xref: /btstack/src/btstack_util.c (revision d40c3de009bce6994e726da5a427e08951b353d9)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define __BTSTACK_FILE__ "btstack_util.c"
39 
40 /*
41  *  btstack_util.c
42  *
43  *  General utility functions
44  *
45  *  Created by Matthias Ringwald on 7/23/09.
46  */
47 
48 #include "btstack_config.h"
49 #include "btstack_debug.h"
50 #include "btstack_util.h"
51 
52 #include <stdio.h>
53 #include <string.h>
54 
55 /**
56  * @brief Compare two Bluetooth addresses
57  * @param a
58  * @param b
59  * @return 0 if equal
60  */
61 int bd_addr_cmp(const bd_addr_t a, const bd_addr_t b){
62     return memcmp(a,b, BD_ADDR_LEN);
63 }
64 
65 /**
66  * @brief Copy Bluetooth address
67  * @param dest
68  * @param src
69  */
70 void bd_addr_copy(bd_addr_t dest, const bd_addr_t src){
71     memcpy(dest,src,BD_ADDR_LEN);
72 }
73 
74 uint16_t little_endian_read_16(const uint8_t * buffer, int pos){
75     return (uint16_t)(((uint16_t) buffer[pos]) | (((uint16_t)buffer[(pos)+1]) << 8));
76 }
77 uint32_t little_endian_read_24(const uint8_t * buffer, int pos){
78     return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16);
79 }
80 uint32_t little_endian_read_32(const uint8_t * buffer, int pos){
81     return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16) | (((uint32_t) buffer[(pos)+3]) << 24);
82 }
83 
84 void little_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){
85     buffer[pos++] = (uint8_t)value;
86     buffer[pos++] = (uint8_t)(value >> 8);
87 }
88 
89 void little_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){
90     buffer[pos++] = (uint8_t)(value);
91     buffer[pos++] = (uint8_t)(value >> 8);
92     buffer[pos++] = (uint8_t)(value >> 16);
93     buffer[pos++] = (uint8_t)(value >> 24);
94 }
95 
96 uint32_t big_endian_read_16( const uint8_t * buffer, int pos) {
97     return (uint16_t)(((uint16_t) buffer[(pos)+1]) | (((uint16_t)buffer[ pos   ]) << 8));
98 }
99 
100 uint32_t big_endian_read_24( const uint8_t * buffer, int pos) {
101     return ( ((uint32_t)buffer[(pos)+2]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t) buffer[pos]) << 16));
102 }
103 
104 uint32_t big_endian_read_32( const uint8_t * buffer, int pos) {
105     return ((uint32_t) buffer[(pos)+3]) | (((uint32_t)buffer[(pos)+2]) << 8) | (((uint32_t)buffer[(pos)+1]) << 16) | (((uint32_t) buffer[pos]) << 24);
106 }
107 
108 void big_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){
109     buffer[pos++] = (uint8_t)(value >> 8);
110     buffer[pos++] = (uint8_t)(value);
111 }
112 
113 void big_endian_store_24(uint8_t *buffer, uint16_t pos, uint32_t value){
114     buffer[pos++] = (uint8_t)(value >> 16);
115     buffer[pos++] = (uint8_t)(value >> 8);
116     buffer[pos++] = (uint8_t)(value);
117 }
118 
119 void big_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){
120     buffer[pos++] = (uint8_t)(value >> 24);
121     buffer[pos++] = (uint8_t)(value >> 16);
122     buffer[pos++] = (uint8_t)(value >> 8);
123     buffer[pos++] = (uint8_t)(value);
124 }
125 
126 // general swap/endianess utils
127 void reverse_bytes(const uint8_t *src, uint8_t *dst, int len){
128     int i;
129     for (i = 0; i < len; i++)
130         dst[len - 1 - i] = src[i];
131 }
132 void reverse_24(const uint8_t * src, uint8_t * dst){
133     reverse_bytes(src, dst, 3);
134 }
135 void reverse_48(const uint8_t * src, uint8_t * dst){
136     reverse_bytes(src, dst, 6);
