typ 3473 * @param address 3474 * @returns 0 if ok 3475 */ 3476 int gap_auto_connection_stop(bd_addr_type_t address_type, bd_addr_t address){ 3477 hci_remove_from_whitelist(address_type, address); 3478 hci_run(); 3479 return 0; 3480 } 3481 3482 /** 3483 * @brief Auto Connection Establishment - Stop everything 3484 * @note Convenience function to stop all active auto connection attempts 3485 */ 3486 void gap_auto_connection_stop_all(void){ 3487 btstack_linked_list_iterator_t it; 3488 btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist); 3489 while (btstack_linked_list_iterator_has_next(&it)){ 3490 whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it); 3491 if (entry->state & LE_WHITELIST_ON_CONTROLLER){ 3492 // remove from controller if already present 3493 entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER; 3494 continue; 3495 } 3496 // directly remove entry from whitelist 3497 btstack_linked_list_iterator_remove(&it); 3498 btstack_memory_whitelist_entry_free(entry); 3499 } 3500 hci_run(); 3501 } 3502 3503 #endif 3504 3505 /** 3506 * @brief Configure Voice Setting for use with SCO data in HSP/HFP 3507 */ 3508 void hci_set_sco_voice_setting(uint16_t voice_setting){ 3509 hci_stack->sco_voice_setting = voice_setting; 3510 } 3511 3512 /** 3513 * @brief Get SCO Voice Setting 3514 * @return current voice setting 3515 */ 3516 uint16_t hci_get_sco_voice_setting(){ 3517 return hci_stack->sco_voice_setting; 3518 } 3519 3520 /** @brief Get SCO packet length for current SCO Voice setting 3521 * @note Using SCO packets of the exact length is required for USB transfer 3522 * @return Length of SCO packets in bytes (not audio frames) 3523 */ 3524 int hci_get_sco_packet_length(void){ 3525 // see Core Spec for H2 USB Transfer. 3526 if (hci_stack->sco_voice_setting & 0x0020) return 51; 3527 return 27; 3528 } 3529 3530 /** 3531 * @brief Set callback for Bluetooth Hardware Error 3532 */ 3533 void hci_set_hardware_error_callback(void (*fn)(void)){ 3534 hci_stack->hardware_error_callback = fn; 3535 } 3536 3537 void hci_disconnect_all(void){ 3538 btstack_linked_list_iterator_t it; 3539 btstack_linked_list_iterator_init(&it, &hci_stack->connections); 3540 while (btstack_linked_list_iterator_has_next(&it)){ 3541 hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it); 3542 if (con->state == SENT_DISCONNECT) continue; 3543 con->state = SEND_DISCONNECT; 3544 } 3545 hci_run(); 3546 } 3547