1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define __BTSTACK_FILE__ "sm.c" 39 40 #include <stdio.h> 41 #include <string.h> 42 #include <inttypes.h> 43 44 #include "ble/le_device_db.h" 45 #include "ble/core.h" 46 #include "ble/sm.h" 47 #include "bluetooth_company_id.h" 48 #include "btstack_debug.h" 49 #include "btstack_event.h" 50 #include "btstack_linked_list.h" 51 #include "btstack_memory.h" 52 #include "gap.h" 53 #include "hci.h" 54 #include "hci_dump.h" 55 #include "l2cap.h" 56 57 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL) 58 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h." 59 #endif 60 61 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL) 62 #define IS_RESPONDER(role) (role) 63 #else 64 #ifdef ENABLE_LE_CENTRAL 65 // only central - never responder (avoid 'unused variable' warnings) 66 #define IS_RESPONDER(role) (0 && role) 67 #else 68 // only peripheral - always responder (avoid 'unused variable' warnings) 69 #define IS_RESPONDER(role) (1 || role) 70 #endif 71 #endif 72 73 #ifdef ENABLE_LE_SECURE_CONNECTIONS 74 // assert SM Public Key can be sent/received 75 #if HCI_ACL_PAYLOAD_SIZE < 69 76 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS" 77 #endif 78 79 // Software ECDH implementation provided by micro-ecc 80 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 81 #include "uECC.h" 82 #endif 83 84 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS) 85 #define ENABLE_CMAC_ENGINE 86 #endif 87 88 // 89 // SM internal types and globals 90 // 91 92 typedef enum { 93 DKG_W4_WORKING, 94 DKG_CALC_IRK, 95 DKG_W4_IRK, 96 DKG_CALC_DHK, 97 DKG_W4_DHK, 98 DKG_READY 99 } derived_key_generation_t; 100 101 typedef enum { 102 RAU_W4_WORKING, 103 RAU_IDLE, 104 RAU_GET_RANDOM, 105 RAU_W4_RANDOM, 106 RAU_GET_ENC, 107 RAU_W4_ENC, 108 RAU_SET_ADDRESS, 109 } random_address_update_t; 110 111 typedef enum { 112 CMAC_IDLE, 113 CMAC_CALC_SUBKEYS, 114 CMAC_W4_SUBKEYS, 115 CMAC_CALC_MI, 116 CMAC_W4_MI, 117 CMAC_CALC_MLAST, 118 CMAC_W4_MLAST 119 } cmac_state_t; 120 121 typedef enum { 122 JUST_WORKS, 123 PK_RESP_INPUT, // Initiator displays PK, responder inputs PK 124 PK_INIT_INPUT, // Responder displays PK, initiator inputs PK 125 OK_BOTH_INPUT, // Only input on both, both input PK 126 NK_BOTH_INPUT, // Only numerical compparison (yes/no) on on both sides 127 OOB // OOB available on both sides 128 } stk_generation_method_t; 129 130 typedef enum { 131 SM_USER_RESPONSE_IDLE, 132 SM_USER_RESPONSE_PENDING, 133 SM_USER_RESPONSE_CONFIRM, 134 SM_USER_RESPONSE_PASSKEY, 135 SM_USER_RESPONSE_DECLINE 136 } sm_user_response_t; 137 138 typedef enum { 139 SM_AES128_IDLE, 140 SM_AES128_ACTIVE 141 } sm_aes128_state_t; 142 143 typedef enum { 144 ADDRESS_RESOLUTION_IDLE, 145 ADDRESS_RESOLUTION_GENERAL, 146 ADDRESS_RESOLUTION_FOR_CONNECTION, 147 } address_resolution_mode_t; 148 149 typedef enum { 150 ADDRESS_RESOLUTION_SUCEEDED, 151 ADDRESS_RESOLUTION_FAILED, 152 } address_resolution_event_t; 153 154 typedef enum { 155 EC_KEY_GENERATION_IDLE, 156 EC_KEY_GENERATION_ACTIVE, 157 EC_KEY_GENERATION_W4_KEY, 158 EC_KEY_GENERATION_DONE, 159 } ec_key_generation_state_t; 160 161 typedef enum { 162 SM_STATE_VAR_DHKEY_NEEDED = 1 << 0, 163 SM_STATE_VAR_DHKEY_CALCULATED = 1 << 1, 164 SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 2, 165 } sm_state_var_t; 166 167 // 168 // GLOBAL DATA 169 // 170 171 static uint8_t test_use_fixed_local_csrk; 172 173 // configuration 174 static uint8_t sm_accepted_stk_generation_methods; 175 static uint8_t sm_max_encryption_key_size; 176 static uint8_t sm_min_encryption_key_size; 177 static uint8_t sm_auth_req = 0; 178 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT; 179 static uint8_t sm_slave_request_security; 180 #ifdef ENABLE_LE_SECURE_CONNECTIONS 181 static uint8_t sm_have_ec_keypair; 182 #endif 183 184 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values 185 static sm_key_t sm_persistent_er; 186 static sm_key_t sm_persistent_ir; 187 188 // derived from sm_persistent_ir 189 static sm_key_t sm_persistent_dhk; 190 static sm_key_t sm_persistent_irk; 191 static uint8_t sm_persistent_irk_ready = 0; // used for testing 192 static derived_key_generation_t dkg_state; 193 194 // derived from sm_persistent_er 195 // .. 196 197 // random address update 198 static random_address_update_t rau_state; 199 static bd_addr_t sm_random_address; 200 201 // CMAC Calculation: General 202 #ifdef ENABLE_CMAC_ENGINE 203 static cmac_state_t sm_cmac_state; 204 static uint16_t sm_cmac_message_len; 205 static sm_key_t sm_cmac_k; 206 static sm_key_t sm_cmac_x; 207 static sm_key_t sm_cmac_m_last; 208 static uint8_t sm_cmac_block_current; 209 static uint8_t sm_cmac_block_count; 210 static uint8_t (*sm_cmac_get_byte)(uint16_t offset); 211 static void (*sm_cmac_done_handler)(uint8_t * hash); 212 #endif 213 214 // CMAC for ATT Signed Writes 215 #ifdef ENABLE_LE_SIGNED_WRITE 216 static uint8_t sm_cmac_header[3]; 217 static const uint8_t * sm_cmac_message; 218 static uint8_t sm_cmac_sign_counter[4]; 219 #endif 220 221 // CMAC for Secure Connection functions 222 #ifdef ENABLE_LE_SECURE_CONNECTIONS 223 static sm_connection_t * sm_cmac_connection; 224 static uint8_t sm_cmac_sc_buffer[80]; 225 #endif 226 227 // resolvable private address lookup / CSRK calculation 228 static int sm_address_resolution_test; 229 static int sm_address_resolution_ah_calculation_active; 230 static uint8_t sm_address_resolution_addr_type; 231 static bd_addr_t sm_address_resolution_address; 232 static void * sm_address_resolution_context; 233 static address_resolution_mode_t sm_address_resolution_mode; 234 static btstack_linked_list_t sm_address_resolution_general_queue; 235 236 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context 237 static sm_aes128_state_t sm_aes128_state; 238 static void * sm_aes128_context; 239 240 // use aes128 provided by MCU - not needed usually 241 #ifdef HAVE_AES128 242 static uint8_t aes128_result_flipped[16]; 243 static btstack_timer_source_t aes128_timer; 244 void btstack_aes128_calc(uint8_t * key, uint8_t * plaintext, uint8_t * result); 245 #endif 246 247 // random engine. store context (ususally sm_connection_t) 248 static void * sm_random_context; 249 250 // to receive hci events 251 static btstack_packet_callback_registration_t hci_event_callback_registration; 252 253 /* to dispatch sm event */ 254 static btstack_linked_list_t sm_event_handlers; 255 256 // LE Secure Connections 257 #ifdef ENABLE_LE_SECURE_CONNECTIONS 258 static ec_key_generation_state_t ec_key_generation_state; 259 static uint8_t ec_d[32]; 260 static uint8_t ec_q[64]; 261 #endif 262 263 // 264 // Volume 3, Part H, Chapter 24 265 // "Security shall be initiated by the Security Manager in the device in the master role. 266 // The device in the slave role shall be the responding device." 267 // -> master := initiator, slave := responder 268 // 269 270 // data needed for security setup 271 typedef struct sm_setup_context { 272 273 btstack_timer_source_t sm_timeout; 274 275 // used in all phases 276 uint8_t sm_pairing_failed_reason; 277 278 // user response, (Phase 1 and/or 2) 279 uint8_t sm_user_response; 280 uint8_t sm_keypress_notification; 281 282 // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3 283 int sm_key_distribution_send_set; 284 int sm_key_distribution_received_set; 285 286 // Phase 2 (Pairing over SMP) 287 stk_generation_method_t sm_stk_generation_method; 288 sm_key_t sm_tk; 289 uint8_t sm_use_secure_connections; 290 291 sm_key_t sm_c1_t3_value; // c1 calculation 292 sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1 293 sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1 294 sm_key_t sm_local_random; 295 sm_key_t sm_local_confirm; 296 sm_key_t sm_peer_random; 297 sm_key_t sm_peer_confirm; 298 uint8_t sm_m_addr_type; // address and type can be removed 299 uint8_t sm_s_addr_type; // '' 300 bd_addr_t sm_m_address; // '' 301 bd_addr_t sm_s_address; // '' 302 sm_key_t sm_ltk; 303 304 uint8_t sm_state_vars; 305 #ifdef ENABLE_LE_SECURE_CONNECTIONS 306 uint8_t sm_peer_q[64]; // also stores random for EC key generation during init 307 sm_key_t sm_peer_nonce; // might be combined with sm_peer_random 308 sm_key_t sm_local_nonce; // might be combined with sm_local_random 309 sm_key_t sm_dhkey; 310 sm_key_t sm_peer_dhkey_check; 311 sm_key_t sm_local_dhkey_check; 312 sm_key_t sm_ra; 313 sm_key_t sm_rb; 314 sm_key_t sm_t; // used for f5 and h6 315 sm_key_t sm_mackey; 316 uint8_t sm_passkey_bit; // also stores number of generated random bytes for EC key generation 317 #endif 318 319 // Phase 3 320 321 // key distribution, we generate 322 uint16_t sm_local_y; 323 uint16_t sm_local_div; 324 uint16_t sm_local_ediv; 325 uint8_t sm_local_rand[8]; 326 sm_key_t sm_local_ltk; 327 sm_key_t sm_local_csrk; 328 sm_key_t sm_local_irk; 329 // sm_local_address/addr_type not needed 330 331 // key distribution, received from peer 332 uint16_t sm_peer_y; 333 uint16_t sm_peer_div; 334 uint16_t sm_peer_ediv; 335 uint8_t sm_peer_rand[8]; 336 sm_key_t sm_peer_ltk; 337 sm_key_t sm_peer_irk; 338 sm_key_t sm_peer_csrk; 339 uint8_t sm_peer_addr_type; 340 bd_addr_t sm_peer_address; 341 342 } sm_setup_context_t; 343 344 // 345 static sm_setup_context_t the_setup; 346 static sm_setup_context_t * setup = &the_setup; 347 348 // active connection - the one for which the_setup is used for 349 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 350 351 // @returns 1 if oob data is available 352 // stores oob data in provided 16 byte buffer if not null 353 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL; 354 355 // horizontal: initiator capabilities 356 // vertial: responder capabilities 357 static const stk_generation_method_t stk_generation_method [5] [5] = { 358 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 359 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 360 { PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT }, 361 { JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS }, 362 { PK_RESP_INPUT, PK_RESP_INPUT, PK_INIT_INPUT, JUST_WORKS, PK_RESP_INPUT }, 363 }; 364 365 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations 366 #ifdef ENABLE_LE_SECURE_CONNECTIONS 367 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = { 368 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 369 { JUST_WORKS, NK_BOTH_INPUT, PK_INIT_INPUT, JUST_WORKS, NK_BOTH_INPUT }, 370 { PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT }, 371 { JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS }, 372 { PK_RESP_INPUT, NK_BOTH_INPUT, PK_INIT_INPUT, JUST_WORKS, NK_BOTH_INPUT }, 373 }; 374 #endif 375 376 static void sm_run(void); 377 static void sm_done_for_handle(hci_con_handle_t con_handle); 378 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle); 379 static inline int sm_calc_actual_encryption_key_size(int other); 380 static int sm_validate_stk_generation_method(void); 381 static void sm_handle_encryption_result(uint8_t * data); 382 383 static void log_info_hex16(const char * name, uint16_t value){ 384 log_info("%-6s 0x%04x", name, value); 385 } 386 387 // @returns 1 if all bytes are 0 388 static int sm_is_null(uint8_t * data, int size){ 389 int i; 390 for (i=0; i < size ; i++){ 391 if (data[i]) return 0; 392 } 393 return 1; 394 } 395 396 static int sm_is_null_random(uint8_t random[8]){ 397 return sm_is_null(random, 8); 398 } 399 400 static int sm_is_null_key(uint8_t * key){ 401 return sm_is_null(key, 16); 402 } 403 404 // Key utils 405 static void sm_reset_tk(void){ 406 int i; 407 for (i=0;i<16;i++){ 408 setup->sm_tk[i] = 0; 409 } 410 } 411 412 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0 413 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0."" 414 static void sm_truncate_key(sm_key_t key, int max_encryption_size){ 415 int i; 416 for (i = max_encryption_size ; i < 16 ; i++){ 417 key[15-i] = 0; 418 } 419 } 420 421 // SMP Timeout implementation 422 423 // Upon transmission of the Pairing Request command or reception of the Pairing Request command, 424 // the Security Manager Timer shall be reset and started. 425 // 426 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission. 427 // 428 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed, 429 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP 430 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been 431 // established. 432 433 static void sm_timeout_handler(btstack_timer_source_t * timer){ 434 log_info("SM timeout"); 435 sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer); 436 sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT; 437 sm_done_for_handle(sm_conn->sm_handle); 438 439 // trigger handling of next ready connection 440 sm_run(); 441 } 442 static void sm_timeout_start(sm_connection_t * sm_conn){ 443 btstack_run_loop_remove_timer(&setup->sm_timeout); 444 btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn); 445 btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler); 446 btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout 447 btstack_run_loop_add_timer(&setup->sm_timeout); 448 } 449 static void sm_timeout_stop(void){ 450 btstack_run_loop_remove_timer(&setup->sm_timeout); 451 } 452 static void sm_timeout_reset(sm_connection_t * sm_conn){ 453 sm_timeout_stop(); 454 sm_timeout_start(sm_conn); 455 } 456 457 // end of sm timeout 458 459 // GAP Random Address updates 460 static gap_random_address_type_t gap_random_adress_type; 461 static btstack_timer_source_t gap_random_address_update_timer; 462 static uint32_t gap_random_adress_update_period; 463 464 static void gap_random_address_trigger(void){ 465 if (rau_state != RAU_IDLE) return; 466 log_info("gap_random_address_trigger"); 467 rau_state = RAU_GET_RANDOM; 468 sm_run(); 469 } 470 471 static void gap_random_address_update_handler(btstack_timer_source_t * timer){ 472 UNUSED(timer); 473 474 log_info("GAP Random Address Update due"); 475 btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period); 476 btstack_run_loop_add_timer(&gap_random_address_update_timer); 477 gap_random_address_trigger(); 478 } 479 480 static void gap_random_address_update_start(void){ 481 btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler); 482 btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period); 483 btstack_run_loop_add_timer(&gap_random_address_update_timer); 484 } 485 486 static void gap_random_address_update_stop(void){ 487 btstack_run_loop_remove_timer(&gap_random_address_update_timer); 488 } 489 490 491 static void sm_random_start(void * context){ 492 sm_random_context = context; 493 hci_send_cmd(&hci_le_rand); 494 } 495 496 #ifdef HAVE_AES128 497 static void aes128_completed(btstack_timer_source_t * ts){ 498 UNUSED(ts); 499 sm_handle_encryption_result(&aes128_result_flipped[0]); 500 sm_run(); 501 } 502 #endif 503 504 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1 505 // context is made availabe to aes128 result handler by this 506 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){ 507 sm_aes128_state = SM_AES128_ACTIVE; 508 sm_aes128_context = context; 509 510 #ifdef HAVE_AES128 511 // calc result directly 512 sm_key_t result; 513 btstack_aes128_calc(key, plaintext, result); 514 515 // log 516 log_info_key("key", key); 517 log_info_key("txt", plaintext); 518 log_info_key("res", result); 519 520 // flip 521 reverse_128(&result[0], &aes128_result_flipped[0]); 522 523 // deliver via timer 524 btstack_run_loop_set_timer_handler(&aes128_timer, &aes128_completed); 525 btstack_run_loop_set_timer(&aes128_timer, 0); // no delay 526 btstack_run_loop_add_timer(&aes128_timer); 527 #else 528 sm_key_t key_flipped, plaintext_flipped; 529 reverse_128(key, key_flipped); 530 reverse_128(plaintext, plaintext_flipped); 531 hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped); 532 #endif 533 } 534 535 // ah(k,r) helper 536 // r = padding || r 537 // r - 24 bit value 538 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){ 539 // r'= padding || r 540 memset(r_prime, 0, 16); 541 memcpy(&r_prime[13], r, 3); 542 } 543 544 // d1 helper 545 // d' = padding || r || d 546 // d,r - 16 bit values 547 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){ 548 // d'= padding || r || d 549 memset(d1_prime, 0, 16); 550 big_endian_store_16(d1_prime, 12, r); 551 big_endian_store_16(d1_prime, 14, d); 552 } 553 554 // dm helper 555 // r’ = padding || r 556 // r - 64 bit value 557 static void sm_dm_r_prime(uint8_t r[8], uint8_t * r_prime){ 558 memset(r_prime, 0, 16); 559 memcpy(&r_prime[8], r, 8); 560 } 561 562 // calculate arguments for first AES128 operation in C1 function 563 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){ 564 565 // p1 = pres || preq || rat’ || iat’ 566 // "The octet of iat’ becomes the least significant octet of p1 and the most signifi- 567 // cant octet of pres becomes the most significant octet of p1. 568 // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq 569 // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then 570 // p1 is 0x05000800000302070710000001010001." 