xref: /btstack/src/btstack_crypto.c (revision ced70f9bfeafe291ec597a3a9cc862e39e0da3ce)
1 /*
2  * Copyright (C) 2017 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
20  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
21  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
27  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #define BTSTACK_FILE__ "btstack_crypto.c"
33 
34 /*
35  * btstack_crypto.h
36  *
37  * Central place for all crypto-related functions with completion callbacks to allow
38  * using of MCU crypto peripherals or the Bluetooth controller
39  */
40 
41 #include "btstack_crypto.h"
42 
43 #include "btstack_debug.h"
44 #include "btstack_event.h"
45 #include "btstack_linked_list.h"
46 #include "btstack_util.h"
47 #include "btstack_bool.h"
48 #include "hci.h"
49 
50 //
51 // AES128 Configuration
52 //
53 
54 // By default, AES128 is computed by Bluetooth Controller using HCI Command/Event asynchronously
55 // as fallback/alternative, a software implementation can be used
56 // configure ECC implementations
57 #if defined(HAVE_AES128) && defined(ENABLE_SOFTWARE_AES128)
58 #error "If you have custom AES128 implementation (HAVE_AES128), please disable software AES128 (ENABLE_SOFTWARE_AES128) in bstack_config.h"
59 #endif
60 
61 #ifdef ENABLE_SOFTWARE_AES128
62 #define HAVE_AES128
63 #include "rijndael.h"
64 #endif
65 
66 #ifdef HAVE_AES128
67 #define USE_BTSTACK_AES128
68 #endif
69 
70 //
71 // ECC Configuration
72 //
73 
74 // backwards-compatitility ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS -> ENABLE_MICRO_ECC_P256
75 #if defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_P256)
76 #define ENABLE_MICRO_ECC_P256
77 #endif
78 
79 // configure ECC implementations
80 #if defined(ENABLE_MICRO_ECC_P256) && defined(HAVE_MBEDTLS_ECC_P256)
81 #error "If you have mbedTLS (HAVE_MBEDTLS_ECC_P256), please disable uECC (ENABLE_MICRO_ECC_P256) in bstack_config.h"
82 #endif
83 
84 // Software ECC-P256 implementation provided by micro-ecc
85 #ifdef ENABLE_MICRO_ECC_P256
86 #define ENABLE_ECC_P256
87 #define USE_MICRO_ECC_P256
88 #define USE_SOFTWARE_ECC_P256_IMPLEMENTATION
89 #include "uECC.h"
90 #endif
91 
92 // Software ECC-P256 implementation provided by mbedTLS, allow config via MBEDTLS_CONFIG_FILE
93 #ifdef HAVE_MBEDTLS_ECC_P256
94 #define ENABLE_ECC_P256
95 #define USE_MBEDTLS_ECC_P256
96 #define USE_SOFTWARE_ECC_P256_IMPLEMENTATION
97 #ifdef MBEDTLS_CONFIG_FILE
98 // cppcheck-suppress preprocessorErrorDirective
99 #include MBEDTLS_CONFIG_FILE
100 #else
101 #include "mbedtls/mbedtls_config.h"
102 #endif
103 #include "mbedtls/platform.h"
104 #include "mbedtls/ecp.h"
105 #endif
106 
107 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_ECC_P256)
108 #define ENABLE_ECC_P256
109 #endif
110 
111 // debugging
112 // #define DEBUG_CCM
113 
114 typedef enum {
115     CMAC_IDLE,
116     CMAC_CALC_SUBKEYS,
117     CMAC_W4_SUBKEYS,
118     CMAC_CALC_MI,
119     CMAC_W4_MI,
120     CMAC_CALC_MLAST,
121     CMAC_W4_MLAST
122 } btstack_crypto_cmac_state_t;
123 
124 typedef enum {
125     ECC_P256_KEY_GENERATION_IDLE,
126     ECC_P256_KEY_GENERATION_GENERATING_RANDOM,
127     ECC_P256_KEY_GENERATION_ACTIVE,
128     ECC_P256_KEY_GENERATION_W4_KEY,
129     ECC_P256_KEY_GENERATION_DONE,
130 } btstack_crypto_ecc_p256_key_generation_state_t;
131 
132 static void btstack_crypto_run(void);
133 static void btstack_crypto_state_reset(void);
134 
135 static const uint8_t zero[16] = { 0 };
136 
137 static bool btstack_crypto_initialized;
138 static bool btstack_crypto_wait_for_hci_result;
139 static btstack_linked_list_t btstack_crypto_operations;
140 static btstack_packet_callback_registration_t hci_event_callback_registration;
141 
142 // state for AES-CMAC
143 #ifndef USE_BTSTACK_AES128
144 static btstack_crypto_cmac_state_t btstack_crypto_cmac_state;
145 static sm_key_t btstack_crypto_cmac_k;
146 static sm_key_t btstack_crypto_cmac_x;
147 static sm_key_t btstack_crypto_cmac_subkey;
148 static uint8_t  btstack_crypto_cmac_block_current;
149 static uint8_t  btstack_crypto_cmac_block_count;
150 #endif
151 
152 // state for AES-CCM
153 static uint8_t btstack_crypto_ccm_s[16];
154 
155 #ifdef ENABLE_ECC_P256
156 
157 static uint8_t  btstack_crypto_ecc_p256_public_key[64];
158 static uint8_t  btstack_crypto_ecc_p256_random[64];
159 static uint8_t  btstack_crypto_ecc_p256_random_len;
160 static uint8_t  btstack_crypto_ecc_p256_random_offset;
161 static btstack_crypto_ecc_p256_key_generation_state_t btstack_crypto_ecc_p256_key_generation_state;
162 
163 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
164 static uint8_t btstack_crypto_ecc_p256_d[32];
165 #endif
166 
167 // Software ECDH implementation provided by mbedtls
168 #ifdef USE_MBEDTLS_ECC_P256
169 static mbedtls_ecp_group   mbedtls_ec_group;
170 #endif
171 
172 #endif /* ENABLE_ECC_P256 */
173 
174 #ifdef ENABLE_SOFTWARE_AES128
175 // AES128 using public domain rijndael implementation
176 void btstack_aes128_calc(const uint8_t * key, const uint8_t * plaintext, uint8_t * ciphertext){
177     uint32_t rk[RKLENGTH(KEYBITS)];
178     int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
179     rijndaelEncrypt(rk, nrounds, plaintext, ciphertext);
180 }
181 #endif
182 
183 static void btstack_crypto_done(btstack_crypto_t * btstack_crypto){
184     btstack_linked_list_pop(&btstack_crypto_operations);
185     (*btstack_crypto->context_callback.callback)(btstack_crypto->context_callback.context);
186 }
187 
188 static void btstack_crypto_cmac_shift_left_by_one_bit_inplace(int len, uint8_t * data){
189     int i;
190     int carry = 0;
191     for (i=len-1; i >= 0 ; i--){
192         int new_carry = data[i] >> 7;
193         data[i] = (data[i] << 1) | carry;
194         carry = new_carry;
195     }
196 }
197 
198 static uint8_t btstack_crypto_cmac_get_byte(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, uint16_t pos){
199     if (btstack_crypto_cmac->btstack_crypto.operation == BTSTACK_CRYPTO_CMAC_GENERATOR){
200         return (*btstack_crypto_cmac->data.get_byte_callback)(pos);
201     } else {
202         return btstack_crypto_cmac->data.message[pos];
203     }
204 }
205 
206 #ifdef USE_BTSTACK_AES128
207 
208 static void btstack_crypto_cmac_calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
209     memcpy(k1, k0, 16);
210     btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k1);
211     if (k0[0] & 0x80){
212         k1[15] ^= 0x87;
213     }
214     memcpy(k2, k1, 16);
215     btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k2);
216     if (k1[0] & 0x80){
217         k2[15] ^= 0x87;
218     }
219 }
220 
221 static void btstack_crypto_cmac_calc(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac) {
222     sm_key_t k0, k1, k2;
223     uint16_t i;
224 
225     btstack_aes128_calc(btstack_crypto_cmac->key, zero, k0);
226     btstack_crypto_cmac_calc_subkeys(k0, k1, k2);
227 
228     uint16_t cmac_block_count = (btstack_crypto_cmac->size + 15) / 16;
229 
230     // step 3: ..
