1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define __BTSTACK_FILE__ "sm.c" 39 40 #include <stdio.h> 41 #include <string.h> 42 #include <inttypes.h> 43 44 #include "ble/le_device_db.h" 45 #include "ble/core.h" 46 #include "ble/sm.h" 47 #include "bluetooth_company_id.h" 48 #include "btstack_debug.h" 49 #include "btstack_event.h" 50 #include "btstack_linked_list.h" 51 #include "btstack_memory.h" 52 #include "gap.h" 53 #include "hci.h" 54 #include "hci_dump.h" 55 #include "l2cap.h" 56 57 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL) 58 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h." 59 #endif 60 61 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL) 62 #define IS_RESPONDER(role) (role) 63 #else 64 #ifdef ENABLE_LE_CENTRAL 65 // only central - never responder (avoid 'unused variable' warnings) 66 #define IS_RESPONDER(role) (0 && role) 67 #else 68 // only peripheral - always responder (avoid 'unused variable' warnings) 69 #define IS_RESPONDER(role) (1 || role) 70 #endif 71 #endif 72 73 #ifdef ENABLE_LE_SECURE_CONNECTIONS 74 // assert SM Public Key can be sent/received 75 #if HCI_ACL_PAYLOAD_SIZE < 69 76 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS" 77 #endif 78 79 // Software ECDH implementation provided by micro-ecc 80 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 81 #include "uECC.h" 82 #endif 83 #endif 84 85 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS) 86 #define ENABLE_CMAC_ENGINE 87 #endif 88 89 // 90 // SM internal types and globals 91 // 92 93 typedef enum { 94 DKG_W4_WORKING, 95 DKG_CALC_IRK, 96 DKG_W4_IRK, 97 DKG_CALC_DHK, 98 DKG_W4_DHK, 99 DKG_READY 100 } derived_key_generation_t; 101 102 typedef enum { 103 RAU_W4_WORKING, 104 RAU_IDLE, 105 RAU_GET_RANDOM, 106 RAU_W4_RANDOM, 107 RAU_GET_ENC, 108 RAU_W4_ENC, 109 RAU_SET_ADDRESS, 110 } random_address_update_t; 111 112 typedef enum { 113 CMAC_IDLE, 114 CMAC_CALC_SUBKEYS, 115 CMAC_W4_SUBKEYS, 116 CMAC_CALC_MI, 117 CMAC_W4_MI, 118 CMAC_CALC_MLAST, 119 CMAC_W4_MLAST 120 } cmac_state_t; 121 122 typedef enum { 123 JUST_WORKS, 124 PK_RESP_INPUT, // Initiator displays PK, responder inputs PK 125 PK_INIT_INPUT, // Responder displays PK, initiator inputs PK 126 OK_BOTH_INPUT, // Only input on both, both input PK 127 NK_BOTH_INPUT, // Only numerical compparison (yes/no) on on both sides 128 OOB // OOB available on both sides 129 } stk_generation_method_t; 130 131 typedef enum { 132 SM_USER_RESPONSE_IDLE, 133 SM_USER_RESPONSE_PENDING, 134 SM_USER_RESPONSE_CONFIRM, 135 SM_USER_RESPONSE_PASSKEY, 136 SM_USER_RESPONSE_DECLINE 137 } sm_user_response_t; 138 139 typedef enum { 140 SM_AES128_IDLE, 141 SM_AES128_ACTIVE 142 } sm_aes128_state_t; 143 144 typedef enum { 145 ADDRESS_RESOLUTION_IDLE, 146 ADDRESS_RESOLUTION_GENERAL, 147 ADDRESS_RESOLUTION_FOR_CONNECTION, 148 } address_resolution_mode_t; 149 150 typedef enum { 151 ADDRESS_RESOLUTION_SUCEEDED, 152 ADDRESS_RESOLUTION_FAILED, 153 } address_resolution_event_t; 154 155 typedef enum { 156 EC_KEY_GENERATION_IDLE, 157 EC_KEY_GENERATION_ACTIVE, 158 EC_KEY_GENERATION_W4_KEY, 159 EC_KEY_GENERATION_DONE, 160 } ec_key_generation_state_t; 161 162 typedef enum { 163 SM_STATE_VAR_DHKEY_NEEDED = 1 << 0, 164 SM_STATE_VAR_DHKEY_CALCULATED = 1 << 1, 165 SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 2, 166 } sm_state_var_t; 167 168 // 169 // GLOBAL DATA 170 // 171 172 static uint8_t test_use_fixed_local_csrk; 173 174 // configuration 175 static uint8_t sm_accepted_stk_generation_methods; 176 static uint8_t sm_max_encryption_key_size; 177 static uint8_t sm_min_encryption_key_size; 178 static uint8_t sm_auth_req = 0; 179 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT; 180 static uint8_t sm_slave_request_security; 181 #ifdef ENABLE_LE_SECURE_CONNECTIONS 182 static uint8_t sm_have_ec_keypair; 183 #endif 184 185 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values 186 static sm_key_t sm_persistent_er; 187 static sm_key_t sm_persistent_ir; 188 189 // derived from sm_persistent_ir 190 static sm_key_t sm_persistent_dhk; 191 static sm_key_t sm_persistent_irk; 192 static uint8_t sm_persistent_irk_ready = 0; // used for testing 193 static derived_key_generation_t dkg_state; 194 195 // derived from sm_persistent_er 196 // .. 197 198 // random address update 199 static random_address_update_t rau_state; 200 static bd_addr_t sm_random_address; 201 202 // CMAC Calculation: General 203 #ifdef ENABLE_CMAC_ENGINE 204 static cmac_state_t sm_cmac_state; 205 static uint16_t sm_cmac_message_len; 206 static sm_key_t sm_cmac_k; 207 static sm_key_t sm_cmac_x; 208 static sm_key_t sm_cmac_m_last; 209 static uint8_t sm_cmac_block_current; 210 static uint8_t sm_cmac_block_count; 211 static uint8_t (*sm_cmac_get_byte)(uint16_t offset); 212 static void (*sm_cmac_done_handler)(uint8_t * hash); 213 #endif 214 215 // CMAC for ATT Signed Writes 216 #ifdef ENABLE_LE_SIGNED_WRITE 217 static uint8_t sm_cmac_header[3]; 218 static const uint8_t * sm_cmac_message; 219 static uint8_t sm_cmac_sign_counter[4]; 220 #endif 221 222 // CMAC for Secure Connection functions 223 #ifdef ENABLE_LE_SECURE_CONNECTIONS 224 static sm_connection_t * sm_cmac_connection; 225 static uint8_t sm_cmac_sc_buffer[80]; 226 #endif 227 228 // resolvable private address lookup / CSRK calculation 229 static int sm_address_resolution_test; 230 static int sm_address_resolution_ah_calculation_active; 231 static uint8_t sm_address_resolution_addr_type; 232 static bd_addr_t sm_address_resolution_address; 233 static void * sm_address_resolution_context; 234 static address_resolution_mode_t sm_address_resolution_mode; 235 static btstack_linked_list_t sm_address_resolution_general_queue; 236 237 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context 238 static sm_aes128_state_t sm_aes128_state; 239 static void * sm_aes128_context; 240 241 // use aes128 provided by MCU - not needed usually 242 #ifdef HAVE_AES128 243 static uint8_t aes128_result_flipped[16]; 244 static btstack_timer_source_t aes128_timer; 245 void btstack_aes128_calc(uint8_t * key, uint8_t * plaintext, uint8_t * result); 246 #endif 247 248 // random engine. store context (ususally sm_connection_t) 249 static void * sm_random_context; 250 251 // to receive hci events 252 static btstack_packet_callback_registration_t hci_event_callback_registration; 253 254 /* to dispatch sm event */ 255 static btstack_linked_list_t sm_event_handlers; 256 257 // LE Secure Connections 258 #ifdef ENABLE_LE_SECURE_CONNECTIONS 259 static ec_key_generation_state_t ec_key_generation_state; 260 static uint8_t ec_d[32]; 261 static uint8_t ec_q[64]; 262 #endif 263 264 // 265 // Volume 3, Part H, Chapter 24 266 // "Security shall be initiated by the Security Manager in the device in the master role. 267 // The device in the slave role shall be the responding device." 268 // -> master := initiator, slave := responder 269 // 270 271 // data needed for security setup 272 typedef struct sm_setup_context { 273 274 btstack_timer_source_t sm_timeout; 275 276 // used in all phases 277 uint8_t sm_pairing_failed_reason; 278 279 // user response, (Phase 1 and/or 2) 280 uint8_t sm_user_response; 281 uint8_t sm_keypress_notification; 282 283 // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3 284 int sm_key_distribution_send_set; 285 int sm_key_distribution_received_set; 286 287 // Phase 2 (Pairing over SMP) 288 stk_generation_method_t sm_stk_generation_method; 289 sm_key_t sm_tk; 290 uint8_t sm_use_secure_connections; 291 292 sm_key_t sm_c1_t3_value; // c1 calculation 293 sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1 294 sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1 295 sm_key_t sm_local_random; 296 sm_key_t sm_local_confirm; 297 sm_key_t sm_peer_random; 298 sm_key_t sm_peer_confirm; 299 uint8_t sm_m_addr_type; // address and type can be removed 300 uint8_t sm_s_addr_type; // '' 301 bd_addr_t sm_m_address; // '' 302 bd_addr_t sm_s_address; // '' 303 sm_key_t sm_ltk; 304 305 uint8_t sm_state_vars; 306 #ifdef ENABLE_LE_SECURE_CONNECTIONS 307 uint8_t sm_peer_q[64]; // also stores random for EC key generation during init 308 sm_key_t sm_peer_nonce; // might be combined with sm_peer_random 309 sm_key_t sm_local_nonce; // might be combined with sm_local_random 310 sm_key_t sm_dhkey; 311 sm_key_t sm_peer_dhkey_check; 312 sm_key_t sm_local_dhkey_check; 313 sm_key_t sm_ra; 314 sm_key_t sm_rb; 315 sm_key_t sm_t; // used for f5 and h6 316 sm_key_t sm_mackey; 317 uint8_t sm_passkey_bit; // also stores number of generated random bytes for EC key generation 318 #endif 319 320 // Phase 3 321 322 // key distribution, we generate 323 uint16_t sm_local_y; 324 uint16_t sm_local_div; 325 uint16_t sm_local_ediv; 326 uint8_t sm_local_rand[8]; 327 sm_key_t sm_local_ltk; 328 sm_key_t sm_local_csrk; 329 sm_key_t sm_local_irk; 330 // sm_local_address/addr_type not needed 331 332 // key distribution, received from peer 333 uint16_t sm_peer_y; 334 uint16_t sm_peer_div; 335 uint16_t sm_peer_ediv; 336 uint8_t sm_peer_rand[8]; 337 sm_key_t sm_peer_ltk; 338 sm_key_t sm_peer_irk; 339 sm_key_t sm_peer_csrk; 340 uint8_t sm_peer_addr_type; 341 bd_addr_t sm_peer_address; 342 343 } sm_setup_context_t; 344 345 // 346 static sm_setup_context_t the_setup; 347 static sm_setup_context_t * setup = &the_setup; 348 349 // active connection - the one for which the_setup is used for 350 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 351 352 // @returns 1 if oob data is available 353 // stores oob data in provided 16 byte buffer if not null 354 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL; 355 356 // horizontal: initiator capabilities 357 // vertial: responder capabilities 358 static const stk_generation_method_t stk_generation_method [5] [5] = { 359 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 360 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 361 { PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT }, 362 { JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS }, 363 { PK_RESP_INPUT, PK_RESP_INPUT, PK_INIT_INPUT, JUST_WORKS, PK_RESP_INPUT }, 364 }; 365 366 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations 367 #ifdef ENABLE_LE_SECURE_CONNECTIONS 368 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = { 369 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 370 { JUST_WORKS, NK_BOTH_INPUT, PK_INIT_INPUT, JUST_WORKS, NK_BOTH_INPUT }, 371 { PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT }, 372 { JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS }, 373 { PK_RESP_INPUT, NK_BOTH_INPUT, PK_INIT_INPUT, JUST_WORKS, NK_BOTH_INPUT }, 374 }; 375 #endif 376 377 static void sm_run(void); 378 static void sm_done_for_handle(hci_con_handle_t con_handle); 379 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle); 380 static inline int sm_calc_actual_encryption_key_size(int other); 381 static int sm_validate_stk_generation_method(void); 382 static void sm_handle_encryption_result(uint8_t * data); 383 384 static void log_info_hex16(const char * name, uint16_t value){ 385 log_info("%-6s 0x%04x", name, value); 386 } 387 388 // @returns 1 if all bytes are 0 389 static int sm_is_null(uint8_t * data, int size){ 390 int i; 391 for (i=0; i < size ; i++){ 392 if (data[i]) return 0; 393 } 394 return 1; 395 } 396 397 static int sm_is_null_random(uint8_t random[8]){ 398 return sm_is_null(random, 8); 399 } 400 401 static int sm_is_null_key(uint8_t * key){ 402 return sm_is_null(key, 16); 403 } 404 405 // Key utils 406 static void sm_reset_tk(void){ 407 int i; 408 for (i=0;i<16;i++){ 409 setup->sm_tk[i] = 0; 410 } 411 } 412 413 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0 414 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0."" 415 static void sm_truncate_key(sm_key_t key, int max_encryption_size){ 416 int i; 417 for (i = max_encryption_size ; i < 16 ; i++){ 418 key[15-i] = 0; 419 } 420 } 421 422 // SMP Timeout implementation 423 424 // Upon transmission of the Pairing Request command or reception of the Pairing Request command, 425 // the Security Manager Timer shall be reset and started. 426 // 427 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission. 428 // 429 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed, 430 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP 431 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been 432 // established. 433 434 static void sm_timeout_handler(btstack_timer_source_t * timer){ 435 log_info("SM timeout"); 436 sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer); 437 sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT; 438 sm_done_for_handle(sm_conn->sm_handle); 439 440 // trigger handling of next ready connection 441 sm_run(); 442 } 443 static void sm_timeout_start(sm_connection_t * sm_conn){ 444 btstack_run_loop_remove_timer(&setup->sm_timeout); 445 btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn); 446 btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler); 447 btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout 448 btstack_run_loop_add_timer(&setup->sm_timeout); 449 } 450 static void sm_timeout_stop(void){ 451 btstack_run_loop_remove_timer(&setup->sm_timeout); 452 } 453 static void sm_timeout_reset(sm_connection_t * sm_conn){ 454 sm_timeout_stop(); 455 sm_timeout_start(sm_conn); 456 } 457 458 // end of sm timeout 459 460 // GAP Random Address updates 461 static gap_random_address_type_t gap_random_adress_type; 462 static btstack_timer_source_t gap_random_address_update_timer; 463 static uint32_t gap_random_adress_update_period; 464 465 static void gap_random_address_trigger(void){ 466 if (rau_state != RAU_IDLE) return; 467 log_info("gap_random_address_trigger"); 468 rau_state = RAU_GET_RANDOM; 469 sm_run(); 470 } 471 472 static void gap_random_address_update_handler(btstack_timer_source_t * timer){ 473 UNUSED(timer); 474 475 log_info("GAP Random Address Update due"); 476 btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period); 477 btstack_run_loop_add_timer(&gap_random_address_update_timer); 478 gap_random_address_trigger(); 479 } 480 481 static void gap_random_address_update_start(void){ 482 btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler); 483 btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period); 484 btstack_run_loop_add_timer(&gap_random_address_update_timer); 485 } 486 487 static void gap_random_address_update_stop(void){ 488 btstack_run_loop_remove_timer(&gap_random_address_update_timer); 489 } 490 491 492 static void sm_random_start(void * context){ 493 sm_random_context = context; 494 hci_send_cmd(&hci_le_rand); 495 } 496 497 #ifdef HAVE_AES128 498 static void aes128_completed(btstack_timer_source_t * ts){ 499 UNUSED(ts); 500 sm_handle_encryption_result(&aes128_result_flipped[0]); 501 sm_run(); 502 } 503 #endif 504 505 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1 506 // context is made availabe to aes128 result handler by this 507 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){ 508 sm_aes128_state = SM_AES128_ACTIVE; 509 sm_aes128_context = context; 510 511 #ifdef HAVE_AES128 512 // calc result directly 513 sm_key_t result; 514 btstack_aes128_calc(key, plaintext, result); 515 516 // log 517 log_info_key("key", key); 518 log_info_key("txt", plaintext); 519 log_info_key("res", result); 520 521 // flip 522 reverse_128(&result[0], &aes128_result_flipped[0]); 523 524 // deliver via timer 525 btstack_run_loop_set_timer_handler(&aes128_timer, &aes128_completed); 526 btstack_run_loop_set_timer(&aes128_timer, 0); // no delay 527 btstack_run_loop_add_timer(&aes128_timer); 528 #else 529 sm_key_t key_flipped, plaintext_flipped; 530 reverse_128(key, key_flipped); 531 reverse_128(plaintext, plaintext_flipped); 532 hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped); 533 #endif 534 } 535 536 // ah(k,r) helper 537 // r = padding || r 538 // r - 24 bit value 539 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){ 540 // r'= padding || r 541 memset(r_prime, 0, 16); 542 memcpy(&r_prime[13], r, 3); 543 } 544 545 // d1 helper 546 // d' = padding || r || d 547 // d,r - 16 bit values 548 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){ 549 // d'= padding || r || d 550 memset(d1_prime, 0, 16); 551 big_endian_store_16(d1_prime, 12, r); 552 big_endian_store_16(d1_prime, 14, d); 553 } 554 555 // dm helper 556 // r’ = padding || r 557 // r - 64 bit value 558 static void sm_dm_r_prime(uint8_t r[8], uint8_t * r_prime){ 559 memset(r_prime, 0, 16); 560 memcpy(&r_prime[8], r, 8); 561 } 562 563 // calculate arguments for first AES128 operation in C1 function 564 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){ 565 566 // p1 = pres || preq || rat’ || iat’ 567 // "The octet of iat’ becomes the least significant octet of p1 and the most signifi- 568 // cant octet of pres becomes the most significant octet of p1. 569 // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq 570 // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then 571 // p1 is 0x05000800000302070710000001010001." 