1 /* 2 * Copyright (C) 2009-2012 by Matthias Ringwald 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at [email protected] 34 * 35 */ 36 37 /* 38 * hci.c 39 * 40 * Created by Matthias Ringwald on 4/29/09. 41 * 42 */ 43 44 #include "btstack-config.h" 45 46 #include "hci.h" 47 #include "gap.h" 48 49 #include <stdarg.h> 50 #include <string.h> 51 #include <stdio.h> 52 53 #ifndef EMBEDDED 54 #include <unistd.h> // gethostbyname 55 #include <btstack/version.h> 56 #endif 57 58 #include "btstack_memory.h" 59 #include "debug.h" 60 #include "hci_dump.h" 61 62 #include <btstack/hci_cmds.h> 63 64 #define HCI_CONNECTION_TIMEOUT_MS 10000 65 66 #define HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP 11 67 68 #ifdef USE_BLUETOOL 69 #include "bt_control_iphone.h" 70 #endif 71 72 static void hci_update_scan_enable(void); 73 static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection); 74 static void hci_connection_timeout_handler(timer_source_t *timer); 75 static void hci_connection_timestamp(hci_connection_t *connection); 76 77 // the STACK is here 78 #ifndef HAVE_MALLOC 79 static hci_stack_t hci_stack_static; 80 #endif 81 static hci_stack_t * hci_stack = NULL; 82 83 // test helper 84 static uint8_t disable_l2cap_timeouts = 0; 85 86 /** 87 * create connection for given address 88 * 89 * @return connection OR NULL, if no memory left 90 */ 91 static hci_connection_t * create_connection_for_bd_addr_and_type(bd_addr_t addr, bd_addr_type_t addr_type){ 92 93 printf("create_connection_for_addr %s\n", bd_addr_to_str(addr)); 94 hci_connection_t * conn = (hci_connection_t *) btstack_memory_hci_connection_get(); 95 if (!conn) return NULL; 96 BD_ADDR_COPY(conn->address, addr); 97 conn->address_type = addr_type; 98 conn->con_handle = 0xffff; 99 conn->authentication_flags = AUTH_FLAGS_NONE; 100 conn->bonding_flags = 0; 101 conn->requested_security_level = LEVEL_0; 102 linked_item_set_user(&conn->timeout.item, conn); 103 conn->timeout.process = hci_connection_timeout_handler; 104 hci_connection_timestamp(conn); 105 conn->acl_recombination_length = 0; 106 conn->acl_recombination_pos = 0; 107 conn->num_acl_packets_sent = 0; 108 linked_list_add(&hci_stack->connections, (linked_item_t *) conn); 109 return conn; 110 } 111 112 /** 113 * get connection for a given handle 114 * 115 * @return connection OR NULL, if not found 116 */ 117 hci_connection_t * hci_connection_for_handle(hci_con_handle_t con_handle){ 118 linked_item_t *it; 119 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ 120 if ( ((hci_connection_t *) it)->con_handle == con_handle){ 121 return (hci_connection_t *) it; 122 } 123 } 124 return NULL; 125 } 126 127 /** 128 * get connection for given address 129 * 130 * @return connection OR NULL, if not found 131 */ 132 hci_connection_t * hci_connection_for_bd_addr_and_type(bd_addr_t * addr, bd_addr_type_t addr_type){ 133 linked_item_t *it; 134 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ 135 hci_connection_t * connection = (hci_connection_t *) it; 136 if (connection->address_type != addr_type) continue; 137 if (memcmp(addr, connection->address, 6) != 0) continue; 138 return connection; 139 } 140 return NULL; 141 } 142 143 static void hci_connection_timeout_handler(timer_source_t *timer){ 144 hci_connection_t * connection = (hci_connection_t *) linked_item_get_user(&timer->item); 145 #ifdef HAVE_TIME 146 struct timeval tv; 147 gettimeofday(&tv, NULL); 148 if (tv.tv_sec >= connection->timestamp.tv_sec + HCI_CONNECTION_TIMEOUT_MS/1000) { 149 // connections might be timed out 150 hci_emit_l2cap_check_timeout(connection); 151 } 152 #endif 153 #ifdef HAVE_TICK 154 if (embedded_get_ticks() > connection->timestamp + embedded_ticks_for_ms(HCI_CONNECTION_TIMEOUT_MS)){ 155 // connections might be timed out 156 hci_emit_l2cap_check_timeout(connection); 157 } 158 #endif 159 run_loop_set_timer(timer, HCI_CONNECTION_TIMEOUT_MS); 160 run_loop_add_timer(timer); 161 } 162 163 static void hci_connection_timestamp(hci_connection_t *connection){ 164 #ifdef HAVE_TIME 165 gettimeofday(&connection->timestamp, NULL); 166 #endif 167 #ifdef HAVE_TICK 168 connection->timestamp = embedded_get_ticks(); 169 #endif 170 } 171 172 173 inline static void connectionSetAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ 174 conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags | flags); 175 } 176 177 inline static void connectionClearAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ 178 conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags & ~flags); 179 } 180 181 182 /** 183 * add authentication flags and reset timer 184 * @note: assumes classic connection 185 */ 186 static void hci_add_connection_flags_for_flipped_bd_addr(uint8_t *bd_addr, hci_authentication_flags_t flags){ 187 bd_addr_t addr; 188 bt_flip_addr(addr, *(bd_addr_t *) bd_addr); 189 hci_connection_t * conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 190 if (conn) { 191 connectionSetAuthenticationFlags(conn, flags); 192 hci_connection_timestamp(conn); 193 } 194 } 195 196 int hci_authentication_active_for_handle(hci_con_handle_t handle){ 197 hci_connection_t * conn = hci_connection_for_handle(handle); 198 if (!conn) return 0; 199 if (conn->authentication_flags & LEGACY_PAIRING_ACTIVE) return 1; 200 if (conn->authentication_flags & SSP_PAIRING_ACTIVE) return 1; 201 return 0; 202 } 203 204 void hci_drop_link_key_for_bd_addr(bd_addr_t *addr){ 205 if (hci_stack->remote_device_db) { 206 hci_stack->remote_device_db->delete_link_key(addr); 207 } 208 } 209 210 int hci_is_le_connection(hci_connection_t * connection){ 211 return connection->address_type == BD_ADDR_TYPE_LE_PUBLIC || 212 connection->address_type == BD_ADDR_TYPE_LE_RANDOM; 213 } 214 215 216 /** 217 * count connections 218 */ 219 static int nr_hci_connections(void){ 220 int count = 0; 221 linked_item_t *it; 222 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next, count++); 223 return count; 224 } 225 226 /** 227 * Dummy handler called by HCI 228 */ 229 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 230 } 231 232 uint8_t hci_number_outgoing_packets(hci_con_handle_t handle){ 233 hci_connection_t * connection = hci_connection_for_handle(handle); 234 if (!connection) { 235 log_error("hci_number_outgoing_packets connectino for handle %u does not exist!\n", handle); 236 return 0; 237 } 238 return connection->num_acl_packets_sent; 239 } 240 241 uint8_t hci_number_free_acl_slots(){ 242 uint8_t free_slots = hci_stack->total_num_acl_packets; 243 linked_item_t *it; 244 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ 245 hci_connection_t * connection = (hci_connection_t *) it; 246 if (free_slots < connection->num_acl_packets_sent) { 247 log_error("hci_number_free_acl_slots: sum of outgoing packets > total acl packets!\n"); 248 return 0; 249 } 250 free_slots -= connection->num_acl_packets_sent; 251 } 252 return free_slots; 253 } 254 255 int hci_can_send_packet_now(uint8_t packet_type){ 256 257 // check for async hci transport implementations 258 if (hci_stack->hci_transport->can_send_packet_now){ 259 if (!hci_stack->hci_transport->can_send_packet_now(packet_type)){ 260 return 0; 261 } 262 } 263 264 // check regular Bluetooth flow control 265 switch (packet_type) { 266 case HCI_ACL_DATA_PACKET: 267 return hci_number_free_acl_slots(); 268 case HCI_COMMAND_DATA_PACKET: 269 return hci_stack->num_cmd_packets; 270 default: 271 return 0; 272 } 273 } 274 275 // same as hci_can_send_packet_now, but also checks if packet buffer is free for use 276 int hci_can_send_packet_now_using_packet_buffer(uint8_t packet_type){ 277 if (hci_stack->hci_packet_buffer_reserved) return 0; 278 return hci_can_send_packet_now(packet_type); 279 } 280 281 // used for internal checks in l2cap[-le].c 282 int hci_is_packet_buffer_reserved(void){ 283 return hci_stack->hci_packet_buffer_reserved; 284 } 285 286 // reserves outgoing packet buffer. @returns 1 if successful 287 int hci_reserve_packet_buffer(void){ 288 if (hci_stack->hci_packet_buffer_reserved) return 0; 289 hci_stack->hci_packet_buffer_reserved = 1; 290 return 1; 291 } 292 293 void hci_release_packet_buffer(void){ 294 hci_stack->hci_packet_buffer_reserved = 0; 295 } 296 297 // assumption: synchronous implementations don't provide can_send_packet_now as they don't keep the buffer after the call 298 int hci_transport_synchronous(void){ 299 return hci_stack->hci_transport->can_send_packet_now == NULL; 300 } 301 302 int hci_send_acl_packet(uint8_t *packet, int size){ 303 304 // check for free places on BT module 305 if (!hci_number_free_acl_slots()) return BTSTACK_ACL_BUFFERS_FULL; 306 307 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); 308 hci_connection_t *connection = hci_connection_for_handle( con_handle); 309 if (!connection) return 0; 310 hci_connection_timestamp(connection); 311 312 // count packet 313 connection->num_acl_packets_sent++; 314 // log_info("hci_send_acl_packet - handle %u, sent %u\n", connection->con_handle, connection->num_acl_packets_sent); 315 316 // send packet 317 int err = hci_stack->hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size); 318 319 // free packet buffer for synchronous transport implementations 320 if (hci_transport_synchronous() && (packet == hci_stack->hci_packet_buffer)){ 321 hci_stack->hci_packet_buffer_reserved = 0; 322 } 323 324 return err; 325 } 326 327 static void acl_handler(uint8_t *packet, int size){ 328 329 // log_info("acl_handler: size %u", size); 330 331 // get info 332 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); 333 hci_connection_t *conn = hci_connection_for_handle(con_handle); 334 uint8_t acl_flags = READ_ACL_FLAGS(packet); 335 uint16_t acl_length = READ_ACL_LENGTH(packet); 336 337 // ignore non-registered handle 338 if (!conn){ 339 log_error( "hci.c: acl_handler called with non-registered handle %u!