1 /* 2 * hci.c 3 * 4 * Created by Matthias Ringwald on 4/29/09. 5 * 6 */ 7 8 #include <unistd.h> 9 #include <stdarg.h> 10 #include <string.h> 11 #include <stdio.h> 12 #include "hci.h" 13 14 // calculate combined ogf/ocf value 15 #define OPCODE(ogf, ocf) (ocf | ogf << 10) 16 #define OGF_LINK_CONTROL 0x01 17 #define OGF_CONTROLLER_BASEBAND 0x03 18 #define OGF_INFORMATIONAL_PARAMETERS 0x04 19 20 hci_cmd_t hci_inquiry = { 21 OPCODE(OGF_LINK_CONTROL, 0x01), "311" 22 // LAP, Inquiry length, Num_responses 23 }; 24 hci_cmd_t hci_inquiry_cancel = { 25 OPCODE(OGF_LINK_CONTROL, 0x02), "" 26 // no params 27 }; 28 hci_cmd_t hci_create_connection = { 29 OPCODE(OGF_LINK_CONTROL, 0x05), "B21121" 30 // BD_ADDR, Packet_Type, Page_Scan_Repetition_Mode, Reserved, Clock_Offset, Allow_Role_Switch 31 }; 32 hci_cmd_t hci_link_key_request_negative_reply = { 33 OPCODE(OGF_LINK_CONTROL, 0x0c), "B" 34 }; 35 hci_cmd_t hci_pin_code_request_reply = { 36 OPCODE(OGF_LINK_CONTROL, 0x0d), "B1P" 37 // BD_ADDR, pin length, PIN: c-string 38 }; 39 hci_cmd_t hci_remote_name_request = { 40 OPCODE(OGF_LINK_CONTROL, 0x19), "B112" 41 // BD_ADDR, Page_Scan_Repetition_Mode, Reserved, Clock_Offset 42 }; 43 hci_cmd_t hci_remote_name_request_cancel = { 44 OPCODE(OGF_LINK_CONTROL, 0x1A), "B" 45 // BD_ADDR 46 }; 47 48 hci_cmd_t hci_reset = { 49 OPCODE(OGF_CONTROLLER_BASEBAND, 0x03), "" 50 }; 51 hci_cmd_t hci_write_page_timeout = { 52 OPCODE(OGF_CONTROLLER_BASEBAND, 0x18), "2" 53 // Page_Timeout * 0.625 ms 54 }; 55 56 hci_cmd_t hci_write_authentication_enable = { 57 OPCODE(OGF_CONTROLLER_BASEBAND, 0x20), "1" 58 // Authentication_Enable 59 }; 60 61 hci_cmd_t hci_host_buffer_size = { 62 OPCODE(OGF_CONTROLLER_BASEBAND, 0x33), "2122" 63 // Host_ACL_Data_Packet_Length:, Host_Synchronous_Data_Packet_Length:, Host_Total_Num_ACL_Data_Packets:, Host_Total_Num_Synchronous_Data_Packets: 64 }; 65 66 hci_cmd_t hci_read_bd_addr = { 67 OPCODE(OGF_INFORMATIONAL_PARAMETERS, 0x09), "" 68 // no params 69 }; 70 71 72 // the stack is here 73 static hci_stack_t hci_stack; 74 75 76 void bt_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){ 77 buffer[pos++] = value; 78 buffer[pos++] = value >> 8; 79 } 80 81 void bt_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){ 82 buffer[pos++] = value; 83 buffer[pos++] = value >> 8; 84 buffer[pos++] = value >> 16; 85 buffer[pos++] = value >> 24; 86 } 87 88 void bt_flip_addr(bd_addr_t dest, bd_addr_t src){ 89 dest[0] = src[5]; 90 dest[1] = src[4]; 91 dest[2] = src[3]; 92 dest[3] = src[2]; 93 dest[4] = src[1]; 94 dest[5] = src[0]; 95 } 96 97 void hexdump(void *data, int size){ 98 int i; 99 for (i=0; i<size;i++){ 100 printf("%02X ", ((uint8_t *)data)[i]); 101 } 102 printf("\n"); 103 } 104 105 #if 0 106 static void *hci_daemon_thread(void *arg){ 107 printf("HCI Daemon started\n"); 108 hci_run(transport, &config); 109 return NULL; 110 } 111 #endif 112 113 /** 114 * Linked link list 115 */ 116 117 /** 118 * get link for given address 119 * 120 * @return connection OR NULL, if not found 121 */ 122 #if 0 123 static hci_connection_t *link_for_addr(bd_addr_t addr){ 124 return NULL; 125 } 126 #endif 127 128 /** 129 * Handler called by HCI transport 130 */ 131 static