231     if (cmac_block_count==0){
232         cmac_block_count = 1;
233     }
234 
235     // Step 5
236     sm_key_t cmac_x;
237     memset(cmac_x, 0, 16);
238 
239     // Step 6
240     sm_key_t cmac_y;
241     int block;
242     for (block = 0 ; block < cmac_block_count-1 ; block++){
243         for (i=0;i<16;i++){
244             cmac_y[i] = cmac_x[i] ^ btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (block*16) + i);
245         }
246         btstack_aes128_calc(btstack_crypto_cmac->key, cmac_y, cmac_x);
247     }
248 
249     // step 4: set m_last
250     sm_key_t cmac_m_last;
251     bool last_block_complete = btstack_crypto_cmac->size != 0 && (btstack_crypto_cmac->size & 0x0f) == 0;
252     if (last_block_complete){
253         for (i=0;i<16;i++){
254             cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac->size - 16 + i) ^ k1[i];
255         }
256     } else {
257         uint16_t valid_octets_in_last_block = btstack_crypto_cmac->size & 0x0f;
258         for (i=0;i<16;i++){
259             if (i < valid_octets_in_last_block){
260                 cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac->size & 0xfff0) + i) ^ k2[i];
261                 continue;
262             }
263             if (i == valid_octets_in_last_block){
264                 cmac_m_last[i] = 0x80 ^ k2[i];
265                 continue;
266             }
267             cmac_m_last[i] = k2[i];
268         }
269     }
270 
271     for (i=0;i<16;i++){
272         cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
273     }
274 
275     // Step 7
276     btstack_aes128_calc(btstack_crypto_cmac->key, cmac_y, btstack_crypto_cmac->hash);
277 }
278 #else
279 
280 static void btstack_crypto_aes128_start(const sm_key_t key, const sm_key_t plaintext){
281     uint8_t key_flipped[16];
282     uint8_t plaintext_flipped[16];
283     reverse_128(key, key_flipped);
284     reverse_128(plaintext, plaintext_flipped);
285     btstack_crypto_wait_for_hci_result = 1;
286     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
287 }
288 
289 static inline void btstack_crypto_cmac_next_state(void){
290     btstack_crypto_cmac_state = (btstack_crypto_cmac_state_t) (((int)btstack_crypto_cmac_state) + 1);
291 }
292 
293 static int btstack_crypto_cmac_last_block_complete(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
294 	uint16_t len = btstack_crypto_cmac->size;
295     if (len == 0u) return 0u;
296     return (len & 0x0fu) == 0u;
297 }
298 
299 static void btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
300     switch (btstack_crypto_cmac_state){
301         case CMAC_CALC_SUBKEYS: {
302             btstack_crypto_cmac_next_state();
303             btstack_crypto_aes128_start(btstack_crypto_cmac_k, zero);
304             break;
305         }
306         case CMAC_CALC_MI: {
307             int j;
308             sm_key_t y;
309             for (j=0;j<16;j++){
310                 y[j] = btstack_crypto_cmac_x[j] ^ btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac_block_current*16u) + j);
311             }
312             btstack_crypto_cmac_block_current++;
313             btstack_crypto_cmac_next_state();
314             btstack_crypto_aes128_start(btstack_crypto_cmac_k, y);
315             break;
316         }
317         case CMAC_CALC_MLAST: {
318             sm_key_t k1;
319             (void)memcpy(k1, btstack_crypto_cmac_subkey, 16);
320             btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k1);
321             if (btstack_crypto_cmac_subkey[0u] & 0x80u){
322                 k1[15u] ^= 0x87u;
323             }
324             sm_key_t k2;
325             (void)memcpy(k2, k1, 16);
326             btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k2);
327             if (k1[0u] & 0x80u){
328                 k2[15u] ^= 0x87u;
329             }
330 
331             log_info_key("k", btstack_crypto_cmac_k);
332             log_info_key("k1", k1);
333             log_info_key("k2", k2);
334 
335             // step 4: set m_last
336             int i;
337             sm_key_t btstack_crypto_cmac_m_last;
338             if (btstack_crypto_cmac_last_block_complete(btstack_crypto_cmac)){
339                 for (i=0;i<16;i++){
340                     btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac->size - 16u + i) ^ k1[i];
341                 }
342             } else {
343                 int valid_octets_in_last_block = btstack_crypto_cmac->size & 0x0fu;
344                 for (i=0;i<16;i++){
345                     if (i < valid_octets_in_last_block){
346                         btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac->size & 0xfff0u) + i) ^ k2[i];
347                         continue;
348                     }
349                     if (i == valid_octets_in_last_block){
350                         btstack_crypto_cmac_m_last[i] = 0x80u ^ k2[i];
351                         continue;
352                     }
353                     btstack_crypto_cmac_m_last[i] = k2[i];
354                 }
355             }
356             sm_key_t y;
357             for (i=0;i<16;i++){
358                 y[i] = btstack_crypto_cmac_x[i] ^ btstack_crypto_cmac_m_last[i];
359             }
360             btstack_crypto_cmac_block_current++;
361             btstack_crypto_cmac_next_state();
362             btstack_crypto_aes128_start(btstack_crypto_cmac_k, y);
363             break;
364         }
365         default:
366             log_info("btstack_crypto_cmac_handle_aes_engine_ready called in state %u", btstack_crypto_cmac_state);
367             break;
368     }
369 }
370 
371 static void btstack_crypto_cmac_handle_encryption_result(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, sm_key_t data){
372     switch (btstack_crypto_cmac_state){
373         case CMAC_W4_SUBKEYS:
374             (void)memcpy(btstack_crypto_cmac_subkey, data, 16);
375             // next
376             btstack_crypto_cmac_state = (btstack_crypto_cmac_block_current < (btstack_crypto_cmac_block_count - 1u)) ? CMAC_CALC_MI : CMAC_CALC_MLAST;
377             break;
378         case CMAC_W4_MI:
379             (void)memcpy(btstack_crypto_cmac_x, data, 16);
380             btstack_crypto_cmac_state = (btstack_crypto_cmac_block_current < (btstack_crypto_cmac_block_count - 1u)) ? CMAC_CALC_MI : CMAC_CALC_MLAST;
381             break;
382         case CMAC_W4_MLAST:
383             // done
384             log_info("Setting CMAC Engine to IDLE");
385             btstack_crypto_cmac_state = CMAC_IDLE;
386             log_info_key("CMAC", data);
387             (void)memcpy(btstack_crypto_cmac->hash, data, 16);
388 			btstack_linked_list_pop(&btstack_crypto_operations);
389 			(*btstack_crypto_cmac->btstack_crypto.context_callback.callback)(btstack_crypto_cmac->btstack_crypto.context_callback.context);
390             break;
391         default:
392             log_info("btstack_crypto_cmac_handle_encryption_result called in state %u", btstack_crypto_cmac_state);
393             break;
394     }
395 }
396 
397 static void btstack_crypto_cmac_start(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
398 
399     (void)memcpy(btstack_crypto_cmac_k, btstack_crypto_cmac->key, 16);
400     memset(btstack_crypto_cmac_x, 0, 16);
401     btstack_crypto_cmac_block_current = 0;
402 
403     // step 2: n := ceil(len/const_Bsize);
404     btstack_crypto_cmac_block_count = (btstack_crypto_cmac->size + 15u) / 16u;
405 
406     // step 3: ..