\n" , con_handle); 340 return; 341 } 342 343 // assert packet is complete 344 if (acl_length + 4 != size){ 345 log_error("hci.c: acl_handler called with ACL packet of wrong size %u, expected %u => dropping packet", size, acl_length + 4); 346 return; 347 } 348 349 // update idle timestamp 350 hci_connection_timestamp(conn); 351 352 // handle different packet types 353 switch (acl_flags & 0x03) { 354 355 case 0x01: // continuation fragment 356 357 // sanity check 358 if (conn->acl_recombination_pos == 0) { 359 log_error( "ACL Cont Fragment but no first fragment for handle 0x%02x\n", con_handle); 360 return; 361 } 362 363 // append fragment payload (header already stored) 364 memcpy(&conn->acl_recombination_buffer[conn->acl_recombination_pos], &packet[4], acl_length ); 365 conn->acl_recombination_pos += acl_length; 366 367 // log_error( "ACL Cont Fragment: acl_len %u, combined_len %u, l2cap_len %u\n", acl_length, 368 // conn->acl_recombination_pos, conn->acl_recombination_length); 369 370 // forward complete L2CAP packet if complete. 371 if (conn->acl_recombination_pos >= conn->acl_recombination_length + 4 + 4){ // pos already incl. ACL header 372 373 hci_stack->packet_handler(HCI_ACL_DATA_PACKET, conn->acl_recombination_buffer, conn->acl_recombination_pos); 374 // reset recombination buffer 375 conn->acl_recombination_length = 0; 376 conn->acl_recombination_pos = 0; 377 } 378 break; 379 380 case 0x02: { // first fragment 381 382 // sanity check 383 if (conn->acl_recombination_pos) { 384 log_error( "ACL First Fragment but data in buffer for handle 0x%02x\n", con_handle); 385 return; 386 } 387 388 // peek into L2CAP packet! 389 uint16_t l2cap_length = READ_L2CAP_LENGTH( packet ); 390 391 // log_info( "ACL First Fragment: acl_len %u, l2cap_len %u\n", acl_length, l2cap_length); 392 393 // compare fragment size to L2CAP packet size 394 if (acl_length >= l2cap_length + 4){ 395 396 // forward fragment as L2CAP packet 397 hci_stack->packet_handler(HCI_ACL_DATA_PACKET, packet, acl_length + 4); 398 399 } else { 400 // store first fragment and tweak acl length for complete package 401 memcpy(conn->acl_recombination_buffer, packet, acl_length + 4); 402 conn->acl_recombination_pos = acl_length + 4; 403 conn->acl_recombination_length = l2cap_length; 404 bt_store_16(conn->acl_recombination_buffer, 2, l2cap_length +4); 405 } 406 break; 407 408 } 409 default: 410 log_error( "hci.c: acl_handler called with invalid packet boundary flags %u\n", acl_flags & 0x03); 411 return; 412 } 413 414 // execute main loop 415 hci_run(); 416 } 417 418 static void hci_shutdown_connection(hci_connection_t *conn){ 419 log_info("Connection closed: handle %u, %s\n", conn->con_handle, bd_addr_to_str(conn->address)); 420 421 run_loop_remove_timer(&conn->timeout); 422 423 linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); 424 btstack_memory_hci_connection_free( conn ); 425 426 // now it's gone 427 hci_emit_nr_connections_changed(); 428 } 429 430 static const uint16_t packet_type_sizes[] = { 431 0, HCI_ACL_2DH1_SIZE, HCI_ACL_3DH1_SIZE, HCI_ACL_DM1_SIZE, 432 HCI_ACL_DH1_SIZE, 0, 0, 0, 433 HCI_ACL_2DH3_SIZE, HCI_ACL_3DH3_SIZE, HCI_ACL_DM3_SIZE, HCI_ACL_DH3_SIZE, 434 HCI_ACL_2DH5_SIZE, HCI_ACL_3DH5_SIZE, HCI_ACL_DM5_SIZE, HCI_ACL_DH5_SIZE 435 }; 436 static const uint8_t packet_type_feature_requirement_bit[] = { 437 0, // 3 slot packets 438 1, // 5 slot packets 439 25, // EDR 2 mpbs 440 26, // EDR 3 mbps 441 39, // 3 slot EDR packts 442 40, // 5 slot EDR packet 443 }; 444 static const uint16_t packet_type_feature_packet_mask[] = { 445 0x0f00, // 3 slot packets 446 0xf000, // 5 slot packets 447 0x1102, // EDR 2 mpbs 448 0x2204, // EDR 3 mbps 449 0x0300, // 3 slot EDR packts 450 0x3000, // 5 slot EDR packet 451 }; 452 453 static uint16_t hci_acl_packet_types_for_buffer_size_and_local_features(uint16_t buffer_size, uint8_t * local_supported_features){ 454 // enable packet types based on size 455 uint16_t packet_types = 0; 456 int i; 457 for (i=0;i<16;i++){ 458 if (packet_type_sizes[i] == 0) continue; 459 if (packet_type_sizes[i] <= buffer_size){ 460 packet_types |= 1 << i; 461 } 462 } 463 // disable packet types due to missing local supported features 464 for (i=0;i<sizeof(packet_type_feature_requirement_bit);i++){ 465 int bit_idx = packet_type_feature_requirement_bit[i]; 466 int feature_set = (local_supported_features[bit_idx >> 3] & (1<<(bit_idx & 7))) != 0; 467 if (feature_set) continue; 468 log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, packet_type_feature_packet_mask[i]); 469 packet_types &= ~packet_type_feature_packet_mask[i]; 470 } 471 // flip bits for "may not be used" 472 packet_types ^= 0x3306; 473 return packet_types; 474 } 475 476 uint16_t hci_usable_acl_packet_types(void){ 477 return hci_stack->packet_types; 478 } 479 480 uint8_t* hci_get_outgoing_packet_buffer(void){ 481 // hci packet buffer is >= acl data packet length 482 return hci_stack->hci_packet_buffer; 483 } 484 485 uint16_t hci_max_acl_data_packet_length(void){ 486 return hci_stack->acl_data_packet_length; 487 } 488 489 int hci_non_flushable_packet_boundary_flag_supported(void){ 490 // No. 54, byte 6, bit 6 491 return (hci_stack->local_supported_features[6] & (1 << 6)) != 0; 492 } 493 494 int hci_ssp_supported(void){ 495 // No. 51, byte 6, bit 3 496 return (hci_stack->local_supported_features[6] & (1 << 3)) != 0; 497 } 498 499 int hci_classic_supported(void){ 500 // No. 37, byte 4, bit 5, = No BR/EDR Support 501 return (hci_stack->local_supported_features[4] & (1 << 5)) == 0; 502 } 503 504 int hci_le_supported(void){ 505 #ifdef HAVE_BLE 506 // No. 37, byte 4, bit 6 = LE Supported (Controller) 507 return (hci_stack->local_supported_features[4] & (1 << 6)) != 0; 508 #else 509 return 0; 510 #endif 511 } 512 513 // get addr type and address used in advertisement packets 514 void hci_le_advertisement_address(uint8_t * addr_type, bd_addr_t * addr){ 515 *addr_type = hci_stack->adv_addr_type; 516 if (hci_stack->adv_addr_type){ 517 memcpy(addr, hci_stack->adv_address, 6); 518 } else { 519 memcpy(addr, hci_stack->local_bd_addr, 6); 520 } 521 } 522 523 #ifdef HAVE_BLE 524 static void le_handle_advertisement_report(uint8_t *packet, int size){ 525 int num_reports = packet[3]; 526 int i; 527 int total_data_length = 0; 528 int data_offset = 0; 529 530 for (i=0; i<num_reports;i++){ 531 total_data_length += packet[4+num_reports*8+i]; 532 } 533 534 for (i=0; i<num_reports;i++){ 535 int pos = 0; 536 uint8_t data_length = packet[4+num_reports*8+i]; 537 uint8_t event_size = 10 + data_length; 538 uint8_t event[2 + event_size ]; 539 event[pos++] = GAP_LE_ADVERTISING_REPORT; 540 event[pos++] = event_size; 541 event[pos++] = packet[4+i]; // event_type; 542 event[pos++] = packet[4+num_reports+i]; // address_type; 543 memcpy(&event[pos], &packet[4+num_reports*2+i*6], 6); // bt address 544 pos += 6; 545 event[pos++] = packet[4+num_reports*9+total_data_length + i]; 546 event[pos++] = data_length; 547 memcpy(&event[pos], &packet[4+num_reports*9+data_offset], data_length); 548 data_offset += data_length; 549 pos += data_length; 550 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 551 } 552 } 553 #endif 554 555 // avoid huge local variables 556 #ifndef EMBEDDED 557 static device_name_t device_name; 558 #endif 559 static void event_handler(uint8_t *packet, int size){ 560 561 uint16_t event_length = packet[1]; 562 563 // assert packet is complete 564 if (size != event_length + 2){ 565 log_error("hci.c: event_handler called with event packet of wrong size %u, expected %u => dropping packet", size, event_length + 2); 566 return; 567 } 568 569 bd_addr_t addr; 570 bd_addr_type_t addr_type; 571 uint8_t link_type; 572 hci_con_handle_t handle; 573 hci_connection_t * conn; 574 int i; 575 576 // printf("HCI:EVENT:%02x\n", packet[0]); 577 578 switch (packet[0]) { 579 580 case HCI_EVENT_COMMAND_COMPLETE: 581 // get num cmd packets 582 // log_info("HCI_EVENT_COMMAND_COMPLETE cmds old %u - new %u\n", hci_stack->num_cmd_packets, packet[2]); 583 hci_stack->num_cmd_packets = packet[2]; 584 585 if (COMMAND_COMPLETE_EVENT(packet, hci_read_buffer_size)){ 586 // from offset 5 587 // status 588 // "The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets" 589 hci_stack->acl_data_packet_length = READ_BT_16(packet, 6); 590 // ignore: SCO data packet len (8) 591 hci_stack->total_num_acl_packets = packet[9]; 592 // ignore: total num SCO packets 593 if (hci_stack->state == HCI_STATE_INITIALIZING){ 594 // determine usable ACL payload size 595 if (HCI_ACL_PAYLOAD_SIZE < hci_stack->acl_data_packet_length){ 596 hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; 597 } 598 log_info("hci_read_buffer_size: used size %u, count %u\n", 599 hci_stack->acl_data_packet_length, hci_stack->total_num_acl_packets); 600 } 601 } 602 #ifdef HAVE_BLE 603 if (COMMAND_COMPLETE_EVENT(packet, hci_le_read_buffer_size)){ 604 hci_stack->le_data_packet_length = READ_BT_16(packet, 6); 605 hci_stack->total_num_le_packets = packet[8]; 606 log_info("hci_le_read_buffer_size: size %u, count %u\n", hci_stack->le_data_packet_length, hci_stack->total_num_le_packets); 607 608 // use LE buffers if no clasic buffers have been reported 609 if (hci_stack->total_num_acl_packets == 0){ 610 log_info("use le buffers instead of classic ones"); 611 hci_stack->total_num_acl_packets = hci_stack->total_num_le_packets; 612 hci_stack->acl_data_packet_length = hci_stack->le_data_packet_length; 613 // determine usable ACL payload size 614 