xref: /btstack/src/btstack_crypto.c (revision 5df9dc7819db26ff2f834e23204a29e4dd68d594)
1 /*
2  * Copyright (C) 2017 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
20  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
21  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
27  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #define BTSTACK_FILE__ "btstack_crypto.c"
33 
34 /*
35  * btstack_crypto.h
36  *
37  * Central place for all crypto-related functions with completion callbacks to allow
38  * using of MCU crypto peripherals or the Bluetooth controller
39  */
40 
41 #include "btstack_crypto.h"
42 
43 #include "btstack_debug.h"
44 #include "btstack_event.h"
45 #include "btstack_linked_list.h"
46 #include "btstack_util.h"
47 #include "hci.h"
48 
49 // backwards-compatitility ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS -> ENABLE_MICRO_ECC_P256
50 #if defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_P256)
51 #define ENABLE_MICRO_ECC_P256
52 #endif
53 
54 // configure ECC implementations
55 #if defined(ENABLE_MICRO_ECC_P256) && defined(HAVE_MBEDTLS_ECC_P256)
56 #error "If you have mbedTLS (HAVE_MBEDTLS_ECC_P256), please disable uECC (ENABLE_MICRO_ECC_P256) in bstack_config.h"
57 #endif
58 
59 // Software ECC-P256 implementation provided by micro-ecc
60 #ifdef ENABLE_MICRO_ECC_P256
61 #define ENABLE_ECC_P256
62 #define USE_MICRO_ECC_P256
63 #define USE_SOFTWARE_ECC_P256_IMPLEMENTATION
64 #include "uECC.h"
65 #endif
66 
67 // Software ECC-P256 implementation provided by mbedTLS
68 #ifdef HAVE_MBEDTLS_ECC_P256
69 #define ENABLE_ECC_P256
70 #define USE_MBEDTLS_ECC_P256
71 #define USE_SOFTWARE_ECC_P256_IMPLEMENTATION
72 #include "mbedtls/config.h"
73 #include "mbedtls/platform.h"
74 #include "mbedtls/ecp.h"
75 #endif
76 
77 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_ECC_P256)
78 #define ENABLE_ECC_P256
79 #endif
80 
81 // Software AES128
82 #ifdef HAVE_AES128
83 #define USE_BTSTACK_AES128
84 void btstack_aes128_calc(const uint8_t * key, const uint8_t * plaintext, uint8_t * result);
85 #endif
86 
87 // degbugging
88 // #define DEBUG_CCM
89 
90 typedef enum {
91     CMAC_IDLE,
92     CMAC_CALC_SUBKEYS,
93     CMAC_W4_SUBKEYS,
94     CMAC_CALC_MI,
95     CMAC_W4_MI,
96     CMAC_CALC_MLAST,
97     CMAC_W4_MLAST
98 } btstack_crypto_cmac_state_t;
99 
100 typedef enum {
101     ECC_P256_KEY_GENERATION_IDLE,
102     ECC_P256_KEY_GENERATION_GENERATING_RANDOM,
103     ECC_P256_KEY_GENERATION_ACTIVE,
104     ECC_P256_KEY_GENERATION_W4_KEY,
105     ECC_P256_KEY_GENERATION_DONE,
106 } btstack_crypto_ecc_p256_key_generation_state_t;
107 
108 static void btstack_crypto_run(void);
109 
110 static const uint8_t zero[16] = { 0 };
111 
112 static uint8_t btstack_crypto_initialized;
113 static btstack_linked_list_t btstack_crypto_operations;
114 static btstack_packet_callback_registration_t hci_event_callback_registration;
115 static uint8_t btstack_crypto_wait_for_hci_result;
116 
117 // state for AES-CMAC
118 static btstack_crypto_cmac_state_t btstack_crypto_cmac_state;
119 static sm_key_t btstack_crypto_cmac_k;
120 static sm_key_t btstack_crypto_cmac_x;
121 static sm_key_t btstack_crypto_cmac_m_last;
122 static uint8_t  btstack_crypto_cmac_block_current;
123 static uint8_t  btstack_crypto_cmac_block_count;
124 
125 // state for AES-CCM
126 #ifndef USE_BTSTACK_AES128
127 static uint8_t btstack_crypto_ccm_s[16];
128 #endif
129 
130 #ifdef ENABLE_ECC_P256
131 
132 static uint8_t  btstack_crypto_ecc_p256_public_key[64];
133 static uint8_t  btstack_crypto_ecc_p256_random[64];
134 static uint8_t  btstack_crypto_ecc_p256_random_len;
135 static uint8_t  btstack_crypto_ecc_p256_random_offset;
136 static btstack_crypto_ecc_p256_key_generation_state_t btstack_crypto_ecc_p256_key_generation_state;
137 
138 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
139 static uint8_t btstack_crypto_ecc_p256_d[32];
140 #endif
141 
142 // Software ECDH implementation provided by mbedtls
143 #ifdef USE_MBEDTLS_ECC_P256
144 static mbedtls_ecp_group   mbedtls_ec_group;
145 #endif
146 
147 #endif /* ENABLE_ECC_P256 */
148 
149 static void btstack_crypto_done(btstack_crypto_t * btstack_crypto){
150     btstack_linked_list_pop(&btstack_crypto_operations);
151     (*btstack_crypto->context_callback.callback)(btstack_crypto->context_callback.context);
152 }
153 
154 static inline void btstack_crypto_cmac_next_state(void){
155     btstack_crypto_cmac_state = (btstack_crypto_cmac_state_t) (((int)btstack_crypto_cmac_state) + 1);
156 }
157 
158 static int btstack_crypto_cmac_last_block_complete(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
159 	uint16_t len = btstack_crypto_cmac->size;
160     if (len == 0) return 0;
161     return (len & 0x0f) == 0;
162 }
163 
164 static void btstack_crypto_aes128_start(const sm_key_t key, const sm_key_t plaintext){
165  	uint8_t key_flipped[16];
166  	uint8_t plaintext_flipped[16];
167     reverse_128(key, key_flipped);
168     reverse_128(plaintext, plaintext_flipped);
169  	btstack_crypto_wait_for_hci_result = 1;
170     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
171 }
172 
173 static uint8_t btstack_crypto_cmac_get_byte(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, uint16_t pos){
174 	if (btstack_crypto_cmac->btstack_crypto.operation == BTSTACK_CRYPTO_CMAC_GENERATOR){
175 		return (*btstack_crypto_cmac->data.get_byte_callback)(pos);
176 	} else {
177 		return btstack_crypto_cmac->data.message[pos];
178 	}
179 }
180 
181 static void btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
182     switch (btstack_crypto_cmac_state){
183         case CMAC_CALC_SUBKEYS: {
184             sm_key_t const_zero;