void dummy_handler(uint8_t *packet, int size){ 132 } 133 134 static void acl_handler(uint8_t *packet, int size){ 135 hci_stack.acl_packet_handler(packet, size); 136 137 // execute main loop 138 hci_run(); 139 } 140 141 static void event_handler(uint8_t *packet, int size){ 142 bd_addr_t addr; 143 144 // Get Num_HCI_Command_Packets 145 if (packet[0] == HCI_EVENT_COMMAND_COMPLETE || 146 packet[0] == HCI_EVENT_COMMAND_STATUS){ 147 hci_stack.num_cmd_packets = packet[2]; 148 } 149 150 // handle BT initialization 151 if (hci_stack.state == HCI_STATE_INITIALIZING){ 152 // handle H4 synchronization loss on restart 153 // if (hci_stack.substate == 1 && packet[0] == HCI_EVENT_HARDWARE_ERROR){ 154 // hci_stack.substate = 0; 155 // } 156 // handle normal init sequence 157 if (hci_stack.substate % 2){ 158 // odd: waiting for event 159 if (packet[0] == HCI_EVENT_COMMAND_COMPLETE){ 160 hci_stack.substate++; 161 } 162 } 163 } 164 165 // link key request 166 if (packet[0] == HCI_EVENT_LINK_KEY_REQUEST){ 167 bt_flip_addr(addr, &packet[2]); 168 hci_send_cmd(&hci_link_key_request_negative_reply, &addr); 169 return; 170 } 171 172 // pin code request 173 if (packet[0] == HCI_EVENT_PIN_CODE_REQUEST){ 174 bt_flip_addr(addr, &packet[2]); 175 hci_send_cmd(&hci_pin_code_request_reply, &addr, 4, "1234"); 176 } 177 178 hci_stack.event_packet_handler(packet, size); 179 180 // execute main loop 181 hci_run(); 182 } 183 184 /** Register L2CAP handlers */ 185 void hci_register_event_packet_handler(void (*handler)(uint8_t *packet, int size)){ 186 hci_stack.event_packet_handler = handler; 187 } 188 void hci_register_acl_packet_handler (void (*handler)(uint8_t *packet, int size)){ 189 hci_stack.acl_packet_handler = handler; 190 } 191 192 static int null_control_function(void *config){ 193 return 0; 194 } 195 static const char * null_control_name(void *config){ 196 return "Hardware unknown"; 197 } 198 199 static bt_control_t null_control = { 200 null_control_function, 201 null_control_function, 202 null_control_function, 203 null_control_name 204 }; 205 206 void hci_init(hci_transport_t *transport, void *config, bt_control_t *control){ 207 208 // reference to use transport layer implementation 209 hci_stack.hci_transport = transport; 210 211 // references to used control implementation 212 if (control) { 213 hci_stack.control = control; 214 } else { 215 hci_stack.control = &null_control; 216 } 217 218 // reference to used config 219 hci_stack.config = config; 220 221 // empty cmd buffer 222 hci_stack.hci_cmd_buffer = malloc(3+255); 223 224 // higher level handler 225 hci_stack.event_packet_handler = dummy_handler; 226 hci_stack.acl_packet_handler = dummy_handler; 227 228 // register packet handlers with transport 229 transport->register_event_packet_handler( event_handler); 230 transport->register_acl_packet_handler( acl_handler); 231 } 232 233 int hci_power_control(HCI_POWER_MODE power_mode){ 234 if (power_mode == HCI_POWER_ON) { 235 236 // set up state machine 237 hci_stack.num_cmd_packets = 1; // assume that one cmd can be sent 238 hci_stack.state = HCI_STATE_INITIALIZING; 239 hci_stack.substate = 0; 240 241 // power on 242 hci_stack.control->on(hci_stack.config); 