if (HCI_ACL_PAYLOAD_SIZE < hci_stack->acl_data_packet_length){ 615 hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; 616 } 617 } 618 } 619 #endif 620 // Dump local address 621 if (COMMAND_COMPLETE_EVENT(packet, hci_read_bd_addr)) { 622 bt_flip_addr(hci_stack->local_bd_addr, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1]); 623 log_info("Local Address, Status: 0x%02x: Addr: %s\n", 624 packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE], bd_addr_to_str(hci_stack->local_bd_addr)); 625 } 626 if (COMMAND_COMPLETE_EVENT(packet, hci_write_scan_enable)){ 627 hci_emit_discoverable_enabled(hci_stack->discoverable); 628 } 629 // Note: HCI init checks 630 if (COMMAND_COMPLETE_EVENT(packet, hci_read_local_supported_features)){ 631 memcpy(hci_stack->local_supported_features, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1], 8); 632 log_info("Local Supported Features: 0x%02x%02x%02x%02x%02x%02x%02x%02x", 633 hci_stack->local_supported_features[0], hci_stack->local_supported_features[1], 634 hci_stack->local_supported_features[2], hci_stack->local_supported_features[3], 635 hci_stack->local_supported_features[4], hci_stack->local_supported_features[5], 636 hci_stack->local_supported_features[6], hci_stack->local_supported_features[7]); 637 638 // determine usable ACL packet types based buffer size and supported features 639 hci_stack->packet_types = hci_acl_packet_types_for_buffer_size_and_local_features(hci_stack->acl_data_packet_length, &hci_stack->local_supported_features[0]); 640 log_info("packet types %04x", hci_stack->packet_types); 641 642 // Classic/LE 643 log_info("BR/EDR support %u, LE support %u", hci_classic_supported(), hci_le_supported()); 644 } 645 break; 646 647 case HCI_EVENT_COMMAND_STATUS: 648 // get num cmd packets 649 // log_info("HCI_EVENT_COMMAND_STATUS cmds - old %u - new %u\n", hci_stack->num_cmd_packets, packet[3]); 650 hci_stack->num_cmd_packets = packet[3]; 651 break; 652 653 case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS: 654 for (i=0; i<packet[2];i++){ 655 handle = READ_BT_16(packet, 3 + 2*i); 656 uint16_t num_packets = READ_BT_16(packet, 3 + packet[2]*2 + 2*i); 657 conn = hci_connection_for_handle(handle); 658 if (!conn){ 659 log_error("hci_number_completed_packet lists unused con handle %u\n", handle); 660 continue; 661 } 662 conn->num_acl_packets_sent -= num_packets; 663 // log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u\n", num_packets, handle, conn->num_acl_packets_sent); 664 } 665 break; 666 667 case HCI_EVENT_CONNECTION_REQUEST: 668 bt_flip_addr(addr, &packet[2]); 669 // TODO: eval COD 8-10 670 link_type = packet[11]; 671 log_info("Connection_incoming: %s, type %u\n", bd_addr_to_str(addr), link_type); 672 if (link_type == 1) { // ACL 673 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 674 if (!conn) { 675 conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 676 } 677 if (!conn) { 678 // CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D) 679 hci_stack->decline_reason = 0x0d; 680 BD_ADDR_COPY(hci_stack->decline_addr, addr); 681 break; 682 } 683 conn->state = RECEIVED_CONNECTION_REQUEST; 684 hci_run(); 685 } else { 686 // SYNCHRONOUS CONNECTION LIMIT TO A DEVICE EXCEEDED (0X0A) 687 hci_stack->decline_reason = 0x0a; 688 BD_ADDR_COPY(hci_stack->decline_addr, addr); 689 } 690 break; 691 692 case HCI_EVENT_CONNECTION_COMPLETE: 693 // Connection management 694 bt_flip_addr(addr, &packet[5]); 695 log_info("Connection_complete (status=%u) %s\n", packet[2], bd_addr_to_str(addr)); 696 addr_type = BD_ADDR_TYPE_CLASSIC; 697 conn = hci_connection_for_bd_addr_and_type(&addr, addr_type); 698 if (conn) { 699 if (!packet[2]){ 700 conn->state = OPEN; 701 conn->con_handle = READ_BT_16(packet, 3); 702 conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES; 703 704 // restart timer 705 run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); 706 run_loop_add_timer(&conn->timeout); 707 708 log_info("New connection: handle %u, %s\n", conn->con_handle, bd_addr_to_str(conn->address)); 709 710 hci_emit_nr_connections_changed(); 711 } else { 712 // notify client if dedicated bonding 713 if (conn->bonding_flags & BONDING_DEDICATED){ 714 hci_emit_dedicated_bonding_result(conn, packet[2]); 715 } 716 717 // connection failed, remove entry 718 linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); 719 btstack_memory_hci_connection_free( conn ); 720 721 // if authentication error, also delete link key 722 if (packet[2] == 0x05) { 723 hci_drop_link_key_for_bd_addr(&addr); 724 } 725 } 726 } 727 break; 728 729 case HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE: 730 handle = READ_BT_16(packet, 3); 731 conn = hci_connection_for_handle(handle); 732 if (!conn) break; 733 if (!packet[2]){ 734 uint8_t * features = &packet[5]; 735 if (features[6] & (1 << 3)){ 736 conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP; 737 } 738 } 739 conn->bonding_flags |= BONDING_RECEIVED_REMOTE_FEATURES; 740 log_info("HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE, bonding flags %x", conn->bonding_flags); 741 if (conn->bonding_flags & BONDING_DEDICATED){ 742 conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; 743 } 744 break; 745 746 case HCI_EVENT_LINK_KEY_REQUEST: 747 log_info("HCI_EVENT_LINK_KEY_REQUEST\n"); 748 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_LINK_KEY_REQUEST); 749 // non-bondable mode: link key negative reply will be sent by HANDLE_LINK_KEY_REQUEST 750 if (hci_stack->bondable && !hci_stack->remote_device_db) break; 751 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], HANDLE_LINK_KEY_REQUEST); 752 hci_run(); 753 // request handled by hci_run() as HANDLE_LINK_KEY_REQUEST gets set 754 return; 755 756 case HCI_EVENT_LINK_KEY_NOTIFICATION: { 757 bt_flip_addr(addr, &packet[2]); 758 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 759 if (!conn) break; 760 conn->authentication_flags |= RECV_LINK_KEY_NOTIFICATION; 761 link_key_type_t link_key_type = (link_key_type_t)packet[24]; 762 // Change Connection Encryption keeps link key type 763 if (link_key_type != CHANGED_COMBINATION_KEY){ 764 conn->link_key_type = link_key_type; 765 } 766 if (!hci_stack->remote_device_db) break; 767 hci_stack->remote_device_db->put_link_key(&addr, (link_key_t *) &packet[8], conn->link_key_type); 768 // still forward event to allow dismiss of pairing dialog 769 break; 770 } 771 772 case HCI_EVENT_PIN_CODE_REQUEST: 773 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], LEGACY_PAIRING_ACTIVE); 774 // non-bondable mode: pin code negative reply will be sent 775 if (!hci_stack->bondable){ 776 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], DENY_PIN_CODE_REQUEST); 777 hci_run(); 778 return; 779 } 780 // PIN CODE REQUEST means the link key request didn't succee -> delete stored link key 781 if (!hci_stack->remote_device_db) break; 782 bt_flip_addr(addr, &packet[2]); 783 hci_stack->remote_device_db->delete_link_key(&addr); 784 break; 785 786 case HCI_EVENT_IO_CAPABILITY_REQUEST: 787 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_IO_CAPABILITIES_REQUEST); 788 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_IO_CAPABILITIES_REPLY); 789 break; 790 791 case HCI_EVENT_USER_CONFIRMATION_REQUEST: 792 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); 793 if (!hci_stack->ssp_auto_accept) break; 794 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_CONFIRM_REPLY); 795 break; 796 797 case HCI_EVENT_USER_PASSKEY_REQUEST: 798 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); 799 if (!hci_stack->ssp_auto_accept) break; 800 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_PASSKEY_REPLY); 801 break; 802 803 case HCI_EVENT_ENCRYPTION_CHANGE: 804 handle = READ_BT_16(packet, 3); 805 conn = hci_connection_for_handle(handle); 806 if (!conn) break; 807 if (packet[2] == 0) { 808 if (packet[5]){ 809 conn->authentication_flags |= CONNECTION_ENCRYPTED; 810 } else { 811 conn->authentication_flags &= ~CONNECTION_ENCRYPTED; 812 } 813 } 814 hci_emit_security_level(handle, gap_security_level_for_connection(conn)); 815 break; 816 817 case HCI_EVENT_AUTHENTICATION_COMPLETE_EVENT: 818 handle = READ_BT_16(packet, 3); 819 conn = hci_connection_for_handle(handle); 820 if (!conn) break; 821 822 // dedicated bonding: send result and disconnect 823 if (conn->bonding_flags & BONDING_DEDICATED){ 824 conn->bonding_flags &= ~BONDING_DEDICATED; 825 hci_emit_dedicated_bonding_result( conn, packet[2]); 826 conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE; 827 break; 828 } 829 830 if (packet[2] == 0 && gap_security_level_for_link_key_type(conn->link_key_type) >= conn->requested_security_level){ 831 // link key sufficient for requested security 832 conn->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; 833 break; 834 } 835 // not enough 836 hci_emit_security_level(handle, gap_security_level_for_connection(conn)); 837 break; 838 839 #ifndef EMBEDDED 840 case HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE: 841 if (!hci_stack->remote_device_db) break; 842 if (packet[2]) break; // status not ok 843 bt_flip_addr(addr, &packet[3]); 844 // fix for invalid remote names - terminate on 0xff 845 for (i=0; i<248;i++){ 846 if (packet[9+i] == 0xff){ 847 packet[9+i] = 0; 848 break; 849 } 850 } 851 memset(&device_name, 0, sizeof(device_name_t)); 852 strncpy((char*) device_name, (char*) &packet[9], 248); 853 hci_stack->remote_device_db->put_name(&addr, &device_name); 854 break; 855 856 case HCI_EVENT_INQUIRY_RESULT: 857 case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI: 858 if (!hci_stack->remote_device_db) break; 859 // first send inq result packet 860 