185             memset(const_zero, 0, 16);
186             btstack_crypto_cmac_next_state();
187             btstack_crypto_aes128_start(btstack_crypto_cmac_k, const_zero);
188             break;
189         }
190         case CMAC_CALC_MI: {
191             int j;
192             sm_key_t y;
193             for (j=0;j<16;j++){
194                 y[j] = btstack_crypto_cmac_x[j] ^ btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac_block_current*16) + j);
195             }
196             btstack_crypto_cmac_block_current++;
197             btstack_crypto_cmac_next_state();
198             btstack_crypto_aes128_start(btstack_crypto_cmac_k, y);
199             break;
200         }
201         case CMAC_CALC_MLAST: {
202             int i;
203             sm_key_t y;
204             for (i=0;i<16;i++){
205                 y[i] = btstack_crypto_cmac_x[i] ^ btstack_crypto_cmac_m_last[i];
206             }
207             btstack_crypto_cmac_block_current++;
208             btstack_crypto_cmac_next_state();
209             btstack_crypto_aes128_start(btstack_crypto_cmac_k, y);
210             break;
211         }
212         default:
213             log_info("btstack_crypto_cmac_handle_aes_engine_ready called in state %u", btstack_crypto_cmac_state);
214             break;
215     }
216 }
217 
218 static void btstack_crypto_cmac_shift_left_by_one_bit_inplace(int len, uint8_t * data){
219     int i;
220     int carry = 0;
221     for (i=len-1; i >= 0 ; i--){
222         int new_carry = data[i] >> 7;
223         data[i] = (data[i] << 1) | carry;
224         carry = new_carry;
225     }
226 }
227 
228 static void btstack_crypto_cmac_handle_encryption_result(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, sm_key_t data){
229     switch (btstack_crypto_cmac_state){
230         case CMAC_W4_SUBKEYS: {
231             sm_key_t k1;
232             memcpy(k1, data, 16);
233             btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k1);
234             if (data[0] & 0x80){
235                 k1[15] ^= 0x87;
236             }
237             sm_key_t k2;
238             memcpy(k2, k1, 16);
239             btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k2);
240             if (k1[0] & 0x80){
241                 k2[15] ^= 0x87;
242             }
243 
244             log_info_key("k", btstack_crypto_cmac_k);
245             log_info_key("k1", k1);
246             log_info_key("k2", k2);
247 
248             // step 4: set m_last
249             int i;
250             if (btstack_crypto_cmac_last_block_complete(btstack_crypto_cmac)){
251                 for (i=0;i<16;i++){
252                     btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac->size - 16 + i) ^ k1[i];
253                 }
254             } else {
255                 int valid_octets_in_last_block = btstack_crypto_cmac->size & 0x0f;
256                 for (i=0;i<16;i++){
257                     if (i < valid_octets_in_last_block){
258                         btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac->size & 0xfff0) + i) ^ k2[i];
259                         continue;
260                     }
261                     if (i == valid_octets_in_last_block){
262                         btstack_crypto_cmac_m_last[i] = 0x80 ^ k2[i];
263                         continue;
264                     }
265                     btstack_crypto_cmac_m_last[i] = k2[i];
266                 }
267             }
268 
269             // next
270             btstack_crypto_cmac_state = (btstack_crypto_cmac_block_current < (btstack_crypto_cmac_block_count - 1)) ? CMAC_CALC_MI : CMAC_CALC_MLAST;
271             break;
272         }
273         case CMAC_W4_MI:
274             memcpy(btstack_crypto_cmac_x, data, 16);
275             btstack_crypto_cmac_state = (btstack_crypto_cmac_block_current < (btstack_crypto_cmac_block_count - 1)) ? CMAC_CALC_MI : CMAC_CALC_MLAST;
276             break;
277         case CMAC_W4_MLAST:
278             // done
279             log_info("Setting CMAC Engine to IDLE");
280             btstack_crypto_cmac_state = CMAC_IDLE;
281             log_info_key("CMAC", data);
282             memcpy(btstack_crypto_cmac->hash, data, 16);
283 			btstack_linked_list_pop(&btstack_crypto_operations);
284 			(*btstack_crypto_cmac->btstack_crypto.context_callback.callback)(btstack_crypto_cmac->btstack_crypto.context_callback.context);
285             break;
286         default:
287             log_info("btstack_crypto_cmac_handle_encryption_result called in state %u", btstack_crypto_cmac_state);
288             break;
289     }
290 }
291 
292 static void btstack_crypto_cmac_start(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
293 
294     memcpy(btstack_crypto_cmac_k, btstack_crypto_cmac->key, 16);
295     memset(btstack_crypto_cmac_x, 0, 16);
296     btstack_crypto_cmac_block_current = 0;
297 
298     // step 2: n := ceil(len/const_Bsize);
299     btstack_crypto_cmac_block_count = (btstack_crypto_cmac->size + 15) / 16;
300 
301     // step 3: ..
302     if (btstack_crypto_cmac_block_count==0){
303         btstack_crypto_cmac_block_count = 1;
304     }
305     log_info("btstack_crypto_cmac_start: len %u, block count %u", btstack_crypto_cmac->size, btstack_crypto_cmac_block_count);
306 
307     // first, we need to compute l for k1, k2, and m_last
308     btstack_crypto_cmac_state = CMAC_CALC_SUBKEYS;
309 
310     // let's go
311     btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac);
312 }
313 
314 #ifndef USE_BTSTACK_AES128
315 
316 /*
317   To encrypt the message data we use Counter (CTR) mode.  We first
318   define the key stream blocks by:
319 
320       S_i := E( K, A_i )   for i=0, 1, 2, ...
321 
322   The values A_i are formatted as follows, where the Counter field i is
323   encoded in most-significant-byte first order:
324 
325   Octet Number   Contents
326   ------------   ---------
327   0              Flags
328   1 ... 15-L     Nonce N
329   16-L ... 15    Counter i
330 
331   Bit Number   Contents
332   ----------   ----------------------
333   7            Reserved (always zero)
334   6            Reserved (always zero)
335   5 ... 3      Zero
336   2 ... 0      L'
337 */
338 
339 static void btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm_t * btstack_crypto_ccm, uint16_t counter){
340     btstack_crypto_ccm_s[0] = 1;  // L' = L - 1
341     memcpy(&btstack_crypto_ccm_s[1], btstack_crypto_ccm->nonce, 13);
342     big_endian_store_16(btstack_crypto_ccm_s, 14, counter);
343 #ifdef DEBUG_CCM
344     printf("ststack_crypto_ccm_setup_a_%u\n", counter);
345     printf("%16s: ", "ai");
346     printf_hexdump(btstack_crypto_ccm_s, 16);
347 #endif
348 }
349 
350 /*
351  The first step is to compute the authentication field T.  This is
352    done using CBC-MAC [MAC].  We first define a sequence of blocks B_0,
353    B_1, ..., B_n and then apply CBC-MAC to these blocks.
354 
355    The first block B_0 is formatted as follows, where l(m) is encoded in
356    most-significant-byte first order:
357 
358       Octet Number   Contents
359       ------------   ---------
360       0              Flags
361       1 ... 15-L     Nonce N
362       16-L ... 15    l(m)
363 
364    Within the first block B_0, the Flags field is formatted as follows:
365 
366       Bit Number   Contents
367       ----------   ----------------------
368       7            Reserved (always zero)
369       6            Adata
370       5 ... 3      M'
371       2 ... 0      L'
372  */
373 
374 static void btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm_t * btstack_crypto_ccm, uint8_t * b0){
375     uint8_t m_prime = (btstack_crypto_ccm->auth_len - 2) / 2;
376     uint8_t Adata   = btstack_crypto_ccm->aad_len ? 1 : 0;
377     b0[0] = (Adata << 6) | (m_prime << 3) | 1 ;  // Adata, M', L' = L - 1
378     memcpy(&b0[1], btstack_crypto_ccm->nonce, 13);
379     big_endian_store_16(b0, 14, btstack_crypto_ccm->message_len);
380 #ifdef DEBUG_CCM
381     printf("%16s: ", "B0");
382     printf_hexdump(b0, 16);
383 #endif
384 }
385 #endif
386 
387 #ifdef ENABLE_ECC_P256
388 
389 static void btstack_crypto_log_ec_publickey(const uint8_t * ec_q){
390     log_info("Elliptic curve: X");
391     log_info_hexdump(&ec_q[0],32);
392     log_info("Elliptic curve: Y");
393     log_info_hexdump(&ec_q[32],32);
394 }
395 
396 #if (defined(USE_MICRO_ECC_P256) && !defined(WICED_VERSION)) || defined(USE_MBEDTLS_ECC_P256)
397 // @return OK
398 static int sm_generate_f_rng(unsigned char * buffer, unsigned size){
399     if (btstack_crypto_ecc_p256_key_generation_state != ECC_P256_KEY_GENERATION_ACTIVE) return 0;
400     log_info("sm_generate_f_rng: size %u - offset %u", (int) size, btstack_crypto_ecc_p256_random_offset);
401     while (size) {
402         *buffer++ = btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_offset++];
403         size--;
404     }
405     return 1;
406 }
407 #endif
408 #ifdef USE_MBEDTLS_ECC_P256
409 // @return error - just wrap sm_generate_f_rng
410 static int sm_generate_f_rng_mbedtls(void * context, unsigned char * buffer, size_t size){
411     UNUSED(context);
412     return sm_generate_f_rng(buffer, size) == 0;
413 }
414 #endif /* USE_MBEDTLS_ECC_P256 */
415 
416 static void btstack_crypto_ecc_p256_generate_key_software(void){
417 
418     btstack_crypto_ecc_p256_random_offset = 0;
419 
420     // generate EC key
421 #ifdef USE_MICRO_ECC_P256
422 
423 #ifndef WICED_VERSION
424     log_info("set uECC RNG for initial key generation with 64 random bytes");
425     // micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it
426     uECC_set_rng(&sm_generate_f_rng);
427 #endif /* WICED_VERSION */
428 
429 #if uECC_SUPPORTS_secp256r1
430     // standard version
431     uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d, uECC_secp256r1());
432 
433     // disable RNG again, as returning no randmon data lets shared key generation fail
434     log_info("disable uECC RNG in standard version after key generation");
435     uECC_set_rng(NULL);
436 #else
437     // static version
438     uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d);
439 #endif
440 #endif /* USE_MICRO_ECC_P256 */
441 
442 #ifdef USE_MBEDTLS_ECC_P256
443     mbedtls_mpi d;
444     mbedtls_ecp_point P;
445     mbedtls_mpi_init(&d);
446     mbedtls_ecp_point_init(&P);
447     int res = mbedtls_ecp_gen_keypair(&mbedtls_ec_group, &d, &P, &sm_generate_f_rng_mbedtls, NULL);
448     log_info("gen keypair %x", res);
449     mbedtls_mpi_write_binary(&P.X, &btstack_crypto_ecc_p256_public_key[0],  32);
450     mbedtls_mpi_write_binary(&P.Y, &btstack_crypto_ecc_p256_public_key[32], 32);
451     mbedtls_mpi_write_binary(&d, btstack_crypto_ecc_p256_d, 32);
452     mbedtls_ecp_point_free(&P);
453     mbedtls_mpi_free(&d);
454 #endif  /* USE_MBEDTLS_ECC_P256 */
455 }
456 
457 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
458 static void btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192){
459     memset(btstack_crypto_ec_p192->dhkey, 0, 32);
460 
461 #ifdef USE_MICRO_ECC_P256
462 #if uECC_SUPPORTS_secp256r1
463     // standard version
464     uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey, uECC_secp256r1());
465 #else
466     // static version
467     uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey);
468 #endif
469 #endif
470 
471 #ifdef USE_MBEDTLS_ECC_P256
472     // da * Pb
473     mbedtls_mpi d;
474     mbedtls_ecp_point Q;
475     mbedtls_ecp_point DH;
476     mbedtls_mpi_init(&d);
477     mbedtls_ecp_point_init(&Q);
478     mbedtls_ecp_point_init(&DH);
479     mbedtls_mpi_read_binary(&d, btstack_crypto_ecc_p256_d, 32);
480     mbedtls_mpi_read_binary(&Q.X, &btstack_crypto_ec_p192->public_key[0] , 32);
481     mbedtls_mpi_read_binary(&Q.Y, &btstack_crypto_ec_p192->public_key[32], 32);
482     mbedtls_mpi_lset(&Q.Z, 1);
483     mbedtls_ecp_mul(&mbedtls_ec_group, &DH, &d, &Q, NULL, NULL);
484     mbedtls_mpi_write_binary(&DH.X, btstack_crypto_ec_p192->dhkey, 32);
485     mbedtls_ecp_point_free(&DH);