572 573 sm_key_t p1; 574 reverse_56(pres, &p1[0]); 575 reverse_56(preq, &p1[7]); 576 p1[14] = rat; 577 p1[15] = iat; 578 log_info_key("p1", p1); 579 log_info_key("r", r); 580 581 // t1 = r xor p1 582 int i; 583 for (i=0;i<16;i++){ 584 t1[i] = r[i] ^ p1[i]; 585 } 586 log_info_key("t1", t1); 587 } 588 589 // calculate arguments for second AES128 operation in C1 function 590 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){ 591 // p2 = padding || ia || ra 592 // "The least significant octet of ra becomes the least significant octet of p2 and 593 // the most significant octet of padding becomes the most significant octet of p2. 594 // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is 595 // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6. 596 597 sm_key_t p2; 598 memset(p2, 0, 16); 599 memcpy(&p2[4], ia, 6); 600 memcpy(&p2[10], ra, 6); 601 log_info_key("p2", p2); 602 603 // c1 = e(k, t2_xor_p2) 604 int i; 605 for (i=0;i<16;i++){ 606 t3[i] = t2[i] ^ p2[i]; 607 } 608 log_info_key("t3", t3); 609 } 610 611 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){ 612 log_info_key("r1", r1); 613 log_info_key("r2", r2); 614 memcpy(&r_prime[8], &r2[8], 8); 615 memcpy(&r_prime[0], &r1[8], 8); 616 } 617 618 #ifdef ENABLE_LE_SECURE_CONNECTIONS 619 // Software implementations of crypto toolbox for LE Secure Connection 620 // TODO: replace with code to use AES Engine of HCI Controller 621 typedef uint8_t sm_key24_t[3]; 622 typedef uint8_t sm_key56_t[7]; 623 typedef uint8_t sm_key256_t[32]; 624 625 #if 0 626 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){ 627 uint32_t rk[RKLENGTH(KEYBITS)]; 628 int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS); 629 rijndaelEncrypt(rk, nrounds, plaintext, cyphertext); 630 } 631 632 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){ 633 memcpy(k1, k0, 16); 634 sm_shift_left_by_one_bit_inplace(16, k1); 635 if (k0[0] & 0x80){ 636 k1[15] ^= 0x87; 637 } 638 memcpy(k2, k1, 16); 639 sm_shift_left_by_one_bit_inplace(16, k2); 640 if (k1[0] & 0x80){ 641 k2[15] ^= 0x87; 642 } 643 } 644 645 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){ 646 sm_key_t k0, k1, k2, zero; 647 memset(zero, 0, 16); 648 649 aes128_calc_cyphertext(key, zero, k0); 650 calc_subkeys(k0, k1, k2); 651 652 int cmac_block_count = (cmac_message_len + 15) / 16; 653 654 // step 3: .. 655 if (cmac_block_count==0){ 656 cmac_block_count = 1; 657 } 658 659 // step 4: set m_last 660 sm_key_t cmac_m_last; 661 int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0; 662 int i; 663 if (sm_cmac_last_block_complete){ 664 for (i=0;i<16;i++){ 665 cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i]; 666 } 667 } else { 668 int valid_octets_in_last_block = cmac_message_len & 0x0f; 669 for (i=0;i<16;i++){ 670 if (i < valid_octets_in_last_block){ 671 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i]; 672 continue; 673 } 674 if (i == valid_octets_in_last_block){ 675 cmac_m_last[i] = 0x80 ^ k2[i]; 676 continue; 677 } 678 cmac_m_last[i] = k2[i]; 679 } 680 } 681 682 // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count); 683 // LOG_KEY(cmac_m_last); 684 685 // Step 5 686 sm_key_t cmac_x; 687 memset(cmac_x, 0, 16); 688 689 // Step 6 690 sm_key_t sm_cmac_y; 691 for (int block = 0 ; block < cmac_block_count-1 ; block++){ 692 for (i=0;i<16;i++){ 693 sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i]; 694 } 695 aes128_calc_cyphertext(key, sm_cmac_y, cmac_x); 696 } 697 for (i=0;i<16;i++){ 698 sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i]; 699 } 700 701 // Step 7 702 aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac); 703 } 704 #endif 705 #endif 706 707 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){ 708 event[0] = type; 709 event[1] = event_size - 2; 710 little_endian_store_16(event, 2, con_handle); 711 event[4] = addr_type; 712 reverse_bd_addr(address, &event[5]); 713 } 714 715 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){ 716 UNUSED(channel); 717 718 // log event 719 hci_dump_packet(packet_type, 1, packet, size); 720 // dispatch to all event handlers 721 btstack_linked_list_iterator_t it; 722 btstack_linked_list_iterator_init(&it, &sm_event_handlers); 723 while (btstack_linked_list_iterator_has_next(&it)){ 724 btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it); 725 entry->callback(packet_type, 0, packet, size); 726 } 727 } 728 729 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){ 730 uint8_t event[11]; 731 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 732 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 733 } 734 735 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){ 736 uint8_t event[15]; 737 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 738 little_endian_store_32(event, 11, passkey); 739 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 740 } 741 742 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){ 743 // fetch addr and addr type from db 744 bd_addr_t identity_address; 745 int identity_address_type; 746 le_device_db_info(index, &identity_address_type, identity_address, NULL); 747 748 uint8_t event[19]; 749 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 750 event[11] = identity_address_type; 751 reverse_bd_addr(identity_address, &event[12]); 752 event[18] = index; 753 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 754 } 755 756 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){ 757 758 uint8_t event[18]; 759 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 760 event[11] = result; 761 sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event)); 762 } 763 764 // decide on stk generation based on 765 // - pairing request 766 // - io capabilities 767 // - OOB data availability 768 static void sm_setup_tk(void){ 769 770 // default: just works 771 setup->sm_stk_generation_method = JUST_WORKS; 772 773 #ifdef ENABLE_LE_SECURE_CONNECTIONS 774 setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq) 775 & sm_pairing_packet_get_auth_req(setup->sm_s_pres) 776 & SM_AUTHREQ_SECURE_CONNECTION ) != 0; 777 memset(setup->sm_ra, 0, 16); 778 memset(setup->sm_rb, 0, 16); 779 #else 780 setup->sm_use_secure_connections = 0; 781 #endif 782 783 // If both devices have not set the MITM option in the Authentication Requirements 784 // Flags, then the IO capabilities shall be ignored and the Just Works association 785 // model shall be used. 786 if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0) 787 && ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){ 788 log_info("SM: MITM not required by both -> JUST WORKS"); 789 return; 790 } 791 792 // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient 793 794 // If both devices have out of band authentication data, then the Authentication 795 // Requirements Flags shall be ignored when selecting the pairing method and the 796 // Out of Band pairing method shall be used. 797 if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) 798 && sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){ 799 log_info("SM: have OOB data"); 800 log_info_key("OOB", setup->sm_tk); 801 setup->sm_stk_generation_method = OOB; 802 return; 803 } 804 805 // Reset TK as it has been setup in sm_init_setup 806 sm_reset_tk(); 807 808 // Also use just works if unknown io capabilites 809 if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){ 810 return; 811 } 812 813 // Otherwise the IO capabilities of the devices shall be used to determine the 814 // pairing method as defined in Table 2.4. 815 // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array 816 const stk_generation_method_t (*generation_method)[5] = stk_generation_method; 817 818 #ifdef ENABLE_LE_SECURE_CONNECTIONS 819 // table not define by default 820 if (setup->sm_use_secure_connections){ 821 generation_method = stk_generation_method_with_secure_connection; 822 } 823 #endif 824 setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)]; 825 826 log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u", 827 sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method); 828 } 829 830 static int sm_key_distribution_flags_for_set(uint8_t key_set){ 831 int flags = 0; 832 if (key_set & SM_KEYDIST_ENC_KEY){ 833 flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 834 flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 835 } 836 if (key_set & SM_KEYDIST_ID_KEY){ 837 flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 838 flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 839 } 840 if (key_set & SM_KEYDIST_SIGN){ 841 flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 842 } 843 return flags; 844 } 845 846 static void sm_setup_key_distribution(uint8_t key_set){ 847 setup->sm_key_distribution_received_set = 0; 848 setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set); 849 } 850 851 // CSRK Key Lookup 852 853 854 static int sm_address_resolution_idle(void){ 855 return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE; 856 } 857 858 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){ 859 memcpy(sm_address_resolution_address, addr, 6); 860 sm_address_resolution_addr_type = addr_type; 861 sm_address_resolution_test = 0; 862 sm_address_resolution_mode = mode; 863 sm_address_resolution_context = context; 864 sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr); 865 } 866 867 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){ 868 // check if already in list 869 btstack_linked_list_iterator_t it; 870 sm_lookup_entry_t * entry; 871 btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue); 872 while(btstack_linked_list_iterator_has_next(&it)){ 873 entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it); 874 if (entry->address_type != address_type) continue; 875 if (memcmp(entry->address, address, 6)) continue; 876 // already in list 877 return BTSTACK_BUSY; 878 } 879 entry = btstack_memory_sm_lookup_entry_get(); 880 if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED; 881 entry->address_type = (bd_addr_type_t) address_type; 882 memcpy(entry->address, address, 6); 883 btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry); 884 sm_run(); 885 return 0; 886 } 887 888 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now 889 static inline void sm_next_responding_state(sm_connection_t * sm_conn){ 890 sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1); 891 } 892 static inline void dkg_next_state(void){ 893 dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1); 894 } 895 static inline void rau_next_state(void){ 896 rau_state = (random_address_update_t) (((int)rau_state) + 1); 897 } 898 899 // CMAC calculation using AES Engine 900 #ifdef ENABLE_CMAC_ENGINE 901 902 static inline void sm_cmac_next_state(void){ 903 sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1); 904 } 905 906 static int sm_cmac_last_block_complete(void){ 907 if (sm_cmac_message_len == 0) return 0; 908 return (sm_cmac_message_len & 0x0f) == 0; 909 } 910 911 int sm_cmac_ready(void){ 912 return sm_cmac_state == CMAC_IDLE; 913 } 914 915 // generic cmac calculation 916 void sm_cmac_general_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){ 917 // Generalized CMAC 918 memcpy(sm_cmac_k, key, 16); 919 memset(sm_cmac_x, 0, 16); 920 sm_cmac_block_current = 0; 921 sm_cmac_message_len = message_len; 922 sm_cmac_done_handler = done_callback; 923 sm_cmac_get_byte = get_byte_callback; 924 925 // step 2: n := ceil(len/const_Bsize); 926 sm_cmac_block_count = (sm_cmac_message_len + 15) / 16; 927 928 // step 3: .. 929 if (sm_cmac_block_count==0){ 930 sm_cmac_block_count = 1; 931 } 932 log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count); 933 934 // first, we need to compute l for k1, k2, and m_last 935 sm_cmac_state = CMAC_CALC_SUBKEYS; 936 937 // let's go 938 sm_run(); 939 } 940 #endif 941 942 // cmac for ATT Message signing 943 #ifdef ENABLE_LE_SIGNED_WRITE 944 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){ 945 if (offset >= sm_cmac_message_len) { 946 log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len); 947 return 0; 948 } 949 950 offset = sm_cmac_message_len - 1 - offset; 951 952 // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4] 953 if (offset < 3){ 954 return sm_cmac_header[offset]; 955 } 956 int actual_message_len_incl_header = sm_cmac_message_len - 4; 957 if (offset < actual_message_len_incl_header){ 958 return sm_cmac_message[offset - 3]; 959 } 960 return sm_cmac_sign_counter[offset - actual_message_len_incl_header]; 961 } 962 963 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){ 964 // ATT Message Signing 965 sm_cmac_header[0] = opcode; 966 little_endian_store_16(sm_cmac_header, 1, con_handle); 967 little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter); 968 uint16_t total_message_len = 3 + message_len + 4; // incl. virtually prepended att opcode, handle and appended sign_counter in LE 969 sm_cmac_message = message; 970 sm_cmac_general_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler); 971 } 972 #endif 973 974 #ifdef ENABLE_CMAC_ENGINE 975 static void sm_cmac_handle_aes_engine_ready(void){ 976 switch (sm_cmac_state){ 977 case CMAC_CALC_SUBKEYS: { 978 sm_key_t const_zero; 979 memset(const_zero, 0, 16); 980 sm_cmac_next_state(); 981 sm_aes128_start(sm_cmac_k, const_zero, NULL); 982 break; 983 } 984 case CMAC_CALC_MI: { 985 int j; 986 sm_key_t y; 987 for (j=0;j<16;j++){ 988 y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j); 989 } 990 sm_cmac_block_current++; 991 sm_cmac_next_state(); 992 sm_aes128_start(sm_cmac_k, y, NULL); 993 break; 994 } 995 case CMAC_CALC_MLAST: { 996 int i; 997 sm_key_t y; 998 for (i=0;i<16;i++){ 999 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i]; 1000 } 1001 log_info_key("Y", y); 1002 sm_cmac_block_current++; 1003 sm_cmac_next_state(); 1004 sm_aes128_start(sm_cmac_k, y, NULL); 1005 break; 1006 } 1007 default: 1008 log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state); 1009 break; 1010 } 1011 } 1012 1013 // CMAC Implementation using AES128 engine 1014 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){ 1015 int i; 1016 int carry = 0; 1017 for (i=len-1; i >= 0 ; i--){ 1018 int new_carry = data[i] >> 7; 1019 data[i] = data[i] << 1 | carry; 1020 carry = new_carry; 1021 } 1022 } 1023 1024 static void sm_cmac_handle_encryption_result(sm_key_t data){ 1025 switch (sm_cmac_state){ 1026 case CMAC_W4_SUBKEYS: { 1027 sm_key_t k1; 1028 memcpy(k1, data, 16); 1029 sm_shift_left_by_one_bit_inplace(16, k1); 1030 if (data[0] & 0x80){ 1031 k1[15] ^= 0x87; 1032 } 1033 sm_key_t k2; 1034 memcpy(k2, k1, 16); 1035 sm_shift_left_by_one_bit_inplace(16, k2); 1036 if (k1[0] & 0x80){ 1037 k2[15] ^= 0x87; 1038 } 1039 1040 log_info_key("k", sm_cmac_k); 1041 log_info_key("k1", k1); 1042 log_info_key("k2", k2); 1043 1044 // step 4: set m_last 1045 int i; 1046 if (sm_cmac_last_block_complete()){ 1047 for (i=0;i<16;i++){ 1048 sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i]; 1049 } 1050 } else { 1051 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f; 1052 for (i=0;i<16;i++){ 1053 if (i < valid_octets_in_last_block){ 1054 sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i]; 1055 continue; 1056 } 1057 if (i == valid_octets_in_last_block){ 1058 sm_cmac_m_last[i] = 0x80 ^ k2[i]; 1059 continue; 1060 } 1061 sm_cmac_m_last[i] = k2[i]; 1062 } 1063 } 1064 1065 // next 1066 sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; 1067 break; 1068 } 1069 case CMAC_W4_MI: 1070 memcpy(sm_cmac_x, data, 16); 1071 sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; 1072 break; 1073 case CMAC_W4_MLAST: 1074 // done 1075 log_info("Setting CMAC Engine to IDLE"); 1076 sm_cmac_state = CMAC_IDLE; 1077 log_info_key("CMAC", data); 1078 sm_cmac_done_handler(data); 1079 break; 1080 default: 1081 log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state); 1082 break; 1083 } 1084 } 1085 #endif 1086 1087 static void sm_trigger_user_response(sm_connection_t * sm_conn){ 1088 // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input 1089 setup->sm_user_response = SM_USER_RESPONSE_IDLE; 1090 switch (setup->sm_stk_generation_method){ 1091 case PK_RESP_INPUT: 1092 if (IS_RESPONDER(sm_conn->sm_role)){ 1093 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1094 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1095 } else { 1096 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1097 } 1098 break; 1099 case PK_INIT_INPUT: 1100 if (IS_RESPONDER(sm_conn->sm_role)){ 1101 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1102 } else { 1103 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1104 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1105 } 1106 break; 1107 case OK_BOTH_INPUT: 1108 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1109 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1110 break; 1111 case NK_BOTH_INPUT: 1112 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1113 sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1114 break; 1115 case JUST_WORKS: 1116 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1117 sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1118 break; 1119 case OOB: 1120 // client already provided OOB data, let's skip notification. 