407     if (btstack_crypto_cmac_block_count==0u){
408         btstack_crypto_cmac_block_count = 1;
409     }
410     log_info("btstack_crypto_cmac_start: len %u, block count %u", btstack_crypto_cmac->size, btstack_crypto_cmac_block_count);
411 
412     // first, we need to compute l for k1, k2, and m_last
413     btstack_crypto_cmac_state = CMAC_CALC_SUBKEYS;
414 
415     // let's go
416     btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac);
417 }
418 #endif
419 
420 /*
421   To encrypt the message data we use Counter (CTR) mode.  We first
422   define the key stream blocks by:
423 
424       S_i := E( K, A_i )   for i=0, 1, 2, ...
425 
426   The values A_i are formatted as follows, where the Counter field i is
427   encoded in most-significant-byte first order:
428 
429   Octet Number   Contents
430   ------------   ---------
431   0              Flags
432   1 ... 15-L     Nonce N
433   16-L ... 15    Counter i
434 
435   Bit Number   Contents
436   ----------   ----------------------
437   7            Reserved (always zero)
438   6            Reserved (always zero)
439   5 ... 3      Zero
440   2 ... 0      L'
441 */
442 
443 static void btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm_t * btstack_crypto_ccm, uint16_t counter){
444     btstack_crypto_ccm_s[0] = 1;  // L' = L - 1
445     (void)memcpy(&btstack_crypto_ccm_s[1], btstack_crypto_ccm->nonce, 13);
446     big_endian_store_16(btstack_crypto_ccm_s, 14, counter);
447 #ifdef DEBUG_CCM
448     printf("btstack_crypto_ccm_setup_a_%u\n", counter);
449     printf("%16s: ", "ai");
450     printf_hexdump(btstack_crypto_ccm_s, 16);
451 #endif
452 }
453 
454 /*
455  The first step is to compute the authentication field T.  This is
456    done using CBC-MAC [MAC].  We first define a sequence of blocks B_0,
457    B_1, ..., B_n and then apply CBC-MAC to these blocks.
458 
459    The first block B_0 is formatted as follows, where l(m) is encoded in
460    most-significant-byte first order:
461 
462       Octet Number   Contents
463       ------------   ---------
464       0              Flags
465       1 ... 15-L     Nonce N
466       16-L ... 15    l(m)
467 
468    Within the first block B_0, the Flags field is formatted as follows:
469 
470       Bit Number   Contents
471       ----------   ----------------------
472       7            Reserved (always zero)
473       6            Adata
474       5 ... 3      M'
475       2 ... 0      L'
476  */
477 
478 static void btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm_t * btstack_crypto_ccm, uint8_t * b0){
479     uint8_t m_prime = (btstack_crypto_ccm->auth_len - 2u) / 2u;
480     uint8_t Adata   = btstack_crypto_ccm->aad_len ? 1 : 0;
481     b0[0u] = (Adata << 6u) | (m_prime << 3u) | 1u ;  // Adata, M', L' = L - 1
482     (void)memcpy(&b0[1], btstack_crypto_ccm->nonce, 13);
483     big_endian_store_16(b0, 14, btstack_crypto_ccm->message_len);
484 #ifdef DEBUG_CCM
485     printf("%16s: ", "B0");
486     printf_hexdump(b0, 16);
487 #endif
488 }
489 
490 #ifdef ENABLE_ECC_P256
491 
492 static void btstack_crypto_log_ec_publickey(const uint8_t * ec_q){
493     log_info("Elliptic curve: X");
494     log_info_hexdump(&ec_q[0],32);
495     log_info("Elliptic curve: Y");
496     log_info_hexdump(&ec_q[32],32);
497 }
498 
499 #if (defined(USE_MICRO_ECC_P256) && !defined(WICED_VERSION)) || defined(USE_MBEDTLS_ECC_P256)
500 // @return OK
501 static int sm_generate_f_rng(unsigned char * buffer, unsigned size){
502     if (btstack_crypto_ecc_p256_key_generation_state != ECC_P256_KEY_GENERATION_ACTIVE) return 0;
503     log_info("sm_generate_f_rng: size %u - offset %u", (int) size, btstack_crypto_ecc_p256_random_offset);
504     btstack_assert((btstack_crypto_ecc_p256_random_offset + size) <= btstack_crypto_ecc_p256_random_len);
505     uint16_t remaining_size = size;
506     uint8_t * buffer_ptr = buffer;
507     while (remaining_size) {
508         *buffer_ptr++ = btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_offset++];
509         remaining_size--;
510     }
511     return 1;
512 }
513 #endif
514 #ifdef USE_MBEDTLS_ECC_P256
515 // @return error - just wrap sm_generate_f_rng
516 static int sm_generate_f_rng_mbedtls(void * context, unsigned char * buffer, size_t size){
517     UNUSED(context);
518     return sm_generate_f_rng(buffer, size) == 0;
519 }
520 #endif /* USE_MBEDTLS_ECC_P256 */
521 
522 static void btstack_crypto_ecc_p256_generate_key_software(void){
523 
524     btstack_crypto_ecc_p256_random_offset = 0;
525 
526     // generate EC key
527 #ifdef USE_MICRO_ECC_P256
528 
529 #ifndef WICED_VERSION
530     log_info("set uECC RNG for initial key generation with 64 random bytes");
531     // micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it
532     uECC_set_rng(&sm_generate_f_rng);
533 #endif /* WICED_VERSION */
534 
535 #if uECC_SUPPORTS_secp256r1
536     // standard version
537     uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d, uECC_secp256r1());
538 
539     // disable RNG again, as returning no randmon data lets shared key generation fail
540     log_info("disable uECC RNG in standard version after key generation");
541     uECC_set_rng(NULL);
542 #else
543     // static version
544     uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d);
545 #endif
546 #endif /* USE_MICRO_ECC_P256 */
547 
548 #ifdef USE_MBEDTLS_ECC_P256
549     mbedtls_mpi d;
550     mbedtls_ecp_point P;
551     mbedtls_mpi_init(&d);
552     mbedtls_ecp_point_init(&P);
553     int res = mbedtls_ecp_gen_keypair(&mbedtls_ec_group, &d, &P, &sm_generate_f_rng_mbedtls, NULL);
554     log_info("gen keypair %x", res);
555     mbedtls_mpi_write_binary(&P.X, &btstack_crypto_ecc_p256_public_key[0],  32);
556     mbedtls_mpi_write_binary(&P.Y, &btstack_crypto_ecc_p256_public_key[32], 32);
557     mbedtls_mpi_write_binary(&d, btstack_crypto_ecc_p256_d, 32);
558     mbedtls_ecp_point_free(&P);
559     mbedtls_mpi_free(&d);