486     mbedtls_mpi_free(&d);
487     mbedtls_ecp_point_free(&Q);
488 #endif
489 
490     log_info("dhkey");
491     log_info_hexdump(btstack_crypto_ec_p192->dhkey, 32);
492 }
493 #endif
494 
495 #endif
496 
497 #ifdef USE_BTSTACK_AES128
498 // CCM not implemented using software AES128 yet
499 #else
500 
501 static void btstack_crypto_ccm_calc_s0(btstack_crypto_ccm_t * btstack_crypto_ccm){
502 #ifdef DEBUG_CCM
503     printf("btstack_crypto_ccm_calc_s0\n");
504 #endif
505     btstack_crypto_ccm->state = CCM_W4_S0;
506     btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, 0);
507     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s);
508 }
509 
510 static void btstack_crypto_ccm_calc_sn(btstack_crypto_ccm_t * btstack_crypto_ccm){
511 #ifdef DEBUG_CCM
512     printf("btstack_crypto_ccm_calc_s%u\n", btstack_crypto_ccm->counter);
513 #endif
514     btstack_crypto_ccm->state = CCM_W4_SN;
515     btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, btstack_crypto_ccm->counter);
516     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s);
517 }
518 
519 static void btstack_crypto_ccm_calc_x1(btstack_crypto_ccm_t * btstack_crypto_ccm){
520     uint8_t btstack_crypto_ccm_buffer[16];
521     btstack_crypto_ccm->state = CCM_W4_X1;
522     btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm, btstack_crypto_ccm_buffer);
523     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer);
524 }
525 
526 static void btstack_crypto_ccm_calc_xn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * plaintext){
527     uint8_t btstack_crypto_ccm_buffer[16];
528     btstack_crypto_ccm->state = CCM_W4_XN;
529 
530 #ifdef DEBUG_CCM
531     printf("%16s: ", "bn");
532     printf_hexdump(plaintext, 16);
533 #endif
534     uint8_t i;
535     uint8_t bytes_to_decrypt = btstack_crypto_ccm->block_len;
536     // use explicit min implementation as c-stat worried about out-of-bounds-reads
537     if (bytes_to_decrypt > 16) {
538         bytes_to_decrypt = 16;
539     }
540     for (i = 0; i < bytes_to_decrypt ; i++){
541         btstack_crypto_ccm_buffer[i] =  btstack_crypto_ccm->x_i[i] ^ plaintext[i];
542     }
543     memcpy(&btstack_crypto_ccm_buffer[i], &btstack_crypto_ccm->x_i[i], 16 - bytes_to_decrypt);
544 #ifdef DEBUG_CCM
545     printf("%16s: ", "Xn XOR bn");
546     printf_hexdump(btstack_crypto_ccm_buffer, 16);
547 #endif
548 
549     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer);
550 }
551 #endif
552 
553 static void btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm_t * btstack_crypto_ccm){
554     // store length
555     if (btstack_crypto_ccm->aad_offset == 0){
556         uint8_t len_buffer[2];
557         big_endian_store_16(len_buffer, 0, btstack_crypto_ccm->aad_len);
558         btstack_crypto_ccm->x_i[0] ^= len_buffer[0];
559         btstack_crypto_ccm->x_i[1] ^= len_buffer[1];
560         btstack_crypto_ccm->aad_remainder_len += 2;
561         btstack_crypto_ccm->aad_offset        += 2;
562     }
563 
564     // fill from input
565     uint16_t bytes_free = 16 - btstack_crypto_ccm->aad_remainder_len;
566     uint16_t bytes_to_copy = btstack_min(bytes_free, btstack_crypto_ccm->block_len);
567     while (bytes_to_copy){
568         btstack_crypto_ccm->x_i[btstack_crypto_ccm->aad_remainder_len++] ^= *btstack_crypto_ccm->input++;
569         btstack_crypto_ccm->aad_offset++;
570         btstack_crypto_ccm->block_len--;
571         bytes_to_copy--;
572         bytes_free--;
573     }
574 
575     // if last block, fill with zeros
576     if (btstack_crypto_ccm->aad_offset == (btstack_crypto_ccm->aad_len + 2)){
577         btstack_crypto_ccm->aad_remainder_len = 16;
578     }
579     // if not full, notify done
580     if (btstack_crypto_ccm->aad_remainder_len < 16){
581         btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
582         return;
583     }
584 
585     // encrypt block
586 #ifdef DEBUG_CCM
587     printf("%16s: ", "Xn XOR Bn (aad)");
588     printf_hexdump(btstack_crypto_ccm->x_i, 16);
589 #endif
590 
591     btstack_crypto_ccm->aad_remainder_len = 0;
592     btstack_crypto_ccm->state = CCM_W4_AAD_XN;
593     btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm->x_i);
594 }
595 
596 static void btstack_crypto_ccm_handle_s0(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){
597     // data is little-endian, flip on the fly
598     int i;
599     for (i=0;i<16;i++){
600         btstack_crypto_ccm->x_i[i] = btstack_crypto_ccm->x_i[i] ^ data[15-i];
601     }
602     btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
603 }
604 
605 static void btstack_crypto_ccm_handle_sn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){
606     // data is little-endian, flip on the fly
607     int i;
608     uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16);
609     for (i=0;i<bytes_to_process;i++){
610         btstack_crypto_ccm->output[i] = btstack_crypto_ccm->input[i] ^ data[15-i];
611     }
612 }
613 
614 static void btstack_crypto_ccm_next_block(btstack_crypto_ccm_t * btstack_crypto_ccm, btstack_crypto_ccm_state_t state_when_done){
615     uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16);
616     // next block
617     btstack_crypto_ccm->counter++;
618     btstack_crypto_ccm->input       += bytes_to_process;
619     btstack_crypto_ccm->output      += bytes_to_process;
620     btstack_crypto_ccm->block_len   -= bytes_to_process;
621     btstack_crypto_ccm->message_len -= bytes_to_process;
622 #ifdef DEBUG_CCM
623     printf("btstack_crypto_ccm_next_block (message len %u, block_len %u)\n", btstack_crypto_ccm->message_len, btstack_crypto_ccm->block_len);
624 #endif
625     if (btstack_crypto_ccm->message_len == 0){
626         btstack_crypto_ccm->state = CCM_CALCULATE_S0;
627     } else {
628         btstack_crypto_ccm->state = state_when_done;
629         if (btstack_crypto_ccm->block_len == 0){
630             btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
631         }
632     }
633 }
634 
635 static void btstack_crypto_run(void){
636 
637     btstack_crypto_aes128_t        * btstack_crypto_aes128;
638     btstack_crypto_ccm_t           * btstack_crypto_ccm;
639     btstack_crypto_aes128_cmac_t   * btstack_crypto_cmac;
640 #ifdef ENABLE_ECC_P256
641     btstack_crypto_ecc_p256_t      * btstack_crypto_ec_p192;
642 #endif
643 
644     // stack up and running?