1121 break; 1122 } 1123 } 1124 1125 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){ 1126 int recv_flags; 1127 if (IS_RESPONDER(sm_conn->sm_role)){ 1128 // slave / responder 1129 recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres)); 1130 } else { 1131 // master / initiator 1132 recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres)); 1133 } 1134 log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags); 1135 return recv_flags == setup->sm_key_distribution_received_set; 1136 } 1137 1138 static void sm_done_for_handle(hci_con_handle_t con_handle){ 1139 if (sm_active_connection_handle == con_handle){ 1140 sm_timeout_stop(); 1141 sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 1142 log_info("sm: connection 0x%x released setup context", con_handle); 1143 } 1144 } 1145 1146 static int sm_key_distribution_flags_for_auth_req(void){ 1147 int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN; 1148 if (sm_auth_req & SM_AUTHREQ_BONDING){ 1149 // encryption information only if bonding requested 1150 flags |= SM_KEYDIST_ENC_KEY; 1151 } 1152 return flags; 1153 } 1154 1155 static void sm_reset_setup(void){ 1156 // fill in sm setup 1157 setup->sm_state_vars = 0; 1158 setup->sm_keypress_notification = 0xff; 1159 sm_reset_tk(); 1160 } 1161 1162 static void sm_init_setup(sm_connection_t * sm_conn){ 1163 1164 // fill in sm setup 1165 setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type; 1166 memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6); 1167 1168 // query client for OOB data 1169 int have_oob_data = 0; 1170 if (sm_get_oob_data) { 1171 have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk); 1172 } 1173 1174 sm_pairing_packet_t * local_packet; 1175 if (IS_RESPONDER(sm_conn->sm_role)){ 1176 // slave 1177 local_packet = &setup->sm_s_pres; 1178 gap_le_get_own_address(&setup->sm_s_addr_type, setup->sm_s_address); 1179 setup->sm_m_addr_type = sm_conn->sm_peer_addr_type; 1180 memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6); 1181 } else { 1182 // master 1183 local_packet = &setup->sm_m_preq; 1184 gap_le_get_own_address(&setup->sm_m_addr_type, setup->sm_m_address); 1185 setup->sm_s_addr_type = sm_conn->sm_peer_addr_type; 1186 memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6); 1187 1188 int key_distribution_flags = sm_key_distribution_flags_for_auth_req(); 1189 sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags); 1190 sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags); 1191 } 1192 1193 uint8_t auth_req = sm_auth_req; 1194 sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities); 1195 sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data); 1196 sm_pairing_packet_set_auth_req(*local_packet, auth_req); 1197 sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size); 1198 } 1199 1200 static int sm_stk_generation_init(sm_connection_t * sm_conn){ 1201 1202 sm_pairing_packet_t * remote_packet; 1203 int remote_key_request; 1204 if (IS_RESPONDER(sm_conn->sm_role)){ 1205 // slave / responder 1206 remote_packet = &setup->sm_m_preq; 1207 remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq); 1208 } else { 1209 // master / initiator 1210 remote_packet = &setup->sm_s_pres; 1211 remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres); 1212 } 1213 1214 // check key size 1215 sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet)); 1216 if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE; 1217 1218 // decide on STK generation method 1219 sm_setup_tk(); 1220 log_info("SMP: generation method %u", setup->sm_stk_generation_method); 1221 1222 // check if STK generation method is acceptable by client 1223 if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS; 1224 1225 // identical to responder 1226 sm_setup_key_distribution(remote_key_request); 1227 1228 // JUST WORKS doens't provide authentication 1229 sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1; 1230 1231 return 0; 1232 } 1233 1234 static void sm_address_resolution_handle_event(address_resolution_event_t event){ 1235 1236 // cache and reset context 1237 int matched_device_id = sm_address_resolution_test; 1238 address_resolution_mode_t mode = sm_address_resolution_mode; 1239 void * context = sm_address_resolution_context; 1240 1241 // reset context 1242 sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE; 1243 sm_address_resolution_context = NULL; 1244 sm_address_resolution_test = -1; 1245 hci_con_handle_t con_handle = 0; 1246 1247 sm_connection_t * sm_connection; 1248 #ifdef ENABLE_LE_CENTRAL 1249 sm_key_t ltk; 1250 #endif 1251 switch (mode){ 1252 case ADDRESS_RESOLUTION_GENERAL: 1253 break; 1254 case ADDRESS_RESOLUTION_FOR_CONNECTION: 1255 sm_connection = (sm_connection_t *) context; 1256 con_handle = sm_connection->sm_handle; 1257 switch (event){ 1258 case ADDRESS_RESOLUTION_SUCEEDED: 1259 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED; 1260 sm_connection->sm_le_db_index = matched_device_id; 1261 log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index); 1262 #ifdef ENABLE_LE_CENTRAL 1263 if (sm_connection->sm_role) break; 1264 if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break; 1265 sm_connection->sm_security_request_received = 0; 1266 sm_connection->sm_bonding_requested = 0; 1267 le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL); 1268 if (!sm_is_null_key(ltk)){ 1269 sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 1270 } else { 1271 sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 1272 } 1273 #endif 1274 break; 1275 case ADDRESS_RESOLUTION_FAILED: 1276 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED; 1277 #ifdef ENABLE_LE_CENTRAL 1278 if (sm_connection->sm_role) break; 1279 if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break; 1280 sm_connection->sm_security_request_received = 0; 1281 sm_connection->sm_bonding_requested = 0; 1282 sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 1283 #endif 1284 break; 1285 } 1286 break; 1287 default: 1288 break; 1289 } 1290 1291 switch (event){ 1292 case ADDRESS_RESOLUTION_SUCEEDED: 1293 sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id); 1294 break; 1295 case ADDRESS_RESOLUTION_FAILED: 1296 sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address); 1297 break; 1298 } 1299 } 1300 1301 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){ 1302 1303 int le_db_index = -1; 1304 1305 // lookup device based on IRK 1306 if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){ 1307 int i; 1308 for (i=0; i < le_device_db_count(); i++){ 1309 sm_key_t irk; 1310 bd_addr_t address; 1311 int address_type; 1312 le_device_db_info(i, &address_type, address, irk); 1313 if (memcmp(irk, setup->sm_peer_irk, 16) == 0){ 1314 log_info("sm: device found for IRK, updating"); 1315 le_db_index = i; 1316 break; 1317 } 1318 } 1319 } 1320 1321 // if not found, lookup via public address if possible 1322 log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address)); 1323 if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){ 1324 int i; 1325 for (i=0; i < le_device_db_count(); i++){ 1326 bd_addr_t address; 1327 int address_type; 1328 le_device_db_info(i, &address_type, address, NULL); 1329 log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address)); 1330 if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){ 1331 log_info("sm: device found for public address, updating"); 1332 le_db_index = i; 1333 break; 1334 } 1335 } 1336 } 1337 1338 // if not found, add to db 1339 if (le_db_index < 0) { 1340 le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk); 1341 } 1342 1343 sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index); 1344 1345 if (le_db_index >= 0){ 1346 1347 #ifdef ENABLE_LE_SIGNED_WRITE 1348 // store local CSRK 1349 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 1350 log_info("sm: store local CSRK"); 1351 le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk); 1352 le_device_db_local_counter_set(le_db_index, 0); 1353 } 1354 1355 // store remote CSRK 1356 if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 1357 log_info("sm: store remote CSRK"); 1358 le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk); 1359 le_device_db_remote_counter_set(le_db_index, 0); 1360 } 1361 #endif 1362 // store encryption information for secure connections: LTK generated by ECDH 1363 if (setup->sm_use_secure_connections){ 1364 log_info("sm: store SC LTK (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated); 1365 uint8_t zero_rand[8]; 1366 memset(zero_rand, 0, 8); 1367 le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size, 1368 sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED); 1369 } 1370 1371 // store encryption information for legacy pairing: peer LTK, EDIV, RAND 1372 else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION) 1373 && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){ 1374 log_info("sm: set encryption information (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated); 1375 le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk, 1376 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED); 1377 1378 } 1379 } 1380 1381 // keep le_db_index 1382 sm_conn->sm_le_db_index = le_db_index; 1383 } 1384 1385 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){ 1386 setup->sm_pairing_failed_reason = reason; 1387 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 1388 } 1389 1390 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){ 1391 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON); 1392 } 1393 1394 #ifdef ENABLE_LE_SECURE_CONNECTIONS 1395 1396 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn); 1397 static int sm_passkey_used(stk_generation_method_t method); 1398 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method); 1399 1400 static void sm_log_ec_keypair(void){ 1401 log_info("Elliptic curve: X"); 1402 log_info_hexdump(&ec_q[0],32); 1403 log_info("Elliptic curve: Y"); 1404 log_info_hexdump(&ec_q[32],32); 1405 } 1406 1407 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){ 1408 if (sm_passkey_used(setup->sm_stk_generation_method)){ 1409 sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A; 1410 } else { 1411 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION; 1412 } 1413 } 1414 1415 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){ 1416 if (IS_RESPONDER(sm_conn->sm_role)){ 1417 // Responder 1418 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 1419 } else { 1420 // Initiator role 1421 switch (setup->sm_stk_generation_method){ 1422 case JUST_WORKS: 1423 sm_sc_prepare_dhkey_check(sm_conn); 1424 break; 1425 1426 case NK_BOTH_INPUT: 1427 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2; 1428 break; 1429 case PK_INIT_INPUT: 1430 case PK_RESP_INPUT: 1431 case OK_BOTH_INPUT: 1432 if (setup->sm_passkey_bit < 20) { 1433 sm_sc_start_calculating_local_confirm(sm_conn); 1434 } else { 1435 sm_sc_prepare_dhkey_check(sm_conn); 1436 } 1437 break; 1438 case OOB: 1439 // TODO: implement SC OOB 1440 break; 1441 } 1442 } 1443 } 1444 1445 static uint8_t sm_sc_cmac_get_byte(uint16_t offset){ 1446 return sm_cmac_sc_buffer[offset]; 1447 } 1448 1449 static void sm_sc_cmac_done(uint8_t * hash){ 1450 log_info("sm_sc_cmac_done: "); 1451 log_info_hexdump(hash, 16); 1452 1453 sm_connection_t * sm_conn = sm_cmac_connection; 1454 sm_cmac_connection = NULL; 1455 #ifdef ENABLE_CLASSIC 1456 link_key_type_t link_key_type; 1457 #endif 1458 1459 switch (sm_conn->sm_engine_state){ 1460 case SM_SC_W4_CMAC_FOR_CONFIRMATION: 1461 memcpy(setup->sm_local_confirm, hash, 16); 1462 sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION; 1463 break; 1464 case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION: 1465 // check 1466 if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){ 1467 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED); 1468 break; 1469 } 1470 sm_sc_state_after_receiving_random(sm_conn); 1471 break; 1472 case SM_SC_W4_CALCULATE_G2: { 1473 uint32_t vab = big_endian_read_32(hash, 12) % 1000000; 1474 big_endian_store_32(setup->sm_tk, 12, vab); 1475 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 1476 sm_trigger_user_response(sm_conn); 1477 break; 1478 } 1479 case SM_SC_W4_CALCULATE_F5_SALT: 1480 memcpy(setup->sm_t, hash, 16); 1481 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY; 1482 break; 1483 case SM_SC_W4_CALCULATE_F5_MACKEY: 1484 memcpy(setup->sm_mackey, hash, 16); 1485 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK; 1486 break; 1487 case SM_SC_W4_CALCULATE_F5_LTK: 1488 // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk 1489 // Errata Service Release to the Bluetooth Specification: ESR09 1490 // E6405 – Cross transport key derivation from a key of size less than 128 bits 1491 // Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked." 1492 memcpy(setup->sm_ltk, hash, 16); 1493 memcpy(setup->sm_local_ltk, hash, 16); 1494 sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size); 1495 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK; 1496 break; 1497 case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK: 1498 memcpy(setup->sm_local_dhkey_check, hash, 16); 1499 if (IS_RESPONDER(sm_conn->sm_role)){ 1500 // responder 1501 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED){ 1502 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 1503 } else { 1504 sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND; 1505 } 1506 } else { 1507 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND; 1508 } 1509 break; 1510 case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK: 1511 if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){ 1512 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED); 1513 break; 1514 } 1515 if (IS_RESPONDER(sm_conn->sm_role)){ 1516 // responder 1517 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND; 1518 } else { 1519 // initiator 1520 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION; 1521 } 1522 break; 1523 case SM_SC_W4_CALCULATE_H6_ILK: 1524 memcpy(setup->sm_t, hash, 16); 1525 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY; 1526 break; 1527 case SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY: 1528 #ifdef ENABLE_CLASSIC 1529 reverse_128(hash, setup->sm_t); 1530 link_key_type = sm_conn->sm_connection_authenticated ? 1531 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256; 1532 log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type); 1533 if (IS_RESPONDER(sm_conn->sm_role)){ 1534 gap_store_link_key_for_bd_addr(setup->sm_m_address, setup->sm_t, link_key_type); 1535 } else { 1536 gap_store_link_key_for_bd_addr(setup->sm_s_address, setup->sm_t, link_key_type); 1537 } 1538 #endif 1539 if (IS_RESPONDER(sm_conn->sm_role)){ 1540 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 1541 } else { 1542 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 1543 } 1544 sm_done_for_handle(sm_conn->sm_handle); 1545 break; 1546 default: 1547 log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state); 1548 break; 1549 } 1550 sm_run(); 1551 } 1552 1553 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){ 1554 const uint16_t message_len = 65; 1555 sm_cmac_connection = sm_conn; 1556 memcpy(sm_cmac_sc_buffer, u, 32); 1557 memcpy(sm_cmac_sc_buffer+32, v, 32); 1558 sm_cmac_sc_buffer[64] = z; 1559 log_info("f4 key"); 1560 log_info_hexdump(x, 16); 1561 log_info("f4 message"); 1562 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1563 sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1564 } 1565 1566 static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE}; 1567 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 }; 1568 static const uint8_t f5_length[] = { 0x01, 0x00}; 1569 1570 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 1571 static void sm_sc_calculate_dhkey(sm_key256_t dhkey){ 1572 memset(dhkey, 0, 32); 1573 #if uECC_SUPPORTS_secp256r1 1574 // standard version 1575 uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey, uECC_secp256r1()); 1576 #else 1577 // static version 1578 uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey); 1579 #endif 1580 log_info("dhkey"); 1581 log_info_hexdump(dhkey, 32); 1582 } 1583 #endif 1584 1585 static void f5_calculate_salt(sm_connection_t * sm_conn){ 1586 // calculate salt for f5 1587 const uint16_t message_len = 32; 1588 sm_cmac_connection = sm_conn; 1589 memcpy(sm_cmac_sc_buffer, setup->sm_dhkey, message_len); 1590 sm_cmac_general_start(f5_salt, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1591 } 1592 1593 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){ 1594 const uint16_t message_len = 53; 1595 sm_cmac_connection = sm_conn; 1596 1597 // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey 1598 sm_cmac_sc_buffer[0] = 0; 1599 memcpy(sm_cmac_sc_buffer+01, f5_key_id, 4); 1600 memcpy(sm_cmac_sc_buffer+05, n1, 16); 1601 memcpy(sm_cmac_sc_buffer+21, n2, 