560 #endif  /* USE_MBEDTLS_ECC_P256 */
561 }
562 
563 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
564 static void btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192){
565     memset(btstack_crypto_ec_p192->dhkey, 0, 32);
566 
567 #ifdef USE_MICRO_ECC_P256
568 #if uECC_SUPPORTS_secp256r1
569     // standard version
570     uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey, uECC_secp256r1());
571 #else
572     // static version
573     uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey);
574 #endif
575 #endif
576 
577 #ifdef USE_MBEDTLS_ECC_P256
578     // da * Pb
579     mbedtls_mpi d;
580     mbedtls_ecp_point Q;
581     mbedtls_ecp_point DH;
582     mbedtls_mpi_init(&d);
583     mbedtls_ecp_point_init(&Q);
584     mbedtls_ecp_point_init(&DH);
585     mbedtls_mpi_read_binary(&d, btstack_crypto_ecc_p256_d, 32);
586     mbedtls_mpi_read_binary(&Q.X, &btstack_crypto_ec_p192->public_key[0] , 32);
587     mbedtls_mpi_read_binary(&Q.Y, &btstack_crypto_ec_p192->public_key[32], 32);
588     mbedtls_mpi_lset(&Q.Z, 1);
589     mbedtls_ecp_mul(&mbedtls_ec_group, &DH, &d, &Q, NULL, NULL);
590     mbedtls_mpi_write_binary(&DH.X, btstack_crypto_ec_p192->dhkey, 32);
591     mbedtls_ecp_point_free(&DH);
592     mbedtls_mpi_free(&d);
593     mbedtls_ecp_point_free(&Q);
594 #endif
595 
596     log_info("dhkey");
597     log_info_hexdump(btstack_crypto_ec_p192->dhkey, 32);
598 }
599 #endif
600 
601 #endif
602 
603 static void btstack_crypto_ccm_next_block(btstack_crypto_ccm_t * btstack_crypto_ccm, btstack_crypto_ccm_state_t state_when_done){
604     uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16);
605     // next block
606     btstack_crypto_ccm->counter++;
607     btstack_crypto_ccm->input       += bytes_to_process;
608     btstack_crypto_ccm->output      += bytes_to_process;
609     btstack_crypto_ccm->block_len   -= bytes_to_process;
610     btstack_crypto_ccm->message_len -= bytes_to_process;
611 #ifdef DEBUG_CCM
612     printf("btstack_crypto_ccm_next_block (message len %u, block_len %u)\n", btstack_crypto_ccm->message_len, btstack_crypto_ccm->block_len);
613 #endif
614     if (btstack_crypto_ccm->message_len == 0u){
615         btstack_crypto_ccm->state = CCM_CALCULATE_S0;
616     } else {
617         btstack_crypto_ccm->state = state_when_done;
618         if (btstack_crypto_ccm->block_len == 0u){
619             btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
620         }
621     }
622 }
623 
624 // If Controller is used for AES128, data is little endian
625 static void btstack_crypto_ccm_handle_s0(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){
626     int i;
627     for (i=0;i<16;i++){
628 #ifdef USE_BTSTACK_AES128
629         btstack_crypto_ccm->x_i[i] = btstack_crypto_ccm->x_i[i] ^ data[i];
630 #else
631         btstack_crypto_ccm->x_i[i] = btstack_crypto_ccm->x_i[i] ^ data[15-i];
632 #endif
633     }
634     btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
635 }
636 
637 // If Controller is used for AES128, data is little endian
638 static void btstack_crypto_ccm_handle_sn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){
639     int i;
640     uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16);
641     for (i=0;i<bytes_to_process;i++){
642 #ifdef USE_BTSTACK_AES128
643         btstack_crypto_ccm->output[i] = btstack_crypto_ccm->input[i] ^ data[i];
644 #else
645         btstack_crypto_ccm->output[i] = btstack_crypto_ccm->input[i] ^ data[15-i];
646 #endif
647     }
648     switch (btstack_crypto_ccm->btstack_crypto.operation){
649         case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
650             btstack_crypto_ccm->state = CCM_CALCULATE_XN;
651             break;
652         case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
653             btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_XN);
654             break;
655         default:
656             btstack_assert(false);
657             break;
658     }
659 }
660 
661 static void btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm_t * btstack_crypto_ccm) {
662 #ifdef DEBUG_CCM
663     printf("%16s: ", "Xn+1 AAD");
664     printf_hexdump(btstack_crypto_ccm->x_i, 16);
665 #endif
666     // more aad?
667     if (btstack_crypto_ccm->aad_offset < (btstack_crypto_ccm->aad_len + 2u)){
668         btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN;
669     } else {
670         // done
671         btstack_crypto_done((btstack_crypto_t *) btstack_crypto_ccm);
672     }
673 }
674 
675 static void btstack_crypto_ccm_handle_x1(btstack_crypto_ccm_t * btstack_crypto_ccm) {
676 #ifdef DEBUG_CCM
677     printf("%16s: ", "Xi");
678     printf_hexdump(btstack_crypto_ccm->x_i, 16);
679 #endif
680     switch (btstack_crypto_ccm->btstack_crypto.operation){
681         case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
682             btstack_crypto_ccm->aad_remainder_len = 0;
683             btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN;
684             break;
685         case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
686             btstack_crypto_ccm->state = CCM_CALCULATE_SN;
687             break;
688         case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
689             btstack_crypto_ccm->state = CCM_CALCULATE_XN;
690             break;
691         default:
692         btstack_assert(false);
693             break;
694     }
695 }
696 
697 static void btstack_crypto_ccm_handle_xn(btstack_crypto_ccm_t * btstack_crypto_ccm) {
698 #ifdef DEBUG_CCM
699     printf("%16s: ", "Xn+1");
700     printf_hexdump(btstack_crypto_ccm->x_i, 16);
701 #endif
702     switch (btstack_crypto_ccm->btstack_crypto.operation){
703         case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
704             btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_SN);
705             break;
706         case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