571 572 sm_key_t p1; 573 reverse_56(pres, &p1[0]); 574 reverse_56(preq, &p1[7]); 575 p1[14] = rat; 576 p1[15] = iat; 577 log_info_key("p1", p1); 578 log_info_key("r", r); 579 580 // t1 = r xor p1 581 int i; 582 for (i=0;i<16;i++){ 583 t1[i] = r[i] ^ p1[i]; 584 } 585 log_info_key("t1", t1); 586 } 587 588 // calculate arguments for second AES128 operation in C1 function 589 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){ 590 // p2 = padding || ia || ra 591 // "The least significant octet of ra becomes the least significant octet of p2 and 592 // the most significant octet of padding becomes the most significant octet of p2. 593 // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is 594 // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6. 595 596 sm_key_t p2; 597 memset(p2, 0, 16); 598 memcpy(&p2[4], ia, 6); 599 memcpy(&p2[10], ra, 6); 600 log_info_key("p2", p2); 601 602 // c1 = e(k, t2_xor_p2) 603 int i; 604 for (i=0;i<16;i++){ 605 t3[i] = t2[i] ^ p2[i]; 606 } 607 log_info_key("t3", t3); 608 } 609 610 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){ 611 log_info_key("r1", r1); 612 log_info_key("r2", r2); 613 memcpy(&r_prime[8], &r2[8], 8); 614 memcpy(&r_prime[0], &r1[8], 8); 615 } 616 617 #ifdef ENABLE_LE_SECURE_CONNECTIONS 618 // Software implementations of crypto toolbox for LE Secure Connection 619 // TODO: replace with code to use AES Engine of HCI Controller 620 typedef uint8_t sm_key24_t[3]; 621 typedef uint8_t sm_key56_t[7]; 622 typedef uint8_t sm_key256_t[32]; 623 624 #if 0 625 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){ 626 uint32_t rk[RKLENGTH(KEYBITS)]; 627 int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS); 628 rijndaelEncrypt(rk, nrounds, plaintext, cyphertext); 629 } 630 631 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){ 632 memcpy(k1, k0, 16); 633 sm_shift_left_by_one_bit_inplace(16, k1); 634 if (k0[0] & 0x80){ 635 k1[15] ^= 0x87; 636 } 637 memcpy(k2, k1, 16); 638 sm_shift_left_by_one_bit_inplace(16, k2); 639 if (k1[0] & 0x80){ 640 k2[15] ^= 0x87; 641 } 642 } 643 644 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){ 645 sm_key_t k0, k1, k2, zero; 646 memset(zero, 0, 16); 647 648 aes128_calc_cyphertext(key, zero, k0); 649 calc_subkeys(k0, k1, k2); 650 651 int cmac_block_count = (cmac_message_len + 15) / 16; 652 653 // step 3: .. 654 if (cmac_block_count==0){ 655 cmac_block_count = 1; 656 } 657 658 // step 4: set m_last 659 sm_key_t cmac_m_last; 660 int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0; 661 int i; 662 if (sm_cmac_last_block_complete){ 663 for (i=0;i<16;i++){ 664 cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i]; 665 } 666 } else { 667 int valid_octets_in_last_block = cmac_message_len & 0x0f; 668 for (i=0;i<16;i++){ 669 if (i < valid_octets_in_last_block){ 670 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i]; 671 continue; 672 } 673 if (i == valid_octets_in_last_block){ 674 cmac_m_last[i] = 0x80 ^ k2[i]; 675 continue; 676 } 677 cmac_m_last[i] = k2[i]; 678 } 679 } 680 681 // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count); 682 // LOG_KEY(cmac_m_last); 683 684 // Step 5 685 sm_key_t cmac_x; 686 memset(cmac_x, 0, 16); 687 688 // Step 6 689 sm_key_t sm_cmac_y; 690 for (int block = 0 ; block < cmac_block_count-1 ; block++){ 691 for (i=0;i<16;i++){ 692 sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i]; 693 } 694 aes128_calc_cyphertext(key, sm_cmac_y, cmac_x); 695 } 696 for (i=0;i<16;i++){ 697 sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i]; 698 } 699 700 // Step 7 701 aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac); 702 } 703 #endif 704 #endif 705 706 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){ 707 event[0] = type; 708 event[1] = event_size - 2; 709 little_endian_store_16(event, 2, con_handle); 710 event[4] = addr_type; 711 reverse_bd_addr(address, &event[5]); 712 } 713 714 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){ 715 UNUSED(channel); 716 717 // log event 718 hci_dump_packet(packet_type, 1, packet, size); 719 // dispatch to all event handlers 720 btstack_linked_list_iterator_t it; 721 btstack_linked_list_iterator_init(&it, &sm_event_handlers); 722 while (btstack_linked_list_iterator_has_next(&it)){ 723 btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it); 724 entry->callback(packet_type, 0, packet, size); 725 } 726 } 727 728 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){ 729 uint8_t event[11]; 730 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 731 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 732 } 733 734 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){ 735 uint8_t event[15]; 736 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 737 little_endian_store_32(event, 11, passkey); 738 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 739 } 740 741 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){ 742 // fetch addr and addr type from db 743 bd_addr_t identity_address; 744 int identity_address_type; 745 le_device_db_info(index, &identity_address_type, identity_address, NULL); 746 747 uint8_t event[19]; 748 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 749 event[11] = identity_address_type; 750 reverse_bd_addr(identity_address, &event[12]); 751 event[18] = index; 752 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 753 } 754 755 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){ 756 757 uint8_t event[18]; 758 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 759 event[11] = result; 760 sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event)); 761 } 762 763 // decide on stk generation based on 764 // - pairing request 765 // - io capabilities 766 // - OOB data availability 767 static void sm_setup_tk(void){ 768 769 // default: just works 770 setup->sm_stk_generation_method = JUST_WORKS; 771 772 #ifdef ENABLE_LE_SECURE_CONNECTIONS 773 setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq) 774 & sm_pairing_packet_get_auth_req(setup->sm_s_pres) 775 & SM_AUTHREQ_SECURE_CONNECTION ) != 0; 776 memset(setup->sm_ra, 0, 16); 777 memset(setup->sm_rb, 0, 16); 778 #else 779 setup->sm_use_secure_connections = 0; 780 #endif 781 782 // If both devices have not set the MITM option in the Authentication Requirements 783 // Flags, then the IO capabilities shall be ignored and the Just Works association 784 // model shall be used. 785 if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0) 786 && ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){ 787 log_info("SM: MITM not required by both -> JUST WORKS"); 788 return; 789 } 790 791 // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient 792 793 // If both devices have out of band authentication data, then the Authentication 794 // Requirements Flags shall be ignored when selecting the pairing method and the 795 // Out of Band pairing method shall be used. 796 if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) 797 && sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){ 798 log_info("SM: have OOB data"); 799 log_info_key("OOB", setup->sm_tk); 800 setup->sm_stk_generation_method = OOB; 801 return; 802 } 803 804 // Reset TK as it has been setup in sm_init_setup 805 sm_reset_tk(); 806 807 // Also use just works if unknown io capabilites 808 if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){ 809 return; 810 } 811 812 // Otherwise the IO capabilities of the devices shall be used to determine the 813 // pairing method as defined in Table 2.4. 814 // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array 815 const stk_generation_method_t (*generation_method)[5] = stk_generation_method; 816 817 #ifdef ENABLE_LE_SECURE_CONNECTIONS 818 // table not define by default 819 if (setup->sm_use_secure_connections){ 820 generation_method = stk_generation_method_with_secure_connection; 821 } 822 #endif 823 setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)]; 824 825 log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u", 826 sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method); 827 } 828 829 static int sm_key_distribution_flags_for_set(uint8_t key_set){ 830 int flags = 0; 831 if (key_set & SM_KEYDIST_ENC_KEY){ 832 flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 833 flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 834 } 835 if (key_set & SM_KEYDIST_ID_KEY){ 836 flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 837 flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 838 } 839 if (key_set & SM_KEYDIST_SIGN){ 840 flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 841 } 842 return flags; 843 } 844 845 static void sm_setup_key_distribution(uint8_t key_set){ 846 setup->sm_key_distribution_received_set = 0; 847 setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set); 848 } 849 850 // CSRK Key Lookup 851 852 853 static int sm_address_resolution_idle(void){ 854 return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE; 855 } 856 857 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){ 858 memcpy(sm_address_resolution_address, addr, 6); 859 sm_address_resolution_addr_type = addr_type; 860 sm_address_resolution_test = 0; 861 sm_address_resolution_mode = mode; 862 sm_address_resolution_context = context; 863 sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr); 864 } 865 866 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){ 867 // check if already in list 868 btstack_linked_list_iterator_t it; 869 sm_lookup_entry_t * entry; 870 btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue); 871 while(btstack_linked_list_iterator_has_next(&it)){ 872 entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it); 873 if (entry->address_type != address_type) continue; 874 if (memcmp(entry->address, address, 6)) continue; 875 // already in list 876 return BTSTACK_BUSY; 877 } 878 entry = btstack_memory_sm_lookup_entry_get(); 879 if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED; 880 entry->address_type = (bd_addr_type_t) address_type; 881 memcpy(entry->address, address, 6); 882 btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry); 883 sm_run(); 884 return 0; 885 } 886 887 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now 888 static inline void sm_next_responding_state(sm_connection_t * sm_conn){ 889 sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1); 890 } 891 static inline void dkg_next_state(void){ 892 dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1); 893 } 894 static inline void rau_next_state(void){ 895 rau_state = (random_address_update_t) (((int)rau_state) + 1); 896 } 897 898 // CMAC calculation using AES Engine 899 #ifdef ENABLE_CMAC_ENGINE 900 901 static inline void sm_cmac_next_state(void){ 902 sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1); 903 } 904 905 static int sm_cmac_last_block_complete(void){ 906 if (sm_cmac_message_len == 0) return 0; 907 return (sm_cmac_message_len & 0x0f) == 0; 908 } 909 910 int sm_cmac_ready(void){ 911 return sm_cmac_state == CMAC_IDLE; 912 } 913 914 // generic cmac calculation 915 void sm_cmac_general_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){ 916 // Generalized CMAC 917 memcpy(sm_cmac_k, key, 16); 918 memset(sm_cmac_x, 0, 16); 919 sm_cmac_block_current = 0; 920 sm_cmac_message_len = message_len; 921 sm_cmac_done_handler = done_callback; 922 sm_cmac_get_byte = get_byte_callback; 923 924 // step 2: n := ceil(len/const_Bsize); 925 sm_cmac_block_count = (sm_cmac_message_len + 15) / 16; 926 927 // step 3: .. 928 if (sm_cmac_block_count==0){ 929 sm_cmac_block_count = 1; 930 } 931 log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count); 932 933 // first, we need to compute l for k1, k2, and m_last 934 sm_cmac_state = CMAC_CALC_SUBKEYS; 935 936 // let's go 937 sm_run(); 938 } 939 #endif 940 941 // cmac for ATT Message signing 942 #ifdef ENABLE_LE_SIGNED_WRITE 943 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){ 944 if (offset >= sm_cmac_message_len) { 945 log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len); 946 return 0; 947 } 948 949 offset = sm_cmac_message_len - 1 - offset; 950 951 // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4] 952 if (offset < 3){ 953 return sm_cmac_header[offset]; 954 } 955 int actual_message_len_incl_header = sm_cmac_message_len - 4; 956 if (offset < actual_message_len_incl_header){ 957 return sm_cmac_message[offset - 3]; 958 } 959 return sm_cmac_sign_counter[offset - actual_message_len_incl_header]; 960 } 961 962 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){ 963 // ATT Message Signing 964 sm_cmac_header[0] = opcode; 965 little_endian_store_16(sm_cmac_header, 1, con_handle); 966 little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter); 967 uint16_t total_message_len = 3 + message_len + 4; // incl. virtually prepended att opcode, handle and appended sign_counter in LE 968 sm_cmac_message = message; 969 sm_cmac_general_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler); 970 } 971 #endif 972 973 #ifdef ENABLE_CMAC_ENGINE 974 static void sm_cmac_handle_aes_engine_ready(void){ 975 switch (sm_cmac_state){ 976 case CMAC_CALC_SUBKEYS: { 977 sm_key_t const_zero; 978 memset(const_zero, 0, 16); 979 sm_cmac_next_state(); 980 sm_aes128_start(sm_cmac_k, const_zero, NULL); 981 break; 982 } 983 case CMAC_CALC_MI: { 984 int j; 985 sm_key_t y; 986 for (j=0;j<16;j++){ 987 y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j); 988 } 989 sm_cmac_block_current++; 990 sm_cmac_next_state(); 991 sm_aes128_start(sm_cmac_k, y, NULL); 992 break; 993 } 994 case CMAC_CALC_MLAST: { 995 int i; 996 sm_key_t y; 997 for (i=0;i<16;i++){ 998 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i]; 999 } 1000 log_info_key("Y", y); 1001 sm_cmac_block_current++; 1002 sm_cmac_next_state(); 1003 sm_aes128_start(sm_cmac_k, y, NULL); 1004 break; 1005 } 1006 default: 1007 log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state); 1008 break; 1009 } 1010 } 1011 1012 // CMAC Implementation using AES128 engine 1013 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){ 1014 int i; 1015 int carry = 0; 1016 for (i=len-1; i >= 0 ; i--){ 1017 int new_carry = data[i] >> 7; 1018 data[i] = data[i] << 1 | carry; 1019 carry = new_carry; 1020 } 1021 } 1022 1023 static void sm_cmac_handle_encryption_result(sm_key_t data){ 1024 switch (sm_cmac_state){ 1025 case CMAC_W4_SUBKEYS: { 1026 sm_key_t k1; 1027 memcpy(k1, data, 16); 1028 sm_shift_left_by_one_bit_inplace(16, k1); 1029 if (data[0] & 0x80){ 1030 k1[15] ^= 0x87; 1031 } 1032 sm_key_t k2; 1033 memcpy(k2, k1, 16); 1034 sm_shift_left_by_one_bit_inplace(16, k2); 1035 if (k1[0] & 0x80){ 1036 k2[15] ^= 0x87; 1037 } 1038 1039 log_info_key("k", sm_cmac_k); 1040 log_info_key("k1", k1); 1041 log_info_key("k2", k2); 1042 1043 // step 4: set m_last 1044 int i; 1045 if (sm_cmac_last_block_complete()){ 1046 for (i=0;i<16;i++){ 1047 sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i]; 1048 } 1049 } else { 1050 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f; 1051 for (i=0;i<16;i++){ 1052 if (i < valid_octets_in_last_block){ 1053 sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i]; 1054 continue; 1055 } 1056 if (i == valid_octets_in_last_block){ 1057 sm_cmac_m_last[i] = 0x80 ^ k2[i]; 1058 continue; 1059 } 1060 sm_cmac_m_last[i] = k2[i]; 1061 } 1062 } 1063 1064 // next 1065 sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; 1066 break; 1067 } 1068 case CMAC_W4_MI: 1069 memcpy(sm_cmac_x, data, 16); 1070 sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; 1071 break; 1072 case CMAC_W4_MLAST: 1073 // done 1074 log_info("Setting CMAC Engine to IDLE"); 1075 sm_cmac_state = CMAC_IDLE; 1076 log_info_key("CMAC", data); 1077 sm_cmac_done_handler(data); 1078 break; 1079 default: 1080 log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state); 1081 break; 1082 } 1083 } 1084 #endif 1085 1086 static void sm_trigger_user_response(sm_connection_t * sm_conn){ 1087 // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input 1088 setup->sm_user_response = SM_USER_RESPONSE_IDLE; 1089 switch (setup->sm_stk_generation_method){ 1090 case PK_RESP_INPUT: 1091 if (IS_RESPONDER(sm_conn->sm_role)){ 1092 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1093 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1094 } else { 1095 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1096 } 1097 break; 1098 case PK_INIT_INPUT: 1099 if (IS_RESPONDER(sm_conn->sm_role)){ 1100 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1101 } else { 1102 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1103 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1104 } 1105 break; 1106 case OK_BOTH_INPUT: 1107 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1108 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1109 break; 1110 case NK_BOTH_INPUT: 1111 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1112 sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1113 break; 1114 case JUST_WORKS: 1115 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1116 sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1117 break; 1118 case OOB: 1119 // client already provided OOB data, let's skip notification. 