137 }
138 void reverse_56(const uint8_t * src, uint8_t * dst){
139     reverse_bytes(src, dst, 7);
140 }
141 void reverse_64(const uint8_t * src, uint8_t * dst){
142     reverse_bytes(src, dst, 8);
143 }
144 void reverse_128(const uint8_t * src, uint8_t * dst){
145     reverse_bytes(src, dst, 16);
146 }
147 void reverse_256(const uint8_t * src, uint8_t * dst){
148     reverse_bytes(src, dst, 32);
149 }
150 
151 void reverse_bd_addr(const bd_addr_t src, bd_addr_t dest){
152     reverse_bytes(src, dest, 6);
153 }
154 
155 uint32_t btstack_min(uint32_t a, uint32_t b){
156     return a < b ? a : b;
157 }
158 
159 uint32_t btstack_max(uint32_t a, uint32_t b){
160     return a > b ? a : b;
161 }
162 
163 char char_for_nibble(int nibble){
164     if (nibble < 10) return (char)('0' + nibble);
165     nibble -= 10;
166     if (nibble < 6) return (char)('A' + nibble);
167     return '?';
168 }
169 
170 static inline char char_for_high_nibble(int value){
171     return char_for_nibble((value >> 4) & 0x0f);
172 }
173 
174 static inline char char_for_low_nibble(int value){
175     return char_for_nibble(value & 0x0f);
176 }
177 
178 int nibble_for_char(char c){
179     if (c >= '0' && c <= '9') return c - '0';
180     if (c >= 'a' && c <= 'f') return c - 'a' + 10;
181     if (c >= 'A' && c <= 'F') return c - 'A' + 10;
182     return -1;
183 }
184 
185 void printf_hexdump(const void *data, int size){
186     if (size <= 0) return;
187     int i;
188     for (i=0; i<size;i++){
189         printf("%02X ", ((uint8_t *)data)[i]);
190     }
191     printf("\n");
192 }
193 
194 #if defined(ENABLE_LOG_INFO) || defined(ENABLE_LOG_DEBUG)
195 static void log_hexdump(int level, const void * data, int size){
196 #define ITEMS_PER_LINE 16
197 // template '0x12, '
198 #define BYTES_PER_BYTE  6
199     char buffer[BYTES_PER_BYTE*ITEMS_PER_LINE+1];
200     int i, j;
201     j = 0;
202     for (i=0; i<size;i++){
203 
204         // help static analyzer proof that j stays within bounds
205         if (j > BYTES_PER_BYTE * (ITEMS_PER_LINE-1)){
206             j = 0;
207         }
208 
209         uint8_t byte = ((uint8_t *)data)[i];
210         buffer[j++] = '0';
211         buffer[j++] = 'x';
212         buffer[j++] = char_for_high_nibble(byte);
213         buffer[j++] = char_for_low_nibble(byte);
214         buffer[j++] = ',';
215         buffer[j++] = ' ';
216 
217         if (j >= BYTES_PER_BYTE * ITEMS_PER_LINE ){
218             buffer[j] = 0;
219             HCI_DUMP_LOG(level, "%s", buffer);
220             j = 0;
221         }
222     }
223     if (j != 0){
224         buffer[j] = 0;
225         HCI_DUMP_LOG(level, "%s", buffer);
226     }
227 }
228 #endif
229 
230 void log_debug_hexdump(const void *data, int size){
231 #ifdef ENABLE_LOG_DEBUG
232     log_hexdump(LOG_LEVEL_DEBUG, data, size);
233 #else
234     UNUSED(data);
235     UNUSED(size);
236 #endif
237 }
238 
239 void log_info_hexdump(const void *data, int size){
240 #ifdef ENABLE_LOG_INFO
241     log_hexdump(LOG_LEVEL_INFO, data, size);
242 #else
243     UNUSED(data);
244     UNUSED(size);
245 #endif
246 }
247 
248 void log_info_key(const char * name, sm_key_t key){
249 #ifdef ENABLE_LOG_INFO
250     char buffer[16*2+1];
251     int i;
252     int j = 0;
253     for (i=0; i<16;i++){
254         uint8_t byte = key[i];
255         buffer[j++] = char_for_high_nibble(byte);
256         buffer[j++] = char_for_low_nibble(byte);