707             btstack_crypto_ccm->state = CCM_CALCULATE_SN;
708             break;
709         default:
710         btstack_assert(false);
711             break;
712     }
713 }
714 
715 static void btstack_crypto_ccm_calc_s0(btstack_crypto_ccm_t * btstack_crypto_ccm){
716 #ifdef DEBUG_CCM
717     printf("btstack_crypto_ccm_calc_s0\n");
718 #endif
719     btstack_crypto_ccm->state = CCM_W4_S0;
720     btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, 0);
721 #ifdef USE_BTSTACK_AES128
722     uint8_t data[16];
723     btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_s, data);
724     btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data);
725 #else
726     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s);
727 #endif
728 }
729 
730 static void btstack_crypto_ccm_calc_sn(btstack_crypto_ccm_t * btstack_crypto_ccm){
731 #ifdef DEBUG_CCM
732     printf("btstack_crypto_ccm_calc_s%u\n", btstack_crypto_ccm->counter);
733 #endif
734     btstack_crypto_ccm->state = CCM_W4_SN;
735     btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, btstack_crypto_ccm->counter);
736 #ifdef USE_BTSTACK_AES128
737     uint8_t data[16];
738     btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_s, data);
739     btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data);
740 #else
741     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s);
742 #endif
743 }
744 
745 static void btstack_crypto_ccm_calc_x1(btstack_crypto_ccm_t * btstack_crypto_ccm){
746     uint8_t btstack_crypto_ccm_buffer[16];
747     btstack_crypto_ccm->state = CCM_W4_X1;
748     btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm, btstack_crypto_ccm_buffer);
749 #ifdef USE_BTSTACK_AES128
750     btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer, btstack_crypto_ccm->x_i);
751     btstack_crypto_ccm_handle_x1(btstack_crypto_ccm);
752 #else
753     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer);
754 #endif
755 }
756 
757 static void btstack_crypto_ccm_calc_xn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * plaintext){
758     uint8_t btstack_crypto_ccm_buffer[16];
759     btstack_crypto_ccm->state = CCM_W4_XN;
760 
761 #ifdef DEBUG_CCM
762     printf("%16s: ", "bn");
763     printf_hexdump(plaintext, 16);
764 #endif
765     uint8_t i;
766     uint16_t bytes_to_decrypt = btstack_crypto_ccm->block_len;
767     // use explicit min implementation as c-stat worried about out-of-bounds-reads
768     if (bytes_to_decrypt > 16u) {
769         bytes_to_decrypt = 16;
770     }
771     for (i = 0; i < bytes_to_decrypt ; i++){
772         btstack_crypto_ccm_buffer[i] =  btstack_crypto_ccm->x_i[i] ^ plaintext[i];
773     }
774     (void)memcpy(&btstack_crypto_ccm_buffer[i], &btstack_crypto_ccm->x_i[i],
775                  16u - bytes_to_decrypt);
776 #ifdef DEBUG_CCM
777     printf("%16s: ", "Xn XOR bn");
778     printf_hexdump(btstack_crypto_ccm_buffer, 16);
779 #endif
780 
781 #ifdef USE_BTSTACK_AES128
782     btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer, btstack_crypto_ccm->x_i);
783     btstack_crypto_ccm_handle_xn(btstack_crypto_ccm);
784 #else
785     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer);
786 #endif
787 }
788 
789 static void btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm_t * btstack_crypto_ccm){
790     // store length
791     if (btstack_crypto_ccm->aad_offset == 0u){
792         uint8_t len_buffer[2];
793         big_endian_store_16(len_buffer, 0, btstack_crypto_ccm->aad_len);
794         btstack_crypto_ccm->x_i[0] ^= len_buffer[0];
795         btstack_crypto_ccm->x_i[1] ^= len_buffer[1];
796         btstack_crypto_ccm->aad_remainder_len += 2u;
797         btstack_crypto_ccm->aad_offset        += 2u;
798     }
799 
800     // fill from input
801     uint16_t bytes_free = 16u - btstack_crypto_ccm->aad_remainder_len;
802     uint16_t bytes_to_copy = btstack_min(bytes_free, btstack_crypto_ccm->block_len);
803     while (bytes_to_copy){
804         btstack_crypto_ccm->x_i[btstack_crypto_ccm->aad_remainder_len++] ^= *btstack_crypto_ccm->input++;
805         btstack_crypto_ccm->aad_offset++;
806         btstack_crypto_ccm->block_len--;
807         bytes_to_copy--;
808         bytes_free--;
809     }
810 
811     // if last block, fill with zeros
812     if (btstack_crypto_ccm->aad_offset == (btstack_crypto_ccm->aad_len + 2u)){
813         btstack_crypto_ccm->aad_remainder_len = 16;
814     }
815     // if not full, notify done
816     if (btstack_crypto_ccm->aad_remainder_len < 16u){
817         btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
818         return;
819     }
820 
821     // encrypt block
822 #ifdef DEBUG_CCM
823     printf("%16s: ", "Xn XOR Bn (aad)");
824     printf_hexdump(btstack_crypto_ccm->x_i, 16);
825 #endif
826 
827     btstack_crypto_ccm->aad_remainder_len = 0;
828     btstack_crypto_ccm->state = CCM_W4_AAD_XN;
829 #ifdef USE_BTSTACK_AES128
830     btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm->x_i, btstack_crypto_ccm->x_i);
831     btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm);
832 #else
833     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm->x_i);
834 #endif
835 }
836 
837 static void btstack_crypto_run(void){
838 
839     btstack_crypto_aes128_t        * btstack_crypto_aes128;
840     btstack_crypto_ccm_t           * btstack_crypto_ccm;
841     btstack_crypto_aes128_cmac_t   * btstack_crypto_cmac;
842 #ifdef ENABLE_ECC_P256
843     btstack_crypto_ecc_p256_t      * btstack_crypto_ec_p192;
844 #endif
845 
846     // stack up and running?
847     if (hci_get_state() != HCI_STATE_WORKING) return;
848 
849     // try to do as much as possible
850     while (true){
851 
852         // anything to do?
853         if (btstack_linked_list_empty(&btstack_crypto_operations)) return;
854 
855         // already active?
856         if (btstack_crypto_wait_for_hci_result) return;
857 
858         // can send a command?
