1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 /* 39 * hci.c 40 * 41 * Created by Matthias Ringwald on 4/29/09. 42 * 43 */ 44 45 #include "btstack-config.h" 46 47 #include "hci.h" 48 #include "gap.h" 49 50 #include <stdarg.h> 51 #include <string.h> 52 #include <stdio.h> 53 54 #ifndef EMBEDDED 55 #ifdef _WIN32 56 #include "Winsock2.h" 57 #else 58 #include <unistd.h> // gethostbyname 59 #endif 60 #include <btstack/version.h> 61 #endif 62 63 #include "btstack_memory.h" 64 #include "debug.h" 65 #include "hci_dump.h" 66 67 #include <btstack/linked_list.h> 68 #include <btstack/hci_cmds.h> 69 70 #define HCI_CONNECTION_TIMEOUT_MS 10000 71 72 #define HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP 11 73 74 #ifdef USE_BLUETOOL 75 #include "../platforms/ios/src/bt_control_iphone.h" 76 #endif 77 78 static void hci_update_scan_enable(void); 79 static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection); 80 static void hci_connection_timeout_handler(timer_source_t *timer); 81 static void hci_connection_timestamp(hci_connection_t *connection); 82 static int hci_power_control_on(void); 83 static void hci_power_control_off(void); 84 static void hci_state_reset(); 85 86 // the STACK is here 87 #ifndef HAVE_MALLOC 88 static hci_stack_t hci_stack_static; 89 #endif 90 static hci_stack_t * hci_stack = NULL; 91 92 // test helper 93 static uint8_t disable_l2cap_timeouts = 0; 94 95 /** 96 * create connection for given address 97 * 98 * @return connection OR NULL, if no memory left 99 */ 100 static hci_connection_t * create_connection_for_bd_addr_and_type(bd_addr_t addr, bd_addr_type_t addr_type){ 101 log_info("create_connection_for_addr %s", bd_addr_to_str(addr)); 102 hci_connection_t * conn = btstack_memory_hci_connection_get(); 103 if (!conn) return NULL; 104 memset(conn, 0, sizeof(hci_connection_t)); 105 BD_ADDR_COPY(conn->address, addr); 106 conn->address_type = addr_type; 107 conn->con_handle = 0xffff; 108 conn->authentication_flags = AUTH_FLAGS_NONE; 109 conn->bonding_flags = 0; 110 conn->requested_security_level = LEVEL_0; 111 linked_item_set_user(&conn->timeout.item, conn); 112 conn->timeout.process = hci_connection_timeout_handler; 113 hci_connection_timestamp(conn); 114 conn->acl_recombination_length = 0; 115 conn->acl_recombination_pos = 0; 116 conn->num_acl_packets_sent = 0; 117 conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; 118 linked_list_add(&hci_stack->connections, (linked_item_t *) conn); 119 return conn; 120 } 121 122 123 /** 124 * get le connection parameter range 125 * 126 * @return le connection parameter range struct 127 */ 128 le_connection_parameter_range_t gap_le_get_connection_parameter_range(){ 129 return hci_stack->le_connection_parameter_range; 130 } 131 132 /** 133 * set le connection parameter range 134 * 135 */ 136 137 void gap_le_set_connection_parameter_range(le_connection_parameter_range_t range){ 138 hci_stack->le_connection_parameter_range.le_conn_interval_min = range.le_conn_interval_min; 139 hci_stack->le_connection_parameter_range.le_conn_interval_max = range.le_conn_interval_max; 140 hci_stack->le_connection_parameter_range.le_conn_interval_min = range.le_conn_latency_min; 141 hci_stack->le_connection_parameter_range.le_conn_interval_max = range.le_conn_latency_max; 142 hci_stack->le_connection_parameter_range.le_supervision_timeout_min = range.le_supervision_timeout_min; 143 hci_stack->le_connection_parameter_range.le_supervision_timeout_max = range.le_supervision_timeout_max; 144 } 145 146 /** 147 * get hci connections iterator 148 * 149 * @return hci connections iterator 150 */ 151 152 void hci_connections_get_iterator(linked_list_iterator_t *it){ 153 linked_list_iterator_init(it, &hci_stack->connections); 154 } 155 156 /** 157 * get connection for a given handle 158 * 159 * @return connection OR NULL, if not found 160 */ 161 hci_connection_t * hci_connection_for_handle(hci_con_handle_t con_handle){ 162 linked_list_iterator_t it; 163 linked_list_iterator_init(&it, &hci_stack->connections); 164 while (linked_list_iterator_has_next(&it)){ 165 hci_connection_t * item = (hci_connection_t *) linked_list_iterator_next(&it); 166 if ( item->con_handle == con_handle ) { 167 return item; 168 } 169 } 170 return NULL; 171 } 172 173 /** 174 * get connection for given address 175 * 176 * @return connection OR NULL, if not found 177 */ 178 hci_connection_t * hci_connection_for_bd_addr_and_type(bd_addr_t * addr, bd_addr_type_t addr_type){ 179 linked_list_iterator_t it; 180 linked_list_iterator_init(&it, &hci_stack->connections); 181 while (linked_list_iterator_has_next(&it)){ 182 hci_connection_t * connection = (hci_connection_t *) linked_list_iterator_next(&it); 183 if (connection->address_type != addr_type) continue; 184 if (memcmp(addr, connection->address, 6) != 0) continue; 185 return connection; 186 } 187 return NULL; 188 } 189 190 static void hci_connection_timeout_handler(timer_source_t *timer){ 191 hci_connection_t * connection = (hci_connection_t *) linked_item_get_user(&timer->item); 192 #ifdef HAVE_TIME 193 struct timeval tv; 194 gettimeofday(&tv, NULL); 195 if (tv.tv_sec >= connection->timestamp.tv_sec + HCI_CONNECTION_TIMEOUT_MS/1000) { 196 // connections might be timed out 197 hci_emit_l2cap_check_timeout(connection); 198 } 199 #endif 200 #ifdef HAVE_TICK 201 if (embedded_get_ticks() > connection->timestamp + embedded_ticks_for_ms(HCI_CONNECTION_TIMEOUT_MS)){ 202 // connections might be timed out 203 hci_emit_l2cap_check_timeout(connection); 204 } 205 #endif 206 run_loop_set_timer(timer, HCI_CONNECTION_TIMEOUT_MS); 207 run_loop_add_timer(timer); 208 } 209 210 static void hci_connection_timestamp(hci_connection_t *connection){ 211 #ifdef HAVE_TIME 212 gettimeofday(&connection->timestamp, NULL); 213 #endif 214 #ifdef HAVE_TICK 215 connection->timestamp = embedded_get_ticks(); 216 #endif 217 } 218 219 220 inline static void connectionSetAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ 221 conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags | flags); 222 } 223 224 inline static void connectionClearAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ 225 conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags & ~flags); 226 } 227 228 229 /** 230 * add authentication flags and reset timer 231 * @note: assumes classic connection 232 */ 233 static void hci_add_connection_flags_for_flipped_bd_addr(uint8_t *bd_addr, hci_authentication_flags_t flags){ 234 bd_addr_t addr; 235 bt_flip_addr(addr, *(bd_addr_t *) bd_addr); 236 hci_connection_t * conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 237 if (conn) { 238 connectionSetAuthenticationFlags(conn, flags); 239 hci_connection_timestamp(conn); 240 } 241 } 242 243 int hci_authentication_active_for_handle(hci_con_handle_t handle){ 244 hci_connection_t * conn = hci_connection_for_handle(handle); 245 if (!conn) return 0; 246 if (conn->authentication_flags & LEGACY_PAIRING_ACTIVE) return 1; 247 if (conn->authentication_flags & SSP_PAIRING_ACTIVE) return 1; 248 return 0; 249 } 250 251 void hci_drop_link_key_for_bd_addr(bd_addr_t *addr){ 252 if (hci_stack->remote_device_db) { 253 hci_stack->remote_device_db->delete_link_key(addr); 254 } 255 } 256 257 int hci_is_le_connection(hci_connection_t * connection){ 258 return connection->address_type == BD_ADDR_TYPE_LE_PUBLIC || 259 connection->address_type == BD_ADDR_TYPE_LE_RANDOM; 260 } 261 262 263 /** 264 * count connections 265 */ 266 static int nr_hci_connections(void){ 267 int count = 0; 268 linked_item_t *it; 269 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next, count++); 270 return count; 271 } 272 273 /** 274 * Dummy handler called by HCI 275 */ 276 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 277 } 278 279 uint8_t hci_number_outgoing_packets(hci_con_handle_t handle){ 280 hci_connection_t * connection = hci_connection_for_handle(handle); 281 if (!connection) { 282 log_error("hci_number_outgoing_packets: connection for handle %u does not exist!", handle); 283 return 0; 284 } 285 return connection->num_acl_packets_sent; 286 } 287 288 uint8_t hci_number_free_acl_slots_for_handle(hci_con_handle_t con_handle){ 289 290 int num_packets_sent_classic = 0; 291 int num_packets_sent_le = 0; 292 293 bd_addr_type_t address_type = BD_ADDR_TYPE_UNKNOWN; 294 295 linked_item_t *it; 296 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ 297 hci_connection_t * connection = (hci_connection_t *) it; 298 if (connection->address_type == BD_ADDR_TYPE_CLASSIC){ 299 num_packets_sent_classic += connection->num_acl_packets_sent; 300 } else { 301 num_packets_sent_le += connection->num_acl_packets_sent; 302 } 303 // ignore connections that are not open, e.g., in state RECEIVED_DISCONNECTION_COMPLETE 304 if (connection->con_handle == con_handle && connection->state == OPEN){ 305 address_type = connection->address_type; 306 } 307 } 308 309 int free_slots_classic = hci_stack->acl_packets_total_num - num_packets_sent_classic; 310 int free_slots_le = 0; 311 312 if (free_slots_classic < 0){ 313 log_error("hci_number_free_acl_slots: outgoing classic packets (%u) > total classic packets (%u)", num_packets_sent_classic, hci_stack->acl_packets_total_num); 314 return 0; 315 } 316 317 if (hci_stack->le_acl_packets_total_num){ 318 // if we have LE slots, they are used 319 free_slots_le = hci_stack->le_acl_packets_total_num - num_packets_sent_le; 320 if (free_slots_le < 0){ 321 log_error("hci_number_free_acl_slots: outgoing le packets (%u) > total le packets (%u)", num_packets_sent_le, hci_stack->le_acl_packets_total_num); 322 return 0; 323 } 324 } else { 325 // otherwise, classic slots are used for LE, too 326 free_slots_classic -= num_packets_sent_le; 327 if (free_slots_classic < 0){ 328 log_error("hci_number_free_acl_slots: outgoing classic + le packets (%u + %u) > total packets (%u)", num_packets_sent_classic, num_packets_sent_le, hci_stack->acl_packets_total_num); 329 return 0; 330 } 331 } 332 333 switch (address_type){ 334 case BD_ADDR_TYPE_UNKNOWN: 335 log_error("hci_number_free_acl_slots: handle 0x%04x not in connection list", con_handle); 336 return 0; 337 338 case BD_ADDR_TYPE_CLASSIC: 339 return free_slots_classic; 340 341 default: 342 if (hci_stack->le_acl_packets_total_num){ 343 return free_slots_le; 344 } 345 return free_slots_classic; 346 } 347 } 348 349 // new functions replacing hci_can_send_packet_now[_using_packet_buffer] 350 int hci_can_send_command_packet_now(void){ 351 if (hci_stack->hci_packet_buffer_reserved) return 0; 352 353 // check for async hci transport implementations 354 if (hci_stack->hci_transport->can_send_packet_now){ 355 if (!hci_stack->hci_transport->can_send_packet_now(HCI_COMMAND_DATA_PACKET)){ 356 return 0; 357 } 358 } 359 360 return hci_stack->num_cmd_packets > 0; 361 } 362 363 int hci_can_send_prepared_acl_packet_now(hci_con_handle_t con_handle) { 364 // check for async hci transport implementations 365 if (hci_stack->hci_transport->can_send_packet_now){ 366 if (!hci_stack->hci_transport->can_send_packet_now(HCI_ACL_DATA_PACKET)){ 367 return 0; 368 } 369 } 370 return hci_number_free_acl_slots_for_handle(con_handle) > 0; 371 } 372 373 int hci_can_send_acl_packet_now(hci_con_handle_t con_handle){ 374 if (hci_stack->hci_packet_buffer_reserved) return 0; 375 return hci_can_send_prepared_acl_packet_now(con_handle); 376 } 377 378 // used for internal checks in l2cap[-le].c 379 int hci_is_packet_buffer_reserved(void){ 380 return hci_stack->hci_packet_buffer_reserved; 381 } 382 383 // reserves outgoing packet buffer. @returns 1 if successful 384 int hci_reserve_packet_buffer(void){ 385 if (hci_stack->hci_packet_buffer_reserved) { 386 log_error("hci_reserve_packet_buffer called but buffer already reserved"); 387 return 0; 388 } 389 hci_stack->hci_packet_buffer_reserved = 1; 390 return 1; 391 } 392 393 void hci_release_packet_buffer(void){ 394 hci_stack->hci_packet_buffer_reserved = 0; 395 } 396 397 // assumption: synchronous implementations don't provide can_send_packet_now as they don't keep the buffer after the call 398 int hci_transport_synchronous(void){ 399 return hci_stack->hci_transport->can_send_packet_now == NULL; 400 } 401 402 uint16_t hci_max_acl_le_data_packet_length(void){ 403 return hci_stack->le_data_packets_length > 0 ? hci_stack->le_data_packets_length : hci_stack->acl_data_packet_length; 404 } 405 406 static int hci_send_acl_packet_fragments(hci_connection_t *connection){ 407 408 // log_info("hci_send_acl_packet_fragments %u/%u (con 0x%04x)", hci_stack->acl_fragmentation_pos, hci_stack->acl_fragmentation_total_size, connection->con_handle); 409 410 // max ACL data packet length depends on connection type (LE vs. Classic) and available buffers 411 uint16_t max_acl_data_packet_length = hci_stack->acl_data_packet_length; 412 if (hci_is_le_connection(connection) && hci_stack->le_data_packets_length > 0){ 413 max_acl_data_packet_length = hci_stack->le_data_packets_length; 414 } 415 416 // testing: reduce buffer to minimum 417 // max_acl_data_packet_length = 52; 418 419 int err; 420 // multiple packets could be send on a synchronous HCI transport 421 while (1){ 422 423 // get current data 424 const uint16_t acl_header_pos = hci_stack->acl_fragmentation_pos - 4; 425 int current_acl_data_packet_length = hci_stack->acl_fragmentation_total_size - hci_stack->acl_fragmentation_pos; 426 int more_fragments = 0; 427 428 // if ACL packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length 429 if (current_acl_data_packet_length > max_acl_data_packet_length){ 430 more_fragments = 1; 431 current_acl_data_packet_length = max_acl_data_packet_length; 432 } 433 434 // copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragmnent) 435 if (acl_header_pos > 0){ 436 uint16_t handle_and_flags = READ_BT_16(hci_stack->hci_packet_buffer, 0); 437 handle_and_flags = (handle_and_flags & 0xcfff) | (1 << 12); 438 bt_store_16(hci_stack->hci_packet_buffer, acl_header_pos, handle_and_flags); 439 } 440 441 // update header len 442 bt_store_16(hci_stack->hci_packet_buffer, acl_header_pos + 2, current_acl_data_packet_length); 443 444 // count packet 445 connection->num_acl_packets_sent++; 446 447 // send packet 448 uint8_t * packet = &hci_stack->hci_packet_buffer[acl_header_pos]; 449 const int size = current_acl_data_packet_length + 4; 450 hci_dump_packet(HCI_ACL_DATA_PACKET, 0, packet, size); 451 err = hci_stack->hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size); 452 453 // done yet? 454 if (!more_fragments) break; 455 456 // update start of next fragment to send 457 hci_stack->acl_fragmentation_pos += current_acl_data_packet_length; 458 459 // can send more? 460 if (!hci_can_send_prepared_acl_packet_now(connection->con_handle)) return err; 461 } 462 463 // done 464 hci_stack->acl_fragmentation_pos = 0; 465 hci_stack->acl_fragmentation_total_size = 0; 466 467 // release buffer now for synchronous transport 468 if (hci_transport_synchronous()){ 469 hci_release_packet_buffer(); 470 } 471 472 return err; 473 } 474 475 // pre: caller has reserved the packet buffer 476 int hci_send_acl_packet_buffer(int size){ 477 478 // log_info("hci_send_acl_packet_buffer size %u", size); 479 480 if (!hci_stack->hci_packet_buffer_reserved) { 481 log_error("hci_send_acl_packet_buffer called without reserving packet buffer"); 482 return 0; 483 } 484 485 uint8_t * packet = hci_stack->hci_packet_buffer; 486 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); 487 488 // check for free places on Bluetooth module 489 if (!hci_can_send_prepared_acl_packet_now(con_handle)) { 490 log_error("hci_send_acl_packet_buffer called but no free ACL buffers on controller"); 491 hci_release_packet_buffer(); 492 return BTSTACK_ACL_BUFFERS_FULL; 493 } 494 495 hci_connection_t *connection = hci_connection_for_handle( con_handle); 496 if (!connection) { 497 log_error("hci_send_acl_packet_buffer called but no connection for handle 0x%04x", con_handle); 498 hci_release_packet_buffer(); 499 return 0; 500 } 501 hci_connection_timestamp(connection); 502 503 // hci_dump_packet( HCI_ACL_DATA_PACKET, 0, packet, size); 504 505 // setup data 506 hci_stack->acl_fragmentation_total_size = size; 507 hci_stack->acl_fragmentation_pos = 4; // start of L2CAP packet 508 509 return hci_send_acl_packet_fragments(connection); 510 } 511 512 static void acl_handler(uint8_t *packet, int size){ 513 514 // log_info("acl_handler: size %u", size); 515 516 // get info 517 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); 518 hci_connection_t *conn = hci_connection_for_handle(con_handle); 519 uint8_t acl_flags = READ_ACL_FLAGS(packet); 520 uint16_t acl_length = READ_ACL_LENGTH(packet); 521 522 // ignore non-registered handle 523 if (!conn){ 524 log_error( "hci.c: acl_handler called with non-registered handle %u!" , con_handle); 525 return; 526 } 527 528 // assert packet is complete 529 if (acl_length + 4 != size){ 530 log_error("hci.c: acl_handler called with ACL packet of wrong size %u, expected %u => dropping packet", size, acl_length + 4); 531 return; 532 } 533 534 // update idle timestamp 535 hci_connection_timestamp(conn); 536 537 // handle different packet types 538 switch (acl_flags & 0x03) { 539 540 case 0x01: // continuation fragment 541 542 // sanity checks 543 if (conn->acl_recombination_pos == 0) { 544 log_error( "ACL Cont Fragment but no first fragment for handle 0x%02x", con_handle); 545 return; 546 } 547 if (conn->acl_recombination_pos + acl_length > 4 + HCI_ACL_BUFFER_SIZE){ 548 log_error( "ACL Cont Fragment to large: combined packet %u > buffer size %u for handle 0x%02x", 549 conn->acl_recombination_pos + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); 550 conn->acl_recombination_pos = 0; 551 return; 552 } 553 554 // append fragment payload (header already stored) 555 memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + conn->acl_recombination_pos], &packet[4], acl_length ); 556 conn->acl_recombination_pos += acl_length; 557 558 // log_error( "ACL Cont Fragment: acl_len %u, combined_len %u, l2cap_len %u", acl_length, 559 // conn->acl_recombination_pos, conn->acl_recombination_length); 560 561 // forward complete L2CAP packet if complete. 562 if (conn->acl_recombination_pos >= conn->acl_recombination_length + 4 + 4){ // pos already incl. ACL header 563 564 hci_stack->packet_handler(HCI_ACL_DATA_PACKET, &conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], conn->acl_recombination_pos); 565 // reset recombination buffer 566 conn->acl_recombination_length = 0; 567 conn->acl_recombination_pos = 0; 568 } 569 break; 570 571 case 0x02: { // first fragment 572 573 // sanity check 574 if (conn->acl_recombination_pos) { 575 log_error( "ACL First Fragment but data in buffer for handle 0x%02x, dropping stale fragments", con_handle); 576 conn->acl_recombination_pos = 0; 577 } 578 579 // peek into L2CAP packet! 580 uint16_t l2cap_length = READ_L2CAP_LENGTH( packet ); 581 582 // log_info( "ACL First Fragment: acl_len %u, l2cap_len %u", acl_length, l2cap_length); 583 584 // compare fragment size to L2CAP packet size 585 if (acl_length >= l2cap_length + 4){ 586 587 // forward fragment as L2CAP packet 588 hci_stack->packet_handler(HCI_ACL_DATA_PACKET, packet, acl_length + 4); 589 590 } else { 591 592 if (acl_length > HCI_ACL_BUFFER_SIZE){ 593 log_error( "ACL First Fragment to large: fragment %u > buffer size %u for handle 0x%02x", 594 4 + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); 595 return; 596 } 597 598 // store first fragment and tweak acl length for complete package 599 memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], packet, acl_length + 4); 600 conn->acl_recombination_pos = acl_length + 4; 601 conn->acl_recombination_length = l2cap_length; 602 bt_store_16(conn->acl_recombination_buffer, HCI_INCOMING_PRE_BUFFER_SIZE + 2, l2cap_length +4); 603 } 604 break; 605 606 } 607 default: 608 log_error( "hci.c: acl_handler called with invalid packet boundary flags %u", acl_flags & 0x03); 609 return; 610 } 611 612 // execute main loop 613 hci_run(); 614 } 615 616 static void hci_shutdown_connection(hci_connection_t *conn){ 617 log_info("Connection closed: handle 0x%x, %s", conn->con_handle, bd_addr_to_str(conn->address)); 618 619 run_loop_remove_timer(&conn->timeout); 620 621 linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); 622 btstack_memory_hci_connection_free( conn ); 623 624 // now it's gone 625 hci_emit_nr_connections_changed(); 626 } 627 628 static const uint16_t packet_type_sizes[] = { 629 0, HCI_ACL_2DH1_SIZE, HCI_ACL_3DH1_SIZE, HCI_ACL_DM1_SIZE, 630 HCI_ACL_DH1_SIZE, 0, 0, 0, 631 HCI_ACL_2DH3_SIZE, HCI_ACL_3DH3_SIZE, HCI_ACL_DM3_SIZE, HCI_ACL_DH3_SIZE, 632 HCI_ACL_2DH5_SIZE, HCI_ACL_3DH5_SIZE, HCI_ACL_DM5_SIZE, HCI_ACL_DH5_SIZE 633 }; 634 static const uint8_t packet_type_feature_requirement_bit[] = { 635 0, // 3 slot packets 636 1, // 5 slot packets 637 25, // EDR 2 mpbs 638 26, // EDR 3 mbps 639 39, // 3 slot EDR packts 640 40, // 5 slot EDR packet 641 }; 642 static const uint16_t packet_type_feature_packet_mask[] = { 643 0x0f00, // 3 slot packets 644 0xf000, // 5 slot packets 645 0x1102, // EDR 2 mpbs 646 0x2204, // EDR 3 mbps 647 0x0300, // 3 slot EDR packts 648 0x3000, // 5 slot EDR packet 649 }; 650 651 static uint16_t hci_acl_packet_types_for_buffer_size_and_local_features(uint16_t buffer_size, uint8_t * local_supported_features){ 652 // enable packet types based on size 653 uint16_t packet_types = 0; 654 unsigned int i; 655 for (i=0;i<16;i++){ 656 if (packet_type_sizes[i] == 0) continue; 657 if (packet_type_sizes[i] <= buffer_size){ 658 packet_types |= 1 << i; 659 } 660 } 661 // disable packet types due to missing local supported features 662 for (i=0;i<sizeof(packet_type_feature_requirement_bit);i++){ 663 int bit_idx = packet_type_feature_requirement_bit[i]; 664 int feature_set = (local_supported_features[bit_idx >> 3] & (1<<(bit_idx & 7))) != 0; 665 if (feature_set) continue; 666 log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, packet_type_feature_packet_mask[i]); 667 packet_types &= ~packet_type_feature_packet_mask[i]; 668 } 669 // flip bits for "may not be used" 670 packet_types ^= 0x3306; 671 return packet_types; 672 } 673 674 uint16_t hci_usable_acl_packet_types(void){ 675 return hci_stack->packet_types; 676 } 677 678 uint8_t* hci_get_outgoing_packet_buffer(void){ 679 // hci packet buffer is >= acl data packet length 680 return hci_stack->hci_packet_buffer; 681 } 682 683 uint16_t hci_max_acl_data_packet_length(void){ 684 return hci_stack->acl_data_packet_length; 685 } 686 687 int hci_non_flushable_packet_boundary_flag_supported(void){ 688 // No. 54, byte 6, bit 6 689 return (hci_stack->local_supported_features[6] & (1 << 6)) != 0; 690 } 691 692 int hci_ssp_supported(void){ 693 // No. 51, byte 6, bit 3 694 return (hci_stack->local_supported_features[6] & (1 << 3)) != 0; 695 } 696 697 int hci_classic_supported(void){ 698 // No. 37, byte 4, bit 5, = No BR/EDR Support 699 return (hci_stack->local_supported_features[4] & (1 << 5)) == 0; 700 } 701 702 int hci_le_supported(void){ 703 #ifdef HAVE_BLE 704 // No. 37, byte 4, bit 6 = LE Supported (Controller) 705 return (hci_stack->local_supported_features[4] & (1 << 6)) != 0; 706 #else 707 return 0; 708 #endif 709 } 710 711 // get addr type and address used in advertisement packets 712 void hci_le_advertisement_address(uint8_t * addr_type, bd_addr_t * addr){ 713 *addr_type = hci_stack->adv_addr_type; 714 if (hci_stack->adv_addr_type){ 715 memcpy(addr, hci_stack->adv_address, 6); 716 } else { 717 memcpy(addr, hci_stack->local_bd_addr, 6); 718 } 719 } 720 721 #ifdef HAVE_BLE 722 void le_handle_advertisement_report(uint8_t *packet, int size){ 723 int offset = 3; 724 int num_reports = packet[offset]; 725 offset += 1; 726 727 int i; 728 log_info("HCI: handle adv report with num reports: %d", num_reports); 729 uint8_t event[12 + LE_ADVERTISING_DATA_SIZE]; // use upper bound to avoid var size automatic var 730 for (i=0; i<num_reports;i++){ 731 uint8_t data_length = packet[offset + 8]; 732 int pos = 0; 733 event[pos++] = GAP_LE_ADVERTISING_REPORT; 734 event[pos++] = event_size; 735 memcpy(&event[pos], &packet[offset], 1+1+6); // event type + address type + address 736 offset += 8; 737 pos += 8; 738 event[pos++] = packet[offset + 1 + data_length]; // rssi 739 event[pos++] = packet[offset++]; //data_length; 740 memcpy(&event[pos], &packet[offset], data_length); 741 pos += data_length; 742 offset += data_length + 1; // rssi 743 hci_dump_packet( HCI_EVENT_PACKET, 0, event, pos); 744 hci_stack->packet_handler(HCI_EVENT_PACKET, event, pos); 745 } 746 } 747 #endif 748 749 static void hci_initializing_event_handler(uint8_t * packet, uint16_t size){ 750 uint8_t command_completed = 0; 751 if ((hci_stack->substate % 2) == 0) return; 752 // odd: waiting for event 753 if (packet[0] == HCI_EVENT_COMMAND_COMPLETE){ 754 uint16_t opcode = READ_BT_16(packet,3); 755 if (opcode == hci_stack->last_cmd_opcode){ 756 command_completed = 1; 757 log_info("Command complete for expected opcode %04x -> new substate %u", opcode, hci_stack->substate >> 1); 758 } else { 759 log_info("Command complete for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode); 760 } 761 } 762 if (packet[0] == HCI_EVENT_COMMAND_STATUS){ 763 uint8_t status = packet[2]; 764 uint16_t opcode = READ_BT_16(packet,4); 765 if (opcode == hci_stack->last_cmd_opcode){ 766 if (status){ 767 command_completed = 1; 768 log_error("Command status error 0x%02x for expected opcode %04x -> new substate %u", status, opcode, hci_stack->substate >> 1); 769 } else { 770 log_info("Command status OK for expected opcode %04x, waiting for command complete", opcode); 771 } 772 } else { 773 log_info("Command status for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode); 774 } 775 } 776 777 if (!command_completed) return; 778 779 switch(hci_stack->substate >> 1){ 780 default: 781 hci_stack->substate++; 782 break; 783 } 784 } 785 786 static void hci_initializing_state_machine(){ 787 if (hci_stack->substate % 2) { 788 // odd: waiting for command completion 789 return; 790 } 791 // log_info("hci_init: substate %u", hci_stack->substate >> 1); 792 switch (hci_stack->substate >> 1){ 793 case 0: // RESET 794 hci_state_reset(); 795 796 hci_send_cmd(&hci_reset); 797 if (hci_stack->config == NULL || ((hci_uart_config_t *)hci_stack->config)->baudrate_main == 0){ 798 // skip baud change 799 hci_stack->substate = 2 << 1; 800 } 801 break; 802 case 1: // SEND BAUD CHANGE 803 hci_stack->control->baudrate_cmd(hci_stack->config, ((hci_uart_config_t *)hci_stack->config)->baudrate_main, hci_stack->hci_packet_buffer); 804 hci_stack->last_cmd_opcode = READ_BT_16(hci_stack->hci_packet_buffer, 0); 805 hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); 806 break; 807 case 2: // LOCAL BAUD CHANGE 808 log_info("Local baud rate change"); 809 hci_stack->hci_transport->set_baudrate(((hci_uart_config_t *)hci_stack->config)->baudrate_main); 810 hci_stack->substate += 2; 811 // break missing here for fall through 812 813 case 3: // SET BD ADDR 814 if ( hci_stack->custom_bd_addr_set && hci_stack->control && hci_stack->control->set_bd_addr_cmd){ 815 log_info("Set Public BD ADDR to %s", bd_addr_to_str(hci_stack->custom_bd_addr)); 816 hci_stack->control->set_bd_addr_cmd(hci_stack->config, hci_stack->custom_bd_addr, hci_stack->hci_packet_buffer); 817 hci_stack->last_cmd_opcode = READ_BT_16(hci_stack->hci_packet_buffer, 0); 818 hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); 819 break; 820 } 821 hci_stack->substate += 2; 822 // break missing here for fall through 823 824 case 4: 825 log_info("Custom init"); 826 // Custom initialization 827 if (hci_stack->control && hci_stack->control->next_cmd){ 828 int valid_cmd = (*hci_stack->control->next_cmd)(hci_stack->config, hci_stack->hci_packet_buffer); 829 if (valid_cmd){ 830 int size = 3 + hci_stack->hci_packet_buffer[2]; 831 hci_stack->last_cmd_opcode = READ_BT_16(hci_stack->hci_packet_buffer, 0); 832 hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, hci_stack->hci_packet_buffer, size); 833 hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, hci_stack->hci_packet_buffer, size); 834 hci_stack->substate = 3 << 1; // more init commands 835 break; 836 } 837 log_info("hci_run: init script done"); 838 } 839 // otherwise continue 840 hci_send_cmd(&hci_read_bd_addr); 841 break; 842 case 5: 843 hci_send_cmd(&hci_read_buffer_size); 844 break; 845 case 6: 846 hci_send_cmd(&hci_read_local_supported_features); 847 break; 848 case 7: 849 if (hci_le_supported()){ 850 hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x3FFFFFFF); 851 } else { 852 // Kensington Bluetooth 2.1 USB Dongle (CSR Chipset) returns an error for 0xffff... 853 hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x1FFFFFFF); 854 } 855 856 // skip Classic init commands for LE only chipsets 857 if (!hci_classic_supported()){ 858 if (hci_le_supported()){ 859 hci_stack->substate = 12 << 1; // skip all classic command 860 } else { 861 log_error("Neither BR/EDR nor LE supported"); 862 hci_stack->substate = 15 << 1; // skip all 863 } 864 } 865 break; 866 case 8: 867 if (hci_ssp_supported()){ 868 hci_send_cmd(&hci_write_simple_pairing_mode, hci_stack->ssp_enable); 869 break; 870 } 871 hci_stack->substate += 2; 872 // break missing here for fall through 873 874 case 9: 875 // ca. 15 sec 876 hci_send_cmd(&hci_write_page_timeout, 0x6000); 877 break; 878 case 10: 879 hci_send_cmd(&hci_write_class_of_device, hci_stack->class_of_device); 880 break; 881 case 11: 882 if (hci_stack->local_name){ 883 hci_send_cmd(&hci_write_local_name, hci_stack->local_name); 884 } else { 885 char hostname[30]; 886 #ifdef EMBEDDED 887 // BTstack-11:22:33:44:55:66 888 strcpy(hostname, "BTstack "); 889 strcat(hostname, bd_addr_to_str(hci_stack->local_bd_addr)); 890 log_info("---> Name %s", hostname); 891 #else 892 // hostname for POSIX systems 893 gethostname(hostname, 30); 894 hostname[29] = '\0'; 895 #endif 896 hci_send_cmd(&hci_write_local_name, hostname); 897 } 898 break; 899 case 12: 900 hci_send_cmd(&hci_write_scan_enable, (hci_stack->connectable << 1) | hci_stack->discoverable); // page scan 901 if (!hci_le_supported()){ 902 // SKIP LE init for Classic only configuration 903 hci_stack->substate = 15 << 1; 904 } 905 break; 906 907 #ifdef HAVE_BLE 908 // LE INIT 909 case 13: 910 hci_send_cmd(&hci_le_read_buffer_size); 911 break; 912 case 14: 913 // LE Supported Host = 1, Simultaneous Host = 0 914 hci_send_cmd(&hci_write_le_host_supported, 1, 0); 915 break; 916 case 15: 917 // LE Scan Parameters: active scanning, 300 ms interval, 30 ms window, public address, accept all advs 918 hci_send_cmd(&hci_le_set_scan_parameters, 1, 0x1e0, 0x30, 0, 0); 919 break; 920 #endif 921 922 // DONE 923 case 16: 924 // done. 925 hci_stack->state = HCI_STATE_WORKING; 926 hci_emit_state(); 927 break; 928 default: 929 break; 930 } 931 hci_stack->substate++; 932 } 933 934 // avoid huge local variables 935 #ifndef EMBEDDED 936 static device_name_t device_name; 937 #endif 938 static void event_handler(uint8_t *packet, int size){ 939 940 uint16_t event_length = packet[1]; 941 942 // assert packet is complete 943 if (size != event_length + 2){ 944 log_error("hci.c: event_handler called with event packet of wrong size %u, expected %u => dropping packet", size, event_length + 2); 945 return; 946 } 947 948 bd_addr_t addr; 949 bd_addr_type_t addr_type; 950 uint8_t link_type; 951 hci_con_handle_t handle; 952 hci_connection_t * conn; 953 int i; 954 955 // log_info("HCI:EVENT:%02x", packet[0]); 956 957 switch (packet[0]) { 958 959 case HCI_EVENT_COMMAND_COMPLETE: 960 // get num cmd packets 961 // log_info("HCI_EVENT_COMMAND_COMPLETE cmds old %u - new %u", hci_stack->num_cmd_packets, packet[2]); 962 hci_stack->num_cmd_packets = packet[2]; 963 964 if (COMMAND_COMPLETE_EVENT(packet, hci_read_buffer_size)){ 965 // from offset 5 966 // status 967 // "The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets" 968 hci_stack->acl_data_packet_length = READ_BT_16(packet, 6); 969 // ignore: SCO data packet len (8) 970 hci_stack->acl_packets_total_num = packet[9]; 971 // ignore: total num SCO packets 972 if (hci_stack->state == HCI_STATE_INITIALIZING){ 973 // determine usable ACL payload size 974 if (HCI_ACL_PAYLOAD_SIZE < hci_stack->acl_data_packet_length){ 975 hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; 976 } 977 log_info("hci_read_buffer_size: used size %u, count %u", 978 hci_stack->acl_data_packet_length, hci_stack->acl_packets_total_num); 979 } 980 } 981 #ifdef HAVE_BLE 982 if (COMMAND_COMPLETE_EVENT(packet, hci_le_read_buffer_size)){ 983 hci_stack->le_data_packets_length = READ_BT_16(packet, 6); 984 hci_stack->le_acl_packets_total_num = packet[8]; 985 // determine usable ACL payload size 986 if (HCI_ACL_PAYLOAD_SIZE < hci_stack->le_data_packets_length){ 987 hci_stack->le_data_packets_length = HCI_ACL_PAYLOAD_SIZE; 988 } 989 log_info("hci_le_read_buffer_size: size %u, count %u", hci_stack->le_data_packets_length, hci_stack->le_acl_packets_total_num); 990 } 991 #endif 992 // Dump local address 993 if (COMMAND_COMPLETE_EVENT(packet, hci_read_bd_addr)) { 994 bt_flip_addr(hci_stack->local_bd_addr, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1]); 995 log_info("Local Address, Status: 0x%02x: Addr: %s", 996 packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE], bd_addr_to_str(hci_stack->local_bd_addr)); 997 } 998 if (COMMAND_COMPLETE_EVENT(packet, hci_write_scan_enable)){ 999 hci_emit_discoverable_enabled(hci_stack->discoverable); 1000 } 1001 // Note: HCI init checks 1002 if (COMMAND_COMPLETE_EVENT(packet, hci_read_local_supported_features)){ 1003 memcpy(hci_stack->local_supported_features, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1], 8); 1004 log_info("Local Supported Features: 0x%02x%02x%02x%02x%02x%02x%02x%02x", 1005 hci_stack->local_supported_features[0], hci_stack->local_supported_features[1], 1006 hci_stack->local_supported_features[2], hci_stack->local_supported_features[3], 1007 hci_stack->local_supported_features[4], hci_stack->local_supported_features[5], 1008 hci_stack->local_supported_features[6], hci_stack->local_supported_features[7]); 1009 1010 // determine usable ACL packet types based on host buffer size and supported features 1011 hci_stack->packet_types = hci_acl_packet_types_for_buffer_size_and_local_features(HCI_ACL_PAYLOAD_SIZE, &hci_stack->local_supported_features[0]); 1012 log_info("packet types %04x", hci_stack->packet_types); 1013 1014 // Classic/LE 1015 log_info("BR/EDR support %u, LE support %u", hci_classic_supported(), hci_le_supported()); 1016 } 1017 break; 1018 1019 case HCI_EVENT_COMMAND_STATUS: 1020 // get num cmd packets 1021 // log_info("HCI_EVENT_COMMAND_STATUS cmds - old %u - new %u", hci_stack->num_cmd_packets, packet[3]); 1022 hci_stack->num_cmd_packets = packet[3]; 1023 break; 1024 1025 case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS:{ 1026 int offset = 3; 1027 for (i=0; i<packet[2];i++){ 1028 handle = READ_BT_16(packet, offset); 1029 offset += 2; 1030 uint16_t num_packets = READ_BT_16(packet, offset); 1031 offset += 2; 1032 1033 conn = hci_connection_for_handle(handle); 1034 if (!conn){ 1035 log_error("hci_number_completed_packet lists unused con handle %u", handle); 1036 continue; 1037 } 1038 1039 if (conn->num_acl_packets_sent >= num_packets){ 1040 conn->num_acl_packets_sent -= num_packets; 1041 } else { 1042 log_error("hci_number_completed_packets, more slots freed then sent."); 1043 conn->num_acl_packets_sent = 0; 1044 } 1045 // log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u", num_packets, handle, conn->num_acl_packets_sent); 1046 } 1047 break; 1048 } 1049 case HCI_EVENT_CONNECTION_REQUEST: 1050 bt_flip_addr(addr, &packet[2]); 1051 // TODO: eval COD 8-10 1052 link_type = packet[11]; 1053 log_info("Connection_incoming: %s, type %u", bd_addr_to_str(addr), link_type); 1054 if (link_type == 1) { // ACL 1055 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 1056 if (!conn) { 1057 conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 1058 } 1059 if (!conn) { 1060 // CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D) 1061 hci_stack->decline_reason = 0x0d; 1062 BD_ADDR_COPY(hci_stack->decline_addr, addr); 1063 break; 1064 } 1065 conn->state = RECEIVED_CONNECTION_REQUEST; 1066 hci_run(); 1067 } else { 1068 // SYNCHRONOUS CONNECTION LIMIT TO A DEVICE EXCEEDED (0X0A) 1069 hci_stack->decline_reason = 0x0a; 1070 BD_ADDR_COPY(hci_stack->decline_addr, addr); 1071 } 1072 break; 1073 1074 case HCI_EVENT_CONNECTION_COMPLETE: 1075 // Connection management 1076 bt_flip_addr(addr, &packet[5]); 1077 log_info("Connection_complete (status=%u) %s", packet[2], bd_addr_to_str(addr)); 1078 addr_type = BD_ADDR_TYPE_CLASSIC; 1079 conn = hci_connection_for_bd_addr_and_type(&addr, addr_type); 1080 if (conn) { 1081 if (!packet[2]){ 1082 conn->state = OPEN; 1083 conn->con_handle = READ_BT_16(packet, 3); 1084 conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES; 1085 1086 // restart timer 1087 run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); 1088 run_loop_add_timer(&conn->timeout); 1089 1090 log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); 1091 1092 hci_emit_nr_connections_changed(); 1093 } else { 1094 int notify_dedicated_bonding_failed = conn->bonding_flags & BONDING_DEDICATED; 1095 uint8_t status = packet[2]; 1096 bd_addr_t bd_address; 1097 memcpy(&bd_address, conn->address, 6); 1098 1099 // connection failed, remove entry 1100 linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); 1101 btstack_memory_hci_connection_free( conn ); 1102 1103 // notify client if dedicated bonding 1104 if (notify_dedicated_bonding_failed){ 1105 log_info("hci notify_dedicated_bonding_failed"); 1106 hci_emit_dedicated_bonding_result(bd_address, status); 1107 } 1108 1109 // if authentication error, also delete link key 1110 if (packet[2] == 0x05) { 1111 hci_drop_link_key_for_bd_addr(&addr); 1112 } 1113 } 1114 } 1115 break; 1116 1117 case HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE: 1118 handle = READ_BT_16(packet, 3); 1119 conn = hci_connection_for_handle(handle); 1120 if (!conn) break; 1121 if (!packet[2]){ 1122 uint8_t * features = &packet[5]; 1123 if (features[6] & (1 << 3)){ 1124 conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP; 1125 } 1126 } 1127 conn->bonding_flags |= BONDING_RECEIVED_REMOTE_FEATURES; 1128 log_info("HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE, bonding flags %x", conn->bonding_flags); 1129 if (conn->bonding_flags & BONDING_DEDICATED){ 1130 conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; 1131 } 1132 break; 1133 1134 case HCI_EVENT_LINK_KEY_REQUEST: 1135 log_info("HCI_EVENT_LINK_KEY_REQUEST"); 1136 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_LINK_KEY_REQUEST); 1137 // non-bondable mode: link key negative reply will be sent by HANDLE_LINK_KEY_REQUEST 1138 if (hci_stack->bondable && !hci_stack->remote_device_db) break; 1139 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], HANDLE_LINK_KEY_REQUEST); 1140 hci_run(); 1141 // request handled by hci_run() as HANDLE_LINK_KEY_REQUEST gets set 1142 return; 1143 1144 case HCI_EVENT_LINK_KEY_NOTIFICATION: { 1145 bt_flip_addr(addr, &packet[2]); 1146 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 1147 if (!conn) break; 1148 conn->authentication_flags |= RECV_LINK_KEY_NOTIFICATION; 1149 link_key_type_t link_key_type = (link_key_type_t)packet[24]; 1150 // Change Connection Encryption keeps link key type 1151 if (link_key_type != CHANGED_COMBINATION_KEY){ 1152 conn->link_key_type = link_key_type; 1153 } 1154 if (!hci_stack->remote_device_db) break; 1155 hci_stack->remote_device_db->put_link_key(&addr, (link_key_t *) &packet[8], conn->link_key_type); 1156 // still forward event to allow dismiss of pairing dialog 1157 break; 1158 } 1159 1160 case HCI_EVENT_PIN_CODE_REQUEST: 1161 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], LEGACY_PAIRING_ACTIVE); 1162 // non-bondable mode: pin code negative reply will be sent 1163 if (!hci_stack->bondable){ 1164 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], DENY_PIN_CODE_REQUEST); 1165 hci_run(); 1166 return; 1167 } 1168 // PIN CODE REQUEST means the link key request didn't succee -> delete stored link key 1169 if (!hci_stack->remote_device_db) break; 1170 bt_flip_addr(addr, &packet[2]); 1171 hci_stack->remote_device_db->delete_link_key(&addr); 1172 break; 1173 1174 case HCI_EVENT_IO_CAPABILITY_REQUEST: 1175 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_IO_CAPABILITIES_REQUEST); 1176 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_IO_CAPABILITIES_REPLY); 1177 break; 1178 1179 case HCI_EVENT_USER_CONFIRMATION_REQUEST: 1180 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); 1181 if (!hci_stack->ssp_auto_accept) break; 1182 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_CONFIRM_REPLY); 1183 break; 1184 1185 case HCI_EVENT_USER_PASSKEY_REQUEST: 1186 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); 1187 if (!hci_stack->ssp_auto_accept) break; 1188 hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_PASSKEY_REPLY); 1189 break; 1190 1191 case HCI_EVENT_ENCRYPTION_CHANGE: 1192 handle = READ_BT_16(packet, 3); 1193 conn = hci_connection_for_handle(handle); 1194 if (!conn) break; 1195 if (packet[2] == 0) { 1196 if (packet[5]){ 1197 conn->authentication_flags |= CONNECTION_ENCRYPTED; 1198 } else { 1199 conn->authentication_flags &= ~CONNECTION_ENCRYPTED; 1200 } 1201 } 1202 hci_emit_security_level(handle, gap_security_level_for_connection(conn)); 1203 break; 1204 1205 case HCI_EVENT_AUTHENTICATION_COMPLETE_EVENT: 1206 handle = READ_BT_16(packet, 3); 1207 conn = hci_connection_for_handle(handle); 1208 if (!conn) break; 1209 1210 // dedicated bonding: send result and disconnect 1211 if (conn->bonding_flags & BONDING_DEDICATED){ 1212 conn->bonding_flags &= ~BONDING_DEDICATED; 1213 conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE; 1214 conn->bonding_status = packet[2]; 1215 break; 1216 } 1217 1218 if (packet[2] == 0 && gap_security_level_for_link_key_type(conn->link_key_type) >= conn->requested_security_level){ 1219 // link key sufficient for requested security 1220 conn->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; 1221 break; 1222 } 1223 // not enough 1224 hci_emit_security_level(handle, gap_security_level_for_connection(conn)); 1225 break; 1226 1227 #ifndef EMBEDDED 1228 case HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE: 1229 if (!hci_stack->remote_device_db) break; 1230 if (packet[2]) break; // status not ok 1231 bt_flip_addr(addr, &packet[3]); 1232 // fix for invalid remote names - terminate on 0xff 1233 for (i=0; i<248;i++){ 1234 if (packet[9+i] == 0xff){ 1235 packet[9+i] = 0; 1236 break; 1237 } 1238 } 1239 memset(&device_name, 0, sizeof(device_name_t)); 1240 strncpy((char*) device_name, (char*) &packet[9], 248); 1241 hci_stack->remote_device_db->put_name(&addr, &device_name); 1242 break; 1243 1244 case HCI_EVENT_INQUIRY_RESULT: 1245 case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI:{ 1246 if (!hci_stack->remote_device_db) break; 1247 // first send inq result packet 1248 hci_stack->packet_handler(HCI_EVENT_PACKET, packet, size); 1249 // then send cached remote names 1250 int offset = 3; 1251 for (i=0; i<packet[2];i++){ 1252 bt_flip_addr(addr, &packet[offset]); 1253 offset += 14; // 6 + 1 + 1 + 1 + 3 + 2; 1254 if (hci_stack->remote_device_db->get_name(&addr, &device_name)){ 1255 hci_emit_remote_name_cached(&addr, &device_name); 1256 } 1257 } 1258 return; 1259 } 1260 #endif 1261 1262 // HCI_EVENT_DISCONNECTION_COMPLETE 1263 // has been split, to first notify stack before shutting connection down 1264 // see end of function, too. 1265 case HCI_EVENT_DISCONNECTION_COMPLETE: 1266 if (packet[2]) break; // status != 0 1267 handle = READ_BT_16(packet, 3); 1268 hci_connection_t * conn = hci_connection_for_handle(handle); 1269 if (!conn) break; // no conn struct anymore 1270 conn->state = RECEIVED_DISCONNECTION_COMPLETE; 1271 break; 1272 1273 case HCI_EVENT_HARDWARE_ERROR: 1274 if(hci_stack->control && hci_stack->control->hw_error){ 1275 (*hci_stack->control->hw_error)(); 1276 } else { 1277 // if no special requests, just reboot stack 1278 hci_power_control_off(); 1279 hci_power_control_on(); 1280 } 1281 break; 1282 1283 case DAEMON_EVENT_HCI_PACKET_SENT: 1284 // release packet buffer only for asynchronous transport and if there are not further fragements 1285 if (hci_transport_synchronous()) { 1286 log_error("Synchronous HCI Transport shouldn't send DAEMON_EVENT_HCI_PACKET_SENT"); 1287 return; // instead of break: to avoid re-entering hci_run() 1288 } 1289 if (hci_stack->acl_fragmentation_total_size) break; 1290 hci_release_packet_buffer(); 1291 break; 1292 1293 #ifdef HAVE_BLE 1294 case HCI_EVENT_LE_META: 1295 switch (packet[2]){ 1296 case HCI_SUBEVENT_LE_ADVERTISING_REPORT: 1297 log_info("advertising report received"); 1298 if (hci_stack->le_scanning_state != LE_SCANNING) break; 1299 le_handle_advertisement_report(packet, size); 1300 break; 1301 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 1302 // Connection management 1303 bt_flip_addr(addr, &packet[8]); 1304 addr_type = (bd_addr_type_t)packet[7]; 1305 log_info("LE Connection_complete (status=%u) type %u, %s", packet[3], addr_type, bd_addr_to_str(addr)); 1306 // LE connections are auto-accepted, so just create a connection if there isn't one already 1307 conn = hci_connection_for_bd_addr_and_type(&addr, addr_type); 1308 if (packet[3]){ 1309 if (conn){ 1310 // outgoing connection failed, remove entry 1311 linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); 1312 btstack_memory_hci_connection_free( conn ); 1313 } 1314 // if authentication error, also delete link key 1315 if (packet[3] == 0x05) { 1316 hci_drop_link_key_for_bd_addr(&addr); 1317 } 1318 break; 1319 } 1320 if (!conn){ 1321 conn = create_connection_for_bd_addr_and_type(addr, addr_type); 