645     if (hci_get_state() != HCI_STATE_WORKING) return;
646 
647     // try to do as much as possible
648     while (1){
649 
650         // anything to do?
651         if (btstack_linked_list_empty(&btstack_crypto_operations)) return;
652 
653         // already active?
654         if (btstack_crypto_wait_for_hci_result) return;
655 
656         // can send a command?
657         if (!hci_can_send_command_packet_now()) return;
658 
659         // ok, find next task
660     	btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
661     	switch (btstack_crypto->operation){
662     		case BTSTACK_CRYPTO_RANDOM:
663     			btstack_crypto_wait_for_hci_result = 1;
664     		    hci_send_cmd(&hci_le_rand);
665     		    break;
666     		case BTSTACK_CRYPTO_AES128:
667                 btstack_crypto_aes128 = (btstack_crypto_aes128_t *) btstack_crypto;
668 #ifdef USE_BTSTACK_AES128
669                 btstack_aes128_calc(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext, btstack_crypto_aes128->ciphertext);
670                 btstack_crypto_done(btstack_crypto);
671 #else
672                 btstack_crypto_aes128_start(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext);
673 #endif
674     		    break;
675     		case BTSTACK_CRYPTO_CMAC_MESSAGE:
676     		case BTSTACK_CRYPTO_CMAC_GENERATOR:
677     			btstack_crypto_wait_for_hci_result = 1;
678     			btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t *) btstack_crypto;
679     			if (btstack_crypto_cmac_state == CMAC_IDLE){
680     				btstack_crypto_cmac_start(btstack_crypto_cmac);
681     			} else {
682     				btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac);
683     			}
684     			break;
685 
686             case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
687             case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
688             case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
689 #ifdef USE_BTSTACK_AES128
690                 UNUSED(btstack_crypto_ccm);
691                 // NOTE: infinite output of this message
692                 log_error("ccm not implemented for software aes128 yet");
693 #else
694                 btstack_crypto_ccm = (btstack_crypto_ccm_t *) btstack_crypto;
695                 switch (btstack_crypto_ccm->state){
696                     case CCM_CALCULATE_AAD_XN:
697                         btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm);
698                         break;
699                     case CCM_CALCULATE_X1:
700                         btstack_crypto_ccm_calc_x1(btstack_crypto_ccm);
701                         break;
702                     case CCM_CALCULATE_S0:
703                         btstack_crypto_ccm_calc_s0(btstack_crypto_ccm);
704                         break;
705                     case CCM_CALCULATE_SN:
706                         btstack_crypto_ccm_calc_sn(btstack_crypto_ccm);
707                         break;
708                     case CCM_CALCULATE_XN:
709                         btstack_crypto_ccm_calc_xn(btstack_crypto_ccm, btstack_crypto->operation == BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK ? btstack_crypto_ccm->input : btstack_crypto_ccm->output);
710                         break;
711                     default:
712                         break;
713                 }
714 #endif
715                 break;
716 
717 #ifdef ENABLE_ECC_P256
718             case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY:
719                 btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto;
720                 switch (btstack_crypto_ecc_p256_key_generation_state){
721                     case ECC_P256_KEY_GENERATION_DONE:
722                         // done
723                         btstack_crypto_log_ec_publickey(btstack_crypto_ecc_p256_public_key);
724                         memcpy(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_public_key, 64);
725                         btstack_linked_list_pop(&btstack_crypto_operations);
726                         (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
727                         break;
728                     case ECC_P256_KEY_GENERATION_IDLE:
729 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
730                         log_info("start ecc random");
731                         btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_GENERATING_RANDOM;
732                         btstack_crypto_ecc_p256_random_offset = 0;
733                         btstack_crypto_wait_for_hci_result = 1;
734                         hci_send_cmd(&hci_le_rand);
735 #else
736                         btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_W4_KEY;
737                         btstack_crypto_wait_for_hci_result = 1;
738                         hci_send_cmd(&hci_le_read_local_p256_public_key);
739 #endif
740                         break;
741 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
742                     case ECC_P256_KEY_GENERATION_GENERATING_RANDOM:
743                         log_info("more ecc random");
744                         btstack_crypto_wait_for_hci_result = 1;
745                         hci_send_cmd(&hci_le_rand);
746                         break;
747 #endif
748                     default:
749                         break;
750                 }
751                 break;
752             case BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY:
753                 btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto;
754 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
755                 btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ec_p192);
756                 // done
757                 btstack_linked_list_pop(&btstack_crypto_operations);
758                 (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
759 #else
760                 btstack_crypto_wait_for_hci_result = 1;
761                 hci_send_cmd(&hci_le_generate_dhkey, &btstack_crypto_ec_p192->public_key[0], &btstack_crypto_ec_p192->public_key[32]);
762 #endif
763                 break;
764 
765 #endif /* ENABLE_ECC_P256 */
766 
767             default:
768                 break;
769         }
770     }
771 }
772 
773 static void btstack_crypto_handle_random_data(const uint8_t * data, uint16_t len){
774     btstack_crypto_random_t * btstack_crypto_random;
775     btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
776     uint16_t bytes_to_copy;
777 	if (!btstack_crypto) return;
778     switch (btstack_crypto->operation){
779         case BTSTACK_CRYPTO_RANDOM:
780             btstack_crypto_random = (btstack_crypto_random_t*) btstack_crypto;
781             bytes_to_copy = btstack_min(btstack_crypto_random->size, len);
782             memcpy(btstack_crypto_random->buffer, data, bytes_to_copy);
783             btstack_crypto_random->buffer += bytes_to_copy;
784             btstack_crypto_random->size   -= bytes_to_copy;
785             // data processed, more?