16); 1602 memcpy(sm_cmac_sc_buffer+37, a1, 7); 1603 memcpy(sm_cmac_sc_buffer+44, a2, 7); 1604 memcpy(sm_cmac_sc_buffer+51, f5_length, 2); 1605 log_info("f5 key"); 1606 log_info_hexdump(t, 16); 1607 log_info("f5 message for MacKey"); 1608 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1609 sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1610 } 1611 1612 static void f5_calculate_mackey(sm_connection_t * sm_conn){ 1613 sm_key56_t bd_addr_master, bd_addr_slave; 1614 bd_addr_master[0] = setup->sm_m_addr_type; 1615 bd_addr_slave[0] = setup->sm_s_addr_type; 1616 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1617 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1618 if (IS_RESPONDER(sm_conn->sm_role)){ 1619 // responder 1620 f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave); 1621 } else { 1622 // initiator 1623 f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave); 1624 } 1625 } 1626 1627 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused 1628 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){ 1629 const uint16_t message_len = 53; 1630 sm_cmac_connection = sm_conn; 1631 sm_cmac_sc_buffer[0] = 1; 1632 // 1..52 setup before 1633 log_info("f5 key"); 1634 log_info_hexdump(t, 16); 1635 log_info("f5 message for LTK"); 1636 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1637 sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1638 } 1639 1640 static void f5_calculate_ltk(sm_connection_t * sm_conn){ 1641 f5_ltk(sm_conn, setup->sm_t); 1642 } 1643 1644 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){ 1645 const uint16_t message_len = 65; 1646 sm_cmac_connection = sm_conn; 1647 memcpy(sm_cmac_sc_buffer, n1, 16); 1648 memcpy(sm_cmac_sc_buffer+16, n2, 16); 1649 memcpy(sm_cmac_sc_buffer+32, r, 16); 1650 memcpy(sm_cmac_sc_buffer+48, io_cap, 3); 1651 memcpy(sm_cmac_sc_buffer+51, a1, 7); 1652 memcpy(sm_cmac_sc_buffer+58, a2, 7); 1653 log_info("f6 key"); 1654 log_info_hexdump(w, 16); 1655 log_info("f6 message"); 1656 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1657 sm_cmac_general_start(w, 65, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1658 } 1659 1660 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32 1661 // - U is 256 bits 1662 // - V is 256 bits 1663 // - X is 128 bits 1664 // - Y is 128 bits 1665 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){ 1666 const uint16_t message_len = 80; 1667 sm_cmac_connection = sm_conn; 1668 memcpy(sm_cmac_sc_buffer, u, 32); 1669 memcpy(sm_cmac_sc_buffer+32, v, 32); 1670 memcpy(sm_cmac_sc_buffer+64, y, 16); 1671 log_info("g2 key"); 1672 log_info_hexdump(x, 16); 1673 log_info("g2 message"); 1674 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1675 sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1676 } 1677 1678 static void g2_calculate(sm_connection_t * sm_conn) { 1679 // calc Va if numeric comparison 1680 if (IS_RESPONDER(sm_conn->sm_role)){ 1681 // responder 1682 g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);; 1683 } else { 1684 // initiator 1685 g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce); 1686 } 1687 } 1688 1689 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){ 1690 uint8_t z = 0; 1691 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){ 1692 // some form of passkey 1693 uint32_t pk = big_endian_read_32(setup->sm_tk, 12); 1694 z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1); 1695 setup->sm_passkey_bit++; 1696 } 1697 f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z); 1698 } 1699 1700 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){ 1701 uint8_t z = 0; 1702 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){ 1703 // some form of passkey 1704 uint32_t pk = big_endian_read_32(setup->sm_tk, 12); 1705 // sm_passkey_bit was increased before sending confirm value 1706 z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1); 1707 } 1708 f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z); 1709 } 1710 1711 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){ 1712 1713 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 1714 // calculate DHKEY 1715 sm_sc_calculate_dhkey(setup->sm_dhkey); 1716 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED; 1717 #endif 1718 1719 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED){ 1720 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT; 1721 return; 1722 } else { 1723 sm_conn->sm_engine_state = SM_SC_W4_CALCULATE_DHKEY; 1724 } 1725 1726 } 1727 1728 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){ 1729 // calculate DHKCheck 1730 sm_key56_t bd_addr_master, bd_addr_slave; 1731 bd_addr_master[0] = setup->sm_m_addr_type; 1732 bd_addr_slave[0] = setup->sm_s_addr_type; 1733 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1734 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1735 uint8_t iocap_a[3]; 1736 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq); 1737 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq); 1738 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq); 1739 uint8_t iocap_b[3]; 1740 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres); 1741 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres); 1742 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres); 1743 if (IS_RESPONDER(sm_conn->sm_role)){ 1744 // responder 1745 f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master); 1746 } else { 1747 // initiator 1748 f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave); 1749 } 1750 } 1751 1752 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){ 1753 // validate E = f6() 1754 sm_key56_t bd_addr_master, bd_addr_slave; 1755 bd_addr_master[0] = setup->sm_m_addr_type; 1756 bd_addr_slave[0] = setup->sm_s_addr_type; 1757 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1758 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1759 1760 uint8_t iocap_a[3]; 1761 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq); 1762 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq); 1763 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq); 1764 uint8_t iocap_b[3]; 1765 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres); 1766 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres); 1767 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres); 1768 if (IS_RESPONDER(sm_conn->sm_role)){ 1769 // responder 1770 f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave); 1771 } else { 1772 // initiator 1773 f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master); 1774 } 1775 } 1776 1777 1778 // 1779 // Link Key Conversion Function h6 1780 // 1781 // h6(W, keyID) = AES-CMACW(keyID) 1782 // - W is 128 bits 1783 // - keyID is 32 bits 1784 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){ 1785 const uint16_t message_len = 4; 1786 sm_cmac_connection = sm_conn; 1787 big_endian_store_32(sm_cmac_sc_buffer, 0, key_id); 1788 log_info("h6 key"); 1789 log_info_hexdump(w, 16); 1790 log_info("h6 message"); 1791 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1792 sm_cmac_general_start(w, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1793 } 1794 1795 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated) 1796 // Errata Service Release to the Bluetooth Specification: ESR09 1797 // E6405 – Cross transport key derivation from a key of size less than 128 bits 1798 // "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked." 1799 static void h6_calculate_ilk(sm_connection_t * sm_conn){ 1800 h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031); // "tmp1" 1801 } 1802 1803 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){ 1804 h6_engine(sm_conn, setup->sm_t, 0x6c656272); // "lebr" 1805 } 1806 1807 #endif 1808 1809 // key management legacy connections: 1810 // - potentially two different LTKs based on direction. each device stores LTK provided by peer 1811 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect) 1812 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder 1813 // - responder reconnects: responder uses LTK receveived from master 1814 1815 // key management secure connections: 1816 // - both devices store same LTK from ECDH key exchange. 1817 1818 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL) 1819 static void sm_load_security_info(sm_connection_t * sm_connection){ 1820 int encryption_key_size; 1821 int authenticated; 1822 int authorized; 1823 1824 // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled 1825 le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk, 1826 &encryption_key_size, &authenticated, &authorized); 1827 log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized); 1828 sm_connection->sm_actual_encryption_key_size = encryption_key_size; 1829 sm_connection->sm_connection_authenticated = authenticated; 1830 sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN; 1831 } 1832 #endif 1833 1834 #ifdef ENABLE_LE_PERIPHERAL 1835 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){ 1836 memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8); 1837 setup->sm_local_ediv = sm_connection->sm_local_ediv; 1838 // re-establish used key encryption size 1839 // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand 1840 sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1; 1841 // no db for authenticated flag hack: flag is stored in bit 4 of LSB 1842 sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4; 1843 log_info("sm: received ltk request with key size %u, authenticated %u", 1844 sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated); 1845 sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC; 1846 } 1847 #endif 1848 1849 static void sm_run(void){ 1850 1851 btstack_linked_list_iterator_t it; 1852 1853 // assert that stack has already bootet 1854 if (hci_get_state() != HCI_STATE_WORKING) return; 1855 1856 // assert that we can send at least commands 1857 if (!hci_can_send_command_packet_now()) return; 1858 1859 // 1860 // non-connection related behaviour 1861 // 1862 1863 // distributed key generation 1864 switch (dkg_state){ 1865 case DKG_CALC_IRK: 1866 // already busy? 1867 if (sm_aes128_state == SM_AES128_IDLE) { 1868 // IRK = d1(IR, 1, 0) 1869 sm_key_t d1_prime; 1870 sm_d1_d_prime(1, 0, d1_prime); // plaintext 1871 dkg_next_state(); 1872 sm_aes128_start(sm_persistent_ir, d1_prime, NULL); 1873 return; 1874 } 1875 break; 1876 case DKG_CALC_DHK: 1877 // already busy? 1878 if (sm_aes128_state == SM_AES128_IDLE) { 1879 // DHK = d1(IR, 3, 0) 1880 sm_key_t d1_prime; 1881 sm_d1_d_prime(3, 0, d1_prime); // plaintext 1882 dkg_next_state(); 1883 sm_aes128_start(sm_persistent_ir, d1_prime, NULL); 1884 return; 1885 } 1886 break; 1887 default: 1888 break; 1889 } 1890 1891 #ifdef ENABLE_LE_SECURE_CONNECTIONS 1892 if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){ 1893 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 1894 sm_random_start(NULL); 1895 #else 1896 ec_key_generation_state = EC_KEY_GENERATION_W4_KEY; 1897 hci_send_cmd(&hci_le_read_local_p256_public_key); 1898 #endif 1899 return; 1900 } 1901 #endif 1902 1903 // random address updates 1904 switch (rau_state){ 1905 case RAU_GET_RANDOM: 1906 rau_next_state(); 1907 sm_random_start(NULL); 1908 return; 1909 case RAU_GET_ENC: 1910 // already busy? 1911 if (sm_aes128_state == SM_AES128_IDLE) { 1912 sm_key_t r_prime; 1913 sm_ah_r_prime(sm_random_address, r_prime); 1914 rau_next_state(); 1915 sm_aes128_start(sm_persistent_irk, r_prime, NULL); 1916 return; 1917 } 1918 break; 1919 case RAU_SET_ADDRESS: 1920 log_info("New random address: %s", bd_addr_to_str(sm_random_address)); 1921 rau_state = RAU_IDLE; 1922 hci_send_cmd(&hci_le_set_random_address, sm_random_address); 1923 return; 1924 default: 1925 break; 1926 } 1927 1928 #ifdef ENABLE_CMAC_ENGINE 1929 // CMAC 1930 switch (sm_cmac_state){ 1931 case CMAC_CALC_SUBKEYS: 1932 case CMAC_CALC_MI: 1933 case CMAC_CALC_MLAST: 1934 // already busy? 1935 if (sm_aes128_state == SM_AES128_ACTIVE) break; 1936 sm_cmac_handle_aes_engine_ready(); 1937 return; 1938 default: 1939 break; 1940 } 1941 #endif 1942 1943 // CSRK Lookup 1944 // -- if csrk lookup ready, find connection that require csrk lookup 1945 if (sm_address_resolution_idle()){ 1946 hci_connections_get_iterator(&it); 1947 while(btstack_linked_list_iterator_has_next(&it)){ 1948 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 1949 sm_connection_t * sm_connection = &hci_connection->sm_connection; 1950 if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){ 1951 // and start lookup 1952 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection); 1953 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED; 1954 break; 1955 } 1956 } 1957 } 1958 1959 // -- if csrk lookup ready, resolved addresses for received addresses 1960 if (sm_address_resolution_idle()) { 1961 if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){ 1962 sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue; 1963 btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry); 1964 sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL); 1965 btstack_memory_sm_lookup_entry_free(entry); 1966 } 1967 } 1968 1969 // -- Continue with CSRK device lookup by public or resolvable private address 1970 if (!sm_address_resolution_idle()){ 1971 log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count()); 1972 while (sm_address_resolution_test < le_device_db_count()){ 1973 int addr_type; 1974 bd_addr_t addr; 1975 sm_key_t irk; 1976 le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk); 1977 log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr)); 1978 1979 if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){ 1980 log_info("LE Device Lookup: found CSRK by { addr_type, address} "); 1981 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED); 1982 break; 1983 } 1984 1985 if (sm_address_resolution_addr_type == 0){ 1986 sm_address_resolution_test++; 1987 continue; 1988 } 1989 1990 if (sm_aes128_state == SM_AES128_ACTIVE) break; 1991 1992 log_info("LE Device Lookup: calculate AH"); 1993 log_info_key("IRK", irk); 1994 1995 sm_key_t r_prime; 1996 sm_ah_r_prime(sm_address_resolution_address, r_prime); 1997 sm_address_resolution_ah_calculation_active = 1; 1998 sm_aes128_start(irk, r_prime, sm_address_resolution_context); // keep context 1999 return; 2000 } 2001 2002 if (sm_address_resolution_test >= le_device_db_count()){ 2003 log_info("LE Device Lookup: not found"); 2004 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED); 2005 } 2006 } 2007 2008 // handle basic actions that don't requires the full context 2009 hci_connections_get_iterator(&it); 2010 while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){ 2011 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 2012 sm_connection_t * sm_connection = &hci_connection->sm_connection; 2013 switch(sm_connection->sm_engine_state){ 2014 // responder side 2015 case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY: 2016 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2017 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2018 return; 2019 2020 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2021 case SM_SC_RECEIVED_LTK_REQUEST: 2022 switch (sm_connection->sm_irk_lookup_state){ 2023 case IRK_LOOKUP_FAILED: 2024 log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Failed)"); 2025 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2026 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2027 return; 2028 default: 2029 break; 2030 } 2031 break; 2032 #endif 2033 default: 2034 break; 2035 } 2036 } 2037 2038 // 2039 // active connection handling 2040 // -- use loop to handle next connection if lock on setup context is released 2041 2042 while (1) { 2043 2044 // Find connections that requires setup context and make active if no other is locked 2045 hci_connections_get_iterator(&it); 2046 while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){ 2047 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 2048 sm_connection_t * sm_connection = &hci_connection->sm_connection; 2049 // - if no connection locked and we're ready/waiting for setup context, fetch it and start 2050 int done = 1; 2051 int err; 2052 UNUSED(err); 2053 switch (sm_connection->sm_engine_state) { 2054 #ifdef ENABLE_LE_PERIPHERAL 2055 case SM_RESPONDER_SEND_SECURITY_REQUEST: 2056 // send packet if possible, 2057 if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){ 2058 const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING}; 2059 sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST; 2060 l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2061 } else { 2062 l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 2063 } 2064 // don't lock sxetup context yet 2065 done = 0; 2066 break; 2067 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED: 2068 sm_reset_setup(); 2069 sm_init_setup(sm_connection); 2070 // recover pairing request 2071 memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t)); 2072 err = sm_stk_generation_init(sm_connection); 2073 if (err){ 2074 setup->sm_pairing_failed_reason = err; 2075 sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 2076 break; 2077 } 2078 sm_timeout_start(sm_connection); 2079 // generate random number first, if we need to show passkey 2080 if (setup->sm_stk_generation_method == PK_INIT_INPUT){ 2081 sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK; 2082 break; 2083 } 2084 sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE; 2085 break; 2086 case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST: 2087 sm_reset_setup(); 2088 sm_start_calculating_ltk_from_ediv_and_rand(sm_connection); 2089 break; 2090 #endif 2091 #ifdef ENABLE_LE_CENTRAL 2092 case SM_INITIATOR_PH0_HAS_LTK: 2093 sm_reset_setup(); 2094 sm_load_security_info(sm_connection); 2095 sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION; 2096 break; 2097 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST: 2098 sm_reset_setup(); 2099 sm_init_setup(sm_connection); 2100 sm_timeout_start(sm_connection); 2101 sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST; 2102 break; 2103 #endif 2104 2105 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2106 case SM_SC_RECEIVED_LTK_REQUEST: 2107 switch (sm_connection->sm_irk_lookup_state){ 2108 case IRK_LOOKUP_SUCCEEDED: 2109 // assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null 2110 // start using context by loading security info 2111 sm_reset_setup(); 2112 sm_load_security_info(sm_connection); 2113 if (setup->sm_peer_ediv == 0 && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){ 2114 memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16); 2115 sm_connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY; 2116 break; 2117 } 2118 log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)"); 2119 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2120 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2121 // don't lock setup context yet 2122 return; 2123 default: 2124 // just wait until IRK lookup is completed 2125 // don't lock setup context yet 2126 done = 0; 2127 break; 2128 } 2129 break; 2130 #endif 2131 default: 2132 done = 0; 2133 break; 2134 } 2135 if (done){ 2136 sm_active_connection_handle = sm_connection->sm_handle; 2137 log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state); 2138 } 2139 } 2140 2141 // 2142 // active connection handling 2143 // 2144 2145 if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return; 2146 2147 sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle); 2148 if (!connection) { 2149 log_info("no connection for handle 0x%04x", sm_active_connection_handle); 2150 return; 2151 } 2152 2153 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) 2154 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_NEEDED){ 2155 setup->sm_state_vars &= ~SM_STATE_VAR_DHKEY_NEEDED; 2156 hci_send_cmd(&hci_le_generate_dhkey, &setup->sm_peer_q[0], &setup->sm_peer_q[32]); 2157 return; 2158 } 2159 #endif 2160 2161 // assert that we could send a SM PDU - not needed for all of the following 2162 if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) { 2163 log_info("cannot send now, requesting can send now event"); 2164 l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 2165 return; 2166 } 2167 2168 // send keypress notifications 2169 if (setup->sm_keypress_notification != 0xff){ 2170 uint8_t buffer[2]; 2171 buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION; 2172 buffer[1] = setup->sm_keypress_notification; 2173 setup->sm_keypress_notification = 0xff; 2174 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2175 return; 2176 } 2177 2178 sm_key_t plaintext; 2179 int key_distribution_flags; 2180 UNUSED(key_distribution_flags); 2181 2182 log_info("sm_run: state %u", connection->sm_engine_state); 2183 2184 switch (connection->sm_engine_state){ 2185 2186 // general 2187 case SM_GENERAL_SEND_PAIRING_FAILED: { 2188 uint8_t buffer[2]; 2189 buffer[0] = SM_CODE_PAIRING_FAILED; 2190 buffer[1] = setup->sm_pairing_failed_reason; 2191 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED; 2192 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2193 sm_done_for_handle(connection->sm_handle); 2194 break; 2195 } 2196 2197 // responding state 2198 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2199 case SM_SC_W2_GET_RANDOM_A: 2200 sm_random_start(connection); 2201 connection->sm_engine_state = SM_SC_W4_GET_RANDOM_A; 2202 break; 2203 case SM_SC_W2_GET_RANDOM_B: 2204 sm_random_start(connection); 2205 connection->sm_engine_state = SM_SC_W4_GET_RANDOM_B; 2206 break; 2207 case SM_SC_W2_CMAC_FOR_CONFIRMATION: 2208 if (!sm_cmac_ready()) break; 2209 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION; 2210 sm_sc_calculate_local_confirm(connection); 2211 break; 2212 case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION: 2213 if (!sm_cmac_ready()) break; 2214 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION; 2215 sm_sc_calculate_remote_confirm(connection); 2216 break; 2217 case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK: 2218 if (!sm_cmac_ready()) break; 2219 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK; 2220 sm_sc_calculate_f6_for_dhkey_check(connection); 2221 break; 2222 case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK: 2223 if (!sm_cmac_ready()) break; 2224 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 2225 sm_sc_calculate_f6_to_verify_dhkey_check(connection); 2226 break; 2227 case SM_SC_W2_CALCULATE_F5_SALT: 2228 if (!sm_cmac_ready()) break; 2229 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT; 2230 f5_calculate_salt(connection); 2231 break; 2232 case SM_SC_W2_CALCULATE_F5_MACKEY: 2233 if (!sm_cmac_ready()) break; 2234 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY; 2235 f5_calculate_mackey(connection); 2236 break; 2237 case SM_SC_W2_CALCULATE_F5_LTK: 2238 if (!sm_cmac_ready()) break; 2239 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK; 2240 f5_calculate_ltk(connection); 2241 break; 2242 case SM_SC_W2_CALCULATE_G2: 2243 if (!sm_cmac_ready()) break; 2244 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2; 2245 g2_calculate(connection); 2246 break; 2247 case SM_SC_W2_CALCULATE_H6_ILK: 2248 if (!sm_cmac_ready()) break; 2249 connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_ILK; 2250 h6_calculate_ilk(connection); 2251 break; 2252 case SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY: 2253 if (!sm_cmac_ready()) break; 2254 connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY; 2255 h6_calculate_br_edr_link_key(connection); 2256 break; 2257 #endif 2258 2259 #ifdef ENABLE_LE_CENTRAL 2260 // initiator side 2261 case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: { 2262 sm_key_t peer_ltk_flipped; 2263 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped); 2264 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED; 2265 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv); 2266 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0); 2267 uint32_t rand_low = big_endian_read_32(setup->sm_peer_rand, 4); 2268 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped); 2269 return; 2270 } 2271 2272 case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST: 2273 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST); 2274 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE; 2275 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t)); 2276 sm_timeout_reset(connection); 2277 break; 2278 #endif 2279 2280 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2281 2282 case SM_SC_SEND_PUBLIC_KEY_COMMAND: { 2283 uint8_t buffer[65]; 2284 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY; 2285 // 2286 reverse_256(&ec_q[0], &buffer[1]); 2287 reverse_256(&ec_q[32], &buffer[33]); 2288 2289 // stk generation method 2290 // passkey entry: notify app to show passkey or to request passkey 2291 switch (setup->sm_stk_generation_method){ 2292 case JUST_WORKS: 2293 case NK_BOTH_INPUT: 2294 if (IS_RESPONDER(connection->sm_role)){ 2295 // responder 2296 sm_sc_start_calculating_local_confirm(connection); 2297 } else { 2298 // initiator 2299 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2300 } 2301 break; 2302 case PK_INIT_INPUT: 2303 case PK_RESP_INPUT: 2304 case OK_BOTH_INPUT: 2305 // use random TK for display 2306 memcpy(setup->sm_ra, setup->sm_tk, 16); 2307 memcpy(setup->sm_rb, setup->sm_tk, 16); 2308 setup->sm_passkey_bit = 0; 2309 2310 if (IS_RESPONDER(connection->sm_role)){ 2311 // responder 2312 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2313 } else { 2314 // initiator 2315 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2316 } 2317 sm_trigger_user_response(connection); 2318 break; 2319 case OOB: 2320 // TODO: implement SC OOB 2321 break; 2322 } 2323 2324 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2325 sm_timeout_reset(connection); 2326 break; 2327 } 2328 case SM_SC_SEND_CONFIRMATION: { 2329 uint8_t buffer[17]; 2330 buffer[0] = SM_CODE_PAIRING_CONFIRM; 2331 reverse_128(setup->sm_local_confirm, &buffer[1]); 2332 if (IS_RESPONDER(connection->sm_role)){ 2333 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2334 } else { 2335 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2336 } 2337 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2338 sm_timeout_reset(connection); 2339 break; 2340 } 2341 case SM_SC_SEND_PAIRING_RANDOM: { 2342 uint8_t buffer[17]; 2343 buffer[0] = SM_CODE_PAIRING_RANDOM; 2344 reverse_128(setup->sm_local_nonce, &buffer[1]); 2345 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){ 2346 if (IS_RESPONDER(connection->sm_role)){ 2347 // responder 2348 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2349 } else { 2350 // initiator 2351 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2352 } 2353 } else { 2354 if (IS_RESPONDER(connection->sm_role)){ 2355 // responder 2356 if (setup->sm_stk_generation_method == NK_BOTH_INPUT){ 2357 connection->sm_engine_state = SM_SC_W2_CALCULATE_G2; 2358 } else { 2359 sm_sc_prepare_dhkey_check(connection); 2360 } 2361 } else { 2362 // initiator 2363 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2364 } 2365 } 2366 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2367 sm_timeout_reset(connection); 2368 break; 2369 } 2370 case SM_SC_SEND_DHKEY_CHECK_COMMAND: { 2371 uint8_t buffer[17]; 2372 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK; 2373 reverse_128(setup->sm_local_dhkey_check, &buffer[1]); 2374 2375 if (IS_RESPONDER(connection->sm_role)){ 2376 connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC; 2377 } else { 2378 connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND; 2379 } 2380 2381 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2382 sm_timeout_reset(connection); 2383 break; 2384 } 2385 2386 #endif 2387 2388 #ifdef ENABLE_LE_PERIPHERAL 2389 case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE: 2390 // echo initiator for now 2391 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE); 2392 key_distribution_flags = sm_key_distribution_flags_for_auth_req(); 2393 2394 if (setup->sm_use_secure_connections){ 2395 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2396 // skip LTK/EDIV for SC 2397 log_info("sm: dropping encryption information flag"); 2398 key_distribution_flags &= ~SM_KEYDIST_ENC_KEY; 2399 } else { 2400 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM; 2401 } 2402 2403 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags); 2404 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags); 2405 // update key distribution after ENC was dropped 2406 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres)); 2407 2408 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t)); 2409 sm_timeout_reset(connection); 2410 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged 2411 if (!setup->sm_use_secure_connections || setup->sm_stk_generation_method == JUST_WORKS){ 2412 sm_trigger_user_response(connection); 2413 } 2414 return; 2415 #endif 2416 2417 case SM_PH2_SEND_PAIRING_RANDOM: { 2418 uint8_t buffer[17]; 2419 buffer[0] = SM_CODE_PAIRING_RANDOM; 2420 reverse_128(setup->sm_local_random, &buffer[1]); 2421 if (IS_RESPONDER(connection->sm_role)){ 2422 connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST; 2423 } else { 2424 connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM; 2425 } 2426 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2427 sm_timeout_reset(connection); 2428 break; 2429 } 2430 2431 case SM_PH2_GET_RANDOM_TK: 2432 case SM_PH2_C1_GET_RANDOM_A: 2433 case SM_PH2_C1_GET_RANDOM_B: 2434 case SM_PH3_GET_RANDOM: 2435 case SM_PH3_GET_DIV: 2436 sm_next_responding_state(connection); 2437 sm_random_start(connection); 2438 return; 2439 2440 case SM_PH2_C1_GET_ENC_B: 2441 case SM_PH2_C1_GET_ENC_D: 2442 // already busy? 2443 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2444 sm_next_responding_state(connection); 2445 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection); 2446 return; 2447 2448 case SM_PH3_LTK_GET_ENC: 2449 case SM_RESPONDER_PH4_LTK_GET_ENC: 2450 // already busy? 2451 if (sm_aes128_state == SM_AES128_IDLE) { 2452 sm_key_t d_prime; 2453 sm_d1_d_prime(setup->sm_local_div, 0, d_prime); 2454 sm_next_responding_state(connection); 2455 sm_aes128_start(sm_persistent_er, d_prime, connection); 2456 return; 2457 } 2458 break; 2459 2460 case SM_PH3_CSRK_GET_ENC: 2461 // already busy? 2462 if (sm_aes128_state == SM_AES128_IDLE) { 2463 sm_key_t d_prime; 2464 sm_d1_d_prime(setup->sm_local_div, 1, d_prime); 2465 sm_next_responding_state(connection); 2466 sm_aes128_start(sm_persistent_er, d_prime, connection); 2467 return; 2468 } 2469 break; 2470 2471 case SM_PH2_C1_GET_ENC_C: 2472 // already busy? 2473 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2474 // calculate m_confirm using aes128 engine - step 1 2475 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext); 2476 sm_next_responding_state(connection); 2477 sm_aes128_start(setup->sm_tk, plaintext, connection); 2478 break; 2479 case SM_PH2_C1_GET_ENC_A: 2480 // already busy? 2481 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2482 // calculate confirm using aes128 engine - step 1 2483 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext); 2484 sm_next_responding_state(connection); 2485 sm_aes128_start(setup->sm_tk, plaintext, connection); 2486 break; 2487 case SM_PH2_CALC_STK: 2488 // already busy? 2489 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2490 // calculate STK 2491 if (IS_RESPONDER(connection->sm_role)){ 2492 sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext); 2493 } else { 2494 sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext); 2495 } 2496 sm_next_responding_state(connection); 2497 sm_aes128_start(setup->sm_tk, plaintext, connection); 2498 break; 2499 case SM_PH3_Y_GET_ENC: 2500 // already busy? 2501 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2502 // PH3B2 - calculate Y from - enc 2503 // Y = dm(DHK, Rand) 2504 sm_dm_r_prime(setup->sm_local_rand, plaintext); 2505 sm_next_responding_state(connection); 2506 sm_aes128_start(sm_persistent_dhk, plaintext, connection); 2507 return; 2508 case SM_PH2_C1_SEND_PAIRING_CONFIRM: { 2509 uint8_t buffer[17]; 2510 buffer[0] = SM_CODE_PAIRING_CONFIRM; 2511 reverse_128(setup->sm_local_confirm, &buffer[1]); 2512 if (IS_RESPONDER(connection->sm_role)){ 2513 connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM; 2514 } else { 2515 connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM; 2516 } 2517 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2518 sm_timeout_reset(connection); 2519 return; 2520 } 2521 #ifdef ENABLE_LE_PERIPHERAL 2522 case SM_RESPONDER_PH2_SEND_LTK_REPLY: { 2523 sm_key_t stk_flipped; 2524 reverse_128(setup->sm_ltk, stk_flipped); 2525 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED; 2526 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped); 2527 return; 2528 } 2529 case SM_RESPONDER_PH4_SEND_LTK_REPLY: { 2530 sm_key_t ltk_flipped; 2531 reverse_128(setup->sm_ltk, ltk_flipped); 2532 connection->sm_engine_state = SM_RESPONDER_IDLE; 2533 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped); 2534 return; 2535 } 2536 case SM_RESPONDER_PH4_Y_GET_ENC: 2537 // already busy? 2538 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2539 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv); 2540 // Y = dm(DHK, Rand) 2541 sm_dm_r_prime(setup->sm_local_rand, plaintext); 2542 sm_next_responding_state(connection); 2543 sm_aes128_start(sm_persistent_dhk, plaintext, connection); 2544 return; 2545 #endif 2546 #ifdef ENABLE_LE_CENTRAL 2547 case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: { 2548 sm_key_t stk_flipped; 2549 reverse_128(setup->sm_ltk, stk_flipped); 2550 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED; 2551 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped); 2552 return; 2553 } 2554 #endif 2555 2556 case SM_PH3_DISTRIBUTE_KEYS: 2557 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){ 2558 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 2559 uint8_t buffer[17]; 2560 buffer[0] = SM_CODE_ENCRYPTION_INFORMATION; 