hci_stack->packet_handler(HCI_EVENT_PACKET, packet, size); 861 // then send cached remote names 862 for (i=0; i<packet[2];i++){ 863 bt_flip_addr(addr, &packet[3+i*6]); 864 if (hci_stack->remote_device_db->get_name(&addr, &device_name)){ 865 hci_emit_remote_name_cached(&addr, &device_name); 866 } 867 } 868 return; 869 #endif 870 871 case HCI_EVENT_DISCONNECTION_COMPLETE: 872 if (!packet[2]){ 873 handle = READ_BT_16(packet, 3); 874 hci_connection_t * conn = hci_connection_for_handle(handle); 875 if (conn) { 876 hci_shutdown_connection(conn); 877 } 878 } 879 break; 880 881 case HCI_EVENT_HARDWARE_ERROR: 882 if(hci_stack->control && hci_stack->control->hw_error){ 883 (*hci_stack->control->hw_error)(); 884 } 885 break; 886 887 case DAEMON_EVENT_HCI_PACKET_SENT: 888 // free packet buffer for asynchronous transport 889 if (hci_transport_synchronous()) break; 890 hci_stack->hci_packet_buffer_reserved = 0; 891 break; 892 893 #ifdef HAVE_BLE 894 case HCI_EVENT_LE_META: 895 switch (packet[2]){ 896 case HCI_SUBEVENT_LE_ADVERTISING_REPORT: 897 if (hci_stack->le_scanning_state != LE_SCANNING) break; 898 le_handle_advertisement_report(packet, size); 899 break; 900 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 901 // Connection management 902 bt_flip_addr(addr, &packet[8]); 903 addr_type = (bd_addr_type_t)packet[7]; 904 log_info("LE Connection_complete (status=%u) type %u, %s\n", packet[3], addr_type, bd_addr_to_str(addr)); 905 // LE connections are auto-accepted, so just create a connection if there isn't one already 906 conn = hci_connection_for_bd_addr_and_type(&addr, addr_type); 907 if (packet[3]){ 908 if (conn){ 909 // outgoing connection failed, remove entry 910 linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); 911 btstack_memory_hci_connection_free( conn ); 912 } 913 // if authentication error, also delete link key 914 if (packet[3] == 0x05) { 915 hci_drop_link_key_for_bd_addr(&addr); 916 } 917 break; 918 } 919 if (!conn){ 920 conn = create_connection_for_bd_addr_and_type(addr, addr_type); 921 } 922 if (!conn){ 923 // no memory 924 break; 925 } 926 927 conn->state = OPEN; 928 conn->con_handle = READ_BT_16(packet, 4); 929 930 // TODO: store - role, peer address type, conn_interval, conn_latency, supervision timeout, master clock 931 932 // restart timer 933 // run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); 934 // run_loop_add_timer(&conn->timeout); 935 936 log_info("New connection: handle %u, %s\n", conn->con_handle, bd_addr_to_str(conn->address)); 937 938 hci_emit_nr_connections_changed(); 939 break; 940 941 // printf("LE buffer size: %u, count %u\n", READ_BT_16(packet,6), packet[8]); 942 943 default: 944 break; 945 } 946 break; 947 #endif 948 949 default: 950 break; 951 } 952 953 // handle BT initialization 954 if (hci_stack->state == HCI_STATE_INITIALIZING){ 955 if (hci_stack->substate % 2){ 956 // odd: waiting for event 957 if (packet[0] == HCI_EVENT_COMMAND_COMPLETE || packet[0] == HCI_EVENT_COMMAND_STATUS){ 958 // wait for explicit COMMAND COMPLETE on RESET 959 if (hci_stack->substate > 1 || COMMAND_COMPLETE_EVENT(packet, hci_reset)) { 960 hci_stack->substate++; 961 } 962 } 963 964 // HACK to deal with duplicate HCI Reset Complete events seen on cheapo CSR8510 A10 USB Dongle 965 if (COMMAND_COMPLETE_EVENT(packet, hci_reset)){ 966 if (hci_stack->state == HCI_STATE_INITIALIZING) { 967 if (hci_stack->config == 0 || ((hci_uart_config_t *)hci_stack->config)->baudrate_main == 0){ 968 hci_stack->substate = 6; // >> 1 = 3 969 } else { 970 hci_stack->substate = 2; // >> 1 = 1 971 } 972 } 973 } 974 } 975 } 976 977 // help with BT sleep 978 if (hci_stack->state == HCI_STATE_FALLING_ASLEEP 979 && hci_stack->substate == 1 980 && COMMAND_COMPLETE_EVENT(packet, hci_write_scan_enable)){ 981 hci_stack->substate++; 982 } 983 984 hci_stack->packet_handler(HCI_EVENT_PACKET, packet, size); 985 986 // execute main loop 987 hci_run(); 988 } 989 990 static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 991 switch (packet_type) { 992 case HCI_EVENT_PACKET: 993 event_handler(packet, size); 994 break; 995 case HCI_ACL_DATA_PACKET: 996 acl_handler(packet, size); 997 break; 998 default: 999 break; 1000 } 1001 } 1002 1003 /** Register HCI packet handlers */ 1004 void hci_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1005 hci_stack->packet_handler = handler; 1006 } 1007 1008 void hci_state_reset(){ 1009 // no connections yet 1010 hci_stack->connections = NULL; 1011 1012 // keep discoverable/connectable as this has been requested by the client(s) 1013 // hci_stack->discoverable = 0; 1014 // hci_stack->connectable = 0; 1015 // hci_stack->bondable = 1; 1016 1017 // no pending cmds 1018 hci_stack->decline_reason = 0; 1019 hci_stack->new_scan_enable_value = 0xff; 1020 1021 // LE 1022 hci_stack->adv_addr_type = 0; 1023 memset(hci_stack->adv_address, 0, 6); 1024 hci_stack->le_scanning_state = LE_SCAN_IDLE; 1025 hci_stack->le_scan_type = 0xff; 1026 } 1027 1028 void hci_init(hci_transport_t *transport, void *config, bt_control_t *control, remote_device_db_t const* remote_device_db){ 1029 1030 #ifdef HAVE_MALLOC 1031 if (!hci_stack) { 1032 hci_stack = (hci_stack_t*) malloc(sizeof(hci_stack_t)); 1033 } 1034 #else 1035 hci_stack = &hci_stack_static; 1036 #endif 1037 memset(hci_stack, 0, sizeof(hci_stack_t)); 1038 1039 // reference to use transport layer implementation 1040 hci_stack->hci_transport = transport; 1041 1042 // references to used control implementation 1043 hci_stack->control = control; 1044 1045 // reference to used config 1046 hci_stack->config = config; 1047 1048 // higher level handler 1049 hci_stack->packet_handler = dummy_handler; 1050 1051 // store and open remote device db 1052 hci_stack->remote_device_db = remote_device_db; 1053 if (hci_stack->remote_device_db) { 1054 hci_stack->remote_device_db->open(); 1055 } 1056 1057 // max acl payload size defined in config.h 1058 hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; 1059 1060 // register packet handlers with transport 1061 transport->register_packet_handler(&packet_handler); 1062 1063 hci_stack->state = HCI_STATE_OFF; 1064 1065 // class of device 1066 hci_stack->class_of_device = 0x007a020c; // Smartphone 1067 1068 // bondable by default 1069 hci_stack->bondable = 1; 1070 1071 // Secure Simple Pairing default: enable, no I/O capabilities, general bonding, mitm not required, auto accept 1072 hci_stack->ssp_enable = 1; 1073 hci_stack->ssp_io_capability = SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT; 1074 hci_stack->ssp_authentication_requirement = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING; 1075 hci_stack->ssp_auto_accept = 1; 1076 1077 hci_state_reset(); 1078 } 1079 1080 void hci_close(){ 1081 // close remote device db 1082 if (hci_stack->remote_device_db) { 1083 hci_stack->remote_device_db->close(); 1084 } 1085 while (hci_stack->connections) { 1086 // cancel all l2cap connections 1087 hci_emit_disconnection_complete(((hci_connection_t *) hci_stack->connections)->con_handle, 0x16); // terminated by local host 1088 hci_shutdown_connection((hci_connection_t *) hci_stack->connections); 1089 } 1090 hci_power_control(HCI_POWER_OFF); 1091 1092 #ifdef HAVE_MALLOC 1093 free(hci_stack); 1094 #endif 1095 hci_stack = NULL; 1096 } 1097 1098 void hci_set_class_of_device(uint32_t class_of_device){ 1099 hci_stack->class_of_device = class_of_device; 1100 } 1101 1102 void hci_disable_l2cap_timeout_check(){ 1103 disable_l2cap_timeouts = 1; 1104 } 1105 // State-Module-Driver overview 1106 // state module low-level 1107 // HCI_STATE_OFF off close 1108 // HCI_STATE_INITIALIZING, on open 1109 // HCI_STATE_WORKING, on open 1110 // HCI_STATE_HALTING, on open 1111 // HCI_STATE_SLEEPING, off/sleep close 1112 // HCI_STATE_FALLING_ASLEEP on open 1113 1114 static int hci_power_control_on(void){ 1115 1116 // power on 1117 int err = 0; 1118 if (hci_stack->control && hci_stack->control->on){ 1119 err = (*hci_stack->control->on)(hci_stack->config); 1120 } 1121 if (err){ 1122 log_error( "POWER_ON failed\n"); 1123 hci_emit_hci_open_failed(); 1124 return err; 1125 } 1126 1127 // open low-level device 1128 err = hci_stack->hci_transport->open(hci_stack->config); 1129 if (err){ 1130 log_error( "HCI_INIT failed, turning Bluetooth off again\n"); 1131 if (hci_stack->control && hci_stack->control->off){ 1132 (*hci_stack->control->off)(hci_stack->config); 1133 } 1134 hci_emit_hci_open_failed(); 1135 return err; 1136 } 1137 return 0; 1138 } 1139 1140 static void hci_power_control_off(void){ 1141 1142 log_info("hci_power_control_off\n"); 1143 1144 // close low-level device 1145 hci_stack->hci_transport->close(hci_stack->config); 1146 1147 log_info("hci_power_control_off - hci_transport closed\n"); 1148 1149 // power off 1150 if (hci_stack->control && hci_stack->control->off){ 1151 (*hci_stack->control->off)(hci_stack->config); 1152 } 1153 1154 log_info("hci_power_control_off - control closed\n"); 1155 1156 hci_stack->state = HCI_STATE_OFF; 1157 } 1158 1159 static void hci_power_control_sleep(void){ 1160 1161 log_info("hci_power_control_sleep\n"); 1162 1163 #if 0 1164 // don't close serial port during sleep 1165 1166 // close low-level device 1167 hci_stack->hci_transport->close(hci_stack->config); 1168 #endif 1169 1170 // sleep mode 1171 if (hci_stack->control && hci_stack->control->sleep){ 1172 (*hci_stack->control->sleep)(hci_stack->config); 1173 } 1174 1175 hci_stack->state = HCI_STATE_SLEEPING; 1176 } 1177 1178 static int hci_power_control_wake(void){ 1179 1180 log_info("hci_power_control_wake\n"); 1181 1182 // wake on 1183 if (hci_stack->control && hci_stack->control->wake){ 1184 (*hci_stack->control->wake)(hci_stack->config); 