257     }
258     buffer[j] = 0;
259     log_info("%-6s %s", name, buffer);
260 #else
261     UNUSED(name);
262     (void)key;
263 #endif
264 }
265 
266 // UUIDs are stored in big endian, similar to bd_addr_t
267 
268 // Bluetooth Base UUID: 00000000-0000-1000-8000- 00805F9B34FB
269 const uint8_t bluetooth_base_uuid[] = { 0x00, 0x00, 0x00, 0x00, /* - */ 0x00, 0x00, /* - */ 0x10, 0x00, /* - */
270     0x80, 0x00, /* - */ 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB };
271 
272 void uuid_add_bluetooth_prefix(uint8_t *uuid, uint32_t shortUUID){
273     memcpy(uuid, bluetooth_base_uuid, 16);
274     big_endian_store_32(uuid, 0, shortUUID);
275 }
276 
277 int uuid_has_bluetooth_prefix(const uint8_t * uuid128){
278     return memcmp(&uuid128[4], &bluetooth_base_uuid[4], 12) == 0;
279 }
280 
281 static char uuid128_to_str_buffer[32+4+1];
282 char * uuid128_to_str(const uint8_t * uuid){
283     int i;
284     int j = 0;
285     // after 4, 6, 8, and 10 bytes = XYXYXYXY-XYXY-XYXY-XYXY-XYXYXYXYXYXY, there's a dash
286     const int dash_locations = (1<<3) | (1<<5) | (1<<7) | (1<<9);
287     for (i=0;i<16;i++){
288         uint8_t byte = uuid[i];
289         uuid128_to_str_buffer[j++] = char_for_high_nibble(byte);
290         uuid128_to_str_buffer[j++] = char_for_low_nibble(byte);
291         if (dash_locations & (1<<i)){
292             uuid128_to_str_buffer[j++] = '-';
293         }
294     }
295     return uuid128_to_str_buffer;
296 }
297 
298 static char bd_addr_to_str_buffer[6*3];  // 12:45:78:01:34:67\0
299 char * bd_addr_to_str(const bd_addr_t addr){
300     // orig code
301     // sprintf(bd_addr_to_str_buffer, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
302     // sprintf-free code
303     char * p = bd_addr_to_str_buffer;
304     int i;
305     for (i = 0; i < 6 ; i++) {
306         uint8_t byte = addr[i];
307         *p++ = char_for_high_nibble(byte);
308         *p++ = char_for_low_nibble(byte);
309         *p++ = ':';
310     }
311     *--p = 0;
312     return (char *) bd_addr_to_str_buffer;
313 }
314 
315 static int scan_hex_byte(const char * byte_string){
316     int upper_nibble = nibble_for_char(*byte_string++);
317     if (upper_nibble < 0) return -1;
318     int lower_nibble = nibble_for_char(*byte_string);
319     if (lower_nibble < 0) return -1;
320     return (upper_nibble << 4) | lower_nibble;
321 }
322 
323 int sscanf_bd_addr(const char * addr_string, bd_addr_t addr){
324     uint8_t buffer[BD_ADDR_LEN];
325     int result = 0;
326     int i;
327     for (i = 0; i < BD_ADDR_LEN; i++) {
328         int single_byte = scan_hex_byte(addr_string);
329         if (single_byte < 0) break;
330         addr_string += 2;
331         buffer[i] = (uint8_t)single_byte;
332         // don't check seperator after last byte
333         if (i == BD_ADDR_LEN - 1) {
334             result = 1;
335             break;
336         }
337         char separator = *addr_string++;
338         if (separator != ':' && separator != '-' && separator != ' ') break;
339     }
340 
341     if (result){
342         bd_addr_copy(addr, buffer);
343     }
344 	return result;
345 }
346 
347 uint32_t btstack_atoi(const char *str){
348     uint32_t val = 0;
349     while (1){
350         char chr = *str;
351         if (!chr || chr < '0' || chr > '9')
352             return val;
353         val = (val * 10) + (uint8_t)(chr - '0');
354         str++;
355     }
356 }