786             if (!btstack_crypto_random->size) {
787                 // done
788                 btstack_linked_list_pop(&btstack_crypto_operations);
789                 (*btstack_crypto_random->btstack_crypto.context_callback.callback)(btstack_crypto_random->btstack_crypto.context_callback.context);
790             }
791             break;
792 #ifdef ENABLE_ECC_P256
793         case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY:
794             memcpy(&btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_len], data, 8);
795             btstack_crypto_ecc_p256_random_len += 8;
796             if (btstack_crypto_ecc_p256_random_len >= 64) {
797                 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_ACTIVE;
798                 btstack_crypto_ecc_p256_generate_key_software();
799                 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
800             }
801             break;
802 #endif
803         default:
804             break;
805     }
806 	// more work?
807 	btstack_crypto_run();
808 }
809 
810 static void btstack_crypto_handle_encryption_result(const uint8_t * data){
811 	btstack_crypto_aes128_t      * btstack_crypto_aes128;
812 	btstack_crypto_aes128_cmac_t * btstack_crypto_cmac;
813     btstack_crypto_ccm_t         * btstack_crypto_ccm;
814 	uint8_t result[16];
815 
816     btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
817 	if (!btstack_crypto) return;
818 	switch (btstack_crypto->operation){
819 		case BTSTACK_CRYPTO_AES128:
820 			btstack_crypto_aes128 = (btstack_crypto_aes128_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
821 		    reverse_128(data, btstack_crypto_aes128->ciphertext);
822             btstack_crypto_done(btstack_crypto);
823 			break;
824 		case BTSTACK_CRYPTO_CMAC_GENERATOR:
825 		case BTSTACK_CRYPTO_CMAC_MESSAGE:
826 			btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
827 		    reverse_128(data, result);
828 		    btstack_crypto_cmac_handle_encryption_result(btstack_crypto_cmac, result);
829 			break;
830         case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
831             btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
832             switch (btstack_crypto_ccm->state){
833                 case CCM_W4_X1:
834                     reverse_128(data, btstack_crypto_ccm->x_i);
835 #ifdef DEBUG_CCM
836     printf("%16s: ", "X1");
837     printf_hexdump(btstack_crypto_ccm->x_i, 16);
838 #endif
839                     btstack_crypto_ccm->aad_remainder_len = 0;
840                     btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN;
841                     break;
842                 case CCM_W4_AAD_XN:
843                     reverse_128(data, btstack_crypto_ccm->x_i);
844 #ifdef DEBUG_CCM
845     printf("%16s: ", "Xn+1 AAD");
846     printf_hexdump(btstack_crypto_ccm->x_i, 16);
847 #endif
848                     // more aad?
849                     if (btstack_crypto_ccm->aad_offset < (btstack_crypto_ccm->aad_len + 2)){
850                         btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN;
851                     } else {
852                         // done
853                         btstack_crypto_done(btstack_crypto);
854                     }
855                     break;
856                 default:
857                     break;
858             }
859             break;
860         case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
861             btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
862             switch (btstack_crypto_ccm->state){
863                 case CCM_W4_X1:
864                     reverse_128(data, btstack_crypto_ccm->x_i);
865 #ifdef DEBUG_CCM
866     printf("%16s: ", "X1");
867     printf_hexdump(btstack_crypto_ccm->x_i, 16);
868 #endif
869                     btstack_crypto_ccm->state = CCM_CALCULATE_XN;
870                     break;
871                 case CCM_W4_XN:
872                     reverse_128(data, btstack_crypto_ccm->x_i);
873 #ifdef DEBUG_CCM
874     printf("%16s: ", "Xn+1");
875     printf_hexdump(btstack_crypto_ccm->x_i, 16);
876 #endif
877                     btstack_crypto_ccm->state = CCM_CALCULATE_SN;
878                     break;
879                 case CCM_W4_S0:
880 #ifdef DEBUG_CCM
881     reverse_128(data, result);
882     printf("%16s: ", "X0");
883     printf_hexdump(btstack_crypto_ccm->x_i, 16);
884 #endif
885                     btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data);
886                     break;
887                 case CCM_W4_SN:
888 #ifdef DEBUG_CCM
889     reverse_128(data, result);
890     printf("%16s: ", "Sn");
891     printf_hexdump(btstack_crypto_ccm->x_i, 16);
892 #endif
893                     btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data);
894                     btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_XN);
895                     break;
896                 default:
897                     break;
898             }
899             break;
900         case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
901             btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
902             switch (btstack_crypto_ccm->state){
903                 case CCM_W4_X1:
904                     reverse_128(data, btstack_crypto_ccm->x_i);
905 #ifdef DEBUG_CCM
906     printf("%16s: ", "X1");
907     printf_hexdump(btstack_crypto_ccm->x_i, 16);
908 #endif
909                     btstack_crypto_ccm->state = CCM_CALCULATE_SN;
910                     break;
911                 case CCM_W4_XN:
912                     reverse_128(data, btstack_crypto_ccm->x_i);
913 #ifdef DEBUG_CCM
914     printf("%16s: ", "Xn+1");
915     printf_hexdump(btstack_crypto_ccm->x_i, 16);
916 #endif
917                     btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_SN);
918                     break;
919                 case CCM_W4_S0:
920                     btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data);
921                     break;
922                 case CCM_W4_SN:
923                     btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data);
924                     btstack_crypto_ccm->state = CCM_CALCULATE_XN;
925                     break;
926                 default:
927                     break;
928             }
929             break;
930 		default:
931 			break;
932 	}
933 }
934 
935 static void btstack_crypto_event_handler(uint8_t packet_type, uint16_t cid, uint8_t *packet, uint16_t size){
936     UNUSED(cid);         // ok: there is no channel
937     UNUSED(size);        // ok: fixed format events read from HCI buffer
938 
939 #ifdef ENABLE_ECC_P256
940 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
941     btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192;
942 #endif
943 #endif
944 
945     if (packet_type != HCI_EVENT_PACKET)  return;
946 
947     switch (hci_event_packet_get_type(packet)){
948         case BTSTACK_EVENT_STATE:
949             log_info("BTSTACK_EVENT_STATE");
950             if (btstack_event_state_get_state(packet) != HCI_STATE_HALTING) break;