1120 break; 1121 } 1122 } 1123 1124 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){ 1125 int recv_flags; 1126 if (IS_RESPONDER(sm_conn->sm_role)){ 1127 // slave / responder 1128 recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres)); 1129 } else { 1130 // master / initiator 1131 recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres)); 1132 } 1133 log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags); 1134 return recv_flags == setup->sm_key_distribution_received_set; 1135 } 1136 1137 static void sm_done_for_handle(hci_con_handle_t con_handle){ 1138 if (sm_active_connection_handle == con_handle){ 1139 sm_timeout_stop(); 1140 sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 1141 log_info("sm: connection 0x%x released setup context", con_handle); 1142 } 1143 } 1144 1145 static int sm_key_distribution_flags_for_auth_req(void){ 1146 int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN; 1147 if (sm_auth_req & SM_AUTHREQ_BONDING){ 1148 // encryption information only if bonding requested 1149 flags |= SM_KEYDIST_ENC_KEY; 1150 } 1151 return flags; 1152 } 1153 1154 static void sm_reset_setup(void){ 1155 // fill in sm setup 1156 setup->sm_state_vars = 0; 1157 setup->sm_keypress_notification = 0xff; 1158 sm_reset_tk(); 1159 } 1160 1161 static void sm_init_setup(sm_connection_t * sm_conn){ 1162 1163 // fill in sm setup 1164 setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type; 1165 memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6); 1166 1167 // query client for OOB data 1168 int have_oob_data = 0; 1169 if (sm_get_oob_data) { 1170 have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk); 1171 } 1172 1173 sm_pairing_packet_t * local_packet; 1174 if (IS_RESPONDER(sm_conn->sm_role)){ 1175 // slave 1176 local_packet = &setup->sm_s_pres; 1177 gap_le_get_own_address(&setup->sm_s_addr_type, setup->sm_s_address); 1178 setup->sm_m_addr_type = sm_conn->sm_peer_addr_type; 1179 memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6); 1180 } else { 1181 // master 1182 local_packet = &setup->sm_m_preq; 1183 gap_le_get_own_address(&setup->sm_m_addr_type, setup->sm_m_address); 1184 setup->sm_s_addr_type = sm_conn->sm_peer_addr_type; 1185 memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6); 1186 1187 int key_distribution_flags = sm_key_distribution_flags_for_auth_req(); 1188 sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags); 1189 sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags); 1190 } 1191 1192 uint8_t auth_req = sm_auth_req; 1193 sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities); 1194 sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data); 1195 sm_pairing_packet_set_auth_req(*local_packet, auth_req); 1196 sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size); 1197 } 1198 1199 static int sm_stk_generation_init(sm_connection_t * sm_conn){ 1200 1201 sm_pairing_packet_t * remote_packet; 1202 int remote_key_request; 1203 if (IS_RESPONDER(sm_conn->sm_role)){ 1204 // slave / responder 1205 remote_packet = &setup->sm_m_preq; 1206 remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq); 1207 } else { 1208 // master / initiator 1209 remote_packet = &setup->sm_s_pres; 1210 remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres); 1211 } 1212 1213 // check key size 1214 sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet)); 1215 if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE; 1216 1217 // decide on STK generation method 1218 sm_setup_tk(); 1219 log_info("SMP: generation method %u", setup->sm_stk_generation_method); 1220 1221 // check if STK generation method is acceptable by client 1222 if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS; 1223 1224 // identical to responder 1225 sm_setup_key_distribution(remote_key_request); 1226 1227 // JUST WORKS doens't provide authentication 1228 sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1; 1229 1230 return 0; 1231 } 1232 1233 static void sm_address_resolution_handle_event(address_resolution_event_t event){ 1234 1235 // cache and reset context 1236 int matched_device_id = sm_address_resolution_test; 1237 address_resolution_mode_t mode = sm_address_resolution_mode; 1238 void * context = sm_address_resolution_context; 1239 1240 // reset context 1241 sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE; 1242 sm_address_resolution_context = NULL; 1243 sm_address_resolution_test = -1; 1244 hci_con_handle_t con_handle = 0; 1245 1246 sm_connection_t * sm_connection; 1247 #ifdef ENABLE_LE_CENTRAL 1248 sm_key_t ltk; 1249 #endif 1250 switch (mode){ 1251 case ADDRESS_RESOLUTION_GENERAL: 1252 break; 1253 case ADDRESS_RESOLUTION_FOR_CONNECTION: 1254 sm_connection = (sm_connection_t *) context; 1255 con_handle = sm_connection->sm_handle; 1256 switch (event){ 1257 case ADDRESS_RESOLUTION_SUCEEDED: 1258 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED; 1259 sm_connection->sm_le_db_index = matched_device_id; 1260 log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index); 1261 #ifdef ENABLE_LE_CENTRAL 1262 if (sm_connection->sm_role) break; 1263 if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break; 1264 sm_connection->sm_security_request_received = 0; 1265 sm_connection->sm_bonding_requested = 0; 1266 le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL); 1267 if (!sm_is_null_key(ltk)){ 1268 sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 1269 } else { 1270 sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 1271 } 1272 #endif 1273 break; 1274 case ADDRESS_RESOLUTION_FAILED: 1275 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED; 1276 #ifdef ENABLE_LE_CENTRAL 1277 if (sm_connection->sm_role) break; 1278 if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break; 1279 sm_connection->sm_security_request_received = 0; 1280 sm_connection->sm_bonding_requested = 0; 1281 sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 1282 #endif 1283 break; 1284 } 1285 break; 1286 default: 1287 break; 1288 } 1289 1290 switch (event){ 1291 case ADDRESS_RESOLUTION_SUCEEDED: 1292 sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id); 1293 break; 1294 case ADDRESS_RESOLUTION_FAILED: 1295 sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address); 1296 break; 1297 } 1298 } 1299 1300 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){ 1301 1302 int le_db_index = -1; 1303 1304 // lookup device based on IRK 1305 if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){ 1306 int i; 1307 for (i=0; i < le_device_db_count(); i++){ 1308 sm_key_t irk; 1309 bd_addr_t address; 1310 int address_type; 1311 le_device_db_info(i, &address_type, address, irk); 1312 if (memcmp(irk, setup->sm_peer_irk, 16) == 0){ 1313 log_info("sm: device found for IRK, updating"); 1314 le_db_index = i; 1315 break; 1316 } 1317 } 1318 } 1319 1320 // if not found, lookup via public address if possible 1321 log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address)); 1322 if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){ 1323 int i; 1324 for (i=0; i < le_device_db_count(); i++){ 1325 bd_addr_t address; 1326 int address_type; 1327 le_device_db_info(i, &address_type, address, NULL); 1328 log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address)); 1329 if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){ 1330 log_info("sm: device found for public address, updating"); 1331 le_db_index = i; 1332 break; 1333 } 1334 } 1335 } 1336 1337 // if not found, add to db 1338 if (le_db_index < 0) { 1339 le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk); 1340 } 1341 1342 sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index); 1343 1344 if (le_db_index >= 0){ 1345 1346 #ifdef ENABLE_LE_SIGNED_WRITE 1347 // store local CSRK 1348 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 1349 log_info("sm: store local CSRK"); 1350 le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk); 1351 le_device_db_local_counter_set(le_db_index, 0); 1352 } 1353 1354 // store remote CSRK 1355 if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 1356 log_info("sm: store remote CSRK"); 1357 le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk); 1358 le_device_db_remote_counter_set(le_db_index, 0); 1359 } 1360 #endif 1361 // store encryption information for secure connections: LTK generated by ECDH 1362 if (setup->sm_use_secure_connections){ 1363 log_info("sm: store SC LTK (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated); 1364 uint8_t zero_rand[8]; 1365 memset(zero_rand, 0, 8); 1366 le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size, 1367 sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED); 1368 } 1369 1370 // store encryption information for legacy pairing: peer LTK, EDIV, RAND 1371 else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION) 1372 && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){ 1373 log_info("sm: set encryption information (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated); 1374 le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk, 1375 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED); 1376 1377 } 1378 } 1379 1380 // keep le_db_index 1381 sm_conn->sm_le_db_index = le_db_index; 1382 } 1383 1384 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){ 1385 setup->sm_pairing_failed_reason = reason; 1386 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 1387 } 1388 1389 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){ 1390 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON); 1391 } 1392 1393 #ifdef ENABLE_LE_SECURE_CONNECTIONS 1394 1395 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn); 1396 static int sm_passkey_used(stk_generation_method_t method); 1397 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method); 1398 1399 static void sm_log_ec_keypair(void){ 1400 log_info("Elliptic curve: X"); 1401 log_info_hexdump(&ec_q[0],32); 1402 log_info("Elliptic curve: Y"); 1403 log_info_hexdump(&ec_q[32],32); 1404 } 1405 1406 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){ 1407 if (sm_passkey_used(setup->sm_stk_generation_method)){ 1408 sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A; 1409 } else { 1410 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION; 1411 } 1412 } 1413 1414 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){ 1415 if (IS_RESPONDER(sm_conn->sm_role)){ 1416 // Responder 1417 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 1418 } else { 1419 // Initiator role 1420 switch (setup->sm_stk_generation_method){ 1421 case JUST_WORKS: 1422 sm_sc_prepare_dhkey_check(sm_conn); 1423 break; 1424 1425 case NK_BOTH_INPUT: 1426 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2; 1427 break; 1428 case PK_INIT_INPUT: 1429 case PK_RESP_INPUT: 1430 case OK_BOTH_INPUT: 1431 if (setup->sm_passkey_bit < 20) { 1432 sm_sc_start_calculating_local_confirm(sm_conn); 1433 } else { 1434 sm_sc_prepare_dhkey_check(sm_conn); 1435 } 1436 break; 1437 case OOB: 1438 // TODO: implement SC OOB 1439 break; 1440 } 1441 } 1442 } 1443 1444 static uint8_t sm_sc_cmac_get_byte(uint16_t offset){ 1445 return sm_cmac_sc_buffer[offset]; 1446 } 1447 1448 static void sm_sc_cmac_done(uint8_t * hash){ 1449 log_info("sm_sc_cmac_done: "); 1450 log_info_hexdump(hash, 16); 1451 1452 sm_connection_t * sm_conn = sm_cmac_connection; 1453 sm_cmac_connection = NULL; 1454 #ifdef ENABLE_CLASSIC 1455 link_key_type_t link_key_type; 1456 #endif 1457 1458 switch (sm_conn->sm_engine_state){ 1459 case SM_SC_W4_CMAC_FOR_CONFIRMATION: 1460 memcpy(setup->sm_local_confirm, hash, 16); 1461 sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION; 1462 break; 1463 case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION: 1464 // check 1465 if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){ 1466 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED); 1467 break; 1468 } 1469 sm_sc_state_after_receiving_random(sm_conn); 1470 break; 1471 case SM_SC_W4_CALCULATE_G2: { 1472 uint32_t vab = big_endian_read_32(hash, 12) % 1000000; 1473 big_endian_store_32(setup->sm_tk, 12, vab); 1474 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 1475 sm_trigger_user_response(sm_conn); 1476 break; 1477 } 1478 case SM_SC_W4_CALCULATE_F5_SALT: 1479 memcpy(setup->sm_t, hash, 16); 1480 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY; 1481 break; 1482 case SM_SC_W4_CALCULATE_F5_MACKEY: 1483 memcpy(setup->sm_mackey, hash, 16); 1484 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK; 1485 break; 1486 case SM_SC_W4_CALCULATE_F5_LTK: 1487 // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk 1488 // Errata Service Release to the Bluetooth Specification: ESR09 1489 // E6405 – Cross transport key derivation from a key of size less than 128 bits 1490 // Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked." 1491 memcpy(setup->sm_ltk, hash, 16); 1492 memcpy(setup->sm_local_ltk, hash, 16); 1493 sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size); 1494 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK; 1495 break; 1496 case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK: 1497 memcpy(setup->sm_local_dhkey_check, hash, 16); 1498 if (IS_RESPONDER(sm_conn->sm_role)){ 1499 // responder 1500 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED){ 1501 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 1502 } else { 1503 sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND; 1504 } 1505 } else { 1506 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND; 1507 } 1508 break; 1509 case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK: 1510 if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){ 1511 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED); 1512 break; 1513 } 1514 if (IS_RESPONDER(sm_conn->sm_role)){ 1515 // responder 1516 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND; 1517 } else { 1518 // initiator 1519 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION; 1520 } 1521 break; 1522 case SM_SC_W4_CALCULATE_H6_ILK: 1523 memcpy(setup->sm_t, hash, 16); 1524 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY; 1525 break; 1526 case SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY: 1527 #ifdef ENABLE_CLASSIC 1528 reverse_128(hash, setup->sm_t); 1529 link_key_type = sm_conn->sm_connection_authenticated ? 