243 244 // open low-level device 245 hci_stack.hci_transport->open(hci_stack.config); 246 247 } else if (power_mode == HCI_POWER_OFF){ 248 249 // close low-level device 250 hci_stack.hci_transport->close(hci_stack.config); 251 252 // power off 253 hci_stack.control->off(hci_stack.config); 254 } 255 256 // trigger next/first action 257 hci_run(); 258 259 return 0; 260 } 261 262 uint32_t hci_run(){ 263 uint8_t micro_packet; 264 switch (hci_stack.state){ 265 case HCI_STATE_INITIALIZING: 266 if (hci_stack.substate % 2) { 267 // odd: waiting for command completion 268 return 0; 269 } 270 if (hci_stack.num_cmd_packets == 0) { 271 // cannot send command yet 272 return 0; 273 } 274 switch (hci_stack.substate/2){ 275 case 0: 276 hci_send_cmd(&hci_reset); 277 break; 278 case 1: 279 // ca. 15 sec 280 hci_send_cmd(&hci_write_page_timeout, 0x6000); 281 break; 282 case 2: 283 // done. 284 hci_stack.state = HCI_STATE_WORKING; 285 micro_packet = BTSTACK_EVENT_HCI_WORKING; 286 hci_stack.event_packet_handler(µ_packet, 1); 287 break; 288 default: 289 break; 290 } 291 hci_stack.substate++; 292 break; 293 default: 294 break; 295 } 296 297 // don't check for timetous yet 298 return 0; 299 } 300 301 302 int hci_send_acl_packet(uint8_t *packet, int size){ 303 return hci_stack.hci_transport->send_acl_packet(packet, size); 304 } 305 306 307 /** 308 * pre: numcmds >= 0 - it's allowed to send a command to the controller 309 */ 310 int hci_send_cmd(hci_cmd_t *cmd, ...){ 311 uint8_t * hci_cmd_buffer = hci_stack.hci_cmd_buffer; 312 hci_cmd_buffer[0] = cmd->opcode & 0xff; 313 hci_cmd_buffer[1] = cmd->opcode >> 8; 314 int pos = 3; 315 316 va_list argptr; 317 va_start(argptr, cmd); 318 const char *format = cmd->format; 319 uint16_t word; 320 uint32_t longword; 321 uint8_t * ptr; 322 while (*format) { 323 switch(*format) { 324 case '1': // 8 bit value 325 case '2': // 16 bit value 326 case 'H': // hci_handle 327 word = va_arg(argptr, int); // minimal va_arg is int: 2 bytes on 8+16 bit CPUs 328 hci_cmd_buffer[pos++] = word & 0xff; 329 if (*format == '2') { 330 hci_cmd_buffer[pos++] = word >> 8; 331 } else if (*format == 'H') { 332 // TODO 333 } 334 break; 335 case '3': 336 case '4': 337 longword = va_arg(argptr, uint32_t); 338 // longword = va_arg(argptr, int); 339 hci_cmd_buffer[pos++] = longword; 340 hci_cmd_buffer[pos++] = longword >> 8; 341 hci_cmd_buffer[pos++] = longword >> 16; 342 if (*format == '4'){ 343 hci_cmd_buffer[pos++] = longword >> 24; 344 } 345 break; 346 case 'B': // bt-addr 347 ptr = va_arg(argptr, uint8_t *); 348 hci_cmd_buffer[pos++] = ptr[5]; 349 hci_cmd_buffer[pos++] = ptr[4]; 350 hci_cmd_buffer[pos++] = ptr[3]; 351 hci_cmd_buffer[pos++] = ptr[2]; 352 hci_cmd_buffer[pos++] = ptr[1]; 353 hci_cmd_buffer[pos++] = ptr[0]; 354 break; 355 case 'P': // c string passed as pascal string with leading 1-byte len 356 ptr = va_arg(argptr, uint8_t *); 357 memcpy(&hci_cmd_buffer[pos], ptr, 16); 358 pos += 16; 359 break; 360 default: 361 break; 362 } 363 format++; 364 }; 365 va_end(argptr); 366 hci_cmd_buffer[2] = pos - 3; 367 // send packet 368 hci_stack.num_cmd_packets--; 369 return hci_stack.hci_transport->send_cmd_packet(hci_cmd_buffer, pos); 370 }