951             if (!btstack_crypto_wait_for_hci_result) break;
952             // request stack to defer shutdown a bit
953             hci_halting_defer();
954             break;
955 
956         case HCI_EVENT_COMMAND_COMPLETE:
957     	    if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
958                 if (!btstack_crypto_wait_for_hci_result) return;
959                 btstack_crypto_wait_for_hci_result = 0;
960     	        btstack_crypto_handle_encryption_result(&packet[6]);
961     	    }
962     	    if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
963                 if (!btstack_crypto_wait_for_hci_result) return;
964                 btstack_crypto_wait_for_hci_result = 0;
965     	        btstack_crypto_handle_random_data(&packet[6], 8);
966     	    }
967             if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_commands)){
968                 int ecdh_operations_supported = (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+34] & 0x06) == 0x06;
969                 log_info("controller supports ECDH operation: %u", ecdh_operations_supported);
970 #ifdef ENABLE_ECC_P256
971 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
972                 if (!ecdh_operations_supported){
973                     // mbedTLS can also be used if already available (and malloc is supported)
974                     log_error("ECC-P256 support enabled, but HCI Controller doesn't support it. Please add ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS to btstack_config.h");
975                 }
976 #endif
977 #endif
978             }
979             break;
980 
981 #ifdef ENABLE_ECC_P256
982 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
983         case HCI_EVENT_LE_META:
984             btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
985             if (!btstack_crypto_ec_p192) break;
986             switch (hci_event_le_meta_get_subevent_code(packet)){
987                 case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE:
988                     if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY) break;
989                     if (!btstack_crypto_wait_for_hci_result) return;
990                     btstack_crypto_wait_for_hci_result = 0;
991                     if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){
992                         log_error("Read Local P256 Public Key failed");
993                     }
994                     hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &btstack_crypto_ecc_p256_public_key[0]);
995                     hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &btstack_crypto_ecc_p256_public_key[32]);
996                     btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
997                     break;
998                 case HCI_SUBEVENT_LE_GENERATE_DHKEY_COMPLETE:
999                     if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY) break;
1000                     if (!btstack_crypto_wait_for_hci_result) return;
1001                     btstack_crypto_wait_for_hci_result = 0;
1002                     if (hci_subevent_le_generate_dhkey_complete_get_status(packet)){
1003                         log_error("Generate DHKEY failed -> abort");
1004                     }
1005                     hci_subevent_le_generate_dhkey_complete_get_dhkey(packet, btstack_crypto_ec_p192->dhkey);
1006                     // done
1007                     btstack_linked_list_pop(&btstack_crypto_operations);
1008                     (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
1009                     break;
1010                 default:
1011                     break;
1012             }
1013             break;
1014 #endif
1015 #endif
1016         default:
1017             break;
1018     }
1019 
1020     // try processing
1021 	btstack_crypto_run();
1022 }
1023 
1024 void btstack_crypto_init(void){
1025 	if (btstack_crypto_initialized) return;
1026 	btstack_crypto_initialized = 1;
1027 
1028 	// register with HCI
1029     hci_event_callback_registration.callback = &btstack_crypto_event_handler;
1030     hci_add_event_handler(&hci_event_callback_registration);
1031 
1032 #ifdef USE_MBEDTLS_ECC_P256
1033 	mbedtls_ecp_group_init(&mbedtls_ec_group);
1034 	mbedtls_ecp_group_load(&mbedtls_ec_group, MBEDTLS_ECP_DP_SECP256R1);
1035 #endif
1036 }
1037 
1038 void btstack_crypto_random_generate(btstack_crypto_random_t * request, uint8_t * buffer, uint16_t size, void (* callback)(void * arg), void * callback_arg){
1039 	request->btstack_crypto.context_callback.callback  = callback;
1040 	request->btstack_crypto.context_callback.context   = callback_arg;
1041 	request->btstack_crypto.operation         		   = BTSTACK_CRYPTO_RANDOM;
1042 	request->buffer = buffer;
1043 	request->size   = size;
1044 	btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1045 	btstack_crypto_run();
1046 }
1047 
1048 void btstack_crypto_aes128_encrypt(btstack_crypto_aes128_t * request, const uint8_t * key, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){
1049 	request->btstack_crypto.context_callback.callback  = callback;
1050 	request->btstack_crypto.context_callback.context   = callback_arg;
1051 	request->btstack_crypto.operation         		   = BTSTACK_CRYPTO_AES128;
1052 	request->key 									   = key;
1053 	request->plaintext      					       = plaintext;
1054 	request->ciphertext 							   = ciphertext;
1055 	btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1056 	btstack_crypto_run();
1057 }
1058 
1059 void btstack_crypto_aes128_cmac_generator(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, uint8_t (*get_byte_callback)(uint16_t pos), uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
1060 	request->btstack_crypto.context_callback.callback  = callback;
1061 	request->btstack_crypto.context_callback.context   = callback_arg;
1062 	request->btstack_crypto.operation         		   = BTSTACK_CRYPTO_CMAC_GENERATOR;
1063 	request->key 									   = key;
1064 	request->size 									   = size;
1065 	request->data.get_byte_callback					   = get_byte_callback;
1066 	request->hash 									   = hash;
1067 	btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1068 	btstack_crypto_run();
1069 }
1070 
1071 void btstack_crypto_aes128_cmac_message(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, const uint8_t * message, uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
1072 	request->btstack_crypto.context_callback.callback  = callback;
1073 	request->btstack_crypto.context_callback.context   = callback_arg;
1074 	request->btstack_crypto.operation         		   = BTSTACK_CRYPTO_CMAC_MESSAGE;
1075 	request->key 									   = key;
1076 	request->size 									   = size;
1077 	request->data.message      						   = message;
1078 	request->hash 									   = hash;
1079 	btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1080 	btstack_crypto_run();
1081 }
1082 
1083 void btstack_crypto_aes128_cmac_zero(btstack_crypto_aes128_cmac_t * request, uint16_t len, const uint8_t * message,  uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
1084     request->btstack_crypto.context_callback.callback  = callback;