1530 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256; 1531 log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type); 1532 if (IS_RESPONDER(sm_conn->sm_role)){ 1533 gap_store_link_key_for_bd_addr(setup->sm_m_address, setup->sm_t, link_key_type); 1534 } else { 1535 gap_store_link_key_for_bd_addr(setup->sm_s_address, setup->sm_t, link_key_type); 1536 } 1537 #endif 1538 if (IS_RESPONDER(sm_conn->sm_role)){ 1539 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 1540 } else { 1541 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 1542 } 1543 sm_done_for_handle(sm_conn->sm_handle); 1544 break; 1545 default: 1546 log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state); 1547 break; 1548 } 1549 sm_run(); 1550 } 1551 1552 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){ 1553 const uint16_t message_len = 65; 1554 sm_cmac_connection = sm_conn; 1555 memcpy(sm_cmac_sc_buffer, u, 32); 1556 memcpy(sm_cmac_sc_buffer+32, v, 32); 1557 sm_cmac_sc_buffer[64] = z; 1558 log_info("f4 key"); 1559 log_info_hexdump(x, 16); 1560 log_info("f4 message"); 1561 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1562 sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1563 } 1564 1565 static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE}; 1566 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 }; 1567 static const uint8_t f5_length[] = { 0x01, 0x00}; 1568 1569 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 1570 static void sm_sc_calculate_dhkey(sm_key256_t dhkey){ 1571 memset(dhkey, 0, 32); 1572 #if uECC_SUPPORTS_secp256r1 1573 // standard version 1574 uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey, uECC_secp256r1()); 1575 #else 1576 // static version 1577 uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey); 1578 #endif 1579 log_info("dhkey"); 1580 log_info_hexdump(dhkey, 32); 1581 } 1582 #endif 1583 1584 static void f5_calculate_salt(sm_connection_t * sm_conn){ 1585 // calculate salt for f5 1586 const uint16_t message_len = 32; 1587 sm_cmac_connection = sm_conn; 1588 memcpy(sm_cmac_sc_buffer, setup->sm_dhkey, message_len); 1589 sm_cmac_general_start(f5_salt, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1590 } 1591 1592 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){ 1593 const uint16_t message_len = 53; 1594 sm_cmac_connection = sm_conn; 1595 1596 // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey 1597 sm_cmac_sc_buffer[0] = 0; 1598 memcpy(sm_cmac_sc_buffer+01, f5_key_id, 4); 1599 memcpy(sm_cmac_sc_buffer+05, n1, 16); 1600 memcpy(sm_cmac_sc_buffer+21, n2, 16); 1601 memcpy(sm_cmac_sc_buffer+37, a1, 7); 1602 memcpy(sm_cmac_sc_buffer+44, a2, 7); 1603 memcpy(sm_cmac_sc_buffer+51, f5_length, 2); 1604 log_info("f5 key"); 1605 log_info_hexdump(t, 16); 1606 log_info("f5 message for MacKey"); 1607 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1608 sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1609 } 1610 1611 static void f5_calculate_mackey(sm_connection_t * sm_conn){ 1612 sm_key56_t bd_addr_master, bd_addr_slave; 1613 bd_addr_master[0] = setup->sm_m_addr_type; 1614 bd_addr_slave[0] = setup->sm_s_addr_type; 1615 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1616 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1617 if (IS_RESPONDER(sm_conn->sm_role)){ 1618 // responder 1619 f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave); 1620 } else { 1621 // initiator 1622 f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave); 1623 } 1624 } 1625 1626 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused 1627 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){ 1628 const uint16_t message_len = 53; 1629 sm_cmac_connection = sm_conn; 1630 sm_cmac_sc_buffer[0] = 1; 1631 // 1..52 setup before 1632 log_info("f5 key"); 1633 log_info_hexdump(t, 16); 1634 log_info("f5 message for LTK"); 1635 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1636 sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1637 } 1638 1639 static void f5_calculate_ltk(sm_connection_t * sm_conn){ 1640 f5_ltk(sm_conn, setup->sm_t); 1641 } 1642 1643 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){ 1644 const uint16_t message_len = 65; 1645 sm_cmac_connection = sm_conn; 1646 memcpy(sm_cmac_sc_buffer, n1, 16); 1647 memcpy(sm_cmac_sc_buffer+16, n2, 16); 1648 memcpy(sm_cmac_sc_buffer+32, r, 16); 1649 memcpy(sm_cmac_sc_buffer+48, io_cap, 3); 1650 memcpy(sm_cmac_sc_buffer+51, a1, 7); 1651 memcpy(sm_cmac_sc_buffer+58, a2, 7); 1652 log_info("f6 key"); 1653 log_info_hexdump(w, 16); 1654 log_info("f6 message"); 1655 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1656 sm_cmac_general_start(w, 65, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1657 } 1658 1659 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32 1660 // - U is 256 bits 1661 // - V is 256 bits 1662 // - X is 128 bits 1663 // - Y is 128 bits 1664 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){ 1665 const uint16_t message_len = 80; 1666 sm_cmac_connection = sm_conn; 1667 memcpy(sm_cmac_sc_buffer, u, 32); 1668 memcpy(sm_cmac_sc_buffer+32, v, 32); 1669 memcpy(sm_cmac_sc_buffer+64, y, 16); 1670 log_info("g2 key"); 1671 log_info_hexdump(x, 16); 1672 log_info("g2 message"); 1673 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1674 sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1675 } 1676 1677 static void g2_calculate(sm_connection_t * sm_conn) { 1678 // calc Va if numeric comparison 1679 if (IS_RESPONDER(sm_conn->sm_role)){ 1680 // responder 1681 g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);; 1682 } else { 1683 // initiator 1684 g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce); 1685 } 1686 } 1687 1688 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){ 1689 uint8_t z = 0; 1690 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){ 1691 // some form of passkey 1692 uint32_t pk = big_endian_read_32(setup->sm_tk, 12); 1693 z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1); 1694 setup->sm_passkey_bit++; 1695 } 1696 f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z); 1697 } 1698 1699 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){ 1700 uint8_t z = 0; 1701 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){ 1702 // some form of passkey 1703 uint32_t pk = big_endian_read_32(setup->sm_tk, 12); 1704 // sm_passkey_bit was increased before sending confirm value 1705 z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1); 1706 } 1707 f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z); 1708 } 1709 1710 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){ 1711 1712 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 1713 // calculate DHKEY 1714 sm_sc_calculate_dhkey(setup->sm_dhkey); 1715 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED; 1716 #endif 1717 1718 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED){ 1719 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT; 1720 return; 1721 } else { 1722 sm_conn->sm_engine_state = SM_SC_W4_CALCULATE_DHKEY; 1723 } 1724 1725 } 1726 1727 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){ 1728 // calculate DHKCheck 1729 sm_key56_t bd_addr_master, bd_addr_slave; 1730 bd_addr_master[0] = setup->sm_m_addr_type; 1731 bd_addr_slave[0] = setup->sm_s_addr_type; 1732 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1733 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1734 uint8_t iocap_a[3]; 1735 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq); 1736 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq); 1737 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq); 1738 uint8_t iocap_b[3]; 1739 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres); 1740 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres); 1741 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres); 1742 if (IS_RESPONDER(sm_conn->sm_role)){ 1743 // responder 1744 f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master); 1745 } else { 1746 // initiator 1747 f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave); 1748 } 1749 } 1750 1751 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){ 1752 // validate E = f6() 1753 sm_key56_t bd_addr_master, bd_addr_slave; 1754 bd_addr_master[0] = setup->sm_m_addr_type; 1755 bd_addr_slave[0] = setup->sm_s_addr_type; 1756 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1757 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1758 1759 uint8_t iocap_a[3]; 1760 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq); 1761 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq); 1762 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq); 1763 uint8_t iocap_b[3]; 1764 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres); 1765 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres); 1766 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres); 1767 if (IS_RESPONDER(sm_conn->sm_role)){ 1768 // responder 1769 f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave); 1770 } else { 1771 // initiator 1772 f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master); 1773 } 1774 } 1775 1776 1777 // 1778 // Link Key Conversion Function h6 1779 // 1780 // h6(W, keyID) = AES-CMACW(keyID) 1781 // - W is 128 bits 1782 // - keyID is 32 bits 1783 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){ 1784 const uint16_t message_len = 4; 1785 sm_cmac_connection = sm_conn; 1786 big_endian_store_32(sm_cmac_sc_buffer, 0, key_id); 1787 log_info("h6 key"); 1788 log_info_hexdump(w, 16); 1789 log_info("h6 message"); 1790 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1791 sm_cmac_general_start(w, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1792 } 1793 1794 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated) 1795 // Errata Service Release to the Bluetooth Specification: ESR09 1796 // E6405 – Cross transport key derivation from a key of size less than 128 bits 1797 // "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked." 1798 static void h6_calculate_ilk(sm_connection_t * sm_conn){ 1799 h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031); // "tmp1" 1800 } 1801 1802 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){ 1803 h6_engine(sm_conn, setup->sm_t, 0x6c656272); // "lebr" 1804 } 1805 1806 #endif 1807 1808 // key management legacy connections: 1809 // - potentially two different LTKs based on direction. each device stores LTK provided by peer 1810 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect) 1811 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder 1812 // - responder reconnects: responder uses LTK receveived from master 1813 1814 // key management secure connections: 1815 // - both devices store same LTK from ECDH key exchange. 1816 1817 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL) 1818 static void sm_load_security_info(sm_connection_t * sm_connection){ 1819 int encryption_key_size; 1820 int authenticated; 1821 int authorized; 1822 1823 // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled 1824 le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk, 1825 &encryption_key_size, &authenticated, &authorized); 1826 log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized); 1827 sm_connection->sm_actual_encryption_key_size = encryption_key_size; 1828 sm_connection->sm_connection_authenticated = authenticated; 1829 sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN; 1830 } 1831 #endif 1832 1833 #ifdef ENABLE_LE_PERIPHERAL 1834 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){ 1835 memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8); 1836 setup->sm_local_ediv = sm_connection->sm_local_ediv; 1837 // re-establish used key encryption size 1838 // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand 1839 sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1; 1840 // no db for authenticated flag hack: flag is stored in bit 4 of LSB 1841 sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4; 1842 log_info("sm: received ltk request with key size %u, authenticated %u", 1843 sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated); 1844 sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC; 1845 } 1846 #endif 1847 1848 static void sm_run(void){ 1849 1850 btstack_linked_list_iterator_t it; 1851 1852 // assert that stack has already bootet 1853 if (hci_get_state() != HCI_STATE_WORKING) return; 1854 1855 // assert that we can send at least commands 1856 if (!hci_can_send_command_packet_now()) return; 1857 1858 // 1859 // non-connection related behaviour 1860 // 1861 1862 // distributed key generation 1863 switch (dkg_state){ 1864 case DKG_CALC_IRK: 1865 // already busy? 1866 if (sm_aes128_state == SM_AES128_IDLE) { 1867 // IRK = d1(IR, 1, 0) 1868 sm_key_t d1_prime; 1869 sm_d1_d_prime(1, 0, d1_prime); // plaintext 1870 dkg_next_state(); 1871 sm_aes128_start(sm_persistent_ir, d1_prime, NULL); 1872 return; 1873 } 1874 break; 1875 case DKG_CALC_DHK: 1876 // already busy? 1877 if (sm_aes128_state == SM_AES128_IDLE) { 1878 // DHK = d1(IR, 3, 0) 1879 sm_key_t d1_prime; 1880 sm_d1_d_prime(3, 0, d1_prime); // plaintext 1881 dkg_next_state(); 1882 sm_aes128_start(sm_persistent_ir, d1_prime, NULL); 1883 return; 1884 } 1885 break; 1886 default: 1887 break; 1888 } 1889 1890 #ifdef ENABLE_LE_SECURE_CONNECTIONS 1891 if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){ 1892 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 1893 sm_random_start(NULL); 1894 #else 1895 ec_key_generation_state = EC_KEY_GENERATION_W4_KEY; 1896 hci_send_cmd(&hci_le_read_local_p256_public_key); 1897 #endif 1898 return; 1899 } 1900 #endif 1901 1902 // random address updates 1903 switch (rau_state){ 1904 case RAU_GET_RANDOM: 1905 rau_next_state(); 1906 sm_random_start(NULL); 1907 return; 1908 case RAU_GET_ENC: 1909 // already busy? 1910 if (sm_aes128_state == SM_AES128_IDLE) { 1911 sm_key_t r_prime; 1912 sm_ah_r_prime(sm_random_address, r_prime); 1913 rau_next_state(); 1914 sm_aes128_start(sm_persistent_irk, r_prime, NULL); 1915 return; 1916 } 1917 break; 1918 case RAU_SET_ADDRESS: 1919 log_info("New random address: %s", bd_addr_to_str(sm_random_address)); 1920 rau_state = RAU_IDLE; 1921 hci_send_cmd(&hci_le_set_random_address, sm_random_address); 1922 return; 1923 default: 1924 break; 1925 } 1926 1927 #ifdef ENABLE_CMAC_ENGINE 1928 // CMAC 1929 switch (sm_cmac_state){ 1930 case CMAC_CALC_SUBKEYS: 1931 case CMAC_CALC_MI: 1932 case CMAC_CALC_MLAST: 1933 // already busy? 1934 if (sm_aes128_state == SM_AES128_ACTIVE) break; 1935 sm_cmac_handle_aes_engine_ready(); 1936 return; 1937 default: 1938 break; 1939 } 1940 #endif 1941 1942 // CSRK Lookup 1943 // -- if csrk lookup ready, find connection that require csrk lookup 1944 if (sm_address_resolution_idle()){ 1945 hci_connections_get_iterator(&it); 1946 while(btstack_linked_list_iterator_has_next(&it)){ 1947 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 1948 sm_connection_t * sm_connection = &hci_connection->sm_connection; 1949 if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){ 1950 // and start lookup 1951 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection); 1952 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED; 1953 break; 1954 } 1955 } 1956 } 1957 1958 // -- if csrk lookup ready, resolved addresses for received addresses 1959 if (sm_address_resolution_idle()) { 1960 if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){ 1961 sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue; 1962 btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry); 1963 sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL); 1964 btstack_memory_sm_lookup_entry_free(entry); 1965 } 1966 } 1967 1968 // -- Continue with CSRK device lookup by public or resolvable private address 1969 if (!sm_address_resolution_idle()){ 1970 log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count()); 1971 while (sm_address_resolution_test < le_device_db_count()){ 1972 int addr_type; 1973 bd_addr_t addr; 1974 sm_key_t irk; 1975 le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk); 1976 log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr)); 1977 1978 if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){ 1979 log_info("LE Device Lookup: found CSRK by { addr_type, address} "); 1980 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED); 1981 break; 1982 } 1983 1984 if (sm_address_resolution_addr_type == 0){ 1985 sm_address_resolution_test++; 1986 continue; 1987 } 1988 1989 if (sm_aes128_state == SM_AES128_ACTIVE) break; 1990 1991 log_info("LE Device Lookup: calculate AH"); 1992 log_info_key("IRK", irk); 1993 1994 sm_key_t r_prime; 1995 sm_ah_r_prime(sm_address_resolution_address, r_prime); 1996 sm_address_resolution_ah_calculation_active = 1; 1997 sm_aes128_start(irk, r_prime, sm_address_resolution_context); // keep context 1998 return; 1999 } 2000 2001 if (sm_address_resolution_test >= le_device_db_count()){ 2002 log_info("LE Device Lookup: not found"); 2003 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED); 2004 } 2005 } 2006 2007 // handle basic actions that don't requires the full context 2008 hci_connections_get_iterator(&it); 2009 while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){ 2010 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 2011 sm_connection_t * sm_connection = &hci_connection->sm_connection; 2012 switch(sm_connection->sm_engine_state){ 2013 // responder side 2014 case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY: 2015 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2016 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2017 return; 2018 2019 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2020 case SM_SC_RECEIVED_LTK_REQUEST: 2021 switch (sm_connection->sm_irk_lookup_state){ 2022 case IRK_LOOKUP_FAILED: 2023 log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Failed)"); 2024 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2025 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2026 return; 2027 default: 2028 break; 2029 } 2030 break; 2031 #endif 2032 default: 2033 break; 2034 } 2035 } 2036 2037 // 2038 // active connection handling 2039 // -- use loop to handle next connection if lock on setup context is released 2040 2041 while (1) { 2042 2043 // Find connections that requires setup context and make active if no other is locked 2044 hci_connections_get_iterator(&it); 2045 while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){ 2046 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 2047 sm_connection_t * sm_connection = &hci_connection->sm_connection; 2048 // - if no connection locked and we're ready/waiting for setup context, fetch it and start 2049 int done = 1; 2050 int err; 2051 UNUSED(err); 2052 switch (sm_connection->sm_engine_state) { 2053 #ifdef ENABLE_LE_PERIPHERAL 2054 case SM_RESPONDER_SEND_SECURITY_REQUEST: 2055 // send packet if possible, 2056 if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){ 2057 const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING}; 2058 sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST; 2059 l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2060 } else { 2061 l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 2062 } 2063 // don't lock sxetup context yet 2064 done = 0; 2065 break; 2066 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED: 2067 sm_reset_setup(); 2068 sm_init_setup(sm_connection); 2069 // recover pairing request 2070 memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t)); 2071 err = sm_stk_generation_init(sm_connection); 2072 if (err){ 2073 setup->sm_pairing_failed_reason = err; 2074 sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 2075 break; 2076 } 2077 sm_timeout_start(sm_connection); 2078 // generate random number first, if we need to show passkey 2079 if (setup->sm_stk_generation_method == PK_INIT_INPUT){ 2080 sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK; 2081 break; 2082 } 2083 sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE; 2084 break; 2085 case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST: 2086 sm_reset_setup(); 2087 sm_start_calculating_ltk_from_ediv_and_rand(sm_connection); 2088 break; 2089 #endif 2090 #ifdef ENABLE_LE_CENTRAL 2091 case SM_INITIATOR_PH0_HAS_LTK: 2092 sm_reset_setup(); 2093 sm_load_security_info(sm_connection); 2094 sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION; 2095 break; 2096 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST: 2097 sm_reset_setup(); 2098 sm_init_setup(sm_connection); 2099 sm_timeout_start(sm_connection); 2100 sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST; 2101 break; 2102 #endif 2103 2104 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2105 case SM_SC_RECEIVED_LTK_REQUEST: 2106 switch (sm_connection->sm_irk_lookup_state){ 2107 case IRK_LOOKUP_SUCCEEDED: 2108 // assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null 2109 // start using context by loading security info 2110 sm_reset_setup(); 2111 sm_load_security_info(sm_connection); 2112 if (setup->sm_peer_ediv == 0 && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){ 2113 memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16); 2114 sm_connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY; 2115 break; 2116 } 2117 log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)"); 2118 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2119 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2120 // don't lock setup context yet 2121 return; 2122 default: 2123 // just wait until IRK lookup is completed 2124 // don't lock setup context yet 2125 done = 0; 2126 break; 2127 } 2128 break; 2129 #endif 2130 default: 2131 done = 0; 2132 break; 2133 } 2134 if (done){ 2135 sm_active_connection_handle = sm_connection->sm_handle; 2136 log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state); 2137 } 2138 } 2139 2140 // 2141 // active connection handling 2142 // 2143 2144 if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return; 2145 2146 sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle); 2147 if (!connection) { 2148 log_info("no connection for handle 0x%04x", sm_active_connection_handle); 2149 return; 2150 } 2151 2152 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || !defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) 2153 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_NEEDED){ 2154 setup->sm_state_vars &= ~SM_STATE_VAR_DHKEY_NEEDED; 2155 hci_send_cmd(&hci_le_generate_dhkey, &setup->sm_peer_q[0], &setup->sm_peer_q[32]); 2156 return; 2157 } 2158 #endif 2159 2160 // assert that we could send a SM PDU - not needed for all of the following 2161 if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) { 2162 log_info("cannot send now, requesting can send now event"); 2163 l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 2164 return; 2165 } 2166 2167 // send keypress notifications 2168 if (setup->sm_keypress_notification != 0xff){ 2169 uint8_t buffer[2]; 2170 buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION; 2171 buffer[1] = setup->sm_keypress_notification; 2172 setup->sm_keypress_notification = 0xff; 2173 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2174 return; 2175 } 2176 2177 sm_key_t plaintext; 2178 int key_distribution_flags; 2179 UNUSED(key_distribution_flags); 2180 2181 log_info("sm_run: state %u", connection->sm_engine_state); 2182 2183 switch (connection->sm_engine_state){ 2184 2185 // general 2186 case SM_GENERAL_SEND_PAIRING_FAILED: { 2187 uint8_t buffer[2]; 2188 buffer[0] = SM_CODE_PAIRING_FAILED; 2189 buffer[1] = setup->sm_pairing_failed_reason; 2190 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED; 2191 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2192 sm_done_for_handle(connection->sm_handle); 2193 break; 2194 } 2195 2196 // responding state 2197 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2198 case SM_SC_W2_GET_RANDOM_A: 2199 sm_random_start(connection); 2200 connection->sm_engine_state = SM_SC_W4_GET_RANDOM_A; 2201 break; 2202 case SM_SC_W2_GET_RANDOM_B: 2203 sm_random_start(connection); 2204 connection->sm_engine_state = SM_SC_W4_GET_RANDOM_B; 2205 break; 2206 case SM_SC_W2_CMAC_FOR_CONFIRMATION: 2207 if (!sm_cmac_ready()) break; 2208 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION; 2209 sm_sc_calculate_local_confirm(connection); 2210 break; 2211 case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION: 2212 if (!sm_cmac_ready()) break; 2213 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION; 2214 sm_sc_calculate_remote_confirm(connection); 2215 break; 2216 case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK: 2217 if (!sm_cmac_ready()) break; 2218 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK; 2219 sm_sc_calculate_f6_for_dhkey_check(connection); 2220 break; 2221 case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK: 2222 if (!sm_cmac_ready()) break; 2223 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 2224 sm_sc_calculate_f6_to_verify_dhkey_check(connection); 2225 break; 2226 case SM_SC_W2_CALCULATE_F5_SALT: 2227 if (!sm_cmac_ready()) break; 2228 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT; 2229 f5_calculate_salt(connection); 2230 break; 2231 case SM_SC_W2_CALCULATE_F5_MACKEY: 2232 if (!sm_cmac_ready()) break; 2233 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY; 2234 f5_calculate_mackey(connection); 2235 break; 2236 case SM_SC_W2_CALCULATE_F5_LTK: 2237 if (!sm_cmac_ready()) break; 2238 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK; 2239 f5_calculate_ltk(connection); 2240 break; 2241 case SM_SC_W2_CALCULATE_G2: 2242 if (!sm_cmac_ready()) break; 2243 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2; 2244 g2_calculate(connection); 2245 break; 2246 case SM_SC_W2_CALCULATE_H6_ILK: 2247 if (!sm_cmac_ready()) break; 2248 connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_ILK; 2249 h6_calculate_ilk(connection); 2250 break; 2251 case SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY: 2252 if (!sm_cmac_ready()) break; 2253 connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY; 2254 h6_calculate_br_edr_link_key(connection); 2255 break; 2256 #endif 2257 2258 #ifdef ENABLE_LE_CENTRAL 2259 // initiator side 2260 case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: { 2261 sm_key_t peer_ltk_flipped; 2262 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped); 2263 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED; 2264 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv); 2265 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0); 2266 uint32_t rand_low = big_endian_read_32(setup->sm_peer_rand, 4); 2267 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped); 2268 return; 2269 } 2270 2271 case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST: 2272 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST); 2273 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE; 2274 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t)); 2275 sm_timeout_reset(connection); 2276 break; 2277 #endif 2278 2279 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2280 2281 case SM_SC_SEND_PUBLIC_KEY_COMMAND: { 2282 uint8_t buffer[65]; 2283 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY; 2284 // 2285 reverse_256(&ec_q[0], &buffer[1]); 2286 reverse_256(&ec_q[32], &buffer[33]); 2287 2288 // stk generation method 2289 // passkey entry: notify app to show passkey or to request passkey 2290 switch (setup->sm_stk_generation_method){ 2291 case JUST_WORKS: 2292 case NK_BOTH_INPUT: 2293 if (IS_RESPONDER(connection->sm_role)){ 2294 // responder 2295 sm_sc_start_calculating_local_confirm(connection); 2296 } else { 2297 // initiator 2298 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2299 } 2300 break; 2301 case PK_INIT_INPUT: 2302 case PK_RESP_INPUT: 2303 case OK_BOTH_INPUT: 2304 // use random TK for display 2305 memcpy(setup->sm_ra, setup->sm_tk, 16); 2306 memcpy(setup->sm_rb, setup->sm_tk, 16); 2307 setup->sm_passkey_bit = 0; 2308 2309 if (IS_RESPONDER(connection->sm_role)){ 2310 // responder 2311 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2312 } else { 2313 // initiator 2314 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2315 } 2316 sm_trigger_user_response(connection); 2317 break; 2318 case OOB: 2319 // TODO: implement SC OOB 2320 break; 2321 } 2322 2323 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2324 sm_timeout_reset(connection); 2325 break; 2326 } 2327 case SM_SC_SEND_CONFIRMATION: { 2328 uint8_t buffer[17]; 2329 buffer[0] = SM_CODE_PAIRING_CONFIRM; 2330 reverse_128(setup->sm_local_confirm, &buffer[1]); 2331 if (IS_RESPONDER(connection->sm_role)){ 2332 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2333 } else { 2334 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2335 } 2336 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2337 sm_timeout_reset(connection); 2338 break; 2339 } 2340 case SM_SC_SEND_PAIRING_RANDOM: { 2341 uint8_t buffer[17]; 2342 buffer[0] = SM_CODE_PAIRING_RANDOM; 2343 reverse_128(setup->sm_local_nonce, &buffer[1]); 2344 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){ 2345 if (IS_RESPONDER(connection->sm_role)){ 2346 // responder 2347 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2348 } else { 2349 // initiator 2350 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2351 } 2352 } else { 2353 if (IS_RESPONDER(connection->sm_role)){ 2354 // responder 2355 if (setup->sm_stk_generation_method == NK_BOTH_INPUT){ 2356 connection->sm_engine_state = SM_SC_W2_CALCULATE_G2; 2357 } else { 2358 sm_sc_prepare_dhkey_check(connection); 2359 } 2360 } else { 2361 // initiator 2362 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2363 } 2364 } 2365 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2366 sm_timeout_reset(connection); 2367 break; 2368 } 2369 case SM_SC_SEND_DHKEY_CHECK_COMMAND: { 2370 uint8_t buffer[17]; 2371 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK; 2372 reverse_128(setup->sm_local_dhkey_check, &buffer[1]); 2373 2374 if (IS_RESPONDER(connection->sm_role)){ 2375 connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC; 2376 } else { 2377 connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND; 2378 } 2379 2380 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2381 sm_timeout_reset(connection); 2382 break; 2383 } 2384 2385 #endif 2386 2387 #ifdef ENABLE_LE_PERIPHERAL 2388 case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE: 2389 // echo initiator for now 2390 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE); 2391 key_distribution_flags = sm_key_distribution_flags_for_auth_req(); 2392 2393 if (setup->sm_use_secure_connections){ 2394 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2395 // skip LTK/EDIV for SC 2396 log_info("sm: dropping encryption information flag"); 2397 key_distribution_flags &= ~SM_KEYDIST_ENC_KEY; 2398 } else { 2399 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM; 2400 } 2401 2402 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags); 2403 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags); 2404 // update key distribution after ENC was dropped 2405 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres)); 2406 2407 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t)); 2408 sm_timeout_reset(connection); 2409 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged 2410 if (!setup->sm_use_secure_connections || setup->sm_stk_generation_method == JUST_WORKS){ 2411 sm_trigger_user_response(connection); 2412 } 2413 return; 2414 #endif 2415 2416 case SM_PH2_SEND_PAIRING_RANDOM: { 2417 uint8_t buffer[17]; 2418 buffer[0] = SM_CODE_PAIRING_RANDOM; 2419 reverse_128(setup->sm_local_random, &buffer[1]); 2420 if (IS_RESPONDER(connection->sm_role)){ 2421 connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST; 2422 } else { 2423 connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM; 2424 } 2425 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2426 sm_timeout_reset(connection); 2427 break; 2428 } 2429 2430 case SM_PH2_GET_RANDOM_TK: 2431 case SM_PH2_C1_GET_RANDOM_A: 2432 case SM_PH2_C1_GET_RANDOM_B: 2433 case SM_PH3_GET_RANDOM: 2434 case SM_PH3_GET_DIV: 2435 sm_next_responding_state(connection); 2436 sm_random_start(connection); 2437 return; 2438 2439 case SM_PH2_C1_GET_ENC_B: 2440 case SM_PH2_C1_GET_ENC_D: 2441 // already busy? 2442 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2443 sm_next_responding_state(connection); 2444 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection); 2445 return; 2446 2447 case SM_PH3_LTK_GET_ENC: 2448 case SM_RESPONDER_PH4_LTK_GET_ENC: 2449 // already busy? 2450 if (sm_aes128_state == SM_AES128_IDLE) { 2451 sm_key_t d_prime; 2452 sm_d1_d_prime(setup->sm_local_div, 0, d_prime); 2453 sm_next_responding_state(connection); 2454 sm_aes128_start(sm_persistent_er, d_prime, connection); 2455 return; 2456 } 2457 break; 2458 2459 case SM_PH3_CSRK_GET_ENC: 2460 // already busy? 2461 if (sm_aes128_state == SM_AES128_IDLE) { 2462 sm_key_t d_prime; 2463 sm_d1_d_prime(setup->sm_local_div, 1, d_prime); 2464 sm_next_responding_state(connection); 2465 sm_aes128_start(sm_persistent_er, d_prime, connection); 2466 return; 2467 } 2468 break; 2469 2470 case SM_PH2_C1_GET_ENC_C: 2471 // already busy? 2472 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2473 // calculate m_confirm using aes128 engine - step 1 2474 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext); 2475 sm_next_responding_state(connection); 2476 sm_aes128_start(setup->sm_tk, plaintext, connection); 2477 break; 2478 case SM_PH2_C1_GET_ENC_A: 2479 // already busy? 2480 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2481 // calculate confirm using aes128 engine - step 1 2482 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext); 2483 sm_next_responding_state(connection); 2484 sm_aes128_start(setup->sm_tk, plaintext, connection); 2485 break; 2486 case SM_PH2_CALC_STK: 2487 // already busy? 2488 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2489 // calculate STK 2490 if (IS_RESPONDER(connection->sm_role)){ 2491 sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext); 2492 } else { 2493 sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext); 2494 } 2495 sm_next_responding_state(connection); 2496 sm_aes128_start(setup->sm_tk, plaintext, connection); 2497 break; 2498 case SM_PH3_Y_GET_ENC: 2499 // already busy? 2500 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2501 // PH3B2 - calculate Y from - enc 2502 // Y = dm(DHK, Rand) 2503 sm_dm_r_prime(setup->sm_local_rand, plaintext); 2504 sm_next_responding_state(connection); 2505 sm_aes128_start(sm_persistent_dhk, plaintext, connection); 2506 return; 2507 case SM_PH2_C1_SEND_PAIRING_CONFIRM: { 2508 uint8_t buffer[17]; 2509 buffer[0] = SM_CODE_PAIRING_CONFIRM; 2510 reverse_128(setup->sm_local_confirm, &buffer[1]); 2511 if (IS_RESPONDER(connection->sm_role)){ 2512 connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM; 2513 } else { 2514 connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM; 2515 } 2516 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2517 sm_timeout_reset(connection); 2518 return; 2519 } 2520 #ifdef ENABLE_LE_PERIPHERAL 2521 case SM_RESPONDER_PH2_SEND_LTK_REPLY: { 2522 sm_key_t stk_flipped; 2523 reverse_128(setup->sm_ltk, stk_flipped); 2524 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED; 2525 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped); 2526 return; 2527 } 2528 case SM_RESPONDER_PH4_SEND_LTK_REPLY: { 2529 sm_key_t ltk_flipped; 2530 reverse_128(setup->sm_ltk, ltk_flipped); 2531 connection->sm_engine_state = SM_RESPONDER_IDLE; 2532 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped); 2533 return; 2534 } 2535 case SM_RESPONDER_PH4_Y_GET_ENC: 2536 // already busy? 2537 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2538 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv); 2539 // Y = dm(DHK, Rand) 2540 sm_dm_r_prime(setup->sm_local_rand, plaintext); 2541 sm_next_responding_state(connection); 2542 sm_aes128_start(sm_persistent_dhk, plaintext, connection); 2543 return; 2544 #endif 2545 #ifdef ENABLE_LE_CENTRAL 2546 case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: { 2547 sm_key_t stk_flipped; 2548 reverse_128(setup->sm_ltk, stk_flipped); 2549 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED; 2550 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped); 