859         if (!hci_can_send_command_packet_now()) return;
860 
861         // ok, find next task
862     	btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
863     	switch (btstack_crypto->operation){
864     		case BTSTACK_CRYPTO_RANDOM:
865     			btstack_crypto_wait_for_hci_result = true;
866     		    hci_send_cmd(&hci_le_rand);
867     		    break;
868     		case BTSTACK_CRYPTO_AES128:
869                 btstack_crypto_aes128 = (btstack_crypto_aes128_t *) btstack_crypto;
870 #ifdef USE_BTSTACK_AES128
871                 btstack_aes128_calc(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext, btstack_crypto_aes128->ciphertext);
872                 btstack_crypto_done(btstack_crypto);
873 #else
874                 btstack_crypto_aes128_start(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext);
875 #endif
876     		    break;
877 
878     		case BTSTACK_CRYPTO_CMAC_MESSAGE:
879     		case BTSTACK_CRYPTO_CMAC_GENERATOR:
880                 btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t *) btstack_crypto;
881 #ifdef USE_BTSTACK_AES128
882                 btstack_crypto_cmac_calc( btstack_crypto_cmac );
883                 btstack_crypto_done(btstack_crypto);
884 #else
885     			btstack_crypto_wait_for_hci_result = 1;
886     			if (btstack_crypto_cmac_state == CMAC_IDLE){
887     				btstack_crypto_cmac_start(btstack_crypto_cmac);
888     			} else {
889     				btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac);
890     			}
891 #endif
892     			break;
893 
894             case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
895             case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
896             case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
897                 btstack_crypto_ccm = (btstack_crypto_ccm_t *) btstack_crypto;
898                 switch (btstack_crypto_ccm->state){
899                     case CCM_CALCULATE_AAD_XN:
900 #ifdef DEBUG_CCM
901                         printf("CCM_CALCULATE_AAD_XN\n");
902 #endif
903                         btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm);
904                         break;
905                     case CCM_CALCULATE_X1:
906 #ifdef DEBUG_CCM
907                         printf("CCM_CALCULATE_X1\n");
908 #endif
909                         btstack_crypto_ccm_calc_x1(btstack_crypto_ccm);
910                         break;
911                     case CCM_CALCULATE_S0:
912 #ifdef DEBUG_CCM
913                         printf("CCM_CALCULATE_S0\n");
914 #endif
915                         btstack_crypto_ccm_calc_s0(btstack_crypto_ccm);
916                         break;
917                     case CCM_CALCULATE_SN:
918 #ifdef DEBUG_CCM
919                         printf("CCM_CALCULATE_SN\n");
920 #endif
921                         btstack_crypto_ccm_calc_sn(btstack_crypto_ccm);
922                         break;
923                     case CCM_CALCULATE_XN:
924 #ifdef DEBUG_CCM
925                         printf("CCM_CALCULATE_XN\n");
926 #endif
927                         btstack_crypto_ccm_calc_xn(btstack_crypto_ccm, (btstack_crypto->operation == BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK) ? btstack_crypto_ccm->input : btstack_crypto_ccm->output);
928                         break;
929                     default:
930                         break;
931                 }
932                 break;
933 
934 #ifdef ENABLE_ECC_P256
935             case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY:
936                 btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto;
937                 switch (btstack_crypto_ecc_p256_key_generation_state){
938                     case ECC_P256_KEY_GENERATION_DONE:
939                         // done
940                         btstack_crypto_log_ec_publickey(btstack_crypto_ecc_p256_public_key);
941                         (void)memcpy(btstack_crypto_ec_p192->public_key,
942                                      btstack_crypto_ecc_p256_public_key, 64);
943                         btstack_linked_list_pop(&btstack_crypto_operations);
944                         (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
945                         break;
946                     case ECC_P256_KEY_GENERATION_IDLE:
947 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
948                         log_info("start ecc random");
949                         btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_GENERATING_RANDOM;
950                         btstack_crypto_ecc_p256_random_len = 0;
951                         btstack_crypto_wait_for_hci_result = true;
952                         hci_send_cmd(&hci_le_rand);
953 #else
954                         btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_W4_KEY;
955                         btstack_crypto_wait_for_hci_result = 1;
956                         hci_send_cmd(&hci_le_read_local_p256_public_key);
957 #endif
958                         break;
959 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
960                     case ECC_P256_KEY_GENERATION_GENERATING_RANDOM:
961                         log_info("more ecc random");
962                         btstack_crypto_wait_for_hci_result = true;
963                         hci_send_cmd(&hci_le_rand);
964                         break;
965 #endif
966                     default:
967                         break;
968                 }
969                 break;
970             case BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY:
971                 btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto;
972 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
973                 btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ec_p192);
974                 // done
975                 btstack_linked_list_pop(&btstack_crypto_operations);
976                 (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
977 #else
978                 btstack_crypto_wait_for_hci_result = 1;
979                 hci_send_cmd(&hci_le_generate_dhkey, &btstack_crypto_ec_p192->public_key[0], &btstack_crypto_ec_p192->public_key[32]);
980 #endif
981                 break;
982 
983 #endif /* ENABLE_ECC_P256 */
984 
985             default:
986                 break;
987         }
988     }
989 }
990 
991 static void btstack_crypto_handle_random_data(const uint8_t * data, uint16_t len){
992     btstack_crypto_random_t * btstack_crypto_random;
993     btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
994     uint16_t bytes_to_copy;
995 	if (!btstack_crypto) return;
996     switch (btstack_crypto->operation){
997         case BTSTACK_CRYPTO_RANDOM:
998             btstack_crypto_random = (btstack_crypto_random_t*) btstack_crypto;
999             bytes_to_copy = btstack_min(btstack_crypto_random->size, len);
1000             (void)memcpy(btstack_crypto_random->buffer, data, bytes_to_copy);
1001             btstack_crypto_random->buffer += bytes_to_copy;
1002             btstack_crypto_random->size   -= bytes_to_copy;
1003             // data processed, more?
1004             if (!btstack_crypto_random->size) {
1005                 // done
1006                 btstack_linked_list_pop(&btstack_crypto_operations);
1007                 (*btstack_crypto_random->btstack_crypto.context_callback.callback)(btstack_crypto_random->btstack_crypto.context_callback.context);
1008             }
1009             break;
1010 #ifdef ENABLE_ECC_P256
1011         case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY:
1012             btstack_assert((btstack_crypto_ecc_p256_random_len + 8) <= 64);
1013             (void)memcpy(&btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_len], data, 8);
1014             btstack_crypto_ecc_p256_random_len += 8u;
1015             if (btstack_crypto_ecc_p256_random_len >= 64u) {
1016                 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_ACTIVE;
1017                 btstack_crypto_ecc_p256_generate_key_software();
1018                 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
1019             }
1020             break;
1021 #endif
1022         default:
1023             break;
1024     }
1025 	// more work?
1026 	btstack_crypto_run();
1027 }
1028 
1029 #ifndef USE_BTSTACK_AES128
1030 static void btstack_crypto_handle_encryption_result(const uint8_t * data){
1031 	btstack_crypto_aes128_t      * btstack_crypto_aes128;
1032 	btstack_crypto_aes128_cmac_t * btstack_crypto_cmac;
1033     btstack_crypto_ccm_t         * btstack_crypto_ccm;
1034 	uint8_t result[16];
1035 
1036     btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
1037 	if (!btstack_crypto) return;
1038 	switch (btstack_crypto->operation){
1039 		case BTSTACK_CRYPTO_AES128:
1040 			btstack_crypto_aes128 = (btstack_crypto_aes128_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
1041 		    reverse_128(data, btstack_crypto_aes128->ciphertext);
1042             btstack_crypto_done(btstack_crypto);