1322 } 1323 if (!conn){ 1324 // no memory 1325 break; 1326 } 1327 1328 conn->state = OPEN; 1329 conn->con_handle = READ_BT_16(packet, 4); 1330 1331 // TODO: store - role, peer address type, conn_interval, conn_latency, supervision timeout, master clock 1332 1333 // restart timer 1334 // run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); 1335 // run_loop_add_timer(&conn->timeout); 1336 1337 log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); 1338 1339 hci_emit_nr_connections_changed(); 1340 break; 1341 1342 // log_info("LE buffer size: %u, count %u", READ_BT_16(packet,6), packet[8]); 1343 1344 default: 1345 break; 1346 } 1347 break; 1348 #endif 1349 default: 1350 break; 1351 } 1352 1353 // handle BT initialization 1354 if (hci_stack->state == HCI_STATE_INITIALIZING){ 1355 hci_initializing_event_handler(packet, size); 1356 } 1357 1358 // help with BT sleep 1359 if (hci_stack->state == HCI_STATE_FALLING_ASLEEP 1360 && hci_stack->substate == 1 1361 && COMMAND_COMPLETE_EVENT(packet, hci_write_scan_enable)){ 1362 hci_stack->substate++; 1363 } 1364 1365 // notify upper stack 1366 hci_stack->packet_handler(HCI_EVENT_PACKET, packet, size); 1367 1368 // moved here to give upper stack a chance to close down everything with hci_connection_t intact 1369 if (packet[0] == HCI_EVENT_DISCONNECTION_COMPLETE){ 1370 if (!packet[2]){ 1371 handle = READ_BT_16(packet, 3); 1372 hci_connection_t * conn = hci_connection_for_handle(handle); 1373 if (conn) { 1374 uint8_t status = conn->bonding_status; 1375 uint16_t flags = conn->bonding_flags; 1376 bd_addr_t bd_address; 1377 memcpy(&bd_address, conn->address, 6); 1378 hci_shutdown_connection(conn); 1379 // connection struct is gone, don't access anymore 1380 if (flags & BONDING_EMIT_COMPLETE_ON_DISCONNECT){ 1381 hci_emit_dedicated_bonding_result(bd_address, status); 1382 } 1383 } 1384 } 1385 } 1386 1387 // execute main loop 1388 hci_run(); 1389 } 1390 1391 static void sco_handler(uint8_t * packet, uint16_t size){ 1392 // not handled yet 1393 } 1394 1395 static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1396 hci_dump_packet(packet_type, 1, packet, size); 1397 switch (packet_type) { 1398 case HCI_EVENT_PACKET: 1399 event_handler(packet, size); 1400 break; 1401 case HCI_ACL_DATA_PACKET: 1402 acl_handler(packet, size); 1403 break; 1404 case HCI_SCO_DATA_PACKET: 1405 sco_handler(packet, size); 1406 default: 1407 break; 1408 } 1409 } 1410 1411 /** Register HCI packet handlers */ 1412 void hci_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1413 hci_stack->packet_handler = handler; 1414 } 1415 1416 static void hci_state_reset(){ 1417 // no connections yet 1418 hci_stack->connections = NULL; 1419 1420 // keep discoverable/connectable as this has been requested by the client(s) 1421 // hci_stack->discoverable = 0; 1422 // hci_stack->connectable = 0; 1423 // hci_stack->bondable = 1; 1424 1425 // buffer is free 1426 hci_stack->hci_packet_buffer_reserved = 0; 1427 1428 // no pending cmds 1429 hci_stack->decline_reason = 0; 1430 hci_stack->new_scan_enable_value = 0xff; 1431 1432 // LE 1433 hci_stack->adv_addr_type = 0; 1434 memset(hci_stack->adv_address, 0, 6); 1435 hci_stack->le_scanning_state = LE_SCAN_IDLE; 1436 hci_stack->le_scan_type = 0xff; 1437 hci_stack->le_connection_parameter_range.le_conn_interval_min = 0x0006; 1438 hci_stack->le_connection_parameter_range.le_conn_interval_max = 0x0C80; 1439 hci_stack->le_connection_parameter_range.le_conn_latency_min = 0x0000; 1440 hci_stack->le_connection_parameter_range.le_conn_latency_max = 0x03E8; 1441 hci_stack->le_connection_parameter_range.le_supervision_timeout_min = 0x000A; 1442 hci_stack->le_connection_parameter_range.le_supervision_timeout_max = 0x0C80; 1443 } 1444 1445 void hci_init(hci_transport_t *transport, void *config, bt_control_t *control, remote_device_db_t const* remote_device_db){ 1446 1447 #ifdef HAVE_MALLOC 1448 if (!hci_stack) { 1449 hci_stack = (hci_stack_t*) malloc(sizeof(hci_stack_t)); 1450 } 1451 #else 1452 hci_stack = &hci_stack_static; 1453 #endif 1454 memset(hci_stack, 0, sizeof(hci_stack_t)); 1455 1456 // reference to use transport layer implementation 1457 hci_stack->hci_transport = transport; 1458 1459 // references to used control implementation 1460 hci_stack->control = control; 1461 1462 // reference to used config 1463 hci_stack->config = config; 1464 1465 // higher level handler 1466 hci_stack->packet_handler = dummy_handler; 1467 1468 // store and open remote device db 1469 hci_stack->remote_device_db = remote_device_db; 1470 if (hci_stack->remote_device_db) { 1471 hci_stack->remote_device_db->open(); 1472 } 1473 1474 // max acl payload size defined in config.h 1475 hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; 1476 1477 // register packet handlers with transport 1478 transport->register_packet_handler(&packet_handler); 1479 1480 hci_stack->state = HCI_STATE_OFF; 1481 1482 // class of device 1483 hci_stack->class_of_device = 0x007a020c; // Smartphone 1484 1485 // bondable by default 1486 hci_stack->bondable = 1; 1487 1488 // Secure Simple Pairing default: enable, no I/O capabilities, general bonding, mitm not required, auto accept 1489 hci_stack->ssp_enable = 1; 1490 hci_stack->ssp_io_capability = SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT; 1491 hci_stack->ssp_authentication_requirement = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING; 1492 hci_stack->ssp_auto_accept = 1; 1493 1494 hci_state_reset(); 1495 } 1496 1497 void hci_close(){ 1498 // close remote device db 1499 if (hci_stack->remote_device_db) { 1500 hci_stack->remote_device_db->close(); 1501 } 1502 while (hci_stack->connections) { 1503 // cancel all l2cap connections 1504 hci_emit_disconnection_complete(((hci_connection_t *) hci_stack->connections)->con_handle, 0x16); // terminated by local host 1505 hci_shutdown_connection((hci_connection_t *) hci_stack->connections); 1506 } 1507 hci_power_control(HCI_POWER_OFF); 1508 1509 #ifdef HAVE_MALLOC 1510 free(hci_stack); 1511 #endif 1512 hci_stack = NULL; 1513 } 1514 1515 void hci_set_class_of_device(uint32_t class_of_device){ 1516 hci_stack->class_of_device = class_of_device; 1517 } 1518 1519 // Set Public BD ADDR - passed on to Bluetooth chipset if supported in bt_control_h 1520 void hci_set_bd_addr(bd_addr_t addr){ 1521 memcpy(hci_stack->custom_bd_addr, addr, 6); 1522 hci_stack->custom_bd_addr_set = 1; 1523 } 1524 1525 void hci_disable_l2cap_timeout_check(){ 1526 disable_l2cap_timeouts = 1; 1527 } 1528 // State-Module-Driver overview 1529 // state module low-level 1530 // HCI_STATE_OFF off close 1531 // HCI_STATE_INITIALIZING, on open 1532 // HCI_STATE_WORKING, on open 1533 // HCI_STATE_HALTING, on open 1534 // HCI_STATE_SLEEPING, off/sleep close 1535 // HCI_STATE_FALLING_ASLEEP on open 1536 1537 static int hci_power_control_on(void){ 1538 1539 // power on 1540 int err = 0; 1541 if (hci_stack->control && hci_stack->control->on){ 1542 err = (*hci_stack->control->on)(hci_stack->config); 1543 } 1544 if (err){ 1545 log_error( "POWER_ON failed"); 1546 hci_emit_hci_open_failed(); 1547 return err; 1548 } 1549 1550 // open low-level device 1551 err = hci_stack->hci_transport->open(hci_stack->config); 1552 if (err){ 1553 log_error( "HCI_INIT failed, turning Bluetooth off again"); 1554 if (hci_stack->control && hci_stack->control->off){ 1555 (*hci_stack->control->off)(hci_stack->config); 1556 } 1557 hci_emit_hci_open_failed(); 1558 return err; 1559 } 1560 return 0; 1561 } 1562 1563 static void hci_power_control_off(void){ 1564 1565 log_info("hci_power_control_off"); 1566 1567 // close low-level device 1568 hci_stack->hci_transport->close(hci_stack->config); 1569 1570 log_info("hci_power_control_off - hci_transport closed"); 1571 1572 // power off 1573 if (hci_stack->control && hci_stack->control->off){ 1574 (*hci_stack->control->off)(hci_stack->config); 1575 } 1576 1577 log_info("hci_power_control_off - control closed"); 1578 1579 hci_stack->state = HCI_STATE_OFF; 1580 } 1581 1582 static void hci_power_control_sleep(void){ 1583 1584 log_info("hci_power_control_sleep"); 1585 1586 #if 0 1587 // don't close serial port during sleep 1588 1589 // close low-level device 1590 hci_stack->hci_transport->close(hci_stack->config); 1591 #endif 1592 1593 // sleep mode 1594 if (hci_stack->control && hci_stack->control->sleep){ 1595 (*hci_stack->control->sleep)(hci_stack->config); 1596 } 1597 1598 hci_stack->state = HCI_STATE_SLEEPING; 1599 } 1600 1601 static int hci_power_control_wake(void){ 1602 1603 log_info("hci_power_control_wake"); 1604 1605 // wake on 1606 if (hci_stack->control && hci_stack->control->wake){ 1607 (*hci_stack->control->wake)(hci_stack->config); 1608 } 1609 1610 #if 0 1611 // open low-level device 1612 int err = hci_stack->hci_transport->open(hci_stack->config); 1613 if (err){ 1614 log_error( "HCI_INIT failed, turning Bluetooth off again"); 1615 if (hci_stack->control && hci_stack->control->off){ 1616 (*hci_stack->control->off)(hci_stack->config); 1617 } 1618 hci_emit_hci_open_failed(); 1619 return err; 1620 } 1621 #endif 1622 1623 return 0; 1624 } 1625 1626 static void hci_power_transition_to_initializing(void){ 1627 // set up state machine 1628 hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent 1629 hci_stack->hci_packet_buffer_reserved = 0; 1630 hci_stack->state = HCI_STATE_INITIALIZING; 1631 hci_stack->substate = 0; 1632 } 1633 1634 int hci_power_control(HCI_POWER_MODE power_mode){ 1635 1636 log_info("hci_power_control: %u, current mode %u", power_mode, hci_stack->state); 1637 1638 int err = 0; 1639 switch (hci_stack->state){ 1640 1641 case HCI_STATE_OFF: 1642 switch (power_mode){ 1643 case HCI_POWER_ON: 1644 err = hci_power_control_on(); 1645 if (err) { 1646 log_error("hci_power_control_on() error %u", err); 1647 return err; 1648 } 1649 hci_power_transition_to_initializing(); 1650 break; 1651 case HCI_POWER_OFF: 1652 // do nothing 1653 break; 1654 case HCI_POWER_SLEEP: 1655 // do nothing (with SLEEP == OFF) 1656 break; 1657 } 1658 break; 1659 1660 case HCI_STATE_INITIALIZING: 1661 switch (power_mode){ 1662 case HCI_POWER_ON: 1663 // do nothing 1664 break; 1665 case HCI_POWER_OFF: 1666 // no connections yet, just turn it off 1667 hci_power_control_off(); 1668 break; 1669 case HCI_POWER_SLEEP: 1670 // no connections yet, just turn it off 1671 hci_power_control_sleep(); 1672 break; 1673 } 1674 break; 1675 1676 case HCI_STATE_WORKING: 1677 switch (power_mode){ 1678 case HCI_POWER_ON: 1679 // do nothing 1680 break; 1681 case HCI_POWER_OFF: 1682 // see hci_run 1683 hci_stack->state = HCI_STATE_HALTING; 1684 break; 1685 case HCI_POWER_SLEEP: 1686 // see hci_run 1687 hci_stack->state = HCI_STATE_FALLING_ASLEEP; 1688 hci_stack->substate = 0; 1689 break; 1690 } 1691 break; 1692 1693 case HCI_STATE_HALTING: 1694 switch (power_mode){ 1695 case HCI_POWER_ON: 1696 hci_power_transition_to_initializing(); 1697 break; 1698 case HCI_POWER_OFF: 1699 // do nothing 1700 break; 1701 case HCI_POWER_SLEEP: 1702 // see hci_run 1703 hci_stack->state = HCI_STATE_FALLING_ASLEEP; 1704 hci_stack->substate = 0; 1705 break; 1706 } 1707 break; 1708 1709 case HCI_STATE_FALLING_ASLEEP: 1710 switch (power_mode){ 1711 case HCI_POWER_ON: 1712 1713 #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) 1714 // nothing to do, if H4 supports power management 1715 if (bt_control_iphone_power_management_enabled()){ 1716 hci_stack->state = HCI_STATE_INITIALIZING; 1717 hci_stack->substate = HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP; 1718 break; 1719 } 1720 #endif 1721 hci_power_transition_to_initializing(); 1722 break; 1723 case HCI_POWER_OFF: 1724 // see hci_run 1725 hci_stack->state = HCI_STATE_HALTING; 1726 break; 1727 case HCI_POWER_SLEEP: 1728 // do nothing 1729 break; 1730 } 1731 break; 1732 1733 case HCI_STATE_SLEEPING: 1734 switch (power_mode){ 1735 case HCI_POWER_ON: 1736 1737 #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) 1738 // nothing to do, if H4 supports power management 1739 if (bt_control_iphone_power_management_enabled()){ 1740 hci_stack->state = HCI_STATE_INITIALIZING; 1741 hci_stack->substate = HCI_INTIALIZING_SUBSTATE_AFTER_SLEEP; 1742 hci_update_scan_enable(); 1743 break; 1744 } 1745 #endif 1746 err = hci_power_control_wake(); 1747 if (err) return err; 1748 hci_power_transition_to_initializing(); 1749 break; 1750 case HCI_POWER_OFF: 1751 hci_stack->state = HCI_STATE_HALTING; 1752 break; 1753 case HCI_POWER_SLEEP: 1754 // do nothing 1755 break; 1756 } 1757 break; 1758 } 1759 1760 // create internal event 1761 hci_emit_state(); 1762 1763 // trigger next/first action 1764 hci_run(); 1765 1766 return 0; 1767 } 1768 1769 static void hci_update_scan_enable(void){ 1770 // 2 = page scan, 1 = inq scan 1771 hci_stack->new_scan_enable_value = hci_stack->connectable << 1 | hci_stack->discoverable; 1772 hci_run(); 1773 } 1774 1775 void hci_discoverable_control(uint8_t enable){ 1776 if (enable) enable = 1; // normalize argument 1777 1778 if (hci_stack->discoverable == enable){ 1779 hci_emit_discoverable_enabled(hci_stack->discoverable); 1780 return; 1781 } 1782 1783 hci_stack->discoverable = enable; 1784 hci_update_scan_enable(); 1785 } 1786 1787 void hci_connectable_control(uint8_t enable){ 1788 if (enable) enable = 1; // normalize argument 1789 1790 // don't emit event 1791 if (hci_stack->connectable == enable) return; 1792 1793 hci_stack->connectable = enable; 1794 hci_update_scan_enable(); 1795 } 1796 1797 bd_addr_t * hci_local_bd_addr(void){ 1798 return &hci_stack->local_bd_addr; 1799 } 1800 1801 void hci_run(){ 1802 1803 hci_connection_t * connection; 1804 linked_item_t * it; 1805 1806 // send continuation fragments first, as they block the prepared packet buffer 1807 if (hci_stack->acl_fragmentation_total_size > 0) { 1808 hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer); 1809 if (hci_can_send_prepared_acl_packet_now(con_handle)){ 1810 hci_connection_t *connection = hci_connection_for_handle(con_handle); 1811 if (connection) { 1812 hci_send_acl_packet_fragments(connection); 1813 return; 1814 } 1815 // connection gone -> discard further fragments 1816 hci_stack->acl_fragmentation_total_size = 0; 1817 hci_stack->acl_fragmentation_pos = 0; 1818 } 1819 } 1820 1821 if (!hci_can_send_command_packet_now()) return; 1822 1823 // global/non-connection oriented commands 1824 1825 // decline incoming connections 1826 if (hci_stack->decline_reason){ 1827 uint8_t reason = hci_stack->decline_reason; 1828 hci_stack->decline_reason = 0; 1829 hci_send_cmd(&hci_reject_connection_request, hci_stack->decline_addr, reason); 1830 return; 1831 } 1832 1833 // send scan enable 1834 if (hci_stack->state == HCI_STATE_WORKING && hci_stack->new_scan_enable_value != 0xff && hci_classic_supported()){ 1835 hci_send_cmd(&hci_write_scan_enable, hci_stack->new_scan_enable_value); 1836 hci_stack->new_scan_enable_value = 0xff; 1837 return; 1838 } 1839 1840 #ifdef HAVE_BLE 1841 // handle le scan 1842 if (hci_stack->state == HCI_STATE_WORKING){ 1843 switch(hci_stack->le_scanning_state){ 1844 case LE_START_SCAN: 1845 hci_stack->le_scanning_state = LE_SCANNING; 1846 hci_send_cmd(&hci_le_set_scan_enable, 1, 0); 1847 return; 1848 1849 case LE_STOP_SCAN: 1850 hci_stack->le_scanning_state = LE_SCAN_IDLE; 1851 hci_send_cmd(&hci_le_set_scan_enable, 0, 0); 1852 return; 1853 default: 1854 break; 1855 } 1856 if (hci_stack->le_scan_type != 0xff){ 1857 // defaults: active scanning, accept all advertisement packets 1858 int scan_type = hci_stack->le_scan_type; 1859 hci_stack->le_scan_type = 0xff; 1860 hci_send_cmd(&hci_le_set_scan_parameters, scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window, hci_stack->adv_addr_type, 0); 1861 return; 1862 } 1863 } 1864 #endif 1865 1866 // send pending HCI commands 1867 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ 1868 connection = (hci_connection_t *) it; 1869 1870 switch(connection->state){ 1871 case SEND_CREATE_CONNECTION: 1872 switch(connection->address_type){ 1873 case BD_ADDR_TYPE_CLASSIC: 1874 log_info("sending hci_create_connection"); 1875 hci_send_cmd(&hci_create_connection, connection->address, hci_usable_acl_packet_types(), 0, 0, 0, 1); 1876 break; 1877 default: 1878 #ifdef HAVE_BLE 1879 log_info("sending hci_le_create_connection"); 1880 hci_send_cmd(&hci_le_create_connection, 1881 0x0060, // scan interval: 60 ms 1882 0x0030, // scan interval: 30 ms 1883 0, // don't use whitelist 1884 connection->address_type, // peer address type 1885 connection->address, // peer bd addr 1886 hci_stack->adv_addr_type, // our addr type: 1887 0x0008, // conn interval min 1888 0x0018, // conn interval max 1889 0, // conn latency 1890 0x0048, // supervision timeout 1891 0x0001, // min ce length 1892 0x0001 // max ce length 1893 ); 1894 1895 connection->state = SENT_CREATE_CONNECTION; 1896 #endif 1897 break; 1898 } 1899 return; 1900 1901 case RECEIVED_CONNECTION_REQUEST: 1902 log_info("sending hci_accept_connection_request"); 1903 connection->state = ACCEPTED_CONNECTION_REQUEST; 1904 hci_send_cmd(&hci_accept_connection_request, connection->address, 1); 1905 return; 1906 1907 #ifdef HAVE_BLE 1908 case SEND_CANCEL_CONNECTION: 1909 connection->state = SENT_CANCEL_CONNECTION; 1910 hci_send_cmd(&hci_le_create_connection_cancel); 1911 return; 1912 #endif 1913 case SEND_DISCONNECT: 1914 connection->state = SENT_DISCONNECT; 1915 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection 1916 return; 1917 1918 default: 1919 break; 1920 } 1921 1922 if (connection->authentication_flags & HANDLE_LINK_KEY_REQUEST){ 1923 log_info("responding to link key request"); 1924 connectionClearAuthenticationFlags(connection, HANDLE_LINK_KEY_REQUEST); 1925 link_key_t link_key; 1926 link_key_type_t link_key_type; 1927 if ( hci_stack->remote_device_db 1928 && hci_stack->remote_device_db->get_link_key( &connection->address, &link_key, &link_key_type) 1929 && gap_security_level_for_link_key_type(link_key_type) >= connection->requested_security_level){ 1930 connection->link_key_type = link_key_type; 1931 hci_send_cmd(&hci_link_key_request_reply, connection->address, &link_key); 1932 } else { 1933 hci_send_cmd(&hci_link_key_request_negative_reply, connection->address); 1934 } 1935 return; 1936 } 1937 1938 if (connection->authentication_flags & DENY_PIN_CODE_REQUEST){ 1939 log_info("denying to pin request"); 1940 connectionClearAuthenticationFlags(connection, DENY_PIN_CODE_REQUEST); 1941 hci_send_cmd(&hci_pin_code_request_negative_reply, connection->address); 1942 return; 1943 } 1944 1945 if (connection->authentication_flags & SEND_IO_CAPABILITIES_REPLY){ 1946 connectionClearAuthenticationFlags(connection, SEND_IO_CAPABILITIES_REPLY); 1947 log_info("IO Capability Request received, stack bondable %u, io cap %u", hci_stack->bondable, hci_stack->ssp_io_capability); 1948 if (hci_stack->bondable && (hci_stack->ssp_io_capability != SSP_IO_CAPABILITY_UNKNOWN)){ 1949 // tweak authentication requirements 1950 uint8_t authreq = hci_stack->ssp_authentication_requirement; 1951 if (connection->bonding_flags & BONDING_DEDICATED){ 1952 authreq = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING; 1953 } 1954 if (gap_mitm_protection_required_for_security_level(connection->requested_security_level)){ 1955 authreq |= 1; 1956 } 1957 hci_send_cmd(&hci_io_capability_request_reply, &connection->address, hci_stack->ssp_io_capability, NULL, authreq); 1958 } else { 1959 hci_send_cmd(&hci_io_capability_request_negative_reply, &connection->address, ERROR_CODE_PAIRING_NOT_ALLOWED); 1960 } 1961 return; 1962 } 1963 1964 if (connection->authentication_flags & SEND_USER_CONFIRM_REPLY){ 1965 connectionClearAuthenticationFlags(connection, SEND_USER_CONFIRM_REPLY); 1966 hci_send_cmd(&hci_user_confirmation_request_reply, &connection->address); 1967 return; 1968 } 1969 1970 if (connection->authentication_flags & SEND_USER_PASSKEY_REPLY){ 1971 connectionClearAuthenticationFlags(connection, SEND_USER_PASSKEY_REPLY); 1972 hci_send_cmd(&hci_user_passkey_request_reply, &connection->address, 000000); 1973 return; 1974 } 1975 1976 if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES){ 1977 connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES; 1978 hci_send_cmd(&hci_read_remote_supported_features_command, connection->con_handle); 1979 return; 1980 } 1981 1982 if (connection->bonding_flags & BONDING_DISCONNECT_SECURITY_BLOCK){ 1983 connection->bonding_flags &= ~BONDING_DISCONNECT_SECURITY_BLOCK; 1984 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x0005); // authentication failure 1985 return; 1986 } 1987 if (connection->bonding_flags & BONDING_DISCONNECT_DEDICATED_DONE){ 1988 connection->bonding_flags &= ~BONDING_DISCONNECT_DEDICATED_DONE; 1989 connection->bonding_flags |= BONDING_EMIT_COMPLETE_ON_DISCONNECT; 1990 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // authentication done 1991 return; 1992 } 1993 if (connection->bonding_flags & BONDING_SEND_AUTHENTICATE_REQUEST){ 1994 connection->bonding_flags &= ~BONDING_SEND_AUTHENTICATE_REQUEST; 1995 hci_send_cmd(&hci_authentication_requested, connection->con_handle); 1996 return; 1997 } 1998 if (connection->bonding_flags & BONDING_SEND_ENCRYPTION_REQUEST){ 1999 connection->bonding_flags &= ~BONDING_SEND_ENCRYPTION_REQUEST; 2000 hci_send_cmd(&hci_set_connection_encryption, connection->con_handle, 1); 2001 return; 2002 } 2003 2004 #ifdef HAVE_BLE 2005 if (connection->le_con_parameter_update_state == CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS){ 2006 connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; 2007 2008 uint16_t connection_interval_min = connection->le_conn_interval_min; 2009 connection->le_conn_interval_min = 0; 2010 hci_send_cmd(&hci_le_connection_update, connection->con_handle, connection_interval_min, 2011 connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout, 2012 0x0000, 0xffff); 2013 } 2014 #endif 2015 } 2016 2017 switch (hci_stack->state){ 2018 case HCI_STATE_INITIALIZING: 2019 hci_initializing_state_machine(); 2020 break; 2021 2022 case HCI_STATE_HALTING: 2023 2024 log_info("HCI_STATE_HALTING"); 2025 // close all open connections 2026 connection = (hci_connection_t *) hci_stack->connections; 2027 if (connection){ 2028 2029 // send disconnect 2030 if (!hci_can_send_command_packet_now()) return; 2031 2032 log_info("HCI_STATE_HALTING, connection %p, handle %u", connection, (uint16_t)connection->con_handle); 2033 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection 2034 2035 // send disconnected event right away - causes higher layer connections to get closed, too. 2036 hci_shutdown_connection(connection); 2037 return; 2038 } 2039 log_info("HCI_STATE_HALTING, calling off"); 2040 2041 // switch mode 2042 hci_power_control_off(); 2043 2044 log_info("HCI_STATE_HALTING, emitting state"); 2045 hci_emit_state(); 2046 log_info("HCI_STATE_HALTING, done"); 2047 break; 2048 2049 case HCI_STATE_FALLING_ASLEEP: 2050 switch(hci_stack->substate) { 2051 case 0: 