2551 return; 2552 } 2553 #endif 2554 2555 case SM_PH3_DISTRIBUTE_KEYS: 2556 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){ 2557 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 2558 uint8_t buffer[17]; 2559 buffer[0] = SM_CODE_ENCRYPTION_INFORMATION; 2560 reverse_128(setup->sm_ltk, &buffer[1]); 2561 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2562 sm_timeout_reset(connection); 2563 return; 2564 } 2565 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){ 2566 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 2567 uint8_t buffer[11]; 2568 buffer[0] = SM_CODE_MASTER_IDENTIFICATION; 2569 little_endian_store_16(buffer, 1, setup->sm_local_ediv); 2570 reverse_64(setup->sm_local_rand, &buffer[3]); 2571 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2572 sm_timeout_reset(connection); 2573 return; 2574 } 2575 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){ 2576 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 2577 uint8_t buffer[17]; 2578 buffer[0] = SM_CODE_IDENTITY_INFORMATION; 2579 reverse_128(sm_persistent_irk, &buffer[1]); 2580 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2581 sm_timeout_reset(connection); 2582 return; 2583 } 2584 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){ 2585 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 2586 bd_addr_t local_address; 2587 uint8_t buffer[8]; 2588 buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION; 2589 switch (gap_random_address_get_mode()){ 2590 case GAP_RANDOM_ADDRESS_TYPE_OFF: 2591 case GAP_RANDOM_ADDRESS_TYPE_STATIC: 2592 // public or static random 2593 gap_le_get_own_address(&buffer[1], local_address); 2594 break; 2595 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE: 2596 case GAP_RANDOM_ADDRESS_RESOLVABLE: 2597 // fallback to public 2598 gap_local_bd_addr(local_address); 2599 buffer[1] = 0; 2600 break; 2601 } 2602 reverse_bd_addr(local_address, &buffer[2]); 2603 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2604 sm_timeout_reset(connection); 2605 return; 2606 } 2607 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 2608 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 2609 2610 // hack to reproduce test runs 2611 if (test_use_fixed_local_csrk){ 2612 memset(setup->sm_local_csrk, 0xcc, 16); 2613 } 2614 2615 uint8_t buffer[17]; 2616 buffer[0] = SM_CODE_SIGNING_INFORMATION; 2617 reverse_128(setup->sm_local_csrk, &buffer[1]); 2618 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2619 sm_timeout_reset(connection); 2620 return; 2621 } 2622 2623 // keys are sent 2624 if (IS_RESPONDER(connection->sm_role)){ 2625 // slave -> receive master keys if any 2626 if (sm_key_distribution_all_received(connection)){ 2627 sm_key_distribution_handle_all_received(connection); 2628 connection->sm_engine_state = SM_RESPONDER_IDLE; 2629 sm_done_for_handle(connection->sm_handle); 2630 } else { 2631 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS; 2632 } 2633 } else { 2634 // master -> all done 2635 connection->sm_engine_state = SM_INITIATOR_CONNECTED; 2636 sm_done_for_handle(connection->sm_handle); 2637 } 2638 break; 2639 2640 default: 2641 break; 2642 } 2643 2644 // check again if active connection was released 2645 if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break; 2646 } 2647 } 2648 2649 // note: aes engine is ready as we just got the aes result 2650 static void sm_handle_encryption_result(uint8_t * data){ 2651 2652 sm_aes128_state = SM_AES128_IDLE; 2653 2654 if (sm_address_resolution_ah_calculation_active){ 2655 sm_address_resolution_ah_calculation_active = 0; 2656 // compare calulated address against connecting device 2657 uint8_t hash[3]; 2658 reverse_24(data, hash); 2659 if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){ 2660 log_info("LE Device Lookup: matched resolvable private address"); 2661 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED); 2662 return; 2663 } 2664 // no match, try next 2665 sm_address_resolution_test++; 2666 return; 2667 } 2668 2669 switch (dkg_state){ 2670 case DKG_W4_IRK: 2671 reverse_128(data, sm_persistent_irk); 2672 log_info_key("irk", sm_persistent_irk); 2673 dkg_next_state(); 2674 return; 2675 case DKG_W4_DHK: 2676 reverse_128(data, sm_persistent_dhk); 2677 log_info_key("dhk", sm_persistent_dhk); 2678 dkg_next_state(); 2679 // SM Init Finished 2680 return; 2681 default: 2682 break; 2683 } 2684 2685 switch (rau_state){ 2686 case RAU_W4_ENC: 2687 reverse_24(data, &sm_random_address[3]); 2688 rau_next_state(); 2689 return; 2690 default: 2691 break; 2692 } 2693 2694 #ifdef ENABLE_CMAC_ENGINE 2695 switch (sm_cmac_state){ 2696 case CMAC_W4_SUBKEYS: 2697 case CMAC_W4_MI: 2698 case CMAC_W4_MLAST: 2699 { 2700 sm_key_t t; 2701 reverse_128(data, t); 2702 sm_cmac_handle_encryption_result(t); 2703 } 2704 return; 2705 default: 2706 break; 2707 } 2708 #endif 2709 2710 // retrieve sm_connection provided to sm_aes128_start_encryption 2711 sm_connection_t * connection = (sm_connection_t*) sm_aes128_context; 2712 if (!connection) return; 2713 switch (connection->sm_engine_state){ 2714 case SM_PH2_C1_W4_ENC_A: 2715 case SM_PH2_C1_W4_ENC_C: 2716 { 2717 sm_key_t t2; 2718 reverse_128(data, t2); 2719 sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value); 2720 } 2721 sm_next_responding_state(connection); 2722 return; 2723 case SM_PH2_C1_W4_ENC_B: 2724 reverse_128(data, setup->sm_local_confirm); 2725 log_info_key("c1!", setup->sm_local_confirm); 2726 connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM; 2727 return; 2728 case SM_PH2_C1_W4_ENC_D: 2729 { 2730 sm_key_t peer_confirm_test; 2731 reverse_128(data, peer_confirm_test); 2732 log_info_key("c1!", peer_confirm_test); 2733 if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){ 2734 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED; 2735 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 2736 return; 2737 } 2738 if (IS_RESPONDER(connection->sm_role)){ 2739 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM; 2740 } else { 2741 connection->sm_engine_state = SM_PH2_CALC_STK; 2742 } 2743 } 2744 return; 2745 case SM_PH2_W4_STK: 2746 reverse_128(data, setup->sm_ltk); 2747 sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size); 2748 log_info_key("stk", setup->sm_ltk); 2749 if (IS_RESPONDER(connection->sm_role)){ 2750 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY; 2751 } else { 2752 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION; 2753 } 2754 return; 2755 case SM_PH3_Y_W4_ENC:{ 2756 sm_key_t y128; 2757 reverse_128(data, y128); 2758 setup->sm_local_y = big_endian_read_16(y128, 14); 2759 log_info_hex16("y", setup->sm_local_y); 2760 // PH3B3 - calculate EDIV 2761 setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div; 2762 log_info_hex16("ediv", setup->sm_local_ediv); 2763 // PH3B4 - calculate LTK - enc 2764 // LTK = d1(ER, DIV, 0)) 2765 connection->sm_engine_state = SM_PH3_LTK_GET_ENC; 2766 return; 2767 } 2768 case SM_RESPONDER_PH4_Y_W4_ENC:{ 2769 sm_key_t y128; 2770 reverse_128(data, y128); 2771 setup->sm_local_y = big_endian_read_16(y128, 14); 2772 log_info_hex16("y", setup->sm_local_y); 2773 2774 // PH3B3 - calculate DIV 2775 setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv; 2776 log_info_hex16("ediv", setup->sm_local_ediv); 2777 // PH3B4 - calculate LTK - enc 2778 // LTK = d1(ER, DIV, 0)) 2779 connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC; 2780 return; 2781 } 2782 case SM_PH3_LTK_W4_ENC: 2783 reverse_128(data, setup->sm_ltk); 2784 log_info_key("ltk", setup->sm_ltk); 2785 // calc CSRK next 2786 connection->sm_engine_state = SM_PH3_CSRK_GET_ENC; 2787 return; 2788 case SM_PH3_CSRK_W4_ENC: 2789 reverse_128(data, setup->sm_local_csrk); 2790 log_info_key("csrk", setup->sm_local_csrk); 2791 if (setup->sm_key_distribution_send_set){ 2792 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 2793 } else { 2794 // no keys to send, just continue 2795 if (IS_RESPONDER(connection->sm_role)){ 2796 // slave -> receive master keys 2797 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS; 2798 } else { 2799 if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){ 2800 connection->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK; 2801 } else { 2802 // master -> all done 2803 connection->sm_engine_state = SM_INITIATOR_CONNECTED; 2804 sm_done_for_handle(connection->sm_handle); 2805 } 2806 } 2807 } 2808 return; 2809 #ifdef ENABLE_LE_PERIPHERAL 2810 case SM_RESPONDER_PH4_LTK_W4_ENC: 2811 reverse_128(data, setup->sm_ltk); 2812 sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size); 2813 log_info_key("ltk", setup->sm_ltk); 2814 connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY; 2815 return; 2816 #endif 2817 default: 2818 break; 2819 } 2820 } 2821 2822 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2823 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 2824 #if !defined(WICED_VERSION) 2825 // @return OK 2826 static int sm_generate_f_rng(unsigned char * buffer, unsigned size){ 2827 if (ec_key_generation_state != EC_KEY_GENERATION_ACTIVE) return 0; 2828 int offset = setup->sm_passkey_bit; 2829 log_info("sm_generate_f_rng: size %u - offset %u", (int) size, offset); 2830 while (size) { 2831 *buffer++ = setup->sm_peer_q[offset++]; 2832 size--; 2833 } 2834 setup->sm_passkey_bit = offset; 2835 return 1; 2836 } 2837 #endif 2838 #endif 2839 #endif 2840 2841 // note: random generator is ready. this doesn NOT imply that aes engine is unused! 2842 static void sm_handle_random_result(uint8_t * data){ 2843 2844 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) 2845 2846 if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){ 2847 int num_bytes = setup->sm_passkey_bit; 2848 memcpy(&setup->sm_peer_q[num_bytes], data, 8); 2849 num_bytes += 8; 2850 setup->sm_passkey_bit = num_bytes; 2851 2852 if (num_bytes >= 64){ 2853 2854 // init pre-generated random data from sm_peer_q 2855 setup->sm_passkey_bit = 0; 2856 2857 // generate EC key 2858 #ifndef WICED_VERSION 2859 log_info("set uECC RNG for initial key generation with 64 random bytes"); 2860 // micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it 2861 uECC_set_rng(&sm_generate_f_rng); 2862 #endif /* WICED_VERSION */ 2863 2864 #if uECC_SUPPORTS_secp256r1 2865 // standard version 2866 uECC_make_key(ec_q, ec_d, uECC_secp256r1()); 2867 2868 // disable RNG again, as returning no randmon data lets shared key generation fail 2869 log_info("disable uECC RNG in standard version after key generation"); 2870 uECC_set_rng(NULL); 2871 #else 2872 // static version 2873 uECC_make_key(ec_q, ec_d); 2874 #endif /* ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS */ 2875 2876 ec_key_generation_state = EC_KEY_GENERATION_DONE; 2877 log_info("Elliptic curve: d"); 2878 log_info_hexdump(ec_d,32); 2879 sm_log_ec_keypair(); 2880 } 2881 } 2882 #endif 2883 #endif 2884 2885 switch (rau_state){ 2886 case RAU_W4_RANDOM: 2887 // non-resolvable vs. resolvable 2888 switch (gap_random_adress_type){ 2889 case GAP_RANDOM_ADDRESS_RESOLVABLE: 2890 // resolvable: use random as prand and calc address hash 2891 // "The two most significant bits of prand shall be equal to ‘0’ and ‘1" 2892 memcpy(sm_random_address, data, 3); 2893 sm_random_address[0] &= 0x3f; 2894 sm_random_address[0] |= 0x40; 2895 rau_state = RAU_GET_ENC; 2896 break; 2897 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE: 2898 default: 2899 // "The two most significant bits of the address shall be equal to ‘0’"" 2900 memcpy(sm_random_address, data, 6); 2901 sm_random_address[0] &= 0x3f; 2902 rau_state = RAU_SET_ADDRESS; 2903 break; 2904 } 2905 return; 2906 default: 2907 break; 2908 } 2909 2910 // retrieve sm_connection provided to sm_random_start 2911 sm_connection_t * connection = (sm_connection_t *) sm_random_context; 2912 if (!connection) return; 2913 switch (connection->sm_engine_state){ 2914 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2915 case SM_SC_W4_GET_RANDOM_A: 2916 memcpy(&setup->sm_local_nonce[0], data, 8); 2917 connection->sm_engine_state = SM_SC_W2_GET_RANDOM_B; 2918 break; 2919 case SM_SC_W4_GET_RANDOM_B: 2920 memcpy(&setup->sm_local_nonce[8], data, 8); 2921 // initiator & jw/nc -> send pairing random 2922 if (connection->sm_role == 0 && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){ 2923 connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 2924 break; 2925 } else { 2926 connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION; 2927 } 2928 break; 2929 #endif 2930 2931 case SM_PH2_W4_RANDOM_TK: 2932 { 2933 // map random to 0-999999 without speding much cycles on a modulus operation 2934 uint32_t tk = little_endian_read_32(data,0); 2935 tk = tk & 0xfffff; // 1048575 2936 if (tk >= 999999){ 2937 tk = tk - 999999; 2938 } 2939 sm_reset_tk(); 2940 big_endian_store_32(setup->sm_tk, 12, tk); 2941 if (IS_RESPONDER(connection->sm_role)){ 2942 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE; 2943 } else { 2944 if (setup->sm_use_secure_connections){ 2945 connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 2946 } else { 2947 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 2948 sm_trigger_user_response(connection); 2949 // response_idle == nothing <--> sm_trigger_user_response() did not require response 2950 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 2951 connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 2952 } 2953 } 2954 } 2955 return; 2956 } 2957 case SM_PH2_C1_W4_RANDOM_A: 2958 memcpy(&setup->sm_local_random[0], data, 8); // random endinaness 2959 connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B; 2960 return; 2961 case SM_PH2_C1_W4_RANDOM_B: 2962 memcpy(&setup->sm_local_random[8], data, 8); // random endinaness 2963 connection->sm_engine_state = SM_PH2_C1_GET_ENC_A; 2964 return; 2965 case SM_PH3_W4_RANDOM: 2966 reverse_64(data, setup->sm_local_rand); 2967 // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand 2968 setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1); 2969 // no db for authenticated flag hack: store flag in bit 4 of LSB 2970 setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4); 2971 connection->sm_engine_state = SM_PH3_GET_DIV; 2972 return; 2973 case SM_PH3_W4_DIV: 2974 // use 16 bit from random value as div 2975 setup->sm_local_div = big_endian_read_16(data, 0); 2976 log_info_hex16("div", setup->sm_local_div); 2977 connection->sm_engine_state = SM_PH3_Y_GET_ENC; 2978 return; 2979 default: 2980 break; 2981 } 2982 } 2983 2984 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 2985 2986 UNUSED(channel); 2987 UNUSED(size); 2988 2989 sm_connection_t * sm_conn; 2990 hci_con_handle_t con_handle; 2991 2992 switch (packet_type) { 2993 2994 case HCI_EVENT_PACKET: 2995 switch (hci_event_packet_get_type(packet)) { 2996 2997 case BTSTACK_EVENT_STATE: 2998 // bt stack activated, get started 2999 if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){ 3000 log_info("HCI Working!"); 3001 3002 3003 dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK; 3004 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3005 if (!sm_have_ec_keypair){ 3006 setup->sm_passkey_bit = 0; 3007 ec_key_generation_state = EC_KEY_GENERATION_ACTIVE; 3008 } 3009 #endif 3010 // trigger Random Address generation if requested before 3011 switch (gap_random_adress_type){ 3012 case GAP_RANDOM_ADDRESS_TYPE_OFF: 3013 rau_state = RAU_IDLE; 3014 break; 3015 case GAP_RANDOM_ADDRESS_TYPE_STATIC: 3016 rau_state = RAU_SET_ADDRESS; 3017 break; 3018 default: 3019 rau_state = RAU_GET_RANDOM; 3020 break; 3021 } 3022 sm_run(); 3023 } 3024 break; 3025 3026 case HCI_EVENT_LE_META: 3027 switch (packet[2]) { 3028 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 3029 3030 log_info("sm: connected"); 3031 3032 if (packet[3]) return; // connection failed 3033 3034 con_handle = little_endian_read_16(packet, 4); 3035 sm_conn = sm_get_connection_for_handle(con_handle); 3036 if (!sm_conn) break; 3037 3038 sm_conn->sm_handle = con_handle; 3039 sm_conn->sm_role = packet[6]; 3040 sm_conn->sm_peer_addr_type = packet[7]; 3041 reverse_bd_addr(&packet[8], sm_conn->sm_peer_address); 3042 3043 log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master"); 3044 3045 // reset security properties 3046 sm_conn->sm_connection_encrypted = 0; 3047 sm_conn->sm_connection_authenticated = 0; 3048 sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN; 3049 sm_conn->sm_le_db_index = -1; 3050 3051 // prepare CSRK lookup (does not involve setup) 3052 sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY; 3053 3054 // just connected -> everything else happens in sm_run() 3055 if (IS_RESPONDER(sm_conn->sm_role)){ 3056 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead 3057 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){ 3058 if (sm_slave_request_security) { 3059 // request security if requested by app 3060 sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST; 3061 } else { 3062 // otherwise, wait for pairing request 3063 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 