1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define __BTSTACK_FILE__ "btstack_util.c" 39 40 /* 41 * btstack_util.c 42 * 43 * General utility functions 44 * 45 * Created by Matthias Ringwald on 7/23/09. 46 */ 47 48 #include "btstack_config.h" 49 #include "btstack_debug.h" 50 #include "btstack_util.h" 51 52 #include <stdio.h> 53 #include <string.h> 54 55 /** 56 * @brief Compare two Bluetooth addresses 57 * @param a 58 * @param b 59 * @return 0 if equal 60 */ 61 int bd_addr_cmp(const bd_addr_t a, const bd_addr_t b){ 62 return memcmp(a,b, BD_ADDR_LEN); 63 } 64 65 /** 66 * @brief Copy Bluetooth address 67 * @param dest 68 * @param src 69 */ 70 void bd_addr_copy(bd_addr_t dest, const bd_addr_t src){ 71 memcpy(dest,src,BD_ADDR_LEN); 72 } 73 74 uint16_t little_endian_read_16(const uint8_t * buffer, int pos){ 75 return (uint16_t)(((uint16_t) buffer[pos]) | (((uint16_t)buffer[(pos)+1]) << 8)); 76 } 77 uint32_t little_endian_read_24(const uint8_t * buffer, int pos){ 78 return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16); 79 } 80 uint32_t little_endian_read_32(const uint8_t * buffer, int pos){ 81 return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16) | (((uint32_t) buffer[(pos)+3]) << 24); 82 } 83 84 void little_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){ 85 buffer[pos++] = (uint8_t)value; 86 buffer[pos++] = (uint8_t)(value >> 8); 87 } 88 89 void little_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){ 90 buffer[pos++] = (uint8_t)(value); 91 buffer[pos++] = (uint8_t)(value >> 8); 92 buffer[pos++] = (uint8_t)(value >> 16); 93 buffer[pos++] = (uint8_t)(value >> 24); 94 } 95 96 uint32_t big_endian_read_16( const uint8_t * buffer, int pos) { 97 return (uint16_t)(((uint16_t) buffer[(pos)+1]) | (((uint16_t)buffer[ pos ]) << 8)); 98 } 99 100 uint32_t big_endian_read_24( const uint8_t * buffer, int pos) { 101 return ( ((uint32_t)buffer[(pos)+2]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t) buffer[pos]) << 16)); 102 } 103 104 uint32_t big_endian_read_32( const uint8_t * buffer, int pos) { 105 return ((uint32_t) buffer[(pos)+3]) | (((uint32_t)buffer[(pos)+2]) << 8) | (((uint32_t)buffer[(pos)+1]) << 16) | (((uint32_t) buffer[pos]) << 24); 106 } 107 108 void big_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){ 109 buffer[pos++] = (uint8_t)(value >> 8); 110 buffer[pos++] = (uint8_t)(value); 111 } 112 113 void big_endian_store_24(uint8_t *buffer, uint16_t pos, uint32_t value){ 114 buffer[pos++] = (uint8_t)(value >> 16); 115 buffer[pos++] = (uint8_t)(value >> 8); 116 buffer[pos++] = (uint8_t)(value); 117 } 118 119 void big_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){ 120 buffer[pos++] = (uint8_t)(value >> 24); 121 buffer[pos++] = (uint8_t)(value >> 16); 122 buffer[pos++] = (uint8_t)(value >> 8); 123 buffer[pos++] = (uint8_t)(value); 124 } 125 126 // general swap/endianess utils 127 void reverse_bytes(const uint8_t *src, uint8_t *dst, int len){ 128 int i; 129 for (i = 0; i < len; i++) 130 dst[len - 1 - i] = src[i]; 131 } 132 void reverse_24(const uint8_t * src, uint8_t * dst){ 133 