2561 reverse_128(setup->sm_ltk, &buffer[1]); 2562 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2563 sm_timeout_reset(connection); 2564 return; 2565 } 2566 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){ 2567 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 2568 uint8_t buffer[11]; 2569 buffer[0] = SM_CODE_MASTER_IDENTIFICATION; 2570 little_endian_store_16(buffer, 1, setup->sm_local_ediv); 2571 reverse_64(setup->sm_local_rand, &buffer[3]); 2572 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2573 sm_timeout_reset(connection); 2574 return; 2575 } 2576 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){ 2577 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 2578 uint8_t buffer[17]; 2579 buffer[0] = SM_CODE_IDENTITY_INFORMATION; 2580 reverse_128(sm_persistent_irk, &buffer[1]); 2581 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2582 sm_timeout_reset(connection); 2583 return; 2584 } 2585 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){ 2586 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 2587 bd_addr_t local_address; 2588 uint8_t buffer[8]; 2589 buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION; 2590 switch (gap_random_address_get_mode()){ 2591 case GAP_RANDOM_ADDRESS_TYPE_OFF: 2592 case GAP_RANDOM_ADDRESS_TYPE_STATIC: 2593 // public or static random 2594 gap_le_get_own_address(&buffer[1], local_address); 2595 break; 2596 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE: 2597 case GAP_RANDOM_ADDRESS_RESOLVABLE: 2598 // fallback to public 2599 gap_local_bd_addr(local_address); 2600 buffer[1] = 0; 2601 break; 2602 } 2603 reverse_bd_addr(local_address, &buffer[2]); 2604 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2605 sm_timeout_reset(connection); 2606 return; 2607 } 2608 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 2609 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 2610 2611 // hack to reproduce test runs 2612 if (test_use_fixed_local_csrk){ 2613 memset(setup->sm_local_csrk, 0xcc, 16); 2614 } 2615 2616 uint8_t buffer[17]; 2617 buffer[0] = SM_CODE_SIGNING_INFORMATION; 2618 reverse_128(setup->sm_local_csrk, &buffer[1]); 2619 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2620 sm_timeout_reset(connection); 2621 return; 2622 } 2623 2624 // keys are sent 2625 if (IS_RESPONDER(connection->sm_role)){ 2626 // slave -> receive master keys if any 2627 if (sm_key_distribution_all_received(connection)){ 2628 sm_key_distribution_handle_all_received(connection); 2629 connection->sm_engine_state = SM_RESPONDER_IDLE; 2630 sm_done_for_handle(connection->sm_handle); 2631 } else { 2632 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS; 2633 } 2634 } else { 2635 // master -> all done 2636 connection->sm_engine_state = SM_INITIATOR_CONNECTED; 2637 sm_done_for_handle(connection->sm_handle); 2638 } 2639 break; 2640 2641 default: 2642 break; 2643 } 2644 2645 // check again if active connection was released 2646 if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break; 2647 } 2648 } 2649 2650 // note: aes engine is ready as we just got the aes result 2651 static void sm_handle_encryption_result(uint8_t * data){ 2652 2653 sm_aes128_state = SM_AES128_IDLE; 2654 2655 if (sm_address_resolution_ah_calculation_active){ 2656 sm_address_resolution_ah_calculation_active = 0; 2657 // compare calulated address against connecting device 2658 uint8_t hash[3]; 2659 reverse_24(data, hash); 2660 if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){ 2661 log_info("LE Device Lookup: matched resolvable private address"); 2662 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED); 2663 return; 2664 } 2665 // no match, try next 2666 sm_address_resolution_test++; 2667 return; 2668 } 2669 2670 switch (dkg_state){ 2671 case DKG_W4_IRK: 2672 reverse_128(data, sm_persistent_irk); 2673 log_info_key("irk", sm_persistent_irk); 2674 dkg_next_state(); 2675 return; 2676 case DKG_W4_DHK: 2677 reverse_128(data, sm_persistent_dhk); 2678 log_info_key("dhk", sm_persistent_dhk); 2679 dkg_next_state(); 2680 // SM Init Finished 2681 return; 2682 default: 2683 break; 2684 } 2685 2686 switch (rau_state){ 2687 case RAU_W4_ENC: 2688 reverse_24(data, &sm_random_address[3]); 2689 rau_next_state(); 2690 return; 2691 default: 2692 break; 2693 } 2694 2695 #ifdef ENABLE_CMAC_ENGINE 2696 switch (sm_cmac_state){ 2697 case CMAC_W4_SUBKEYS: 2698 case CMAC_W4_MI: 2699 case CMAC_W4_MLAST: 2700 { 2701 sm_key_t t; 2702 reverse_128(data, t); 2703 sm_cmac_handle_encryption_result(t); 2704 } 2705 return; 2706 default: 2707 break; 2708 } 2709 #endif 2710 2711 // retrieve sm_connection provided to sm_aes128_start_encryption 2712 sm_connection_t * connection = (sm_connection_t*) sm_aes128_context; 2713 if (!connection) return; 2714 switch (connection->sm_engine_state){ 2715 case SM_PH2_C1_W4_ENC_A: 2716 case SM_PH2_C1_W4_ENC_C: 2717 { 2718 sm_key_t t2; 2719 reverse_128(data, t2); 2720 sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value); 2721 } 2722 sm_next_responding_state(connection); 2723 return; 2724 case SM_PH2_C1_W4_ENC_B: 2725 reverse_128(data, setup->sm_local_confirm); 2726 log_info_key("c1!", setup->sm_local_confirm); 2727 connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM; 2728 return; 2729 case SM_PH2_C1_W4_ENC_D: 2730 { 2731 sm_key_t peer_confirm_test; 2732 reverse_128(data, peer_confirm_test); 2733 log_info_key("c1!", peer_confirm_test); 2734 if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){ 2735 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED; 2736 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 2737 return; 2738 } 2739 if (IS_RESPONDER(connection->sm_role)){ 2740 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM; 2741 } else { 2742 connection->sm_engine_state = SM_PH2_CALC_STK; 2743 } 2744 } 2745 return; 2746 case SM_PH2_W4_STK: 2747 reverse_128(data, setup->sm_ltk); 2748 sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size); 2749 log_info_key("stk", setup->sm_ltk); 2750 if (IS_RESPONDER(connection->sm_role)){ 2751 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY; 2752 } else { 2753 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION; 2754 } 2755 return; 2756 case SM_PH3_Y_W4_ENC:{ 2757 sm_key_t y128; 2758 reverse_128(data, y128); 2759 setup->sm_local_y = big_endian_read_16(y128, 14); 2760 log_info_hex16("y", setup->sm_local_y); 2761 // PH3B3 - calculate EDIV 2762 setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div; 2763 log_info_hex16("ediv", setup->sm_local_ediv); 2764 // PH3B4 - calculate LTK - enc 2765 // LTK = d1(ER, DIV, 0)) 2766 connection->sm_engine_state = SM_PH3_LTK_GET_ENC; 2767 return; 2768 } 2769 case SM_RESPONDER_PH4_Y_W4_ENC:{ 2770 sm_key_t y128; 2771 reverse_128(data, y128); 2772 setup->sm_local_y = big_endian_read_16(y128, 14); 2773 log_info_hex16("y", setup->sm_local_y); 2774 2775 // PH3B3 - calculate DIV 2776 setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv; 2777 log_info_hex16("ediv", setup->sm_local_ediv); 2778 // PH3B4 - calculate LTK - enc 2779 // LTK = d1(ER, DIV, 0)) 2780 connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC; 2781 return; 2782 } 2783 case SM_PH3_LTK_W4_ENC: 2784 reverse_128(data, setup->sm_ltk); 2785 log_info_key("ltk", setup->sm_ltk); 2786 // calc CSRK next 2787 connection->sm_engine_state = SM_PH3_CSRK_GET_ENC; 2788 return; 2789 case SM_PH3_CSRK_W4_ENC: 2790 reverse_128(data, setup->sm_local_csrk); 2791 log_info_key("csrk", setup->sm_local_csrk); 2792 if (setup->sm_key_distribution_send_set){ 2793 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 2794 } else { 2795 // no keys to send, just continue 2796 if (IS_RESPONDER(connection->sm_role)){ 2797 // slave -> receive master keys 2798 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS; 2799 } else { 2800 if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){ 2801 connection->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK; 2802 } else { 2803 // master -> all done 2804 connection->sm_engine_state = SM_INITIATOR_CONNECTED; 2805 sm_done_for_handle(connection->sm_handle); 2806 } 2807 } 2808 } 2809 return; 2810 #ifdef ENABLE_LE_PERIPHERAL 2811 case SM_RESPONDER_PH4_LTK_W4_ENC: 2812 reverse_128(data, setup->sm_ltk); 2813 sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size); 2814 log_info_key("ltk", setup->sm_ltk); 2815 connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY; 2816 return; 2817 #endif 2818 default: 2819 break; 2820 } 2821 } 2822 2823 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2824 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 2825 #if !defined(WICED_VERSION) 2826 // @return OK 2827 static int sm_generate_f_rng(unsigned char * buffer, unsigned size){ 2828 if (ec_key_generation_state != EC_KEY_GENERATION_ACTIVE) return 0; 2829 int offset = setup->sm_passkey_bit; 2830 log_info("sm_generate_f_rng: size %u - offset %u", (int) size, offset); 2831 while (size) { 2832 *buffer++ = setup->sm_peer_q[offset++]; 2833 size--; 2834 } 2835 setup->sm_passkey_bit = offset; 2836 return 1; 2837 } 2838 #endif 2839 #endif 2840 #endif 2841 2842 // note: random generator is ready. this doesn NOT imply that aes engine is unused! 2843 static void sm_handle_random_result(uint8_t * data){ 2844 2845 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) 2846 2847 if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){ 2848 int num_bytes = setup->sm_passkey_bit; 2849 memcpy(&setup->sm_peer_q[num_bytes], data, 8); 2850 num_bytes += 8; 2851 setup->sm_passkey_bit = num_bytes; 2852 2853 if (num_bytes >= 64){ 2854 2855 // init pre-generated random data from sm_peer_q 2856 setup->sm_passkey_bit = 0; 2857 2858 // generate EC key 2859 #ifndef WICED_VERSION 2860 log_info("set uECC RNG for initial key generation with 64 random bytes"); 2861 // micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it 2862 uECC_set_rng(&sm_generate_f_rng); 2863 #endif /* WICED_VERSION */ 2864 2865 #if uECC_SUPPORTS_secp256r1 2866 // standard version 2867 uECC_make_key(ec_q, ec_d, uECC_secp256r1()); 2868 2869 // disable RNG again, as returning no randmon data lets shared key generation fail 2870 log_info("disable uECC RNG in standard version after key generation"); 2871 uECC_set_rng(NULL); 2872 #else 2873 // static version 2874 uECC_make_key(ec_q, ec_d); 2875 #endif /* ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS */ 2876 2877 ec_key_generation_state = EC_KEY_GENERATION_DONE; 2878 log_info("Elliptic curve: d"); 2879 log_info_hexdump(ec_d,32); 2880 sm_log_ec_keypair(); 2881 } 2882 } 2883 #endif 2884 2885 switch (rau_state){ 2886 case RAU_W4_RANDOM: 2887 // non-resolvable vs. resolvable 2888 switch (gap_random_adress_type){ 2889 case GAP_RANDOM_ADDRESS_RESOLVABLE: 2890 // resolvable: use random as prand and calc address hash 2891 // "The two most significant bits of prand shall be equal to ‘0’ and ‘1" 2892 memcpy(sm_random_address, data, 3); 2893 sm_random_address[0] &= 0x3f; 2894 sm_random_address[0] |= 0x40; 2895 rau_state = RAU_GET_ENC; 2896 break; 2897 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE: 2898 default: 2899 // "The two most significant bits of the address shall be equal to ‘0’"" 2900 memcpy(sm_random_address, data, 6); 2901 sm_random_address[0] &= 0x3f; 2902 rau_state = RAU_SET_ADDRESS; 2903 break; 2904 } 2905 return; 2906 default: 2907 break; 2908 } 2909 2910 // retrieve sm_connection provided to sm_random_start 2911 sm_connection_t * connection = (sm_connection_t *) sm_random_context; 2912 if (!connection) return; 2913 switch (connection->sm_engine_state){ 2914 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2915 case SM_SC_W4_GET_RANDOM_A: 2916 memcpy(&setup->sm_local_nonce[0], data, 8); 2917 connection->sm_engine_state = SM_SC_W2_GET_RANDOM_B; 2918 break; 2919 case SM_SC_W4_GET_RANDOM_B: 2920 memcpy(&setup->sm_local_nonce[8], data, 8); 2921 // initiator & jw/nc -> send pairing random 2922 if (connection->sm_role == 0 && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){ 2923 connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 2924 break; 2925 } else { 2926 connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION; 2927 } 2928 break; 2929 #endif 2930 2931 case SM_PH2_W4_RANDOM_TK: 2932 { 2933 // map random to 0-999999 without speding much cycles on a modulus operation 2934 uint32_t tk = little_endian_read_32(data,0); 2935 tk = tk & 0xfffff; // 1048575 2936 if (tk >= 999999){ 2937 tk = tk - 999999; 2938 } 2939 sm_reset_tk(); 2940 big_endian_store_32(setup->sm_tk, 12, tk); 2941 if (IS_RESPONDER(connection->sm_role)){ 2942 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE; 2943 } else { 2944 if (setup->sm_use_secure_connections){ 2945 connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 2946 } else { 2947 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 2948 sm_trigger_user_response(connection); 2949 // response_idle == nothing <--> sm_trigger_user_response() did not require response 2950 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 2951 connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 2952 } 2953 } 2954 } 2955 return; 2956 } 2957 case SM_PH2_C1_W4_RANDOM_A: 2958 memcpy(&setup->sm_local_random[0], data, 8); // random endinaness 2959 connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B; 2960 return; 2961 case SM_PH2_C1_W4_RANDOM_B: 2962 memcpy(&setup->sm_local_random[8], data, 8); // random endinaness 2963 connection->sm_engine_state = SM_PH2_C1_GET_ENC_A; 2964 return; 2965 case SM_PH3_W4_RANDOM: 2966 reverse_64(data, setup->sm_local_rand); 2967 // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand 2968 setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1); 2969 // no db for authenticated flag hack: store flag in bit 4 of LSB 2970 setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4); 2971 connection->sm_engine_state = SM_PH3_GET_DIV; 2972 return; 2973 case SM_PH3_W4_DIV: 2974 // use 16 bit from random value as div 2975 setup->sm_local_div = big_endian_read_16(data, 0); 2976 log_info_hex16("div", setup->sm_local_div); 2977 connection->sm_engine_state = SM_PH3_Y_GET_ENC; 2978 return; 2979 default: 2980 break; 2981 } 2982 } 2983 2984 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 2985 2986 UNUSED(channel); 2987 UNUSED(size); 2988 2989 sm_connection_t * sm_conn; 2990 hci_con_handle_t con_handle; 2991 2992 switch (packet_type) { 2993 2994 case HCI_EVENT_PACKET: 2995 switch (hci_event_packet_get_type(packet)) { 2996 2997 case BTSTACK_EVENT_STATE: 2998 // bt stack activated, get started 2999 if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){ 3000 log_info("HCI Working!"); 3001 3002 3003 dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK; 3004 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3005 if (!sm_have_ec_keypair){ 3006 setup->sm_passkey_bit = 0; 3007 ec_key_generation_state = EC_KEY_GENERATION_ACTIVE; 3008 } 3009 #endif 3010 // trigger Random Address generation if requested before 3011 switch (gap_random_adress_type){ 3012 case GAP_RANDOM_ADDRESS_TYPE_OFF: 3013 rau_state = RAU_IDLE; 3014 break; 3015 case GAP_RANDOM_ADDRESS_TYPE_STATIC: 3016 rau_state = RAU_SET_ADDRESS; 3017 break; 3018 default: 3019 rau_state = RAU_GET_RANDOM; 3020 break; 3021 } 3022 sm_run(); 3023 } 3024 break; 3025 3026 case HCI_EVENT_LE_META: 3027 switch (packet[2]) { 3028 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 3029 3030 log_info("sm: connected"); 3031 3032 if (packet[3]) return; // connection failed 3033 3034 con_handle = little_endian_read_16(packet, 4); 3035 sm_conn = sm_get_connection_for_handle(con_handle); 3036 if (!sm_conn) break; 3037 3038 sm_conn->sm_handle = con_handle; 3039 sm_conn->sm_role = packet[6]; 3040 sm_conn->sm_peer_addr_type = packet[7]; 3041 reverse_bd_addr(&packet[8], sm_conn->sm_peer_address); 3042 3043 log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master"); 3044 3045 // reset security properties 3046 sm_conn->sm_connection_encrypted = 0; 3047 sm_conn->sm_connection_authenticated = 0; 3048 sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN; 3049 sm_conn->sm_le_db_index = -1; 3050 3051 // prepare CSRK lookup (does not involve setup) 3052 sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY; 3053 3054 // just connected -> everything else happens in sm_run() 3055 if (IS_RESPONDER(sm_conn->sm_role)){ 3056 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead 3057 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){ 3058 if (sm_slave_request_security) { 3059 // request security if requested by app 3060 sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST; 3061 } else { 3062 // otherwise, wait for pairing request 3063 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 3064 } 3065 } 3066 break; 3067 } else { 3068 // master 3069 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3070 } 3071 break; 3072 3073 case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST: 3074 con_handle = little_endian_read_16(packet, 3); 3075 sm_conn = sm_get_connection_for_handle(con_handle); 