1185 } 1186 1187 #if 0 1188 // open low-level device 1189 int err = hci_stack->hci_transport->open(hci_stack->config); 1190 if (err){ 1191 log_error( "HCI_INIT failed, turning Bluetooth off again\n"); 1192 if (hci_stack->control && hci_stack->control->off){ 1193 (*hci_stack->control->off)(hci_stack->config); 1194 } 1195 hci_emit_hci_open_failed(); 1196 return err; 1197 } 1198 #endif 1199 1200 return 0; 1201 } 1202 1203 1204 int hci_power_control(HCI_POWER_MODE power_mode){ 1205 1206 log_info("hci_power_control: %u, current mode %u\n", power_mode, hci_stack->state); 1207 1208 int err = 0; 1209 switch (hci_stack->state){ 1210 1211 case HCI_STATE_OFF: 1212 switch (power_mode){ 1213 case HCI_POWER_ON: 1214 err = hci_power_control_on(); 1215 if (err) return err; 1216 // set up state machine 1217 hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent 1218 hci_stack->state = HCI_STATE_INITIALIZING; 1219 hci_stack->substate = 0; 1220 break; 1221 case HCI_POWER_OFF: 1222 // do nothing 1223 break; 1224 case HCI_POWER_SLEEP: 1225 // do nothing (with SLEEP == OFF) 1226 break; 1227 } 1228 break; 1229 1230 case HCI_STATE_INITIALIZING: 1231 switch (power_mode){ 1232 case HCI_POWER_ON: 1233 // do nothing 1234 break; 1235 case HCI_POWER_OFF: 1236 // no connections yet, just turn it off 1237 hci_power_control_off(); 1238 break; 1239 case HCI_POWER_SLEEP: 1240 // no connections yet, just turn it off 1241 hci_power_control_sleep(); 1242 break; 1243 } 1244 break; 1245 1246 case HCI_STATE_WORKING: 1247 switch (power_mode){ 1248 case HCI_POWER_ON: 1249 // do nothing 1250 break; 1251 case HCI_POWER_OFF: 1252 // see hci_run 1253 hci_stack->state = HCI_STATE_HALTING; 1254 break; 1255 case HCI_POWER_SLEEP: 1256 // see hci_run 1257 hci_stack->state = HCI_STATE_FALLING_ASLEEP; 1258 hci_stack->substate = 0; 1259 break; 1260 } 1261 break; 1262 1263 case HCI_STATE_HALTING: 1264 switch (power_mode){ 1265 case HCI_POWER_ON: 1266 // set up state machine 1267 hci_stack->state = HCI_STATE_INITIALIZING; 1268 hci_stack->substate = 0; 1269 break; 1270 case HCI_POWER_OFF: 1271 // do nothing 1272 break; 1273 case HCI_POWER_SLEEP: 1274 // see hci_run 1275 hci_stack->state = HCI_STATE_FALLING_ASLEEP; 1276 hci_stack->substate = 0; 1277 break; 1278 } 1279 break; 1280 1281 case HCI_STATE_FALLING_ASLEEP: 1282 switch (power_mode){ 1283 case HCI_POWER_ON: 1284 1285 #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) 1286 // nothing to do, if H4 supports power management 1287 if (bt_control_iphone_power_management_enabled()){ 1288 hci_stack->state = HCI_STATE_INITIALIZING; 1289 hci_stack->substate = HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP; 1290 break; 1291 } 1292 #endif 1293 // set up state machine 1294 hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent 1295 hci_stack->state = HCI_STATE_INITIALIZING; 1296 hci_stack->substate = 0; 1297 break; 1298 case HCI_POWER_OFF: 1299 // see hci_run 1300 hci_stack->state = HCI_STATE_HALTING; 1301 break; 1302 case HCI_POWER_SLEEP: 1303 // do nothing 1304 break; 1305 } 1306 break; 1307 1308 case HCI_STATE_SLEEPING: 1309 switch (power_mode){ 1310 case HCI_POWER_ON: 1311 1312 #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) 1313 // nothing to do, if H4 supports power management 1314 if (bt_control_iphone_power_management_enabled()){ 1315 hci_stack->state = HCI_STATE_INITIALIZING; 1316 hci_stack->substate = HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP; 1317 hci_update_scan_enable(); 1318 break; 1319 } 1320 #endif 1321 err = hci_power_control_wake(); 1322 if (err) return err; 1323 // set up state machine 1324 hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent 1325 hci_stack->state = HCI_STATE_INITIALIZING; 1326 hci_stack->substate = 0; 1327 break; 1328 case HCI_POWER_OFF: 1329 hci_stack->state = HCI_STATE_HALTING; 1330 break; 1331 case HCI_POWER_SLEEP: 1332 // do nothing 1333 break; 1334 } 1335 break; 1336 } 1337 1338 // create internal event 1339 hci_emit_state(); 1340 1341 // trigger next/first action 1342 hci_run(); 1343 1344 return 0; 1345 } 1346 1347 static void hci_update_scan_enable(void){ 1348 // 2 = page scan, 1 = inq scan 1349 hci_stack->new_scan_enable_value = hci_stack->connectable << 1 | hci_stack->discoverable; 1350 hci_run(); 1351 } 1352 1353 void hci_discoverable_control(uint8_t enable){ 1354 if (enable) enable = 1; // normalize argument 1355 1356 if (hci_stack->discoverable == enable){ 1357 hci_emit_discoverable_enabled(hci_stack->discoverable); 1358 return; 1359 } 1360 1361 hci_stack->discoverable = enable; 1362 hci_update_scan_enable(); 1363 } 1364 1365 void hci_connectable_control(uint8_t enable){ 1366 if (enable) enable = 1; // normalize argument 1367 1368 // don't emit event 1369 if (hci_stack->connectable == enable) return; 1370 1371 hci_stack->connectable = enable; 1372 hci_update_scan_enable(); 1373 } 1374 1375 bd_addr_t * hci_local_bd_addr(void){ 1376 return &hci_stack->local_bd_addr; 1377 } 1378 1379 void hci_run(){ 1380 1381 hci_connection_t * connection; 1382 linked_item_t * it; 1383 1384 if (!hci_can_send_packet_now_using_packet_buffer(HCI_COMMAND_DATA_PACKET)) return; 1385 1386 // global/non-connection oriented commands 1387 1388 // decline incoming connections 1389 if (hci_stack->decline_reason){ 1390 uint8_t reason = hci_stack->decline_reason; 1391 hci_stack->decline_reason = 0; 1392 hci_send_cmd(&hci_reject_connection_request, hci_stack->decline_addr, reason); 1393 return; 1394 } 1395 1396 // send scan enable 1397 if (hci_stack->state == HCI_STATE_WORKING && hci_stack->new_scan_enable_value != 0xff && hci_classic_supported()){ 1398 hci_send_cmd(&hci_write_scan_enable, hci_stack->new_scan_enable_value); 1399 hci_stack->new_scan_enable_value = 0xff; 1400 return; 1401 } 1402 1403 #ifdef HAVE_BLE 1404 // handle le scan 1405 if (hci_stack->state == HCI_STATE_WORKING){ 1406 switch(hci_stack->le_scanning_state){ 1407 case LE_START_SCAN: 1408 hci_stack->le_scanning_state = LE_SCANNING; 1409 hci_send_cmd(&hci_le_set_scan_enable, 1, 0); 1410 return; 1411 1412 case LE_STOP_SCAN: 1413 hci_stack->le_scanning_state = LE_SCAN_IDLE; 1414 hci_send_cmd(&hci_le_set_scan_enable, 0, 0); 1415 return; 1416 default: 1417 break; 1418 } 1419 if (hci_stack->le_scan_type != 0xff){ 1420 // defaults: active scanning, accept all advertisement packets 1421 int scan_type = hci_stack->le_scan_type; 1422 hci_stack->le_scan_type = 0xff; 1423 hci_send_cmd(&hci_le_set_scan_parameters, scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window, hci_stack->adv_addr_type, 0); 1424 return; 1425 } 1426 } 1427 #endif 1428 1429 // send pending HCI commands 1430 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ 1431 connection = (hci_connection_t *) it; 1432 1433 switch(connection->state){ 1434 case SEND_CREATE_CONNECTION: 1435 switch(connection->address_type){ 1436 case BD_ADDR_TYPE_CLASSIC: 1437 log_info("sending hci_create_connection\n"); 1438 hci_send_cmd(&hci_create_connection, connection->address, hci_usable_acl_packet_types(), 0, 0, 0, 1); 1439 break; 1440 default: 1441 #ifdef HAVE_BLE 1442 log_info("sending hci_le_create_connection\n"); 1443 hci_send_cmd(&hci_le_create_connection, 1444 0x0060, // scan interval: 60 ms 1445 0x0030, // scan interval: 30 ms 1446 0, // don't use whitelist 1447 connection->address_type, // peer address type 1448 connection->address, // peer bd addr 1449 hci_stack->adv_addr_type, // our addr type: 1450 0x0008, // conn interval min 1451 0x0018, // conn interval max 1452 0, // conn latency 1453 0x0048, // supervision timeout 1454 0x0001, // min ce length 1455 0x0001 // max ce length 1456 ); 1457 1458 connection->state = SENT_CREATE_CONNECTION; 1459 #endif 1460 break; 1461 } 1462 return; 1463 1464 case RECEIVED_CONNECTION_REQUEST: 1465 log_info("sending hci_accept_connection_request\n"); 1466 connection->state = ACCEPTED_CONNECTION_REQUEST; 1467 hci_send_cmd(&hci_accept_connection_request, connection->address, 1); 1468 return; 1469 1470 #ifdef HAVE_BLE 1471 case SEND_CANCEL_CONNECTION: 1472 connection->state = SENT_CANCEL_CONNECTION; 1473 hci_send_cmd(&hci_le_create_connection_cancel); 1474 return; 1475 #endif 1476 case SEND_DISCONNECT: 1477 connection->state = SENT_DISCONNECT; 1478 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection 1479 return; 1480 1481 default: 1482 break; 1483 } 1484 1485 1486 1487 if (connection->authentication_flags & HANDLE_LINK_KEY_REQUEST){ 1488 log_info("responding to link key request\n"); 1489 connectionClearAuthenticationFlags(connection, HANDLE_LINK_KEY_REQUEST); 1490 link_key_t link_key; 1491 link_key_type_t link_key_type; 1492 if ( hci_stack->remote_device_db 1493 && hci_stack->remote_device_db->get_link_key( &connection->address, &link_key, &link_key_type) 1494 && gap_security_level_for_link_key_type(link_key_type) >= connection->requested_security_level){ 1495 connection->link_key_type = link_key_type; 1496 hci_send_cmd(&hci_link_key_request_reply, connection->address, &link_key); 1497 } else { 1498 hci_send_cmd(&hci_link_key_request_negative_reply, connection->address); 1499 } 1500 return; 1501 } 1502 1503 if (connection->authentication_flags & DENY_PIN_CODE_REQUEST){ 1504 log_info("denying to pin request\n"); 1505 connectionClearAuthenticationFlags(connection, DENY_PIN_CODE_REQUEST); 1506 hci_send_cmd(&hci_pin_code_request_negative_reply, connection->address); 1507 return; 1508 } 1509 1510 if (connection->authentication_flags & SEND_IO_CAPABILITIES_REPLY){ 1511 connectionClearAuthenticationFlags(connection, SEND_IO_CAPABILITIES_REPLY); 1512 log_info("IO Capability Request received, stack bondable %u, io cap %u", hci_stack->bondable, hci_stack->ssp_io_capability); 1513 if (hci_stack->bondable && (hci_stack->ssp_io_capability != SSP_IO_CAPABILITY_UNKNOWN)){ 1514 // tweak authentication requirements 1515 uint8_t authreq = hci_stack->ssp_authentication_requirement; 1516 if (connection->bonding_flags & BONDING_DEDICATED){ 1517 authreq = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING; 1518 } 1519 if (gap_mitm_protection_required_for_security_level(connection->requested_security_level)){ 1520 authreq |= 1; 1521 } 1522 hci_send_cmd(&hci_io_capability_request_reply, &connection->address, hci_stack->ssp_io_capability, NULL, authreq); 1523 } else { 1524 hci_send_cmd(&hci_io_capability_request_negative_reply, &connection->address, ERROR_CODE_PAIRING_NOT_ALLOWED); 1525 } 1526 return; 1527 } 1528 1529 if (connection->authentication_flags & SEND_USER_CONFIRM_REPLY){ 1530 connectionClearAuthenticationFlags(connection, SEND_USER_CONFIRM_REPLY); 1531 hci_send_cmd(&hci_user_confirmation_request_reply, &connection->address); 1532 return; 1533 } 1534 1535 if (connection->authentication_flags & SEND_USER_PASSKEY_REPLY){ 1536 connectionClearAuthenticationFlags(connection, SEND_USER_PASSKEY_REPLY); 1537 hci_send_cmd(&hci_user_passkey_request_reply, &connection->address, 000000); 1538 return; 1539 } 1540 1541 if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES){ 1542 connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES; 1543 hci_send_cmd(&hci_read_remote_supported_features_command, connection->con_handle); 1544 return; 1545 } 1546 1547 if (connection->bonding_flags & BONDING_DISCONNECT_SECURITY_BLOCK){ 1548 connection->bonding_flags &= ~BONDING_DISCONNECT_SECURITY_BLOCK; 1549 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x0005); // authentication failure 1550 return; 1551 } 1552 if (connection->bonding_flags & BONDING_DISCONNECT_DEDICATED_DONE){ 1553 connection->bonding_flags &= ~BONDING_DISCONNECT_DEDICATED_DONE; 1554 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // authentication done 1555 return; 1556 } 1557 if (connection->bonding_flags & BONDING_SEND_AUTHENTICATE_REQUEST){ 1558 connection->bonding_flags &= ~BONDING_SEND_AUTHENTICATE_REQUEST; 1559 hci_send_cmd(&hci_authentication_requested, connection->con_handle); 1560 return; 1561 } 1562 if (connection->bonding_flags & BONDING_SEND_ENCRYPTION_REQUEST){ 1563 connection->bonding_flags &= ~BONDING_SEND_ENCRYPTION_REQUEST; 1564 hci_send_cmd(&hci_set_connection_encryption, connection->con_handle, 1); 1565 return; 1566 } 1567 } 1568 1569 switch (hci_stack->state){ 1570 case HCI_STATE_INITIALIZING: 1571 // log_info("hci_init: substate %u\n", hci_stack->substate); 1572 if (hci_stack->substate % 2) { 1573 // odd: waiting for command completion 1574 return; 1575 } 1576 switch (hci_stack->substate >> 1){ 1577 case 0: // RESET 1578 hci_state_reset(); 1579 1580 hci_send_cmd(&hci_reset); 1581 if (hci_stack->config == 0 || ((hci_uart_config_t *)hci_stack->config)->baudrate_main == 0){ 1582 // skip baud change 1583 hci_stack->substate = 4; // >> 1 = 2 1584 } 1585 break; 1586 case 1: // SEND BAUD CHANGE 1587 hci_stack->control->baudrate_cmd(hci_stack->config, ((hci_uart_config_t *)hci_stack->config)->baudrate_main, hci_stack->hci_packet_buffer); 1588 hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); 1589 break; 1590 case 2: // LOCAL BAUD CHANGE 1591 hci_stack->hci_transport->set_baudrate(((hci_uart_config_t *)hci_stack->config)->baudrate_main); 1592 hci_stack->substate += 2; 1593 // break missing here for fall through 1594 1595 case 3: 1596 // Custom initialization 1597 if (hci_stack->control && hci_stack->control->next_cmd){ 1598 int valid_cmd = (*hci_stack->control->next_cmd)(hci_stack->config, hci_stack->hci_packet_buffer); 1599 if (valid_cmd){ 1600 int size = 3 + hci_stack->hci_packet_buffer[2]; 1601 hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, hci_stack->hci_packet_buffer, size); 1602 hci_stack->substate = 4; // more init commands 1603 break; 1604 } 1605 log_info("hci_run: init script done\n\r"); 1606 } 1607 // otherwise continue 1608 hci_send_cmd(&hci_read_bd_addr); 1609 break; 1610 case 4: 1611 hci_send_cmd(&hci_read_buffer_size); 1612 break; 1613 case 5: 1614 hci_send_cmd(&hci_read_local_supported_features); 1615 break; 1616 case 6: 1617 if (hci_le_supported()){ 1618 hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x3FFFFFFF); 1619 } else { 1620 // Kensington Bluetoot 2.1 USB Dongle (CSR Chipset) returns an error for 0xffff... 1621 hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x1FFFFFFF); 1622 } 1623 1624 // skip Classic init commands for LE only chipsets 1625 if (!hci_classic_supported()){ 1626 if (hci_le_supported()){ 1627 hci_stack->substate = 11 << 1; // skip all classic command 1628 } else { 1629 log_error("Neither BR/EDR nor LE supported"); 1630 hci_stack->substate = 14 << 1; // skip all 1631 } 1632 } 1633 break; 1634 case 7: 1635 if (hci_ssp_supported()){ 1636 hci_send_cmd(&hci_write_simple_pairing_mode, hci_stack->ssp_enable); 1637 break; 1638 } 1639 hci_stack->substate += 2; 1640 // break missing here for fall through 1641 1642 case 8: 1643 // ca. 15 sec 1644 hci_send_cmd(&hci_write_page_timeout, 0x6000); 1645 break; 1646 case 9: 1647 hci_send_cmd(&hci_write_class_of_device, hci_stack->class_of_device); 1648 break; 1649 case 10: 1650 if (hci_stack->local_name){ 1651 hci_send_cmd(&hci_write_local_name, hci_stack->local_name); 1652 } else { 1653 char hostname[30]; 1654 #ifdef EMBEDDED 1655 // BTstack-11:22:33:44:55:66 1656 strcpy(hostname, "BTstack "); 1657 strcat(hostname, bd_addr_to_str(hci_stack->local_bd_addr)); 1658 printf("---> Name %s\n", hostname); 1659 #else 1660 // hostname for POSIX systems 1661 gethostname(hostname, 30); 1662 hostname[29] = '\0'; 1663 #endif 1664 hci_send_cmd(&hci_write_local_name, hostname); 1665 } 1666 break; 1667 case 11: 1668 hci_send_cmd(&hci_write_scan_enable, (hci_stack->connectable << 1) | hci_stack->discoverable); // page scan 1669 if (!hci_le_supported()){ 1670 // SKIP LE init for Classic only configuration 1671 hci_stack->substate = 14 << 1; 1672 } 1673 break; 1674 1675 #ifdef HAVE_BLE 1676 // LE INIT 1677 case 12: 1678 hci_send_cmd(&hci_le_read_buffer_size); 1679 break; 1680 case 13: 1681 // LE Supported Host = 1, Simultaneous Host = 0 1682 hci_send_cmd(&hci_write_le_host_supported, 1, 0); 1683 break; 1684 case 14: 1685 // LE Scan Parameters: active scanning, 300 ms interval, 30 ms window, public address, accept all advs 1686 hci_send_cmd(&hci_le_set_scan_parameters, 1, 0x1e0, 0x30, 0, 0); 1687 break; 1688 #endif 1689 1690 // DONE 1691 case 15: 1692 // done. 1693 hci_stack->state = HCI_STATE_WORKING; 1694 hci_emit_state(); 1695 break; 1696 default: 1697 break; 1698 } 1699 hci_stack->substate++; 1700 break; 1701 1702 case HCI_STATE_HALTING: 1703 1704 log_info("HCI_STATE_HALTING\n"); 1705 // close all open connections 1706 connection = (hci_connection_t *) hci_stack->connections; 1707 if (connection){ 1708 1709 // send disconnect 1710 if (!hci_can_send_packet_now_using_packet_buffer(HCI_COMMAND_DATA_PACKET)) return; 1711 1712 log_info("HCI_STATE_HALTING, connection %p, handle %u\n", connection, (uint16_t)connection->con_handle); 1713 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection 1714 1715 // send disconnected event right away - causes higher layer connections to get closed, too. 1716 hci_shutdown_connection(connection); 1717 return; 1718 } 1719 log_info("HCI_STATE_HALTING, calling off\n"); 1720 1721 // switch mode 1722 hci_power_control_off(); 1723 1724 log_info("HCI_STATE_HALTING, emitting state\n"); 1725 hci_emit_state(); 1726 log_info("HCI_STATE_HALTING, done\n"); 1727 break; 1728 1729 case HCI_STATE_FALLING_ASLEEP: 1730 switch(hci_stack->substate) { 1731 case 0: 1732 log_info("HCI_STATE_FALLING_ASLEEP\n"); 1733 // close all open connections 1734 connection = (hci_connection_t *) hci_stack->connections; 1735 1736 #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) 1737 // don't close connections, if H4 supports power management 1738 if (bt_control_iphone_power_management_enabled()){ 1739 connection = NULL; 1740 } 1741 #endif 1742 if (connection){ 1743 1744 // send disconnect 1745 if (!hci_can_send_packet_now(HCI_COMMAND_DATA_PACKET)) return; 1746 1747 log_info("HCI_STATE_FALLING_ASLEEP, connection %p, handle %u\n", connection, (uint16_t)connection->con_handle); 1748 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection 1749 1750 // send disconnected event right away - causes higher layer connections to get closed, too. 1751 hci_shutdown_connection(connection); 1752 return; 1753 } 1754 1755 if (hci_classic_supported()){ 1756 // disable page and inquiry scan 1757 if (!hci_can_send_packet_now_using_packet_buffer(HCI_COMMAND_DATA_PACKET)) return; 1758 1759 log_info("HCI_STATE_HALTING, disabling inq scans\n"); 1760 hci_send_cmd(&hci_write_scan_enable, hci_stack->connectable << 1); // drop inquiry scan but keep page scan 1761 1762 // continue in next sub state 1763 hci_stack->substate++; 1764 break; 1765 } 1766 // fall through for ble-only chips 1767 1768 case 2: 1769 log_info("HCI_STATE_HALTING, calling sleep\n"); 1770 #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) 1771 // don't actually go to sleep, if H4 supports power management 1772 if (bt_control_iphone_power_management_enabled()){ 1773 // SLEEP MODE reached 1774 hci_stack->state = HCI_STATE_SLEEPING; 1775 hci_emit_state(); 1776 break; 1777 } 1778 #endif 1779 // switch mode 1780 hci_power_control_sleep(); // changes hci_stack->state to SLEEP 1781 hci_emit_state(); 1782 break; 1783 1784 default: 1785 break; 1786 } 1787 break; 1788 1789 default: 1790 break; 1791 } 1792 } 1793 1794 int hci_send_cmd_packet(uint8_t *packet, int size){ 1795 bd_addr_t addr; 1796 hci_connection_t * conn; 1797 // house-keeping 1798 1799 // create_connection? 