1085     request->btstack_crypto.context_callback.context   = callback_arg;
1086     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_CMAC_MESSAGE;
1087     request->key                                       = zero;
1088     request->size                                      = len;
1089     request->data.message                              = message;
1090     request->hash                                      = hash;
1091     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1092     btstack_crypto_run();
1093 }
1094 
1095 #ifdef ENABLE_ECC_P256
1096 void btstack_crypto_ecc_p256_generate_key(btstack_crypto_ecc_p256_t * request, uint8_t * public_key, void (* callback)(void * arg), void * callback_arg){
1097     // reset key generation
1098     if (btstack_crypto_ecc_p256_key_generation_state == ECC_P256_KEY_GENERATION_DONE){
1099         btstack_crypto_ecc_p256_random_len = 0;
1100         btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_IDLE;
1101     }
1102     request->btstack_crypto.context_callback.callback  = callback;
1103     request->btstack_crypto.context_callback.context   = callback_arg;
1104     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY;
1105     request->public_key                                = public_key;
1106     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1107     btstack_crypto_run();
1108 }
1109 
1110 void btstack_crypto_ecc_p256_calculate_dhkey(btstack_crypto_ecc_p256_t * request, const uint8_t * public_key, uint8_t * dhkey, void (* callback)(void * arg), void * callback_arg){
1111     request->btstack_crypto.context_callback.callback  = callback;
1112     request->btstack_crypto.context_callback.context   = callback_arg;
1113     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY;
1114     request->public_key                                = (uint8_t *) public_key;
1115     request->dhkey                                     = dhkey;
1116     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1117     btstack_crypto_run();
1118 }
1119 
1120 int btstack_crypto_ecc_p256_validate_public_key(const uint8_t * public_key){
1121 
1122     // validate public key using micro-ecc
1123     int err = 0;
1124 
1125 #ifdef USE_MICRO_ECC_P256
1126 #if uECC_SUPPORTS_secp256r1
1127     // standard version
1128     err = uECC_valid_public_key(public_key, uECC_secp256r1()) == 0;
1129 #else
1130     // static version
1131     err = uECC_valid_public_key(public_key) == 0;
1132 #endif
1133 #endif
1134 
1135 #ifdef USE_MBEDTLS_ECC_P256
1136     mbedtls_ecp_point Q;
1137     mbedtls_ecp_point_init( &Q );
1138     mbedtls_mpi_read_binary(&Q.X, &public_key[0], 32);
1139     mbedtls_mpi_read_binary(&Q.Y, &public_key[32], 32);
1140     mbedtls_mpi_lset(&Q.Z, 1);
1141     err = mbedtls_ecp_check_pubkey(&mbedtls_ec_group, &Q);
1142     mbedtls_ecp_point_free( & Q);
1143 #endif
1144 
1145     if (err){
1146         log_error("public key invalid %x", err);
1147     }
1148     return  err;
1149 }
1150 #endif
1151 
1152 void btstack_crypto_ccm_init(btstack_crypto_ccm_t * request, const uint8_t * key, const uint8_t * nonce, uint16_t message_len, uint16_t additional_authenticated_data_len, uint8_t auth_len){
1153     request->key         = key;
1154     request->nonce       = nonce;
1155     request->message_len = message_len;
1156     request->aad_len     = additional_authenticated_data_len;
1157     request->aad_offset  = 0;
1158     request->auth_len    = auth_len;
1159     request->counter     = 1;
1160     request->state       = CCM_CALCULATE_X1;
1161 }
1162 
1163 void btstack_crypto_ccm_digest(btstack_crypto_ccm_t * request, uint8_t * additional_authenticated_data, uint16_t additional_authenticated_data_len, void (* callback)(void * arg), void * callback_arg){
1164     // not implemented yet
1165     request->btstack_crypto.context_callback.callback  = callback;
1166     request->btstack_crypto.context_callback.context   = callback_arg;
1167     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_CCM_DIGEST_BLOCK;
1168     request->block_len                                 = additional_authenticated_data_len;
1169     request->input                                     = additional_authenticated_data;
1170     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1171     btstack_crypto_run();
1172 }
1173 
1174 void btstack_crypto_ccm_get_authentication_value(btstack_crypto_ccm_t * request, uint8_t * authentication_value){
1175     memcpy(authentication_value, request->x_i, request->auth_len);
1176 }
1177 
1178 void btstack_crypto_ccm_encrypt_block(btstack_crypto_ccm_t * request, uint16_t block_len, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){
1179 #ifdef DEBUG_CCM
1180     printf("\nbtstack_crypto_ccm_encrypt_block, len %u\n", block_len);
1181 #endif
1182     request->btstack_crypto.context_callback.callback  = callback;
1183     request->btstack_crypto.context_callback.context   = callback_arg;
1184     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK;
1185     request->block_len                                 = block_len;
1186     request->input                                     = plaintext;
1187     request->output                                    = ciphertext;
1188     if (request->state != CCM_CALCULATE_X1){
1189         request->state  = CCM_CALCULATE_XN;
1190     }
1191     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1192     btstack_crypto_run();
1193 }
1194 
1195 void btstack_crypto_ccm_decrypt_block(btstack_crypto_ccm_t * request, uint16_t block_len, const uint8_t * ciphertext, uint8_t * plaintext, void (* callback)(void * arg), void * callback_arg){
1196     request->btstack_crypto.context_callback.callback  = callback;
1197     request->btstack_crypto.context_callback.context   = callback_arg;
1198     request->btstack_crypto.operation                  = BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK;
1199     request->block_len                                 = block_len;
1200     request->input                                     = ciphertext;
1201     request->output                                    = plaintext;
1202     if (request->state != CCM_CALCULATE_X1){
1203         request->state  = CCM_CALCULATE_SN;
1204     }
1205     btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
1206     btstack_crypto_run();
1207 }
1208 
1209 // PTS only
1210 void btstack_crypto_ecc_p256_set_key(const uint8_t * public_key, const uint8_t * private_key){
1211 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
1212     memcpy(btstack_crypto_ecc_p256_d, private_key, 32);
1213     memcpy(btstack_crypto_ecc_p256_public_key, public_key, 64);
1214     btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
1215 #else
1216     UNUSED(public_key);
1217     UNUSED(private_key);
1218 #endif
1219 }
1220 // Unit testing
1221 int btstack_crypto_idle(void){
1222     return btstack_linked_list_empty(&btstack_crypto_operations);
1223 }
1224 void btstack_crypto_reset(void){
1225     btstack_crypto_operations = NULL;
1226     btstack_crypto_wait_for_hci_result = 0;
1227 }
1228