3076 if (!sm_conn) break; 3077 3078 log_info("LTK Request: state %u", sm_conn->sm_engine_state); 3079 if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){ 3080 sm_conn->sm_engine_state = SM_PH2_CALC_STK; 3081 break; 3082 } 3083 if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){ 3084 // PH2 SEND LTK as we need to exchange keys in PH3 3085 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY; 3086 break; 3087 } 3088 3089 // store rand and ediv 3090 reverse_64(&packet[5], sm_conn->sm_local_rand); 3091 sm_conn->sm_local_ediv = little_endian_read_16(packet, 13); 3092 3093 // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a 3094 // potentially stored LTK is from the master 3095 if (sm_conn->sm_local_ediv != 0 || !sm_is_null_random(sm_conn->sm_local_rand)){ 3096 sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST; 3097 break; 3098 } 3099 3100 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3101 sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST; 3102 #else 3103 log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported"); 3104 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY; 3105 #endif 3106 break; 3107 3108 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) 3109 case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE: 3110 if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){ 3111 log_error("Read Local P256 Public Key failed"); 3112 break; 3113 } 3114 3115 hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &ec_q[0]); 3116 hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &ec_q[32]); 3117 3118 ec_key_generation_state = EC_KEY_GENERATION_DONE; 3119 sm_log_ec_keypair(); 3120 break; 3121 case HCI_SUBEVENT_LE_GENERATE_DHKEY_COMPLETE: 3122 sm_conn = sm_get_connection_for_handle(sm_active_connection_handle); 3123 if (hci_subevent_le_generate_dhkey_complete_get_status(packet)){ 3124 log_error("Generate DHKEY failed -> abort"); 3125 // abort pairing with 'unspecified reason' 3126 sm_pdu_received_in_wrong_state(sm_conn); 3127 break; 3128 } 3129 3130 hci_subevent_le_generate_dhkey_complete_get_dhkey(packet, &setup->sm_dhkey[0]); 3131 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED; 3132 log_info("dhkey"); 3133 log_info_hexdump(&setup->sm_dhkey[0], 32); 3134 3135 // trigger next step 3136 if (sm_conn->sm_engine_state == SM_SC_W4_CALCULATE_DHKEY){ 3137 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT; 3138 } 3139 break; 3140 #endif 3141 default: 3142 break; 3143 } 3144 break; 3145 3146 case HCI_EVENT_ENCRYPTION_CHANGE: 3147 con_handle = little_endian_read_16(packet, 3); 3148 sm_conn = sm_get_connection_for_handle(con_handle); 3149 if (!sm_conn) break; 3150 3151 sm_conn->sm_connection_encrypted = packet[5]; 3152 log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted, 3153 sm_conn->sm_actual_encryption_key_size); 3154 log_info("event handler, state %u", sm_conn->sm_engine_state); 3155 if (!sm_conn->sm_connection_encrypted) break; 3156 // continue if part of initial pairing 3157 switch (sm_conn->sm_engine_state){ 3158 case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED: 3159 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3160 sm_done_for_handle(sm_conn->sm_handle); 3161 break; 3162 case SM_PH2_W4_CONNECTION_ENCRYPTED: 3163 if (IS_RESPONDER(sm_conn->sm_role)){ 3164 // slave 3165 if (setup->sm_use_secure_connections){ 3166 sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 3167 } else { 3168 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3169 } 3170 } else { 3171 // master 3172 if (sm_key_distribution_all_received(sm_conn)){ 3173 // skip receiving keys as there are none 3174 sm_key_distribution_handle_all_received(sm_conn); 3175 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3176 } else { 3177 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS; 3178 } 3179 } 3180 break; 3181 default: 3182 break; 3183 } 3184 break; 3185 3186 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE: 3187 con_handle = little_endian_read_16(packet, 3); 3188 sm_conn = sm_get_connection_for_handle(con_handle); 3189 if (!sm_conn) break; 3190 3191 log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size); 3192 log_info("event handler, state %u", sm_conn->sm_engine_state); 3193 // continue if part of initial pairing 3194 switch (sm_conn->sm_engine_state){ 3195 case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED: 3196 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3197 sm_done_for_handle(sm_conn->sm_handle); 3198 break; 3199 case SM_PH2_W4_CONNECTION_ENCRYPTED: 3200 if (IS_RESPONDER(sm_conn->sm_role)){ 3201 // slave 3202 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3203 } else { 3204 // master 3205 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS; 3206 } 3207 break; 3208 default: 3209 break; 3210 } 3211 break; 3212 3213 3214 case HCI_EVENT_DISCONNECTION_COMPLETE: 3215 con_handle = little_endian_read_16(packet, 3); 3216 sm_done_for_handle(con_handle); 3217 sm_conn = sm_get_connection_for_handle(con_handle); 3218 if (!sm_conn) break; 3219 3220 // delete stored bonding on disconnect with authentication failure in ph0 3221 if (sm_conn->sm_role == 0 3222 && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED 3223 && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){ 3224 le_device_db_remove(sm_conn->sm_le_db_index); 3225 } 3226 3227 sm_conn->sm_engine_state = SM_GENERAL_IDLE; 3228 sm_conn->sm_handle = 0; 3229 break; 3230 3231 case HCI_EVENT_COMMAND_COMPLETE: 3232 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){ 3233 sm_handle_encryption_result(&packet[6]); 3234 break; 3235 } 3236 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){ 3237 sm_handle_random_result(&packet[6]); 3238 break; 3239 } 3240 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)){ 3241 // Hack for Nordic nRF5 series that doesn't have public address: 3242 // - with patches from port/nrf5-zephyr, hci_read_bd_addr returns random static address 3243 // - we use this as default for advertisements/connections 3244 bd_addr_t addr; 3245 reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr); 3246 if (hci_get_manufacturer() == BLUETOOTH_COMPANY_ID_NORDIC_SEMICONDUCTOR_ASA){ 3247 log_info("nRF5: using (fake) public address as random static address"); 3248 gap_random_address_set(addr); 3249 } 3250 3251 // set local addr for le device db 3252 le_device_db_set_local_bd_addr(addr); 3253 } 3254 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_commands)){ 3255 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) 3256 if ((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+34] & 0x06) != 0x06){ 3257 log_error("LE Secure Connections enabled, but HCI Controller doesn't support it. Please add ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS to btstack_config.h"); 3258 } 3259 #endif 3260 } 3261 break; 3262 default: 3263 break; 3264 } 3265 break; 3266 default: 3267 break; 3268 } 3269 3270 sm_run(); 3271 } 3272 3273 static inline int sm_calc_actual_encryption_key_size(int other){ 3274 if (other < sm_min_encryption_key_size) return 0; 3275 if (other < sm_max_encryption_key_size) return other; 3276 return sm_max_encryption_key_size; 3277 } 3278 3279 3280 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3281 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method){ 3282 switch (method){ 3283 case JUST_WORKS: 3284 case NK_BOTH_INPUT: 3285 return 1; 3286 default: 3287 return 0; 3288 } 3289 } 3290 // responder 3291 3292 static int sm_passkey_used(stk_generation_method_t method){ 3293 switch (method){ 3294 case PK_RESP_INPUT: 3295 return 1; 3296 default: 3297 return 0; 3298 } 3299 } 3300 #endif 3301 3302 /** 3303 * @return ok 3304 */ 3305 static int sm_validate_stk_generation_method(void){ 3306 // check if STK generation method is acceptable by client 3307 switch (setup->sm_stk_generation_method){ 3308 case JUST_WORKS: 3309 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0; 3310 case PK_RESP_INPUT: 3311 case PK_INIT_INPUT: 3312 case OK_BOTH_INPUT: 3313 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0; 3314 case OOB: 3315 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0; 3316 case NK_BOTH_INPUT: 3317 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0; 3318 return 1; 3319 default: 3320 return 0; 3321 } 3322 } 3323 3324 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){ 3325 3326 UNUSED(size); 3327 3328 if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){ 3329 sm_run(); 3330 } 3331 3332 if (packet_type != SM_DATA_PACKET) return; 3333 3334 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3335 if (!sm_conn) return; 3336 3337 if (packet[0] == SM_CODE_PAIRING_FAILED){ 3338 sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED; 3339 return; 3340 } 3341 3342 log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]); 3343 3344 int err; 3345 UNUSED(err); 3346 3347 if (packet[0] == SM_CODE_KEYPRESS_NOTIFICATION){ 3348 uint8_t buffer[5]; 3349 buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION; 3350 buffer[1] = 3; 3351 little_endian_store_16(buffer, 2, con_handle); 3352 buffer[4] = packet[1]; 3353 sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer)); 3354 return; 3355 } 3356 3357 switch (sm_conn->sm_engine_state){ 3358 3359 // a sm timeout requries a new physical connection 3360 case SM_GENERAL_TIMEOUT: 3361 return; 3362 3363 #ifdef ENABLE_LE_CENTRAL 3364 3365 // Initiator 3366 case SM_INITIATOR_CONNECTED: 3367 if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){ 3368 sm_pdu_received_in_wrong_state(sm_conn); 3369 break; 3370 } 3371 if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){ 3372 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3373 break; 3374 } 3375 if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){ 3376 sm_key_t ltk; 3377 le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL); 3378 if (!sm_is_null_key(ltk)){ 3379 log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index); 3380 sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 3381 } else { 3382 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3383 } 3384 break; 3385 } 3386 // otherwise, store security request 3387 sm_conn->sm_security_request_received = 1; 3388 break; 3389 3390 case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE: 3391 if (packet[0] != SM_CODE_PAIRING_RESPONSE){ 3392 sm_pdu_received_in_wrong_state(sm_conn); 3393 break; 3394 } 3395 // store pairing request 3396 memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t)); 3397 err = sm_stk_generation_init(sm_conn); 3398 if (err){ 3399 setup->sm_pairing_failed_reason = err; 3400 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 3401 break; 3402 } 3403 3404 // generate random number first, if we need to show passkey 3405 if (setup->sm_stk_generation_method == PK_RESP_INPUT){ 3406 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK; 3407 break; 3408 } 3409 3410 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3411 if (setup->sm_use_secure_connections){ 3412 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged 3413 if (setup->sm_stk_generation_method == JUST_WORKS){ 3414 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3415 sm_trigger_user_response(sm_conn); 3416 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 3417 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3418 } 3419 } else { 3420 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3421 } 3422 break; 3423 } 3424 #endif 3425 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3426 sm_trigger_user_response(sm_conn); 3427 // response_idle == nothing <--> sm_trigger_user_response() did not require response 3428 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 3429 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 3430 } 3431 break; 3432 3433 case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM: 3434 if (packet[0] != SM_CODE_PAIRING_CONFIRM){ 3435 sm_pdu_received_in_wrong_state(sm_conn); 3436 break; 3437 } 3438 3439 // store s_confirm 3440 reverse_128(&packet[1], setup->sm_peer_confirm); 3441 sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM; 3442 break; 3443 3444 case SM_INITIATOR_PH2_W4_PAIRING_RANDOM: 3445 if (packet[0] != SM_CODE_PAIRING_RANDOM){ 3446 sm_pdu_received_in_wrong_state(sm_conn); 3447 break;; 3448 } 3449 3450 // received random value 3451 reverse_128(&packet[1], setup->sm_peer_random); 3452 sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C; 3453 break; 3454 #endif 3455 3456 #ifdef ENABLE_LE_PERIPHERAL 3457 // Responder 3458 case SM_RESPONDER_IDLE: 3459 case SM_RESPONDER_SEND_SECURITY_REQUEST: 3460 case SM_RESPONDER_PH1_W4_PAIRING_REQUEST: 3461 if (packet[0] != SM_CODE_PAIRING_REQUEST){ 3462 sm_pdu_received_in_wrong_state(sm_conn); 3463 break;; 3464 } 3465 3466 // store pairing request 3467 memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t)); 3468 sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED; 3469 break; 3470 #endif 3471 3472 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3473 case SM_SC_W4_PUBLIC_KEY_COMMAND: 3474 if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){ 3475 sm_pdu_received_in_wrong_state(sm_conn); 3476 break; 3477 } 3478 3479 // store public key for DH Key calculation 3480 reverse_256(&packet[01], &setup->sm_peer_q[0]); 3481 reverse_256(&packet[33], &setup->sm_peer_q[32]); 3482 3483 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 3484 // validate public key 3485 err = 0; 3486 #if uECC_SUPPORTS_secp256r1 3487 // standard version 3488 err = uECC_valid_public_key(setup->sm_peer_q, uECC_secp256r1()) == 0; 3489 #else 3490 // static version 3491 err = uECC_valid_public_key(setup->sm_peer_q) == 0; 3492 #endif 3493 if (err){ 3494 log_error("sm: peer public key invalid %x", err); 3495 // uses "unspecified reason", there is no "public key invalid" error code 3496 sm_pdu_received_in_wrong_state(sm_conn); 3497 break; 3498 } 3499 #endif 3500 3501 #ifndef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 3502 // start calculating dhkey 3503 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_NEEDED; 3504 #endif 3505 3506 if (IS_RESPONDER(sm_conn->sm_role)){ 3507 // responder 3508 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3509 } else { 3510 // initiator 3511 // stk generation method 3512 // passkey entry: notify app to show passkey or to request passkey 3513 switch (setup->sm_stk_generation_method){ 3514 case JUST_WORKS: 3515 case NK_BOTH_INPUT: 3516 sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION; 3517 break; 3518 case PK_RESP_INPUT: 3519 sm_sc_start_calculating_local_confirm(sm_conn); 3520 break; 3521 case PK_INIT_INPUT: 3522 case OK_BOTH_INPUT: 3523 if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){ 3524 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 3525 break; 3526 } 3527 sm_sc_start_calculating_local_confirm(sm_conn); 3528 break; 3529 case OOB: 3530 // TODO: implement SC OOB 3531 break; 3532 } 3533 } 3534 break; 3535 3536 case SM_SC_W4_CONFIRMATION: 3537 if (packet[0] != SM_CODE_PAIRING_CONFIRM){ 3538 sm_pdu_received_in_wrong_state(sm_conn); 3539 break; 3540 } 3541 // received confirm value 3542 reverse_128(&packet[1], setup->sm_peer_confirm); 3543 3544 if (IS_RESPONDER(sm_conn->sm_role)){ 3545 // responder 3546 if (sm_passkey_used(setup->sm_stk_generation_method)){ 3547 if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){ 3548 // still waiting for passkey 3549 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 3550 break; 3551 } 3552 } 3553 sm_sc_start_calculating_local_confirm(sm_conn); 3554 } else { 3555 // initiator 3556 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){ 3557 sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A; 3558 } else { 3559 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 3560 } 3561 } 3562 break; 3563 3564 case SM_SC_W4_PAIRING_RANDOM: 3565 if (packet[0] != SM_CODE_PAIRING_RANDOM){ 3566 sm_pdu_received_in_wrong_state(sm_conn); 3567 break; 3568 } 3569 3570 // received random value 3571 reverse_128(&packet[1], setup->sm_peer_nonce); 3572 3573 // validate confirm value if Cb = f4(Pkb, Pka, Nb, z) 3574 // only check for JUST WORK/NC in initiator role AND passkey entry 3575 if (sm_conn->sm_role || sm_passkey_used(setup->sm_stk_generation_method)) { 3576 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION; 3577 } 3578 3579 sm_sc_state_after_receiving_random(sm_conn); 3580 break; 3581 3582 case SM_SC_W2_CALCULATE_G2: 3583 case SM_SC_W4_CALCULATE_G2: 3584 case SM_SC_W4_CALCULATE_DHKEY: 3585 case SM_SC_W2_CALCULATE_F5_SALT: 3586 case SM_SC_W4_CALCULATE_F5_SALT: 3587 case SM_SC_W2_CALCULATE_F5_MACKEY: 3588 case SM_SC_W4_CALCULATE_F5_MACKEY: 3589 case SM_SC_W2_CALCULATE_F5_LTK: 3590 case SM_SC_W4_CALCULATE_F5_LTK: 3591 case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK: 3592 case SM_SC_W4_DHKEY_CHECK_COMMAND: 3593 case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK: 3594 if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){ 3595 sm_pdu_received_in_wrong_state(sm_conn); 3596 break; 3597 } 3598 // store DHKey Check 3599 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED; 3600 reverse_128(&packet[01], setup->sm_peer_dhkey_check); 3601 3602 // have we been only waiting for dhkey check command? 