1800 if (IS_COMMAND(packet, hci_create_connection)){ 1801 bt_flip_addr(addr, &packet[3]); 1802 log_info("Create_connection to %s\n", bd_addr_to_str(addr)); 1803 1804 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 1805 if (!conn){ 1806 conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 1807 if (!conn){ 1808 // notify client that alloc failed 1809 hci_emit_connection_complete(conn, BTSTACK_MEMORY_ALLOC_FAILED); 1810 return 0; // don't sent packet to controller 1811 } 1812 conn->state = SEND_CREATE_CONNECTION; 1813 } 1814 log_info("conn state %u", conn->state); 1815 switch (conn->state){ 1816 // if connection active exists 1817 case OPEN: 1818 // and OPEN, emit connection complete command, don't send to controller 1819 hci_emit_connection_complete(conn, 0); 1820 return 0; 1821 case SEND_CREATE_CONNECTION: 1822 // connection created by hci, e.g. dedicated bonding 1823 break; 1824 default: 1825 // otherwise, just ignore as it is already in the open process 1826 return 0; 1827 } 1828 conn->state = SENT_CREATE_CONNECTION; 1829 } 1830 1831 if (IS_COMMAND(packet, hci_link_key_request_reply)){ 1832 hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_REPLY); 1833 } 1834 if (IS_COMMAND(packet, hci_link_key_request_negative_reply)){ 1835 hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_NEGATIVE_REQUEST); 1836 } 1837 1838 if (IS_COMMAND(packet, hci_delete_stored_link_key)){ 1839 if (hci_stack->remote_device_db){ 1840 bt_flip_addr(addr, &packet[3]); 1841 hci_stack->remote_device_db->delete_link_key(&addr); 1842 } 1843 } 1844 1845 if (IS_COMMAND(packet, hci_pin_code_request_negative_reply) 1846 || IS_COMMAND(packet, hci_pin_code_request_reply)){ 1847 bt_flip_addr(addr, &packet[3]); 1848 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 1849 if (conn){ 1850 connectionClearAuthenticationFlags(conn, LEGACY_PAIRING_ACTIVE); 1851 } 1852 } 1853 1854 if (IS_COMMAND(packet, hci_user_confirmation_request_negative_reply) 1855 || IS_COMMAND(packet, hci_user_confirmation_request_reply) 1856 || IS_COMMAND(packet, hci_user_passkey_request_negative_reply) 1857 || IS_COMMAND(packet, hci_user_passkey_request_reply)) { 1858 bt_flip_addr(addr, &packet[3]); 1859 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 1860 if (conn){ 1861 connectionClearAuthenticationFlags(conn, SSP_PAIRING_ACTIVE); 1862 } 1863 } 1864 1865 #ifdef HAVE_BLE 1866 if (IS_COMMAND(packet, hci_le_set_advertising_parameters)){ 1867 hci_stack->adv_addr_type = packet[8]; 1868 } 1869 if (IS_COMMAND(packet, hci_le_set_random_address)){ 1870 bt_flip_addr(hci_stack->adv_address, &packet[3]); 1871 } 1872 #endif 1873 1874 hci_stack->num_cmd_packets--; 1875 int err = hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); 1876 1877 // free packet buffer for synchronous transport implementations 1878 if (hci_transport_synchronous() && (packet == hci_stack->hci_packet_buffer)){ 1879 hci_stack->hci_packet_buffer_reserved = 0; 1880 } 1881 1882 return err; 1883 } 1884 1885 // disconnect because of security block 1886 void hci_disconnect_security_block(hci_con_handle_t con_handle){ 1887 hci_connection_t * connection = hci_connection_for_handle(con_handle); 1888 if (!connection) return; 1889 connection->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK; 1890 } 1891 1892 1893 // Configure Secure Simple Pairing 1894 1895 // enable will enable SSP during init 1896 void hci_ssp_set_enable(int enable){ 1897 hci_stack->ssp_enable = enable; 1898 } 1899 1900 int hci_local_ssp_activated(){ 1901 return hci_ssp_supported() && hci_stack->ssp_enable; 1902 } 1903 1904 // if set, BTstack will respond to io capability request using authentication requirement 1905 void hci_ssp_set_io_capability(int io_capability){ 1906 hci_stack->ssp_io_capability = io_capability; 1907 } 1908 void hci_ssp_set_authentication_requirement(int authentication_requirement){ 1909 hci_stack->ssp_authentication_requirement = authentication_requirement; 1910 } 1911 1912 // if set, BTstack will confirm a numberic comparion and enter '000000' if requested 1913 void hci_ssp_set_auto_accept(int auto_accept){ 1914 hci_stack->ssp_auto_accept = auto_accept; 1915 } 1916 1917 /** 1918 * pre: numcmds >= 0 - it's allowed to send a command to the controller 1919 */ 1920 int hci_send_cmd(const hci_cmd_t *cmd, ...){ 1921 va_list argptr; 1922 va_start(argptr, cmd); 1923 uint16_t size = hci_create_cmd_internal(hci_stack->hci_packet_buffer, cmd, argptr); 1924 va_end(argptr); 1925 return hci_send_cmd_packet(hci_stack->hci_packet_buffer, size); 1926 } 1927 1928 // Create various non-HCI events. 1929 // TODO: generalize, use table similar to hci_create_command 1930 1931 void hci_emit_state(){ 1932 log_info("BTSTACK_EVENT_STATE %u", hci_stack->state); 1933 uint8_t event[3]; 1934 event[0] = BTSTACK_EVENT_STATE; 1935 event[1] = sizeof(event) - 2; 1936 event[2] = hci_stack->state; 1937 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 1938 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 1939 } 1940 1941 void hci_emit_connection_complete(hci_connection_t *conn, uint8_t status){ 1942 uint8_t event[13]; 1943 event[0] = HCI_EVENT_CONNECTION_COMPLETE; 1944 event[1] = sizeof(event) - 2; 1945 event[2] = status; 1946 bt_store_16(event, 3, conn->con_handle); 1947 bt_flip_addr(&event[5], conn->address); 1948 event[11] = 1; // ACL connection 1949 event[12] = 0; // encryption disabled 1950 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); 1951 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 1952 } 1953 1954 void hci_emit_le_connection_complete(hci_connection_t *conn, uint8_t status){ 1955 uint8_t event[21]; 1956 event[0] = HCI_EVENT_LE_META; 1957 event[1] = sizeof(event) - 2; 1958 event[2] = HCI_SUBEVENT_LE_CONNECTION_COMPLETE; 1959 event[3] = status; 1960 bt_store_16(event, 4, conn->con_handle); 1961 event[6] = 0; // TODO: role 1962 event[7] = conn->address_type; 1963 bt_flip_addr(&event[8], conn->address); 1964 bt_store_16(event, 14, 0); // interval 1965 bt_store_16(event, 16, 0); // latency 1966 bt_store_16(event, 18, 0); // supervision timeout 1967 event[20] = 0; // master clock accuracy 1968 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); 1969 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 1970 } 1971 1972 void hci_emit_disconnection_complete(uint16_t handle, uint8_t reason){ 1973 uint8_t event[6]; 1974 event[0] = HCI_EVENT_DISCONNECTION_COMPLETE; 1975 event[1] = sizeof(event) - 2; 1976 event[2] = 0; // status = OK 1977 bt_store_16(event, 3, handle); 1978 event[5] = reason; 1979 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); 1980 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 1981 } 1982 1983 void hci_emit_l2cap_check_timeout(hci_connection_t *conn){ 1984 if (disable_l2cap_timeouts) return; 1985 log_info("L2CAP_EVENT_TIMEOUT_CHECK"); 1986 uint8_t event[4]; 1987 event[0] = L2CAP_EVENT_TIMEOUT_CHECK; 1988 event[1] = sizeof(event) - 2; 1989 bt_store_16(event, 2, conn->con_handle); 1990 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); 1991 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 1992 } 1993 1994 void hci_emit_nr_connections_changed(){ 1995 log_info("BTSTACK_EVENT_NR_CONNECTIONS_CHANGED %u", nr_hci_connections()); 1996 uint8_t event[3]; 1997 event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED; 1998 event[1] = sizeof(event) - 2; 1999 event[2] = nr_hci_connections(); 2000 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2001 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2002 } 2003 2004 void hci_emit_hci_open_failed(){ 2005 log_info("BTSTACK_EVENT_POWERON_FAILED"); 2006 uint8_t event[2]; 2007 event[0] = BTSTACK_EVENT_POWERON_FAILED; 2008 event[1] = sizeof(event) - 2; 2009 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2010 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2011 } 2012 2013 #ifndef EMBEDDED 2014 void hci_emit_btstack_version() { 2015 log_info("BTSTACK_EVENT_VERSION %u.%u", BTSTACK_MAJOR, BTSTACK_MINOR); 2016 uint8_t event[6]; 2017 event[0] = BTSTACK_EVENT_VERSION; 2018 event[1] = sizeof(event) - 2; 2019 event[2] = BTSTACK_MAJOR; 2020 event[3] = BTSTACK_MINOR; 2021 bt_store_16(event, 4, BTSTACK_REVISION); 2022 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2023 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2024 } 2025 #endif 2026 2027 void hci_emit_system_bluetooth_enabled(uint8_t enabled){ 2028 log_info("BTSTACK_EVENT_SYSTEM_BLUETOOTH_ENABLED %u", enabled); 2029 uint8_t event[3]; 2030 event[0] = BTSTACK_EVENT_SYSTEM_BLUETOOTH_ENABLED; 2031 event[1] = sizeof(event) - 2; 2032 event[2] = enabled; 2033 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2034 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2035 } 2036 2037 void hci_emit_remote_name_cached(bd_addr_t *addr, device_name_t *name){ 2038 uint8_t event[2+1+6+248+1]; // +1 for \0 in log_info 2039 event[0] = BTSTACK_EVENT_REMOTE_NAME_CACHED; 2040 event[1] = sizeof(event) - 2 - 1; 2041 event[2] = 0; // just to be compatible with HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE 2042 bt_flip_addr(&event[3], *addr); 2043 memcpy(&event[9], name, 248); 2044 2045 event[9+248] = 0; // assert \0 for log_info 2046 log_info("BTSTACK_EVENT_REMOTE_NAME_CACHED %s = '%s'", bd_addr_to_str(*addr), &event[9]); 2047 2048 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)-1); 2049 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)-1); 2050 } 2051 2052 void hci_emit_discoverable_enabled(uint8_t enabled){ 2053 