2052 log_info("HCI_STATE_FALLING_ASLEEP"); 2053 // close all open connections 2054 connection = (hci_connection_t *) hci_stack->connections; 2055 2056 #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) 2057 // don't close connections, if H4 supports power management 2058 if (bt_control_iphone_power_management_enabled()){ 2059 connection = NULL; 2060 } 2061 #endif 2062 if (connection){ 2063 2064 // send disconnect 2065 if (!hci_can_send_command_packet_now()) return; 2066 2067 log_info("HCI_STATE_FALLING_ASLEEP, connection %p, handle %u", connection, (uint16_t)connection->con_handle); 2068 hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection 2069 2070 // send disconnected event right away - causes higher layer connections to get closed, too. 2071 hci_shutdown_connection(connection); 2072 return; 2073 } 2074 2075 if (hci_classic_supported()){ 2076 // disable page and inquiry scan 2077 if (!hci_can_send_command_packet_now()) return; 2078 2079 log_info("HCI_STATE_HALTING, disabling inq scans"); 2080 hci_send_cmd(&hci_write_scan_enable, hci_stack->connectable << 1); // drop inquiry scan but keep page scan 2081 2082 // continue in next sub state 2083 hci_stack->substate++; 2084 break; 2085 } 2086 // fall through for ble-only chips 2087 2088 case 2: 2089 log_info("HCI_STATE_HALTING, calling sleep"); 2090 #if defined(USE_POWERMANAGEMENT) && defined(USE_BLUETOOL) 2091 // don't actually go to sleep, if H4 supports power management 2092 if (bt_control_iphone_power_management_enabled()){ 2093 // SLEEP MODE reached 2094 hci_stack->state = HCI_STATE_SLEEPING; 2095 hci_emit_state(); 2096 break; 2097 } 2098 #endif 2099 // switch mode 2100 hci_power_control_sleep(); // changes hci_stack->state to SLEEP 2101 hci_emit_state(); 2102 break; 2103 2104 default: 2105 break; 2106 } 2107 break; 2108 2109 default: 2110 break; 2111 } 2112 } 2113 2114 int hci_send_cmd_packet(uint8_t *packet, int size){ 2115 bd_addr_t addr; 2116 hci_connection_t * conn; 2117 // house-keeping 2118 2119 // create_connection? 2120 if (IS_COMMAND(packet, hci_create_connection)){ 2121 bt_flip_addr(addr, &packet[3]); 2122 log_info("Create_connection to %s", bd_addr_to_str(addr)); 2123 2124 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 2125 if (!conn){ 2126 conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); 2127 if (!conn){ 2128 // notify client that alloc failed 2129 hci_emit_connection_complete(conn, BTSTACK_MEMORY_ALLOC_FAILED); 2130 return 0; // don't sent packet to controller 2131 } 2132 conn->state = SEND_CREATE_CONNECTION; 2133 } 2134 log_info("conn state %u", conn->state); 2135 switch (conn->state){ 2136 // if connection active exists 2137 case OPEN: 2138 // and OPEN, emit connection complete command, don't send to controller 2139 hci_emit_connection_complete(conn, 0); 2140 return 0; 2141 case SEND_CREATE_CONNECTION: 2142 // connection created by hci, e.g. dedicated bonding 2143 break; 2144 default: 2145 // otherwise, just ignore as it is already in the open process 2146 return 0; 2147 } 2148 conn->state = SENT_CREATE_CONNECTION; 2149 } 2150 2151 if (IS_COMMAND(packet, hci_link_key_request_reply)){ 2152 hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_REPLY); 2153 } 2154 if (IS_COMMAND(packet, hci_link_key_request_negative_reply)){ 2155 hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_NEGATIVE_REQUEST); 2156 } 2157 2158 if (IS_COMMAND(packet, hci_delete_stored_link_key)){ 2159 if (hci_stack->remote_device_db){ 2160 bt_flip_addr(addr, &packet[3]); 2161 hci_stack->remote_device_db->delete_link_key(&addr); 2162 } 2163 } 2164 2165 if (IS_COMMAND(packet, hci_pin_code_request_negative_reply) 2166 || IS_COMMAND(packet, hci_pin_code_request_reply)){ 2167 bt_flip_addr(addr, &packet[3]); 2168 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 2169 if (conn){ 2170 connectionClearAuthenticationFlags(conn, LEGACY_PAIRING_ACTIVE); 2171 } 2172 } 2173 2174 if (IS_COMMAND(packet, hci_user_confirmation_request_negative_reply) 2175 || IS_COMMAND(packet, hci_user_confirmation_request_reply) 2176 || IS_COMMAND(packet, hci_user_passkey_request_negative_reply) 2177 || IS_COMMAND(packet, hci_user_passkey_request_reply)) { 2178 bt_flip_addr(addr, &packet[3]); 2179 conn = hci_connection_for_bd_addr_and_type(&addr, BD_ADDR_TYPE_CLASSIC); 2180 if (conn){ 2181 connectionClearAuthenticationFlags(conn, SSP_PAIRING_ACTIVE); 2182 } 2183 } 2184 2185 #ifdef HAVE_BLE 2186 if (IS_COMMAND(packet, hci_le_set_advertising_parameters)){ 2187 hci_stack->adv_addr_type = packet[8]; 2188 } 2189 if (IS_COMMAND(packet, hci_le_set_random_address)){ 2190 bt_flip_addr(hci_stack->adv_address, &packet[3]); 2191 } 2192 #endif 2193 2194 hci_stack->num_cmd_packets--; 2195 2196 hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size); 2197 int err = hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); 2198 2199 // release packet buffer for synchronous transport implementations 2200 if (hci_transport_synchronous() && (packet == hci_stack->hci_packet_buffer)){ 2201 hci_stack->hci_packet_buffer_reserved = 0; 2202 } 2203 2204 return err; 2205 } 2206 2207 // disconnect because of security block 2208 void hci_disconnect_security_block(hci_con_handle_t con_handle){ 2209 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2210 if (!connection) return; 2211 connection->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK; 2212 } 2213 2214 2215 // Configure Secure Simple Pairing 2216 2217 // enable will enable SSP during init 2218 void hci_ssp_set_enable(int enable){ 2219 hci_stack->ssp_enable = enable; 2220 } 2221 2222 int hci_local_ssp_activated(){ 2223 return hci_ssp_supported() && hci_stack->ssp_enable; 2224 } 2225 2226 // if set, BTstack will respond to io capability request using authentication requirement 2227 void hci_ssp_set_io_capability(int io_capability){ 2228 hci_stack->ssp_io_capability = io_capability; 2229 } 2230 void hci_ssp_set_authentication_requirement(int authentication_requirement){ 2231 hci_stack->ssp_authentication_requirement = authentication_requirement; 2232 } 2233 2234 // if set, BTstack will confirm a numberic comparion and enter '000000' if requested 2235 void hci_ssp_set_auto_accept(int auto_accept){ 2236 hci_stack->ssp_auto_accept = auto_accept; 2237 } 2238 2239 /** 2240 * pre: numcmds >= 0 - it's allowed to send a command to the controller 2241 */ 2242 int hci_send_cmd(const hci_cmd_t *cmd, ...){ 2243 2244 if (!hci_can_send_command_packet_now()){ 2245 log_error("hci_send_cmd called but cannot send packet now"); 2246 return 0; 2247 } 2248 2249 // for HCI INITIALIZATION 2250 // log_info("hci_send_cmd: opcode %04x", cmd->opcode); 2251 hci_stack->last_cmd_opcode = cmd->opcode; 2252 2253 hci_reserve_packet_buffer(); 2254 uint8_t * packet = hci_stack->hci_packet_buffer; 2255 2256 va_list argptr; 2257 va_start(argptr, cmd); 2258 uint16_t size = hci_create_cmd_internal(packet, cmd, argptr); 2259 va_end(argptr); 2260 2261 return hci_send_cmd_packet(packet, size); 2262 } 2263 2264 // Create various non-HCI events. 2265 // TODO: generalize, use table similar to hci_create_command 2266 2267 void hci_emit_state(){ 2268 log_info("BTSTACK_EVENT_STATE %u", hci_stack->state); 2269 uint8_t event[3]; 2270 event[0] = BTSTACK_EVENT_STATE; 2271 event[1] = sizeof(event) - 2; 2272 event[2] = hci_stack->state; 2273 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2274 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2275 } 2276 2277 void hci_emit_connection_complete(hci_connection_t *conn, uint8_t status){ 2278 uint8_t event[13]; 2279 event[0] = HCI_EVENT_CONNECTION_COMPLETE; 2280 event[1] = sizeof(event) - 2; 2281 event[2] = status; 2282 bt_store_16(event, 3, conn->con_handle); 2283 bt_flip_addr(&event[5], conn->address); 2284 event[11] = 1; // ACL connection 2285 event[12] = 0; // encryption disabled 2286 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); 2287 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2288 } 2289 2290 void hci_emit_le_connection_complete(uint8_t address_type, bd_addr_t * address, uint16_t conn_handle, uint8_t status){ 2291 uint8_t event[21]; 2292 event[0] = HCI_EVENT_LE_META; 2293 event[1] = sizeof(event) - 2; 2294 event[2] = HCI_SUBEVENT_LE_CONNECTION_COMPLETE; 2295 event[3] = status; 2296 bt_store_16(event, 4, conn_handle); 2297 event[6] = 0; // TODO: role 2298 event[7] = address_type; 2299 bt_flip_addr(&event[8], *address); 2300 bt_store_16(event, 14, 0); // interval 2301 bt_store_16(event, 16, 0); // latency 2302 bt_store_16(event, 18, 0); // supervision timeout 2303 event[20] = 0; // master clock accuracy 2304 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); 2305 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2306 } 2307 2308 void hci_emit_disconnection_complete(uint16_t handle, uint8_t reason){ 2309 uint8_t event[6]; 2310 event[0] = HCI_EVENT_DISCONNECTION_COMPLETE; 2311 event[1] = sizeof(event) - 2; 2312 event[2] = 0; // status = OK 2313 bt_store_16(event, 3, handle); 2314 event[5] = reason; 2315 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); 2316 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2317 } 2318 2319 void hci_emit_l2cap_check_timeout(hci_connection_t *conn){ 2320 if (disable_l2cap_timeouts) return; 2321 log_info("L2CAP_EVENT_TIMEOUT_CHECK"); 2322 uint8_t event[4]; 2323 event[0] = L2CAP_EVENT_TIMEOUT_CHECK; 2324 event[1] = sizeof(event) - 2; 2325 bt_store_16(event, 2, conn->con_handle); 2326 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); 2327 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2328 } 2329 2330 void hci_emit_nr_connections_changed(){ 2331 log_info("BTSTACK_EVENT_NR_CONNECTIONS_CHANGED %u", nr_hci_connections()); 2332 uint8_t event[3]; 2333 event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED; 2334 event[1] = sizeof(event) - 2; 2335 event[2] = nr_hci_connections(); 2336 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2337 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2338 } 2339 2340 void hci_emit_hci_open_failed(){ 2341 log_info("BTSTACK_EVENT_POWERON_FAILED"); 2342 uint8_t event[2]; 2343 event[0] = BTSTACK_EVENT_POWERON_FAILED; 2344 event[1] = sizeof(event) - 2; 2345 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2346 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2347 } 2348 2349 #ifndef EMBEDDED 2350 void hci_emit_btstack_version() { 2351 log_info("BTSTACK_EVENT_VERSION %u.