1043 			break;
1044 		case BTSTACK_CRYPTO_CMAC_GENERATOR:
1045 		case BTSTACK_CRYPTO_CMAC_MESSAGE:
1046 			btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
1047 		    reverse_128(data, result);
1048 		    btstack_crypto_cmac_handle_encryption_result(btstack_crypto_cmac, result);
1049 			break;
1050         case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
1051         case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
1052         case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
1053             btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
1054             switch (btstack_crypto_ccm->state){
1055                 case CCM_W4_X1:
1056                     reverse_128(data, btstack_crypto_ccm->x_i);
1057                     btstack_crypto_ccm_handle_x1(btstack_crypto_ccm);
1058                     break;
1059                 case CCM_W4_XN:
1060                     reverse_128(data, btstack_crypto_ccm->x_i);
1061                     btstack_crypto_ccm_handle_xn(btstack_crypto_ccm);
1062                     break;
1063                 case CCM_W4_AAD_XN:
1064                     reverse_128(data, btstack_crypto_ccm->x_i);
1065                     btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm);
1066                     break;
1067                 case CCM_W4_S0:
1068                     btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data);
1069                     break;
1070                 case CCM_W4_SN:
1071                     btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data);
1072                     break;
1073                 default:
1074                     break;
1075             }
1076             break;
1077 		default:
1078 			break;
1079 	}
1080 }
1081 #endif
1082 
1083 static void btstack_crypto_event_handler(uint8_t packet_type, uint16_t cid, uint8_t *packet, uint16_t size){
1084     UNUSED(cid);         // ok: there is no channel
1085     UNUSED(size);        // ok: fixed format events read from HCI buffer
1086 
1087 #ifdef ENABLE_ECC_P256
1088 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
1089     btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192;
1090 #endif
1091 #endif
1092     bool ecdh_operations_supported;
1093 
1094     if (packet_type != HCI_EVENT_PACKET)  return;
1095 
1096     switch (hci_event_packet_get_type(packet)){
1097         case BTSTACK_EVENT_STATE:
1098             switch(btstack_event_state_get_state(packet)){
1099                 case HCI_STATE_HALTING:
1100                     // as stack is shutting down, reset state
1101                     btstack_crypto_state_reset();
1102                     break;
1103                 default:
1104                     break;
1105             }
1106             if (btstack_event_state_get_state(packet) != HCI_STATE_HALTING) break;
1107             break;
1108 
1109         case HCI_EVENT_COMMAND_COMPLETE:
1110             switch (hci_event_command_complete_get_command_opcode(packet)){
1111 #ifndef USE_BTSTACK_AES128
1112                 case HCI_OPCODE_HCI_LE_ENCRYPT:
1113                     if (!btstack_crypto_wait_for_hci_result) return;
1114                     btstack_crypto_wait_for_hci_result = 0;
1115     	            btstack_crypto_handle_encryption_result(&packet[6]);
1116                     break;
1117 #endif
1118                 case HCI_OPCODE_HCI_LE_RAND:
1119                     if (!btstack_crypto_wait_for_hci_result) return;
1120                     btstack_crypto_wait_for_hci_result = false;
1121                     btstack_crypto_handle_random_data(&packet[6], 8);
1122                     break;
1123                 case HCI_OPCODE_HCI_READ_LOCAL_SUPPORTED_COMMANDS:
1124                     ecdh_operations_supported = (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+34u] & 0x06u) == 0x06u;
1125                     UNUSED(ecdh_operations_supported);
1126                     log_info("controller supports ECDH operation: %u", ecdh_operations_supported);
1127 #ifdef ENABLE_ECC_P256
1128 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
1129                     // Assert controller supports ECDH operation if we don't implement them ourselves
1130                     // Please add ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS to btstack_config.h and add 3rd-party/micro-ecc to your port
1131                     btstack_assert(ecdh_operations_supported != 0);
1132 #endif
1133 #endif
1134                     break;
1135                 default:
1136                     break;
1137             }
1138             break;
1139 
1140 #ifdef ENABLE_ECC_P256
1141 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
1142         case HCI_EVENT_LE_META:
1143             btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
1144             if (!btstack_crypto_ec_p192) break;
1145             switch (hci_event_le_meta_get_subevent_code(packet)){
1146                 case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE:
1147                     if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY) break;
1148                     if (!btstack_crypto_wait_for_hci_result) return;
1149                     btstack_crypto_wait_for_hci_result = 0;
1150                     if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){
1151                         log_error("Read Local P256 Public Key failed");
1152                     }
1153                     hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &btstack_crypto_ecc_p256_public_key[0]);
1154                     hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &btstack_crypto_ecc_p256_public_key[32]);
1155                     btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
1156                     break;
1157                 case HCI_SUBEVENT_LE_GENERATE_DHKEY_COMPLETE:
1158                     if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY) break;
1159                     if (!btstack_crypto_wait_for_hci_result) return;
1160                     btstack_crypto_wait_for_hci_result = 0;
1161                     if (hci_subevent_le_generate_dhkey_complete_get_status(packet)){
1162                         log_error("Generate DHKEY failed -> abort");
1163                         // set DHKEY to 0xff..ff
1164                         memset(btstack_crypto_ec_p192->dhkey, 0xff, 32);
1165                     } else {
1166                         hci_subevent_le_generate_dhkey_complete_get_dhkey(packet, btstack_crypto_ec_p192->dhkey);
1167                     }
1168                     // done
1169                     btstack_linked_list_pop(&btstack_crypto_operations);
1170                     (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
1171                     break;
1172                 default:
1173                     break;
1174             }
1175             break;
1176 #endif
1177 #endif
1178         default:
1179             break;
1180     }
1181 
1182     // try processing
1183 	btstack_crypto_run();
1184 }
1185 
1186 void btstack_crypto_random_generate(btstack_crypto_random_t * request, uint8_t * buffer, uint16_t size, void (* callback)(void * arg), void * callback_arg){
1187 	request->btstack_crypto.context_callback.callback  = callback;
1188 	request->btstack_crypto.context_callback.context   = callback_arg;
1189 	request->btstack_crypto.operation         		   = BTSTACK_CRYPTO_RANDOM;
1190 	request->buffer = buffer;
1191 	request->size   = size;
1192 	btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1193 	btstack_crypto_run();
1194 }
1195 
1196 void btstack_crypto_aes128_encrypt(btstack_crypto_aes128_t * request, const uint8_t * key, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){
1197 	request->btstack_crypto.context_callback.callback  = callback;
1198 	request->btstack_crypto.context_callback.context   = callback_arg;
1199 	request->btstack_crypto.operation         		   = BTSTACK_CRYPTO_AES128;
1200 	request->key 									   = key;
1201 	request->plaintext      					       = plaintext;
1202 	request->ciphertext 							   = ciphertext;
1203 	btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1204 	btstack_crypto_run();
1205 }
1206 
1207 void btstack_crypto_aes128_cmac_generator(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, uint8_t (*get_byte_callback)(uint16_t pos), uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
1208 	request->btstack_crypto.context_callback.callback  = callback;
1209 	request->btstack_crypto.context_callback.context   = callback_arg;
1210 	request->btstack_crypto.operation         		   = BTSTACK_CRYPTO_CMAC_GENERATOR;
1211 	request->key 									   = key;
1212 	request->size 									   = size;
1213 	request->data.get_byte_callback					   = get_byte_callback;
1214 	request->hash 									   = hash;
1215 	btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1216 	btstack_crypto_run();
1217 }
1218 