log_info("BTSTACK_EVENT_DISCOVERABLE_ENABLED %u", enabled); 2054 uint8_t event[3]; 2055 event[0] = BTSTACK_EVENT_DISCOVERABLE_ENABLED; 2056 event[1] = sizeof(event) - 2; 2057 event[2] = enabled; 2058 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2059 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2060 } 2061 2062 void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level){ 2063 log_info("hci_emit_security_level %u for handle %x", level, con_handle); 2064 uint8_t event[5]; 2065 int pos = 0; 2066 event[pos++] = GAP_SECURITY_LEVEL; 2067 event[pos++] = sizeof(event) - 2; 2068 bt_store_16(event, 2, con_handle); 2069 pos += 2; 2070 event[pos++] = level; 2071 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2072 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2073 } 2074 2075 void hci_emit_dedicated_bonding_result(hci_connection_t * connection, uint8_t status){ 2076 log_info("hci_emit_dedicated_bonding_result %u ", status); 2077 uint8_t event[9]; 2078 int pos = 0; 2079 event[pos++] = GAP_DEDICATED_BONDING_COMPLETED; 2080 event[pos++] = sizeof(event) - 2; 2081 event[pos++] = status; 2082 bt_flip_addr( * (bd_addr_t *) &event[pos], connection->address); 2083 pos += 6; 2084 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2085 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2086 } 2087 2088 // query if remote side supports SSP 2089 int hci_remote_ssp_supported(hci_con_handle_t con_handle){ 2090 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2091 if (!connection) return 0; 2092 return (connection->bonding_flags & BONDING_REMOTE_SUPPORTS_SSP) ? 1 : 0; 2093 } 2094 2095 int hci_ssp_supported_on_both_sides(hci_con_handle_t handle){ 2096 return hci_local_ssp_activated() && hci_remote_ssp_supported(handle); 2097 } 2098 2099 // GAP API 2100 /** 2101 * @bbrief enable/disable bonding. default is enabled 2102 * @praram enabled 2103 */ 2104 void gap_set_bondable_mode(int enable){ 2105 hci_stack->bondable = enable ? 1 : 0; 2106 } 2107 2108 /** 2109 * @brief map link keys to security levels 2110 */ 2111 gap_security_level_t gap_security_level_for_link_key_type(link_key_type_t link_key_type){ 2112 switch (link_key_type){ 2113 case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: 2114 return LEVEL_4; 2115 case COMBINATION_KEY: 2116 case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192: 2117 return LEVEL_3; 2118 default: 2119 return LEVEL_2; 2120 } 2121 } 2122 2123 static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection){ 2124 if (!connection) return LEVEL_0; 2125 if ((connection->authentication_flags & CONNECTION_ENCRYPTED) == 0) return LEVEL_0; 2126 return gap_security_level_for_link_key_type(connection->link_key_type); 2127 } 2128 2129 2130 int gap_mitm_protection_required_for_security_level(gap_security_level_t level){ 2131 printf("gap_mitm_protection_required_for_security_level %u\n", level); 2132 return level > LEVEL_2; 2133 } 2134 2135 /** 2136 * @brief get current security level 2137 */ 2138 gap_security_level_t gap_security_level(hci_con_handle_t con_handle){ 2139 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2140 if (!connection) return LEVEL_0; 2141 return gap_security_level_for_connection(connection); 2142 } 2143 2144 /** 2145 * @brief request connection to device to 2146 * @result GAP_AUTHENTICATION_RESULT 2147 */ 2148 void gap_request_security_level(hci_con_handle_t con_handle, gap_security_level_t requested_level){ 2149 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2150 if (!connection){ 2151 hci_emit_security_level(con_handle, LEVEL_0); 2152 return; 2153 } 2154 gap_security_level_t current_level = gap_security_level(con_handle); 2155 log_info("gap_request_security_level %u, current level %u", requested_level, current_level); 2156 if (current_level >= requested_level){ 2157 hci_emit_security_level(con_handle, current_level); 2158 return; 2159 } 2160 2161 connection->requested_security_level = requested_level; 2162 2163 // would enabling ecnryption suffice (>= LEVEL_2)? 2164 if (hci_stack->remote_device_db){ 2165 link_key_type_t link_key_type; 2166 link_key_t link_key; 2167 if (hci_stack->remote_device_db->get_link_key( &connection->address, &link_key, &link_key_type)){ 2168 if (gap_security_level_for_link_key_type(link_key_type) >= requested_level){ 2169 connection->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; 2170 return; 2171 } 2172 } 2173 } 2174 2175 // try to authenticate connection 2176 connection->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; 2177 hci_run(); 2178 } 2179 2180 /** 2181 * @brief start dedicated bonding with device. disconnect after bonding 2182 * @param device 2183 * @param request MITM protection 2184 * @result GAP_DEDICATED_BONDING_COMPLETE 2185 */ 2186 int gap_dedicated_bonding(bd_addr_t device, int mitm_protection_required){ 2187 2188 // create connection state machine 2189 hci_connection_t * connection = create_connection_for_bd_addr_and_type(device, BD_ADDR_TYPE_CLASSIC); 2190 2191 if (!connection){ 2192 return BTSTACK_MEMORY_ALLOC_FAILED; 2193 } 2194 2195 // delete linkn key 2196 hci_drop_link_key_for_bd_addr( (bd_addr_t *) &device); 2197 2198 // configure LEVEL_2/3, dedicated bonding 2199 connection->state = SEND_CREATE_CONNECTION; 2200 connection->requested_security_level = mitm_protection_required ? LEVEL_3 : LEVEL_2; 2201 printf("gap_dedicated_bonding, mitm %u -> level %u\n", mitm_protection_required, connection->requested_security_level); 2202 connection->bonding_flags = BONDING_DEDICATED; 2203 2204 // wait for GAP Security Result and send GAP Dedicated Bonding complete 2205 2206 // handle: connnection failure (connection complete != ok) 2207 // handle: authentication failure 2208 // handle: disconnect on done 2209 2210 hci_run(); 2211 2212 return 0; 2213 } 2214 2215 void gap_set_local_name(const char * local_name){ 2216 hci_stack->local_name = local_name; 2217 } 2218 2219 le_command_status_t le_central_start_scan(){ 2220 if (hci_stack->le_scanning_state == LE_SCANNING) return BLE_PERIPHERAL_OK; 2221 hci_stack->le_scanning_state = LE_START_SCAN; 2222 hci_run(); 2223 return BLE_PERIPHERAL_OK; 2224 } 2225 2226 le_command_status_t le_central_stop_scan(){ 2227 if ( hci_stack->le_scanning_state == LE_SCAN_IDLE) return BLE_PERIPHERAL_OK; 2228 hci_stack->le_scanning_state = LE_STOP_SCAN; 2229 hci_run(); 2230 return BLE_PERIPHERAL_OK; 2231 } 2232 2233 void le_central_set_scan_parameters(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window){ 2234 hci_stack->le_scan_type = scan_type; 2235 hci_stack->le_scan_interval = scan_interval; 2236 hci_stack->le_scan_window = scan_window; 2237 hci_run(); 2238 } 2239 2240 le_command_status_t le_central_connect(bd_addr_t * addr, bd_addr_type_t addr_type){ 2241 hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type); 2242 log_info("le_central_connect, conn struct %p", conn); 2243 if (!conn){ 2244 conn = create_connection_for_bd_addr_and_type(*addr, addr_type); 2245 if (!conn){ 2246 // notify client that alloc failed 2247 hci_emit_le_connection_complete(conn, BTSTACK_MEMORY_ALLOC_FAILED); 2248 return BLE_PERIPHERAL_NOT_CONNECTED; // don't sent packet to controller 2249 } 2250 conn->state = SEND_CREATE_CONNECTION; 2251 log_info("le_central_connect, state %u", conn->state); 2252 hci_run(); 2253 return BLE_PERIPHERAL_OK; 2254 } 2255 2256 if (!hci_is_le_connection(conn) || 2257 conn->state == SEND_CREATE_CONNECTION || 2258 conn->state == SENT_CREATE_CONNECTION) { 2259 hci_emit_le_connection_complete(conn, ERROR_CODE_COMMAND_DISALLOWED); 2260 return BLE_PERIPHERAL_IN_WRONG_STATE; 2261 } 2262 2263 log_info("le_central_connect, state %u", conn->state); 2264 hci_emit_le_connection_complete(conn, 0); 2265 hci_run(); 2266 return BLE_PERIPHERAL_OK; 2267 } 2268 2269 // @assumption: only a single outgoing LE Connection exists 2270 static hci_connection_t * le_central_get_outgoing_connection(){ 2271 linked_item_t *it; 2272 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ 2273 hci_connection_t * conn = (hci_connection_t *) it; 2274 if (!hci_is_le_connection(conn)) continue; 2275 switch (conn->state){ 2276 case SEND_CREATE_CONNECTION: 2277 case SENT_CREATE_CONNECTION: 2278 return conn; 2279 default: 2280 break; 2281 }; 2282 } 2283 return NULL; 2284 } 2285 2286 le_command_status_t le_central_connect_cancel(){ 2287 hci_connection_t * conn = le_central_get_outgoing_connection(); 2288 switch (conn->state){ 2289 case SEND_CREATE_CONNECTION: 2290 // skip sending create connection and emit event instead 2291 hci_emit_le_connection_complete(conn, ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER); 2292 linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); 2293 btstack_memory_hci_connection_free( conn ); 2294 break; 2295 case SENT_CREATE_CONNECTION: 2296 // request to send cancel connection 2297 conn->state = SEND_CANCEL_CONNECTION; 2298 hci_run(); 2299 break; 2300 default: 2301 break; 2302 } 2303 return BLE_PERIPHERAL_OK; 2304 } 2305 2306 le_command_status_t gap_disconnect(hci_con_handle_t handle){ 2307 hci_connection_t * conn = hci_connection_for_handle(handle); 2308 if (!conn){ 2309 hci_emit_disconnection_complete(handle, 0); 2310 return BLE_PERIPHERAL_OK; 2311 } 2312 conn->state = SEND_DISCONNECT; 2313 hci_run(); 2314 return BLE_PERIPHERAL_OK; 2315 } 2316 2317 void hci_disconnect_all(){ 2318 linked_list_iterator_t it; 2319 linked_list_iterator_init(&it, &hci_stack->connections); 2320 while (linked_list_iterator_has_next(&it)){ 2321 hci_connection_t * con = (hci_connection_t*) linked_list_iterator_next(&it); 2322 if (con->state == SENT_DISCONNECT) continue; 2323 con->state = SEND_DISCONNECT; 2324 } 2325 }