%u", BTSTACK_MAJOR, BTSTACK_MINOR); 2352 uint8_t event[6]; 2353 event[0] = BTSTACK_EVENT_VERSION; 2354 event[1] = sizeof(event) - 2; 2355 event[2] = BTSTACK_MAJOR; 2356 event[3] = BTSTACK_MINOR; 2357 bt_store_16(event, 4, BTSTACK_REVISION); 2358 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2359 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2360 } 2361 #endif 2362 2363 void hci_emit_system_bluetooth_enabled(uint8_t enabled){ 2364 log_info("BTSTACK_EVENT_SYSTEM_BLUETOOTH_ENABLED %u", enabled); 2365 uint8_t event[3]; 2366 event[0] = BTSTACK_EVENT_SYSTEM_BLUETOOTH_ENABLED; 2367 event[1] = sizeof(event) - 2; 2368 event[2] = enabled; 2369 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2370 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2371 } 2372 2373 void hci_emit_remote_name_cached(bd_addr_t *addr, device_name_t *name){ 2374 uint8_t event[2+1+6+248+1]; // +1 for \0 in log_info 2375 event[0] = BTSTACK_EVENT_REMOTE_NAME_CACHED; 2376 event[1] = sizeof(event) - 2 - 1; 2377 event[2] = 0; // just to be compatible with HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE 2378 bt_flip_addr(&event[3], *addr); 2379 memcpy(&event[9], name, 248); 2380 2381 event[9+248] = 0; // assert \0 for log_info 2382 log_info("BTSTACK_EVENT_REMOTE_NAME_CACHED %s = '%s'", bd_addr_to_str(*addr), &event[9]); 2383 2384 hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)-1); 2385 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)-1); 2386 } 2387 2388 void hci_emit_discoverable_enabled(uint8_t enabled){ 2389 log_info("BTSTACK_EVENT_DISCOVERABLE_ENABLED %u", enabled); 2390 uint8_t event[3]; 2391 event[0] = BTSTACK_EVENT_DISCOVERABLE_ENABLED; 2392 event[1] = sizeof(event) - 2; 2393 event[2] = enabled; 2394 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2395 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2396 } 2397 2398 void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level){ 2399 log_info("hci_emit_security_level %u for handle %x", level, con_handle); 2400 uint8_t event[5]; 2401 int pos = 0; 2402 event[pos++] = GAP_SECURITY_LEVEL; 2403 event[pos++] = sizeof(event) - 2; 2404 bt_store_16(event, 2, con_handle); 2405 pos += 2; 2406 event[pos++] = level; 2407 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2408 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2409 } 2410 2411 void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status){ 2412 log_info("hci_emit_dedicated_bonding_result %u ", status); 2413 uint8_t event[9]; 2414 int pos = 0; 2415 event[pos++] = GAP_DEDICATED_BONDING_COMPLETED; 2416 event[pos++] = sizeof(event) - 2; 2417 event[pos++] = status; 2418 bt_flip_addr( * (bd_addr_t *) &event[pos], address); 2419 pos += 6; 2420 hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); 2421 hci_stack->packet_handler(HCI_EVENT_PACKET, event, sizeof(event)); 2422 } 2423 2424 // query if remote side supports SSP 2425 int hci_remote_ssp_supported(hci_con_handle_t con_handle){ 2426 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2427 if (!connection) return 0; 2428 return (connection->bonding_flags & BONDING_REMOTE_SUPPORTS_SSP) ? 1 : 0; 2429 } 2430 2431 int hci_ssp_supported_on_both_sides(hci_con_handle_t handle){ 2432 return hci_local_ssp_activated() && hci_remote_ssp_supported(handle); 2433 } 2434 2435 // GAP API 2436 /** 2437 * @bbrief enable/disable bonding. default is enabled 2438 * @praram enabled 2439 */ 2440 void gap_set_bondable_mode(int enable){ 2441 hci_stack->bondable = enable ? 1 : 0; 2442 } 2443 2444 /** 2445 * @brief map link keys to security levels 2446 */ 2447 gap_security_level_t gap_security_level_for_link_key_type(link_key_type_t link_key_type){ 2448 switch (link_key_type){ 2449 case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: 2450 return LEVEL_4; 2451 case COMBINATION_KEY: 2452 case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192: 2453 return LEVEL_3; 2454 default: 2455 return LEVEL_2; 2456 } 2457 } 2458 2459 static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection){ 2460 if (!connection) return LEVEL_0; 2461 if ((connection->authentication_flags & CONNECTION_ENCRYPTED) == 0) return LEVEL_0; 2462 return gap_security_level_for_link_key_type(connection->link_key_type); 2463 } 2464 2465 2466 int gap_mitm_protection_required_for_security_level(gap_security_level_t level){ 2467 log_info("gap_mitm_protection_required_for_security_level %u", level); 2468 return level > LEVEL_2; 2469 } 2470 2471 /** 2472 * @brief get current security level 2473 */ 2474 gap_security_level_t gap_security_level(hci_con_handle_t con_handle){ 2475 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2476 if (!connection) return LEVEL_0; 2477 return gap_security_level_for_connection(connection); 2478 } 2479 2480 /** 2481 * @brief request connection to device to 2482 * @result GAP_AUTHENTICATION_RESULT 2483 */ 2484 void gap_request_security_level(hci_con_handle_t con_handle, gap_security_level_t requested_level){ 2485 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2486 if (!connection){ 2487 hci_emit_security_level(con_handle, LEVEL_0); 2488 return; 2489 } 2490 gap_security_level_t current_level = gap_security_level(con_handle); 2491 log_info("gap_request_security_level %u, current level %u", requested_level, current_level); 2492 if (current_level >= requested_level){ 2493 hci_emit_security_level(con_handle, current_level); 2494 return; 2495 } 2496 2497 connection->requested_security_level = requested_level; 2498 2499 #if 0 2500 // sending encryption request without a link key results in an error. 2501 // TODO: figure out how to use it properly 2502 2503 // would enabling ecnryption suffice (>= LEVEL_2)? 2504 if (hci_stack->remote_device_db){ 2505 link_key_type_t link_key_type; 2506 link_key_t link_key; 2507 if (hci_stack->remote_device_db->get_link_key( &connection->address, &link_key, &link_key_type)){ 2508 if (gap_security_level_for_link_key_type(link_key_type) >= requested_level){ 2509 connection->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; 2510 return; 2511 } 2512 } 2513 } 2514 #endif 2515 2516 // try to authenticate connection 2517 connection->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; 2518 hci_run(); 2519 } 2520 2521 /** 2522 * @brief start dedicated bonding with device. disconnect after bonding 2523 * @param device 2524 * @param request MITM protection 2525 * @result GAP_DEDICATED_BONDING_COMPLETE 2526 */ 2527 int gap_dedicated_bonding(bd_addr_t device, int mitm_protection_required){ 2528 2529 // create connection state machine 2530 hci_connection_t * connection = create_connection_for_bd_addr_and_type(device, BD_ADDR_TYPE_CLASSIC); 2531 2532 if (!connection){ 2533 return BTSTACK_MEMORY_ALLOC_FAILED; 2534 } 2535 2536 // delete linkn key 2537 hci_drop_link_key_for_bd_addr( (bd_addr_t *) &device); 2538 2539 // configure LEVEL_2/3, dedicated bonding 2540 connection->state = SEND_CREATE_CONNECTION; 2541 connection->requested_security_level = mitm_protection_required ? LEVEL_3 : LEVEL_2; 2542 log_info("gap_dedicated_bonding, mitm %u -> level %u", mitm_protection_required, connection->requested_security_level); 2543 connection->bonding_flags = BONDING_DEDICATED; 2544 2545 // wait for GAP Security Result and send GAP Dedicated Bonding complete 2546 2547 // handle: connnection failure (connection complete != ok) 2548 // handle: authentication failure 2549 // handle: disconnect on done 2550 2551 hci_run(); 2552 2553 return 0; 2554 } 2555 2556 void gap_set_local_name(const char * local_name){ 2557 hci_stack->local_name = local_name; 2558 } 2559 2560 le_command_status_t le_central_start_scan(){ 2561 if (hci_stack->le_scanning_state == LE_SCANNING) return BLE_PERIPHERAL_OK; 2562 hci_stack->le_scanning_state = LE_START_SCAN; 2563 hci_run(); 2564 return BLE_PERIPHERAL_OK; 2565 } 2566 2567 le_command_status_t le_central_stop_scan(){ 2568 if ( hci_stack->le_scanning_state == LE_SCAN_IDLE) return BLE_PERIPHERAL_OK; 2569 hci_stack->le_scanning_state = LE_STOP_SCAN; 2570 hci_run(); 2571 return BLE_PERIPHERAL_OK; 2572 } 2573 2574 void le_central_set_scan_parameters(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window){ 2575 hci_stack->le_scan_type = scan_type; 2576 hci_stack->le_scan_interval = scan_interval; 2577 hci_stack->le_scan_window = scan_window; 2578 hci_run(); 2579 } 2580 2581 le_command_status_t le_central_connect(bd_addr_t * addr, bd_addr_type_t addr_type){ 2582 hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type); 2583 if (!conn){ 2584 log_info("le_central_connect: no connection exists yet, creating context"); 2585 conn = create_connection_for_bd_addr_and_type(*addr, addr_type); 2586 if (!conn){ 2587 // notify client that alloc failed 2588 hci_emit_le_connection_complete(addr_type, addr, 0, BTSTACK_MEMORY_ALLOC_FAILED); 2589 log_info("le_central_connect: failed to alloc hci_connection_t"); 2590 return BLE_PERIPHERAL_NOT_CONNECTED; // don't sent packet to controller 2591 } 2592 conn->state = SEND_CREATE_CONNECTION; 2593 log_info("le_central_connect: send create connection next"); 2594 hci_run(); 2595 return BLE_PERIPHERAL_OK; 2596 } 2597 2598 if (!hci_is_le_connection(conn) || 2599 conn->state == SEND_CREATE_CONNECTION || 2600 conn->state == SENT_CREATE_CONNECTION) { 2601 hci_emit_le_connection_complete(conn->address_type, &conn->address, 0, ERROR_CODE_COMMAND_DISALLOWED); 2602 log_error("le_central_connect: classic connection or connect is already being created"); 2603 return BLE_PERIPHERAL_IN_WRONG_STATE; 2604 } 2605 2606 log_info("le_central_connect: context exists with state %u", conn->state); 2607 hci_emit_le_connection_complete(conn->address_type, &conn->address, conn->con_handle, 0); 2608 hci_run(); 2609 return BLE_PERIPHERAL_OK; 2610 } 2611 2612 // @assumption: only a single outgoing LE Connection exists 2613 static hci_connection_t * le_central_get_outgoing_connection(){ 2614 linked_item_t *it; 2615 for (it = (linked_item_t *) hci_stack->connections; it ; it = it->next){ 2616 hci_connection_t * conn = (hci_connection_t *) it; 2617 if (!hci_is_le_connection(conn)) continue; 2618 switch (conn->state){ 2619 case SEND_CREATE_CONNECTION: 2620 case SENT_CREATE_CONNECTION: 2621 return conn; 2622 default: 2623 break; 2624 }; 2625 } 2626 return NULL; 2627 } 2628 2629 le_command_status_t le_central_connect_cancel(){ 2630 hci_connection_t * conn = le_central_get_outgoing_connection(); 2631 switch (conn->state){ 2632 case SEND_CREATE_CONNECTION: 2633 // skip sending create connection and emit event instead 2634 hci_emit_le_connection_complete(conn->address_type, &conn->address, 0, ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER); 2635 linked_list_remove(&hci_stack->connections, (linked_item_t *) conn); 2636 btstack_memory_hci_connection_free( conn ); 2637 break; 2638 case SENT_CREATE_CONNECTION: 2639 // request to send cancel connection 2640 conn->state = SEND_CANCEL_CONNECTION; 2641 hci_run(); 2642 break; 2643 default: 2644 break; 2645 } 2646 return BLE_PERIPHERAL_OK; 2647 } 2648 2649 /** 2650 * @brief Updates the connection parameters for a given LE connection 2651 * @param handle 2652 * @param conn_interval_min (unit: 1.25ms) 2653 * @param conn_interval_max (unit: 1.25ms) 2654 * @param conn_latency 2655 * @param supervision_timeout (unit: 10ms) 2656 * @returns 0 if ok 2657 */ 2658 int gap_update_connection_parameters(hci_con_handle_t con_handle, uint16_t conn_interval_min, 2659 uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){ 2660 hci_connection_t * connection = hci_connection_for_handle(con_handle); 2661 if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; 2662 connection->le_conn_interval_min = conn_interval_min; 2663 connection->le_conn_interval_max = conn_interval_max; 2664 connection->le_conn_latency = conn_latency; 2665 connection->le_supervision_timeout = supervision_timeout; 2666 return 0; 2667 } 2668 2669 le_command_status_t gap_disconnect(hci_con_handle_t handle){ 2670 hci_connection_t * conn = hci_connection_for_handle(handle); 2671 if (!conn){ 2672 hci_emit_disconnection_complete(handle, 0); 2673 return BLE_PERIPHERAL_OK; 2674 } 2675 conn->state = SEND_DISCONNECT; 2676 hci_run(); 2677 return BLE_PERIPHERAL_OK; 2678 } 2679 2680 void hci_disconnect_all(){ 2681 linked_list_iterator_t it; 2682 linked_list_iterator_init(&it, &hci_stack->connections); 2683 while (linked_list_iterator_has_next(&it)){ 2684 hci_connection_t * con = (hci_connection_t*) linked_list_iterator_next(&it); 2685 if (con->state == SENT_DISCONNECT) continue; 2686 con->state = SEND_DISCONNECT; 2687 } 2688 hci_run(); 2689 } 2690