reverse_bytes(src, dst, 3); 134 } 135 void reverse_48(const uint8_t * src, uint8_t * dst){ 136 reverse_bytes(src, dst, 6); 137 } 138 void reverse_56(const uint8_t * src, uint8_t * dst){ 139 reverse_bytes(src, dst, 7); 140 } 141 void reverse_64(const uint8_t * src, uint8_t * dst){ 142 reverse_bytes(src, dst, 8); 143 } 144 void reverse_128(const uint8_t * src, uint8_t * dst){ 145 reverse_bytes(src, dst, 16); 146 } 147 void reverse_256(const uint8_t * src, uint8_t * dst){ 148 reverse_bytes(src, dst, 32); 149 } 150 151 void reverse_bd_addr(const bd_addr_t src, bd_addr_t dest){ 152 reverse_bytes(src, dest, 6); 153 } 154 155 uint32_t btstack_min(uint32_t a, uint32_t b){ 156 return a < b ? a : b; 157 } 158 159 uint32_t btstack_max(uint32_t a, uint32_t b){ 160 return a > b ? a : b; 161 } 162 163 char char_for_nibble(int nibble){ 164 if (nibble < 10) return (char)('0' + nibble); 165 nibble -= 10; 166 if (nibble < 6) return (char)('A' + nibble); 167 return '?'; 168 } 169 170 static inline char char_for_high_nibble(int value){ 171 return char_for_nibble((value >> 4) & 0x0f); 172 } 173 174 static inline char char_for_low_nibble(int value){ 175 return char_for_nibble(value & 0x0f); 176 } 177 178 int nibble_for_char(char c){ 179 if (c >= '0' && c <= '9') return c - '0'; 180 if (c >= 'a' && c <= 'f') return c - 'a' + 10; 181 if (c >= 'A' && c <= 'F') return c - 'A' + 10; 182 return -1; 183 } 184 185 void printf_hexdump(const void *data, int size){ 186 if (size <= 0) return; 187 int i; 188 for (i=0; i<size;i++){ 189 printf("%02X ", ((uint8_t *)data)[i]); 190 } 191 printf("\n"); 192 } 193 194 #if defined(ENABLE_LOG_INFO) || defined(ENABLE_LOG_DEBUG) 195 static void log_hexdump(int level, const void * data, int size){ 196 #define ITEMS_PER_LINE 16 197 // template '0x12, ' 198 #define BYTES_PER_BYTE 6 199 char buffer[BYTES_PER_BYTE*ITEMS_PER_LINE+1]; 200 int i, j; 201 j = 0; 202 for (i=0; i<size;i++){ 203 204 // help static analyzer proof that j stays within bounds 205 if (j > BYTES_PER_BYTE * (ITEMS_PER_LINE-1)){ 206 j = 0; 207 } 208 209 uint8_t byte = ((uint8_t *)data)[i]; 210 buffer[j++] = '0'; 211 buffer[j++] = 'x'; 212 buffer[j++] = char_for_high_nibble(byte); 213 buffer[j++] = char_for_low_nibble(byte); 214 buffer[j++] = ','; 215 buffer[j++] = ' '; 216 217 if (j >= BYTES_PER_BYTE * ITEMS_PER_LINE ){ 218 buffer[j] = 0; 219 HCI_DUMP_LOG(level, "%s", buffer); 220 j = 0; 221 } 222 } 223 if (j != 0){ 224 buffer[j] = 0; 225 HCI_DUMP_LOG(level, "%s", buffer); 226 } 227 } 228 #endif 229 230 void log_debug_hexdump(const void *data, int size){ 231 #ifdef ENABLE_LOG_DEBUG 232 log_hexdump(LOG_LEVEL_DEBUG, data, size); 233 #else 234 UNUSED(data); 235 UNUSED(size); 236 #endif 237 } 238 239 void log_info_hexdump(const void *data, int size){ 240 #ifdef ENABLE_LOG_INFO 241 log_hexdump(LOG_LEVEL_INFO, data, size); 242 #else 243 UNUSED(data); 244 UNUSED(size); 245 #endif 246 } 247 248 void log_info_key(const char * name, sm_key_t key){ 249 #ifdef ENABLE_LOG_INFO 250 char buffer[16*2+1]; 251 int i; 252 int j = 0; 253 for (i=0; i<16;i++){ 254 uint8_t byte = key[i]; 255 