3064 } 3065 } 3066 break; 3067 } else { 3068 // master 3069 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3070 } 3071 break; 3072 3073 case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST: 3074 con_handle = little_endian_read_16(packet, 3); 3075 sm_conn = sm_get_connection_for_handle(con_handle); 3076 if (!sm_conn) break; 3077 3078 log_info("LTK Request: state %u", sm_conn->sm_engine_state); 3079 if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){ 3080 sm_conn->sm_engine_state = SM_PH2_CALC_STK; 3081 break; 3082 } 3083 if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){ 3084 // PH2 SEND LTK as we need to exchange keys in PH3 3085 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY; 3086 break; 3087 } 3088 3089 // store rand and ediv 3090 reverse_64(&packet[5], sm_conn->sm_local_rand); 3091 sm_conn->sm_local_ediv = little_endian_read_16(packet, 13); 3092 3093 // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a 3094 // potentially stored LTK is from the master 3095 if (sm_conn->sm_local_ediv != 0 || !sm_is_null_random(sm_conn->sm_local_rand)){ 3096 sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST; 3097 break; 3098 } 3099 3100 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3101 sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST; 3102 #else 3103 log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported"); 3104 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY; 3105 #endif 3106 break; 3107 3108 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) 3109 case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE: 3110 if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){ 3111 log_error("Read Local P256 Public Key failed"); 3112 break; 3113 } 3114 3115 hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &ec_q[0]); 3116 hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &ec_q[32]); 3117 3118 ec_key_generation_state = EC_KEY_GENERATION_DONE; 3119 sm_log_ec_keypair(); 3120 break; 3121 case HCI_SUBEVENT_LE_GENERATE_DHKEY_COMPLETE: 3122 sm_conn = sm_get_connection_for_handle(sm_active_connection_handle); 3123 if (hci_subevent_le_generate_dhkey_complete_get_status(packet)){ 3124 log_error("Generate DHKEY failed -> abort"); 3125 // abort pairing with 'unspecified reason' 3126 sm_pdu_received_in_wrong_state(sm_conn); 3127 break; 3128 } 3129 3130 hci_subevent_le_generate_dhkey_complete_get_dhkey(packet, &setup->sm_dhkey[0]); 3131 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED; 3132 log_info("dhkey"); 3133 log_info_hexdump(&setup->sm_dhkey[0], 32); 3134 3135 // trigger next step 3136 if (sm_conn->sm_engine_state == SM_SC_W4_CALCULATE_DHKEY){ 3137 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT; 3138 } 3139 break; 3140 #endif 3141 default: 3142 break; 3143 } 3144 break; 3145 3146 case HCI_EVENT_ENCRYPTION_CHANGE: 3147 con_handle = little_endian_read_16(packet, 3); 3148 sm_conn = sm_get_connection_for_handle(con_handle); 3149 if (!sm_conn) break; 3150 3151 sm_conn->sm_connection_encrypted = packet[5]; 3152 log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted, 3153 sm_conn->sm_actual_encryption_key_size); 3154 log_info("event handler, state %u", sm_conn->sm_engine_state); 3155 if (!sm_conn->sm_connection_encrypted) break; 3156 // continue if part of initial pairing 3157 switch (sm_conn->sm_engine_state){ 3158 case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED: 3159 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3160 sm_done_for_handle(sm_conn->sm_handle); 3161 break; 3162 case SM_PH2_W4_CONNECTION_ENCRYPTED: 3163 if (IS_RESPONDER(sm_conn->sm_role)){ 3164 // slave 3165 if (setup->sm_use_secure_connections){ 3166 sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 3167 } else { 3168 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3169 } 3170 } else { 3171 // master 3172 if (sm_key_distribution_all_received(sm_conn)){ 3173 // skip receiving keys as there are none 3174 sm_key_distribution_handle_all_received(sm_conn); 3175 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3176 } else { 3177 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS; 3178 } 3179 } 3180 break; 3181 default: 3182 break; 3183 } 3184 break; 3185 3186 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE: 3187 con_handle = little_endian_read_16(packet, 3); 3188 sm_conn = sm_get_connection_for_handle(con_handle); 3189 if (!sm_conn) break; 3190 3191 log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size); 3192 log_info("event handler, state %u", sm_conn->sm_engine_state); 3193 // continue if part of initial pairing 3194 switch (sm_conn->sm_engine_state){ 3195 case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED: 3196 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3197 sm_done_for_handle(sm_conn->sm_handle); 3198 break; 3199 case SM_PH2_W4_CONNECTION_ENCRYPTED: 3200 if (IS_RESPONDER(sm_conn->sm_role)){ 3201 // slave 3202 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3203 } else { 3204 // master 3205 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS; 3206 } 3207 break; 3208 default: 3209 break; 3210 } 3211 break; 3212 3213 3214 case HCI_EVENT_DISCONNECTION_COMPLETE: 3215 con_handle = little_endian_read_16(packet, 3); 3216 sm_done_for_handle(con_handle); 3217 sm_conn = sm_get_connection_for_handle(con_handle); 3218 if (!sm_conn) break; 3219 3220 // delete stored bonding on disconnect with authentication failure in ph0 3221 if (sm_conn->sm_role == 0 3222 && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED 3223 && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){ 3224 le_device_db_remove(sm_conn->sm_le_db_index); 3225 } 3226 3227 sm_conn->sm_engine_state = SM_GENERAL_IDLE; 3228 sm_conn->sm_handle = 0; 3229 break; 3230 3231 case HCI_EVENT_COMMAND_COMPLETE: 3232 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){ 3233 sm_handle_encryption_result(&packet[6]); 3234 break; 3235 } 3236 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){ 3237 sm_handle_random_result(&packet[6]); 3238 break; 3239 } 3240 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)){ 3241 // Hack for Nordic nRF5 series that doesn't have public address: 3242 // - with patches from port/nrf5-zephyr, hci_read_bd_addr returns random static address 3243 // - we use this as default for advertisements/connections 3244 bd_addr_t addr; 3245 reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr); 3246 if (hci_get_manufacturer() == BLUETOOTH_COMPANY_ID_NORDIC_SEMICONDUCTOR_ASA){ 3247 log_info("nRF5: using (fake) public address as random static address"); 3248 gap_random_address_set(addr); 3249 } 3250 3251 // set local addr for le device db 3252 le_device_db_set_local_bd_addr(addr); 3253 } 3254 break; 3255 default: 3256 break; 3257 } 3258 break; 3259 default: 3260 break; 3261 } 3262 3263 sm_run(); 3264 } 3265 3266 static inline int sm_calc_actual_encryption_key_size(int other){ 3267 if (other < sm_min_encryption_key_size) return 0; 3268 if (other < sm_max_encryption_key_size) return other; 3269 return sm_max_encryption_key_size; 3270 } 3271 3272 3273 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3274 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method){ 3275 switch (method){ 3276 case JUST_WORKS: 3277 case NK_BOTH_INPUT: 3278 return 1; 3279 default: 3280 return 0; 3281 } 3282 } 3283 // responder 3284 3285 static int sm_passkey_used(stk_generation_method_t method){ 3286 switch (method){ 3287 case PK_RESP_INPUT: 3288 return 1; 3289 default: 3290 return 0; 3291 } 3292 } 3293 #endif 3294 3295 /** 3296 * @return ok 3297 */ 3298 static int sm_validate_stk_generation_method(void){ 3299 // check if STK generation method is acceptable by client 3300 switch (setup->sm_stk_generation_method){ 3301 case JUST_WORKS: 3302 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0; 3303 case PK_RESP_INPUT: 3304 case PK_INIT_INPUT: 3305 case OK_BOTH_INPUT: 3306 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0; 3307 case OOB: 3308 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0; 3309 case NK_BOTH_INPUT: 3310 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0; 3311 return 1; 3312 default: 3313 return 0; 3314 } 3315 } 3316 3317 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){ 3318 3319 UNUSED(size); 3320 3321 if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){ 3322 sm_run(); 3323 } 3324 3325 if (packet_type != SM_DATA_PACKET) return; 3326 3327 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3328 if (!sm_conn) return; 3329 3330 if (packet[0] == SM_CODE_PAIRING_FAILED){ 3331 sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED; 3332 return; 3333 } 3334 3335 log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]); 3336 3337 int err; 3338 UNUSED(err); 3339 3340 if (packet[0] == SM_CODE_KEYPRESS_NOTIFICATION){ 3341 uint8_t buffer[5]; 3342 buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION; 3343 buffer[1] = 3; 3344 little_endian_store_16(buffer, 2, con_handle); 3345 buffer[4] = packet[1]; 3346 sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer)); 3347 return; 3348 } 3349 3350 switch (sm_conn->sm_engine_state){ 3351 3352 // a sm timeout requries a new physical connection 3353 case SM_GENERAL_TIMEOUT: 3354 return; 3355 3356 #ifdef ENABLE_LE_CENTRAL 3357 3358 // Initiator 3359 case SM_INITIATOR_CONNECTED: 3360 if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){ 3361 sm_pdu_received_in_wrong_state(sm_conn); 3362 break; 3363 } 3364 if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){ 3365 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3366 break; 3367 } 3368 if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){ 3369 sm_key_t ltk; 3370 le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL); 3371 if (!sm_is_null_key(ltk)){ 3372 log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index); 3373 sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 3374 } else { 3375 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3376 } 3377 break; 3378 } 3379 // otherwise, store security request 3380 sm_conn->sm_security_request_received = 1; 3381 break; 3382 3383 case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE: 3384 if (packet[0] != SM_CODE_PAIRING_RESPONSE){ 3385 sm_pdu_received_in_wrong_state(sm_conn); 3386 break; 3387 } 3388 // store pairing request 3389 memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t)); 3390 err = sm_stk_generation_init(sm_conn); 3391 if (err){ 3392 setup->sm_pairing_failed_reason = err; 3393 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 3394 break; 3395 } 3396 3397 // generate random number first, if we need to show passkey 3398 if (setup->sm_stk_generation_method == PK_RESP_INPUT){ 3399 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK; 3400 break; 3401 } 3402 3403 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3404 if (setup->sm_use_secure_connections){ 3405 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged 3406 if (setup->sm_stk_generation_method == JUST_WORKS){ 3407 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3408 sm_trigger_user_response(sm_conn); 3409 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 3410 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3411 } 3412 } else { 3413 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3414 } 3415 break; 3416 } 3417 #endif 3418 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3419 sm_trigger_user_response(sm_conn); 3420 // response_idle == nothing <--> sm_trigger_user_response() did not require response 3421 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 3422 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 3423 } 3424 break; 3425 3426 case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM: 3427 if (packet[0] != SM_CODE_PAIRING_CONFIRM){ 3428 sm_pdu_received_in_wrong_state(sm_conn); 3429 break; 3430 } 3431 3432 // store s_confirm 3433 reverse_128(&packet[1], setup->sm_peer_confirm); 3434 sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM; 3435 break; 3436 3437 case SM_INITIATOR_PH2_W4_PAIRING_RANDOM: 3438 if (packet[0] != SM_CODE_PAIRING_RANDOM){ 3439 sm_pdu_received_in_wrong_state(sm_conn); 3440 break;; 3441 } 3442 3443 // received random value 3444 reverse_128(&packet[1], setup->sm_peer_random); 3445 sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C; 3446 break; 3447 #endif 3448 3449 #ifdef ENABLE_LE_PERIPHERAL 3450 // Responder 3451 case SM_RESPONDER_IDLE: 3452 case SM_RESPONDER_SEND_SECURITY_REQUEST: 3453 case SM_RESPONDER_PH1_W4_PAIRING_REQUEST: 3454 if (packet[0] != SM_CODE_PAIRING_REQUEST){ 3455 sm_pdu_received_in_wrong_state(sm_conn); 3456 break;; 3457 } 3458 3459 // store pairing request 3460 memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t)); 3461 sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED; 3462 break; 3463 #endif 3464 3465 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3466 case SM_SC_W4_PUBLIC_KEY_COMMAND: 3467 if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){ 3468 sm_pdu_received_in_wrong_state(sm_conn); 3469 break; 3470 } 3471 3472 // store public key for DH Key calculation 3473 reverse_256(&packet[01], &setup->sm_peer_q[0]); 3474 reverse_256(&packet[33], &setup->sm_peer_q[32]); 3475 3476 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 3477 // validate public key 3478 err = 0; 3479 #if uECC_SUPPORTS_secp256r1 3480 // standard version 3481 err = uECC_valid_public_key(setup->sm_peer_q, uECC_secp256r1()) == 0; 3482 #else 3483 // static version 3484 err = uECC_valid_public_key(setup->sm_peer_q) == 0; 3485 #endif 3486 if (err){ 3487 log_error("sm: peer public key invalid %x", err); 3488 // uses "unspecified reason", there is no "public key invalid" error code 3489 sm_pdu_received_in_wrong_state(sm_conn); 3490 break; 3491 } 3492 #endif 3493 3494 #ifndef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 3495 // start calculating dhkey 3496 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_NEEDED; 3497 #endif 3498 3499 if (IS_RESPONDER(sm_conn->sm_role)){ 3500 // responder 3501 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3502 } else { 3503 // initiator 3504 // stk generation method 3505 // passkey entry: notify app to show passkey or to request passkey 3506 switch (setup->sm_stk_generation_method){ 3507 case JUST_WORKS: 3508 case NK_BOTH_INPUT: 3509 sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION; 3510 break; 3511 case PK_RESP_INPUT: 3512 sm_sc_start_calculating_local_confirm(sm_conn); 3513 break; 3514 case PK_INIT_INPUT: 3515 case OK_BOTH_INPUT: 3516 if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){ 3517 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 3518 break; 3519 } 3520 sm_sc_start_calculating_local_confirm(sm_conn); 3521 break; 3522 case OOB: 3523 // TODO: implement SC OOB 3524 break; 3525 } 3526 } 3527 break; 3528 3529 case SM_SC_W4_CONFIRMATION: 3530 if (packet[0] != SM_CODE_PAIRING_CONFIRM){ 3531 sm_pdu_received_in_wrong_state(sm_conn); 3532 break; 3533 } 3534 // received confirm value 3535 reverse_128(&packet[1], setup->sm_peer_confirm); 3536 3537 if (IS_RESPONDER(sm_conn->sm_role)){ 3538 // responder 3539 if (sm_passkey_used(setup->sm_stk_generation_method)){ 3540 if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){ 3541 // still waiting for passkey 3542 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 3543 break; 3544 } 3545 } 3546 sm_sc_start_calculating_local_confirm(sm_conn); 3547 } else { 3548 // initiator 3549 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){ 3550 sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A; 3551 } else { 3552 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 3553 } 3554 } 3555 break; 3556 3557 case SM_SC_W4_PAIRING_RANDOM: 3558 if (packet[0] != SM_CODE_PAIRING_RANDOM){ 3559 sm_pdu_received_in_wrong_state(sm_conn); 3560 break; 3561 } 3562 3563 // received random value 3564 reverse_128(&packet[1], setup->sm_peer_nonce); 3565 3566 // validate confirm value if Cb = f4(Pkb, Pka, Nb, z) 3567 // only check for JUST WORK/NC in initiator role AND passkey entry 3568 if (sm_conn->sm_role || sm_passkey_used(setup->sm_stk_generation_method)) { 3569 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION; 3570 } 3571 3572 sm_sc_state_after_receiving_random(sm_conn); 3573 break; 3574 3575 case SM_SC_W2_CALCULATE_G2: 3576 case SM_SC_W4_CALCULATE_G2: 3577 case SM_SC_W4_CALCULATE_DHKEY: 3578 case SM_SC_W2_CALCULATE_F5_SALT: 3579 case SM_SC_W4_CALCULATE_F5_SALT: 3580 case SM_SC_W2_CALCULATE_F5_MACKEY: 3581 case SM_SC_W4_CALCULATE_F5_MACKEY: 3582 case SM_SC_W2_CALCULATE_F5_LTK: 3583 case SM_SC_W4_CALCULATE_F5_LTK: 3584 case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK: 3585 case SM_SC_W4_DHKEY_CHECK_COMMAND: 3586 case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK: 3587 if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){ 3588 sm_pdu_received_in_wrong_state(sm_conn); 3589 break; 3590 } 3591 // store DHKey Check 3592 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED; 3593 reverse_128(&packet[01], setup->sm_peer_dhkey_check); 3594 3595 // have we been only waiting for dhkey check command? 