3603 if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){ 3604 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 3605 } 3606 break; 3607 #endif 3608 3609 #ifdef ENABLE_LE_PERIPHERAL 3610 case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM: 3611 if (packet[0] != SM_CODE_PAIRING_CONFIRM){ 3612 sm_pdu_received_in_wrong_state(sm_conn); 3613 break; 3614 } 3615 3616 // received confirm value 3617 reverse_128(&packet[1], setup->sm_peer_confirm); 3618 3619 // notify client to hide shown passkey 3620 if (setup->sm_stk_generation_method == PK_INIT_INPUT){ 3621 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 3622 } 3623 3624 // handle user cancel pairing? 3625 if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){ 3626 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED; 3627 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 3628 break; 3629 } 3630 3631 // wait for user action? 3632 if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){ 3633 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3634 break; 3635 } 3636 3637 // calculate and send local_confirm 3638 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 3639 break; 3640 3641 case SM_RESPONDER_PH2_W4_PAIRING_RANDOM: 3642 if (packet[0] != SM_CODE_PAIRING_RANDOM){ 3643 sm_pdu_received_in_wrong_state(sm_conn); 3644 break;; 3645 } 3646 3647 // received random value 3648 reverse_128(&packet[1], setup->sm_peer_random); 3649 sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C; 3650 break; 3651 #endif 3652 3653 case SM_PH3_RECEIVE_KEYS: 3654 switch(packet[0]){ 3655 case SM_CODE_ENCRYPTION_INFORMATION: 3656 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 3657 reverse_128(&packet[1], setup->sm_peer_ltk); 3658 break; 3659 3660 case SM_CODE_MASTER_IDENTIFICATION: 3661 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 3662 setup->sm_peer_ediv = little_endian_read_16(packet, 1); 3663 reverse_64(&packet[3], setup->sm_peer_rand); 3664 break; 3665 3666 case SM_CODE_IDENTITY_INFORMATION: 3667 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 3668 reverse_128(&packet[1], setup->sm_peer_irk); 3669 break; 3670 3671 case SM_CODE_IDENTITY_ADDRESS_INFORMATION: 3672 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 3673 setup->sm_peer_addr_type = packet[1]; 3674 reverse_bd_addr(&packet[2], setup->sm_peer_address); 3675 break; 3676 3677 case SM_CODE_SIGNING_INFORMATION: 3678 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 3679 reverse_128(&packet[1], setup->sm_peer_csrk); 3680 break; 3681 default: 3682 // Unexpected PDU 3683 log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]); 3684 break; 3685 } 3686 // done with key distribution? 3687 if (sm_key_distribution_all_received(sm_conn)){ 3688 3689 sm_key_distribution_handle_all_received(sm_conn); 3690 3691 if (IS_RESPONDER(sm_conn->sm_role)){ 3692 if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){ 3693 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK; 3694 } else { 3695 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 3696 sm_done_for_handle(sm_conn->sm_handle); 3697 } 3698 } else { 3699 if (setup->sm_use_secure_connections){ 3700 sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 3701 } else { 3702 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3703 } 3704 } 3705 } 3706 break; 3707 default: 3708 // Unexpected PDU 3709 log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state); 3710 break; 3711 } 3712 3713 // try to send preparared packet 3714 sm_run(); 3715 } 3716 3717 // Security Manager Client API 3718 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){ 3719 sm_get_oob_data = get_oob_data_callback; 3720 } 3721 3722 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){ 3723 btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler); 3724 } 3725 3726 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){ 3727 sm_accepted_stk_generation_methods = accepted_stk_generation_methods; 3728 } 3729 3730 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){ 3731 sm_min_encryption_key_size = min_size; 3732 sm_max_encryption_key_size = max_size; 3733 } 3734 3735 void sm_set_authentication_requirements(uint8_t auth_req){ 3736 sm_auth_req = auth_req; 3737 } 3738 3739 void sm_set_io_capabilities(io_capability_t io_capability){ 3740 sm_io_capabilities = io_capability; 3741 } 3742 3743 #ifdef ENABLE_LE_PERIPHERAL 3744 void sm_set_request_security(int enable){ 3745 sm_slave_request_security = enable; 3746 } 3747 #endif 3748 3749 void sm_set_er(sm_key_t er){ 3750 memcpy(sm_persistent_er, er, 16); 3751 } 3752 3753 void sm_set_ir(sm_key_t ir){ 3754 memcpy(sm_persistent_ir, ir, 16); 3755 } 3756 3757 // Testing support only 3758 void sm_test_set_irk(sm_key_t irk){ 3759 memcpy(sm_persistent_irk, irk, 16); 3760 sm_persistent_irk_ready = 1; 3761 } 3762 3763 void sm_test_use_fixed_local_csrk(void){ 3764 test_use_fixed_local_csrk = 1; 3765 } 3766 3767 void sm_init(void){ 3768 // set some (BTstack default) ER and IR 3769 int i; 3770 sm_key_t er; 3771 sm_key_t ir; 3772 for (i=0;i<16;i++){ 3773 er[i] = 0x30 + i; 3774 ir[i] = 0x90 + i; 3775 } 3776 sm_set_er(er); 3777 sm_set_ir(ir); 3778 // defaults 3779 sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS 3780 | SM_STK_GENERATION_METHOD_OOB 3781 | SM_STK_GENERATION_METHOD_PASSKEY 3782 | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON; 3783 3784 sm_max_encryption_key_size = 16; 3785 sm_min_encryption_key_size = 7; 3786 3787 #ifdef ENABLE_CMAC_ENGINE 3788 sm_cmac_state = CMAC_IDLE; 3789 #endif 3790 dkg_state = DKG_W4_WORKING; 3791 rau_state = RAU_W4_WORKING; 3792 sm_aes128_state = SM_AES128_IDLE; 3793 sm_address_resolution_test = -1; // no private address to resolve yet 3794 sm_address_resolution_ah_calculation_active = 0; 3795 sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE; 3796 sm_address_resolution_general_queue = NULL; 3797 3798 gap_random_adress_update_period = 15 * 60 * 1000L; 3799 sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 3800 3801 test_use_fixed_local_csrk = 0; 3802 3803 // register for HCI Events from HCI 3804 hci_event_callback_registration.callback = &sm_event_packet_handler; 3805 hci_add_event_handler(&hci_event_callback_registration); 3806 3807 // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW 3808 l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 3809 3810 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3811 ec_key_generation_state = EC_KEY_GENERATION_IDLE; 3812 #endif 3813 } 3814 3815 void sm_use_fixed_ec_keypair(uint8_t * qx, uint8_t * qy, uint8_t * d){ 3816 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3817 memcpy(&ec_q[0], qx, 32); 3818 memcpy(&ec_q[32], qy, 32); 3819 memcpy(ec_d, d, 32); 3820 sm_have_ec_keypair = 1; 3821 ec_key_generation_state = EC_KEY_GENERATION_DONE; 3822 #else 3823 UNUSED(qx); 3824 UNUSED(qy); 3825 UNUSED(d); 3826 #endif 3827 } 3828 3829 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3830 static void parse_hex(uint8_t * buffer, const char * hex_string){ 3831 while (*hex_string){ 3832 int high_nibble = nibble_for_char(*hex_string++); 3833 int low_nibble = nibble_for_char(*hex_string++); 3834 *buffer++ = (high_nibble << 4) | low_nibble; 3835 } 3836 } 3837 #endif 3838 3839 void sm_test_use_fixed_ec_keypair(void){ 3840 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3841 const char * ec_d_string = "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd"; 3842 const char * ec_qx_string = "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6"; 3843 const char * ec_qy_string = "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b"; 3844 parse_hex(ec_d, ec_d_string); 3845 parse_hex(&ec_q[0], ec_qx_string); 3846 parse_hex(&ec_q[32], ec_qy_string); 3847 sm_have_ec_keypair = 1; 3848 ec_key_generation_state = EC_KEY_GENERATION_DONE; 3849 #endif 3850 } 3851 3852 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){ 3853 hci_connection_t * hci_con = hci_connection_for_handle(con_handle); 3854 if (!hci_con) return NULL; 3855 return &hci_con->sm_connection; 3856 } 3857 3858 // @returns 0 if not encrypted, 7-16 otherwise 3859 int sm_encryption_key_size(hci_con_handle_t con_handle){ 3860 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3861 if (!sm_conn) return 0; // wrong connection 3862 if (!sm_conn->sm_connection_encrypted) return 0; 3863 return sm_conn->sm_actual_encryption_key_size; 3864 } 3865 3866 int sm_authenticated(hci_con_handle_t con_handle){ 3867 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3868 if (!sm_conn) return 0; // wrong connection 3869 if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated 3870 return sm_conn->sm_connection_authenticated; 3871 } 3872 3873 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){ 3874 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3875 if (!sm_conn) return AUTHORIZATION_UNKNOWN; // wrong connection 3876 if (!sm_conn->sm_connection_encrypted) return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized 3877 if (!sm_conn->sm_connection_authenticated) return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized 3878 return sm_conn->sm_connection_authorization_state; 3879 } 3880 3881 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){ 3882 switch (sm_conn->sm_engine_state){ 3883 case SM_GENERAL_IDLE: 3884 case SM_RESPONDER_IDLE: 3885 sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST; 3886 sm_run(); 3887 break; 3888 default: 3889 break; 3890 } 3891 } 3892 3893 /** 3894 * @brief Trigger Security Request 3895 */ 3896 void sm_send_security_request(hci_con_handle_t con_handle){ 3897 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3898 if (!sm_conn) return; 3899 sm_send_security_request_for_connection(sm_conn); 3900 } 3901 3902 // request pairing 3903 void sm_request_pairing(hci_con_handle_t con_handle){ 3904 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3905 if (!sm_conn) return; // wrong connection 3906 3907 log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state); 3908 if (IS_RESPONDER(sm_conn->sm_role)){ 3909 sm_send_security_request_for_connection(sm_conn); 3910 } else { 3911 // used as a trigger to start central/master/initiator security procedures 3912 uint16_t ediv; 3913 sm_key_t ltk; 3914 if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){ 3915 switch (sm_conn->sm_irk_lookup_state){ 3916 case IRK_LOOKUP_FAILED: 3917 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3918 break; 3919 case IRK_LOOKUP_SUCCEEDED: 3920 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, ltk, NULL, NULL, NULL); 3921 if (!sm_is_null_key(ltk) || ediv){ 3922 log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index); 3923 sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 3924 } else { 3925 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3926 } 3927 break; 3928 default: 3929 sm_conn->sm_bonding_requested = 1; 3930 break; 3931 } 3932 } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){ 3933 sm_conn->sm_bonding_requested = 1; 3934 } 3935 } 3936 sm_run(); 3937 } 3938 3939 // called by client app on authorization request 3940 void sm_authorization_decline(hci_con_handle_t con_handle){ 3941 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3942 if (!sm_conn) return; // wrong connection 3943 sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED; 3944 sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0); 3945 } 3946 3947 void sm_authorization_grant(hci_con_handle_t con_handle){ 3948 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3949 if (!sm_conn) return; // wrong connection 3950 sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED; 3951 sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1); 3952 } 3953 3954 // GAP Bonding API 3955 3956 void sm_bonding_decline(hci_con_handle_t con_handle){ 3957 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3958 if (!sm_conn) return; // wrong connection 3959 setup->sm_user_response = SM_USER_RESPONSE_DECLINE; 3960 3961 if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){ 3962 switch (setup->sm_stk_generation_method){ 3963 case PK_RESP_INPUT: 3964 case PK_INIT_INPUT: 3965 case OK_BOTH_INPUT: 3966 sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED); 3967 break; 3968 case NK_BOTH_INPUT: 3969 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED); 3970 break; 3971 case JUST_WORKS: 3972 case OOB: 3973 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON); 3974 break; 3975 } 3976 } 3977 sm_run(); 3978 } 3979 3980 void sm_just_works_confirm(hci_con_handle_t con_handle){ 3981 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3982 if (!sm_conn) return; // wrong connection 3983 setup->sm_user_response = SM_USER_RESPONSE_CONFIRM; 3984 if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){ 3985 if (setup->sm_use_secure_connections){ 3986 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3987 } else { 3988 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 3989 } 3990 } 3991 3992 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3993 if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){ 3994 sm_sc_prepare_dhkey_check(sm_conn); 3995 } 3996 #endif 3997 3998 sm_run(); 3999 } 4000 4001 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){ 4002 // for now, it's the same 4003 sm_just_works_confirm(con_handle); 4004 } 4005 4006 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){ 4007 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4008 if (!sm_conn) return; // wrong connection 4009 sm_reset_tk(); 4010 big_endian_store_32(setup->sm_tk, 12, passkey); 4011 setup->sm_user_response = SM_USER_RESPONSE_PASSKEY; 4012 if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){ 4013 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 4014 } 4015 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4016 memcpy(setup->sm_ra, setup->sm_tk, 16); 4017 memcpy(setup->sm_rb, setup->sm_tk, 16); 4018 if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){ 4019 sm_sc_start_calculating_local_confirm(sm_conn); 4020 } 4021 #endif 4022 sm_run(); 4023 } 4024 4025 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){ 4026 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4027 if (!sm_conn) return; // wrong connection 4028 if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return; 4029 setup->sm_keypress_notification = action; 4030 sm_run(); 4031 } 4032 4033 /** 4034 * @brief Identify device in LE Device DB 4035 * @param handle 4036 * @returns index from le_device_db or -1 if not found/identified 4037 */ 4038 int sm_le_device_index(hci_con_handle_t con_handle ){ 4039 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4040 if (!sm_conn) return -1; 4041 return sm_conn->sm_le_db_index; 4042 } 4043 4044 static int gap_random_address_type_requires_updates(void){ 4045 if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0; 4046 if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0; 4047 return 1; 4048 } 4049 4050 static uint8_t own_address_type(void){ 4051 switch (gap_random_adress_type){ 4052 case GAP_RANDOM_ADDRESS_TYPE_OFF: 4053 return BD_ADDR_TYPE_LE_PUBLIC; 4054 default: 4055 return BD_ADDR_TYPE_LE_RANDOM; 4056 } 4057 } 4058 4059 // GAP LE API 4060 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){ 4061 gap_random_address_update_stop(); 4062 gap_random_adress_type = random_address_type; 4063 hci_le_set_own_address_type(own_address_type()); 4064 if (!gap_random_address_type_requires_updates()) return; 4065 gap_random_address_update_start(); 4066 gap_random_address_trigger(); 4067 } 4068 4069 gap_random_address_type_t gap_random_address_get_mode(void){ 4070 return gap_random_adress_type; 4071 } 4072 4073 void gap_random_address_set_update_period(int period_ms){ 4074 gap_random_adress_update_period = period_ms; 4075 if (!gap_random_address_type_requires_updates()) return; 4076 gap_random_address_update_stop(); 4077 gap_random_address_update_start(); 4078 } 4079 4080 void gap_random_address_set(bd_addr_t addr){ 4081 gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC); 4082 memcpy(sm_random_address, addr, 6); 4083 if (rau_state == RAU_W4_WORKING) return; 4084 rau_state = RAU_SET_ADDRESS; 4085 sm_run(); 4086 } 4087 4088 #ifdef ENABLE_LE_PERIPHERAL 4089 /* 4090 * @brief Set Advertisement Paramters 4091 * @param adv_int_min 4092 * @param adv_int_max 4093 * @param adv_type 4094 * @param direct_address_type 4095 * @param direct_address 4096 * @param channel_map 4097 * @param filter_policy 4098 * 4099 * @note own_address_type is used from gap_random_address_set_mode 4100 */ 4101 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type, 4102 uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){ 4103 hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, 4104 direct_address_typ, direct_address, channel_map, filter_policy); 4105 } 4106 #endif 4107 4108