buffer[j++] = char_for_high_nibble(byte); 256 buffer[j++] = char_for_low_nibble(byte); 257 } 258 buffer[j] = 0; 259 log_info("%-6s %s", name, buffer); 260 #else 261 UNUSED(name); 262 (void)key; 263 #endif 264 } 265 266 // UUIDs are stored in big endian, similar to bd_addr_t 267 268 // Bluetooth Base UUID: 00000000-0000-1000-8000- 00805F9B34FB 269 const uint8_t bluetooth_base_uuid[] = { 0x00, 0x00, 0x00, 0x00, /* - */ 0x00, 0x00, /* - */ 0x10, 0x00, /* - */ 270 0x80, 0x00, /* - */ 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB }; 271 272 void uuid_add_bluetooth_prefix(uint8_t *uuid, uint32_t shortUUID){ 273 memcpy(uuid, bluetooth_base_uuid, 16); 274 big_endian_store_32(uuid, 0, shortUUID); 275 } 276 277 int uuid_has_bluetooth_prefix(const uint8_t * uuid128){ 278 return memcmp(&uuid128[4], &bluetooth_base_uuid[4], 12) == 0; 279 } 280 281 static char uuid128_to_str_buffer[32+4+1]; 282 char * uuid128_to_str(const uint8_t * uuid){ 283 int i; 284 int j = 0; 285 // after 4, 6, 8, and 10 bytes = XYXYXYXY-XYXY-XYXY-XYXY-XYXYXYXYXYXY, there's a dash 286 const int dash_locations = (1<<3) | (1<<5) | (1<<7) | (1<<9); 287 for (i=0;i<16;i++){ 288 uint8_t byte = uuid[i]; 289 uuid128_to_str_buffer[j++] = char_for_high_nibble(byte); 290 uuid128_to_str_buffer[j++] = char_for_low_nibble(byte); 291 if (dash_locations & (1<<i)){ 292 uuid128_to_str_buffer[j++] = '-'; 293 } 294 } 295 return uuid128_to_str_buffer; 296 } 297 298 static char bd_addr_to_str_buffer[6*3]; // 12:45:78:01:34:67\0 299 char * bd_addr_to_str(const bd_addr_t addr){ 300 // orig code 301 // sprintf(bd_addr_to_str_buffer, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); 302 // sprintf-free code 303 char * p = bd_addr_to_str_buffer; 304 int i; 305 for (i = 0; i < 6 ; i++) { 306 uint8_t byte = addr[i]; 307 *p++ = char_for_high_nibble(byte); 308 *p++ = char_for_low_nibble(byte); 309 *p++ = ':'; 310 } 311 *--p = 0; 312 return (char *) bd_addr_to_str_buffer; 313 } 314 315 static int scan_hex_byte(const char * byte_string){ 316 int upper_nibble = nibble_for_char(*byte_string++); 317 if (upper_nibble < 0) return -1; 318 int lower_nibble = nibble_for_char(*byte_string); 319 if (lower_nibble < 0) return -1; 320 return (upper_nibble << 4) | lower_nibble; 321 } 322 323 int sscanf_bd_addr(const char * addr_string, bd_addr_t addr){ 324 uint8_t buffer[BD_ADDR_LEN]; 325 int result = 0; 326 int i; 327 for (i = 0; i < BD_ADDR_LEN; i++) { 328 int single_byte = scan_hex_byte(addr_string); 329 if (single_byte < 0) break; 330 addr_string += 2; 331 buffer[i] = (uint8_t)single_byte; 332 // don't check seperator after last byte 333 if (i == BD_ADDR_LEN - 1) { 334 result = 1; 335 break; 336 } 337 char separator = *addr_string++; 338 if (separator != ':' && separator != '-' && separator != ' ') break; 339 } 340 341 if (result){ 342 bd_addr_copy(addr, buffer); 343 } 344 return result; 345 } 346 347 uint32_t btstack_atoi(const char *str){ 348 uint32_t val = 0; 349 while (1){ 350 char chr = *str; 351 if (!chr || chr < '0' || chr > '9') 352 return val; 353 val = (val * 10) + (uint8_t)(chr - '0'); 354 str++; 355 } 356 }