3596 if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){ 3597 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 3598 } 3599 break; 3600 #endif 3601 3602 #ifdef ENABLE_LE_PERIPHERAL 3603 case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM: 3604 if (packet[0] != SM_CODE_PAIRING_CONFIRM){ 3605 sm_pdu_received_in_wrong_state(sm_conn); 3606 break; 3607 } 3608 3609 // received confirm value 3610 reverse_128(&packet[1], setup->sm_peer_confirm); 3611 3612 // notify client to hide shown passkey 3613 if (setup->sm_stk_generation_method == PK_INIT_INPUT){ 3614 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 3615 } 3616 3617 // handle user cancel pairing? 3618 if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){ 3619 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED; 3620 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 3621 break; 3622 } 3623 3624 // wait for user action? 3625 if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){ 3626 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3627 break; 3628 } 3629 3630 // calculate and send local_confirm 3631 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 3632 break; 3633 3634 case SM_RESPONDER_PH2_W4_PAIRING_RANDOM: 3635 if (packet[0] != SM_CODE_PAIRING_RANDOM){ 3636 sm_pdu_received_in_wrong_state(sm_conn); 3637 break;; 3638 } 3639 3640 // received random value 3641 reverse_128(&packet[1], setup->sm_peer_random); 3642 sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C; 3643 break; 3644 #endif 3645 3646 case SM_PH3_RECEIVE_KEYS: 3647 switch(packet[0]){ 3648 case SM_CODE_ENCRYPTION_INFORMATION: 3649 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 3650 reverse_128(&packet[1], setup->sm_peer_ltk); 3651 break; 3652 3653 case SM_CODE_MASTER_IDENTIFICATION: 3654 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 3655 setup->sm_peer_ediv = little_endian_read_16(packet, 1); 3656 reverse_64(&packet[3], setup->sm_peer_rand); 3657 break; 3658 3659 case SM_CODE_IDENTITY_INFORMATION: 3660 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 3661 reverse_128(&packet[1], setup->sm_peer_irk); 3662 break; 3663 3664 case SM_CODE_IDENTITY_ADDRESS_INFORMATION: 3665 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 3666 setup->sm_peer_addr_type = packet[1]; 3667 reverse_bd_addr(&packet[2], setup->sm_peer_address); 3668 break; 3669 3670 case SM_CODE_SIGNING_INFORMATION: 3671 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 3672 reverse_128(&packet[1], setup->sm_peer_csrk); 3673 break; 3674 default: 3675 // Unexpected PDU 3676 log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]); 3677 break; 3678 } 3679 // done with key distribution? 3680 if (sm_key_distribution_all_received(sm_conn)){ 3681 3682 sm_key_distribution_handle_all_received(sm_conn); 3683 3684 if (IS_RESPONDER(sm_conn->sm_role)){ 3685 if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){ 3686 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK; 3687 } else { 3688 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 3689 sm_done_for_handle(sm_conn->sm_handle); 3690 } 3691 } else { 3692 if (setup->sm_use_secure_connections){ 3693 sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 3694 } else { 3695 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3696 } 3697 } 3698 } 3699 break; 3700 default: 3701 // Unexpected PDU 3702 log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state); 3703 break; 3704 } 3705 3706 // try to send preparared packet 3707 sm_run(); 3708 } 3709 3710 // Security Manager Client API 3711 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){ 3712 sm_get_oob_data = get_oob_data_callback; 3713 } 3714 3715 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){ 3716 btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler); 3717 } 3718 3719 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){ 3720 sm_accepted_stk_generation_methods = accepted_stk_generation_methods; 3721 } 3722 3723 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){ 3724 sm_min_encryption_key_size = min_size; 3725 sm_max_encryption_key_size = max_size; 3726 } 3727 3728 void sm_set_authentication_requirements(uint8_t auth_req){ 3729 sm_auth_req = auth_req; 3730 } 3731 3732 void sm_set_io_capabilities(io_capability_t io_capability){ 3733 sm_io_capabilities = io_capability; 3734 } 3735 3736 #ifdef ENABLE_LE_PERIPHERAL 3737 void sm_set_request_security(int enable){ 3738 sm_slave_request_security = enable; 3739 } 3740 #endif 3741 3742 void sm_set_er(sm_key_t er){ 3743 memcpy(sm_persistent_er, er, 16); 3744 } 3745 3746 void sm_set_ir(sm_key_t ir){ 3747 memcpy(sm_persistent_ir, ir, 16); 3748 } 3749 3750 // Testing support only 3751 void sm_test_set_irk(sm_key_t irk){ 3752 memcpy(sm_persistent_irk, irk, 16); 3753 sm_persistent_irk_ready = 1; 3754 } 3755 3756 void sm_test_use_fixed_local_csrk(void){ 3757 test_use_fixed_local_csrk = 1; 3758 } 3759 3760 void sm_init(void){ 3761 // set some (BTstack default) ER and IR 3762 int i; 3763 sm_key_t er; 3764 sm_key_t ir; 3765 for (i=0;i<16;i++){ 3766 er[i] = 0x30 + i; 3767 ir[i] = 0x90 + i; 3768 } 3769 sm_set_er(er); 3770 sm_set_ir(ir); 3771 // defaults 3772 sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS 3773 | SM_STK_GENERATION_METHOD_OOB 3774 | SM_STK_GENERATION_METHOD_PASSKEY 3775 | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON; 3776 3777 sm_max_encryption_key_size = 16; 3778 sm_min_encryption_key_size = 7; 3779 3780 #ifdef ENABLE_CMAC_ENGINE 3781 sm_cmac_state = CMAC_IDLE; 3782 #endif 3783 dkg_state = DKG_W4_WORKING; 3784 rau_state = RAU_W4_WORKING; 3785 sm_aes128_state = SM_AES128_IDLE; 3786 sm_address_resolution_test = -1; // no private address to resolve yet 3787 sm_address_resolution_ah_calculation_active = 0; 3788 sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE; 3789 sm_address_resolution_general_queue = NULL; 3790 3791 gap_random_adress_update_period = 15 * 60 * 1000L; 3792 sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 3793 3794 test_use_fixed_local_csrk = 0; 3795 3796 // register for HCI Events from HCI 3797 hci_event_callback_registration.callback = &sm_event_packet_handler; 3798 hci_add_event_handler(&hci_event_callback_registration); 3799 3800 // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW 3801 l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 3802 3803 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3804 ec_key_generation_state = EC_KEY_GENERATION_IDLE; 3805 #endif 3806 } 3807 3808 void sm_use_fixed_ec_keypair(uint8_t * qx, uint8_t * qy, uint8_t * d){ 3809 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3810 memcpy(&ec_q[0], qx, 32); 3811 memcpy(&ec_q[32], qy, 32); 3812 memcpy(ec_d, d, 32); 3813 sm_have_ec_keypair = 1; 3814 ec_key_generation_state = EC_KEY_GENERATION_DONE; 3815 #else 3816 UNUSED(qx); 3817 UNUSED(qy); 3818 UNUSED(d); 3819 #endif 3820 } 3821 3822 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3823 static void parse_hex(uint8_t * buffer, const char * hex_string){ 3824 while (*hex_string){ 3825 int high_nibble = nibble_for_char(*hex_string++); 3826 int low_nibble = nibble_for_char(*hex_string++); 3827 *buffer++ = (high_nibble << 4) | low_nibble; 3828 } 3829 } 3830 #endif 3831 3832 void sm_test_use_fixed_ec_keypair(void){ 3833 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3834 const char * ec_d_string = "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd"; 3835 const char * ec_qx_string = "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6"; 3836 const char * ec_qy_string = "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b"; 3837 parse_hex(ec_d, ec_d_string); 3838 parse_hex(&ec_q[0], ec_qx_string); 3839 parse_hex(&ec_q[32], ec_qy_string); 3840 sm_have_ec_keypair = 1; 3841 ec_key_generation_state = EC_KEY_GENERATION_DONE; 3842 #endif 3843 } 3844 3845 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){ 3846 hci_connection_t * hci_con = hci_connection_for_handle(con_handle); 3847 if (!hci_con) return NULL; 3848 return &hci_con->sm_connection; 3849 } 3850 3851 // @returns 0 if not encrypted, 7-16 otherwise 3852 int sm_encryption_key_size(hci_con_handle_t con_handle){ 3853 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3854 if (!sm_conn) return 0; // wrong connection 3855 if (!sm_conn->sm_connection_encrypted) return 0; 3856 return sm_conn->sm_actual_encryption_key_size; 3857 } 3858 3859 int sm_authenticated(hci_con_handle_t con_handle){ 3860 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3861 if (!sm_conn) return 0; // wrong connection 3862 if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated 3863 return sm_conn->sm_connection_authenticated; 3864 } 3865 3866 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){ 3867 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3868 if (!sm_conn) return AUTHORIZATION_UNKNOWN; // wrong connection 3869 if (!sm_conn->sm_connection_encrypted) return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized 3870 if (!sm_conn->sm_connection_authenticated) return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized 3871 return sm_conn->sm_connection_authorization_state; 3872 } 3873 3874 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){ 3875 switch (sm_conn->sm_engine_state){ 3876 case SM_GENERAL_IDLE: 3877 case SM_RESPONDER_IDLE: 3878 sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST; 3879 sm_run(); 3880 break; 3881 default: 3882 break; 3883 } 3884 } 3885 3886 /** 3887 * @brief Trigger Security Request 3888 */ 3889 void sm_send_security_request(hci_con_handle_t con_handle){ 3890 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3891 if (!sm_conn) return; 3892 sm_send_security_request_for_connection(sm_conn); 3893 } 3894 3895 // request pairing 3896 void sm_request_pairing(hci_con_handle_t con_handle){ 3897 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3898 if (!sm_conn) return; // wrong connection 3899 3900 log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state); 3901 if (IS_RESPONDER(sm_conn->sm_role)){ 3902 sm_send_security_request_for_connection(sm_conn); 3903 } else { 3904 // used as a trigger to start central/master/initiator security procedures 3905 uint16_t ediv; 3906 sm_key_t ltk; 3907 if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){ 3908 switch (sm_conn->sm_irk_lookup_state){ 3909 case IRK_LOOKUP_FAILED: 3910 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3911 break; 3912 case IRK_LOOKUP_SUCCEEDED: 3913 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, ltk, NULL, NULL, NULL); 3914 if (!sm_is_null_key(ltk) || ediv){ 3915 log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index); 3916 sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 3917 } else { 3918 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3919 } 3920 break; 3921 default: 3922 sm_conn->sm_bonding_requested = 1; 3923 break; 3924 } 3925 } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){ 3926 sm_conn->sm_bonding_requested = 1; 3927 } 3928 } 3929 sm_run(); 3930 } 3931 3932 // called by client app on authorization request 3933 void sm_authorization_decline(hci_con_handle_t con_handle){ 3934 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3935 if (!sm_conn) return; // wrong connection 3936 sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED; 3937 sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0); 3938 } 3939 3940 void sm_authorization_grant(hci_con_handle_t con_handle){ 3941 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3942 if (!sm_conn) return; // wrong connection 3943 sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED; 3944 sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1); 3945 } 3946 3947 // GAP Bonding API 3948 3949 void sm_bonding_decline(hci_con_handle_t con_handle){ 3950 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3951 if (!sm_conn) return; // wrong connection 3952 setup->sm_user_response = SM_USER_RESPONSE_DECLINE; 3953 3954 if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){ 3955 switch (setup->sm_stk_generation_method){ 3956 case PK_RESP_INPUT: 3957 case PK_INIT_INPUT: 3958 case OK_BOTH_INPUT: 3959 sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED); 3960 break; 3961 case NK_BOTH_INPUT: 3962 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED); 3963 break; 3964 case JUST_WORKS: 3965 case OOB: 3966 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON); 3967 break; 3968 } 3969 } 3970 sm_run(); 3971 } 3972 3973 void sm_just_works_confirm(hci_con_handle_t con_handle){ 3974 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3975 if (!sm_conn) return; // wrong connection 3976 setup->sm_user_response = SM_USER_RESPONSE_CONFIRM; 3977 if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){ 3978 if (setup->sm_use_secure_connections){ 3979 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3980 } else { 3981 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 3982 } 3983 } 3984 3985 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3986 if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){ 3987 sm_sc_prepare_dhkey_check(sm_conn); 3988 } 3989 #endif 3990 3991 sm_run(); 3992 } 3993 3994 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){ 3995 // for now, it's the same 3996 sm_just_works_confirm(con_handle); 3997 } 3998 3999 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){ 4000 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4001 if (!sm_conn) return; // wrong connection 4002 sm_reset_tk(); 4003 big_endian_store_32(setup->sm_tk, 12, passkey); 4004 setup->sm_user_response = SM_USER_RESPONSE_PASSKEY; 4005 if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){ 4006 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 4007 } 4008 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4009 memcpy(setup->sm_ra, setup->sm_tk, 16); 4010 memcpy(setup->sm_rb, setup->sm_tk, 16); 4011 if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){ 4012 sm_sc_start_calculating_local_confirm(sm_conn); 4013 } 4014 #endif 4015 sm_run(); 4016 } 4017 4018 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){ 4019 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4020 if (!sm_conn) return; // wrong connection 4021 if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return; 4022 setup->sm_keypress_notification = action; 4023 sm_run(); 4024 } 4025 4026 /** 4027 * @brief Identify device in LE Device DB 4028 * @param handle 4029 * @returns index from le_device_db or -1 if not found/identified 4030 */ 4031 int sm_le_device_index(hci_con_handle_t con_handle ){ 4032 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4033 if (!sm_conn) return -1; 4034 return sm_conn->sm_le_db_index; 4035 } 4036 4037 static int gap_random_address_type_requires_updates(void){ 4038 if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0; 4039 if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0; 4040 return 1; 4041 } 4042 4043 static uint8_t own_address_type(void){ 4044 switch (gap_random_adress_type){ 4045 case GAP_RANDOM_ADDRESS_TYPE_OFF: 4046 return BD_ADDR_TYPE_LE_PUBLIC; 4047 default: 4048 return BD_ADDR_TYPE_LE_RANDOM; 4049 } 4050 } 4051 4052 // GAP LE API 4053 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){ 4054 gap_random_address_update_stop(); 4055 gap_random_adress_type = random_address_type; 4056 hci_le_set_own_address_type(own_address_type()); 4057 if (!gap_random_address_type_requires_updates()) return; 4058 gap_random_address_update_start(); 4059 gap_random_address_trigger(); 4060 } 4061 4062 gap_random_address_type_t gap_random_address_get_mode(void){ 4063 return gap_random_adress_type; 4064 } 4065 4066 void gap_random_address_set_update_period(int period_ms){ 4067 gap_random_adress_update_period = period_ms; 4068 if (!gap_random_address_type_requires_updates()) return; 4069 gap_random_address_update_stop(); 4070 gap_random_address_update_start(); 4071 } 4072 4073 void gap_random_address_set(bd_addr_t addr){ 4074 gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC); 4075 memcpy(sm_random_address, addr, 6); 4076 if (rau_state == RAU_W4_WORKING) return; 4077 rau_state = RAU_SET_ADDRESS; 4078 sm_run(); 4079 } 4080 4081 #ifdef ENABLE_LE_PERIPHERAL 4082 /* 4083 * @brief Set Advertisement Paramters 4084 * @param adv_int_min 4085 * @param adv_int_max 4086 * @param adv_type 4087 * @param direct_address_type 4088 * @param direct_address 4089 * @param channel_map 4090 * @param filter_policy 4091 * 4092 * @note own_address_type is used from gap_random_address_set_mode 4093 */ 4094 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type, 4095 uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){ 4096 hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, 4097 direct_address_typ, direct_address, channel_map, filter_policy); 4098 } 4099 #endif 4100 4101