1219 void btstack_crypto_aes128_cmac_message(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, const uint8_t * message, uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
1220 	request->btstack_crypto.context_callback.callback  = callback;
1221 	request->btstack_crypto.context_callback.context   = callback_arg;
1222 	request->btstack_crypto.operation         		   = BTSTACK_CRYPTO_CMAC_MESSAGE;
1223 	request->key 									   = key;
1224 	request->size 									   = size;
1225 	request->data.message      						   = message;
1226 	request->hash 									   = hash;
1227 	btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1228 	btstack_crypto_run();
1229 }
1230 
1231 void btstack_crypto_aes128_cmac_zero(btstack_crypto_aes128_cmac_t * request, uint16_t size, const uint8_t * message,  uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
1232     request->btstack_crypto.context_callback.callback  = callback;
1233     request->btstack_crypto.context_callback.context   = callback_arg;
1234     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_CMAC_MESSAGE;
1235     request->key                                       = zero;
1236     request->size                                      = size;
1237     request->data.message                              = message;
1238     request->hash                                      = hash;
1239     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1240     btstack_crypto_run();
1241 }
1242 
1243 #ifdef ENABLE_ECC_P256
1244 void btstack_crypto_ecc_p256_generate_key(btstack_crypto_ecc_p256_t * request, uint8_t * public_key, void (* callback)(void * arg), void * callback_arg){
1245     // reset key generation
1246     if (btstack_crypto_ecc_p256_key_generation_state == ECC_P256_KEY_GENERATION_DONE){
1247         btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_IDLE;
1248     }
1249     request->btstack_crypto.context_callback.callback  = callback;
1250     request->btstack_crypto.context_callback.context   = callback_arg;
1251     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY;
1252     request->public_key                                = public_key;
1253     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1254     btstack_crypto_run();
1255 }
1256 
1257 void btstack_crypto_ecc_p256_calculate_dhkey(btstack_crypto_ecc_p256_t * request, const uint8_t * public_key, uint8_t * dhkey, void (* callback)(void * arg), void * callback_arg){
1258     request->btstack_crypto.context_callback.callback  = callback;
1259     request->btstack_crypto.context_callback.context   = callback_arg;
1260     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY;
1261     request->public_key                                = (uint8_t *) public_key;
1262     request->dhkey                                     = dhkey;
1263     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1264     btstack_crypto_run();
1265 }
1266 
1267 int btstack_crypto_ecc_p256_validate_public_key(const uint8_t * public_key){
1268 
1269     int err = 0;
1270 
1271 #ifdef USE_MICRO_ECC_P256
1272     // validate public key using micro-ecc
1273 
1274 #if uECC_SUPPORTS_secp256r1
1275     // standard version
1276     err = uECC_valid_public_key(public_key, uECC_secp256r1()) == 0;
1277 #else
1278     // static version
1279     err = uECC_valid_public_key(public_key) == 0;
1280 #endif
1281 #endif
1282 
1283 #ifdef USE_MBEDTLS_ECC_P256
1284     // validate public using mbedtls_ecc
1285 
1286     mbedtls_ecp_point Q;
1287     mbedtls_ecp_point_init( &Q );
1288     mbedtls_mpi_read_binary(&Q.X, &public_key[0], 32);
1289     mbedtls_mpi_read_binary(&Q.Y, &public_key[32], 32);
1290     mbedtls_mpi_lset(&Q.Z, 1);
1291     err = mbedtls_ecp_check_pubkey(&mbedtls_ec_group, &Q);
1292     mbedtls_ecp_point_free( & Q);
1293 #endif
1294 
1295     if (err != 0){
1296         log_info("public key invalid %x", err);
1297     }
1298     return  err;
1299 }
1300 #endif
1301 
1302 void btstack_crypto_ccm_init(btstack_crypto_ccm_t * request, const uint8_t * key, const uint8_t * nonce, uint16_t message_len, uint16_t additional_authenticated_data_len, uint8_t auth_len){
1303     request->key         = key;
1304     request->nonce       = nonce;
1305     request->message_len = message_len;
1306     request->aad_len     = additional_authenticated_data_len;
1307     request->aad_offset  = 0;
1308     request->auth_len    = auth_len;
1309     request->counter     = 1;
1310     request->state       = CCM_CALCULATE_X1;
1311 }
1312 
1313 void btstack_crypto_ccm_digest(btstack_crypto_ccm_t * request, uint8_t * additional_authenticated_data, uint16_t additional_authenticated_data_len, void (* callback)(void * arg), void * callback_arg){
1314     // not implemented yet
1315     request->btstack_crypto.context_callback.callback  = callback;
1316     request->btstack_crypto.context_callback.context   = callback_arg;
1317     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_CCM_DIGEST_BLOCK;
1318     request->block_len                                 = additional_authenticated_data_len;
1319     request->input                                     = additional_authenticated_data;
1320     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1321     btstack_crypto_run();
1322 }
1323 
1324 void btstack_crypto_ccm_get_authentication_value(btstack_crypto_ccm_t * request, uint8_t * authentication_value){
1325     (void)memcpy(authentication_value, request->x_i, request->auth_len);
1326 }
1327 
1328 void btstack_crypto_ccm_encrypt_block(btstack_crypto_ccm_t * request, uint16_t len, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){
1329 #ifdef DEBUG_CCM
1330     printf("\nbtstack_crypto_ccm_encrypt_block, len %u\n", len);
1331 #endif
1332     request->btstack_crypto.context_callback.callback  = callback;
1333     request->btstack_crypto.context_callback.context   = callback_arg;
1334     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK;
1335     request->block_len                                 = len;
1336     request->input                                     = plaintext;
1337     request->output                                    = ciphertext;
1338     if (request->state != CCM_CALCULATE_X1){
1339         request->state  = CCM_CALCULATE_XN;
1340     }
1341     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1342     btstack_crypto_run();
1343 }
1344 
1345 void btstack_crypto_ccm_decrypt_block(btstack_crypto_ccm_t * request, uint16_t len, const uint8_t * ciphertext, uint8_t * plaintext, void (* callback)(void * arg), void * callback_arg){
1346     request->btstack_crypto.context_callback.callback  = callback;
1347     request->btstack_crypto.context_callback.context   = callback_arg;
1348     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK;
1349     request->block_len                                 = len;
1350     request->input                                     = ciphertext;
1351     request->output                                    = plaintext;
1352     if (request->state != CCM_CALCULATE_X1){
1353         request->state  = CCM_CALCULATE_SN;
1354     }
1355     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1356     btstack_crypto_run();
1357 }
1358 
1359 
1360 static void btstack_crypto_state_reset(void) {
1361 #ifndef USE_BTSTACK_AES128
1362     btstack_crypto_cmac_state = CMAC_IDLE;
1363 #endif
1364 #ifdef ENABLE_ECC_P256
1365     btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_IDLE;
1366 #endif
1367     btstack_crypto_wait_for_hci_result = false;
1368     btstack_crypto_operations = NULL;
1369 }
1370 
1371 void btstack_crypto_init(void){
1372     if (btstack_crypto_initialized) return;
1373     btstack_crypto_initialized = true;
1374 
1375     // register with HCI
1376     hci_event_callback_registration.callback = &btstack_crypto_event_handler;
1377     hci_add_event_handler(&hci_event_callback_registration);
1378 
1379 #ifdef USE_MBEDTLS_ECC_P256
1380     mbedtls_ecp_group_init(&mbedtls_ec_group);
1381 	mbedtls_ecp_group_load(&mbedtls_ec_group, MBEDTLS_ECP_DP_SECP256R1);
1382 #endif
1383 
1384     // reset state
1385     btstack_crypto_state_reset();
1386 }
1387 
1388 // De-Init
1389 void btstack_crypto_deinit(void) {
1390     btstack_crypto_initialized = false;
1391 }
1392 
1393 // PTS only
1394 void btstack_crypto_ecc_p256_set_key(const uint8_t * public_key, const uint8_t * private_key){
1395 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
1396     (void)memcpy(btstack_crypto_ecc_p256_d, private_key, 32);
1397     (void)memcpy(btstack_crypto_ecc_p256_public_key, public_key, 64);
1398     btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
1399 #else
1400     UNUSED(public_key);
1401     UNUSED(private_key);
1402 #endif
1403 }
1404 
1405 // Unit testing
1406 int btstack_crypto_idle(void){
1407     return btstack_linked_list_empty(&btstack_crypto_operations);
1408 }
1409 void btstack_crypto_reset(void){
1410     btstack_crypto_deinit();
1411     btstack_crypto_init();
1412 }
1413