xref: /btstack/src/ble/sm.c (revision ea7d62f812308726f4f4a18a3ea7fc380283c85a)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "sm.c"
39 
40 #include <string.h>
41 #include <inttypes.h>
42 
43 #include "ble/le_device_db.h"
44 #include "ble/core.h"
45 #include "ble/sm.h"
46 #include "bluetooth_company_id.h"
47 #include "btstack_bool.h"
48 #include "btstack_crypto.h"
49 #include "btstack_debug.h"
50 #include "btstack_event.h"
51 #include "btstack_linked_list.h"
52 #include "btstack_memory.h"
53 #include "btstack_tlv.h"
54 #include "gap.h"
55 #include "hci.h"
56 #include "hci_dump.h"
57 #include "l2cap.h"
58 
59 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL)
60 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h."
61 #endif
62 
63 #if defined(ENABLE_CROSS_TRANSPORT_KEY_DERIVATION) && (!defined(ENABLE_CLASSIC) || !defined(ENABLE_LE_SECURE_CONNECTIONS))
64 #error "Cross Transport Key Derivation requires support for LE Secure Connections and BR/EDR (Classic)"
65 #endif
66 
67 // assert SM Public Key can be sent/received
68 #ifdef ENABLE_LE_SECURE_CONNECTIONS
69 #if HCI_ACL_PAYLOAD_SIZE < 69
70 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS"
71 #endif
72 #endif
73 
74 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL)
75 #define IS_RESPONDER(role) (role)
76 #else
77 #ifdef ENABLE_LE_CENTRAL
78 // only central - never responder (avoid 'unused variable' warnings)
79 #define IS_RESPONDER(role) (0 && role)
80 #else
81 // only peripheral - always responder (avoid 'unused variable' warnings)
82 #define IS_RESPONDER(role) (1 || role)
83 #endif
84 #endif
85 
86 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS)
87 #define USE_CMAC_ENGINE
88 #endif
89 
90 
91 #define BTSTACK_TAG32(A,B,C,D) (((A) << 24) | ((B) << 16) | ((C) << 8) | (D))
92 
93 //
94 // SM internal types and globals
95 //
96 
97 typedef enum {
98     DKG_W4_WORKING,
99     DKG_CALC_IRK,
100     DKG_CALC_DHK,
101     DKG_READY
102 } derived_key_generation_t;
103 
104 typedef enum {
105     RAU_IDLE,
106     RAU_GET_RANDOM,
107     RAU_W4_RANDOM,
108     RAU_GET_ENC,
109     RAU_W4_ENC,
110     RAU_SET_ADDRESS,
111 } random_address_update_t;
112 
113 typedef enum {
114     CMAC_IDLE,
115     CMAC_CALC_SUBKEYS,
116     CMAC_W4_SUBKEYS,
117     CMAC_CALC_MI,
118     CMAC_W4_MI,
119     CMAC_CALC_MLAST,
120     CMAC_W4_MLAST
121 } cmac_state_t;
122 
123 typedef enum {
124     JUST_WORKS,
125     PK_RESP_INPUT,       // Initiator displays PK, responder inputs PK
126     PK_INIT_INPUT,       // Responder displays PK, initiator inputs PK
127     PK_BOTH_INPUT,       // Only input on both, both input PK
128     NUMERIC_COMPARISON,  // Only numerical compparison (yes/no) on on both sides
129     OOB                  // OOB available on one (SC) or both sides (legacy)
130 } stk_generation_method_t;
131 
132 typedef enum {
133     SM_USER_RESPONSE_IDLE,
134     SM_USER_RESPONSE_PENDING,
135     SM_USER_RESPONSE_CONFIRM,
136     SM_USER_RESPONSE_PASSKEY,
137     SM_USER_RESPONSE_DECLINE
138 } sm_user_response_t;
139 
140 typedef enum {
141     SM_AES128_IDLE,
142     SM_AES128_ACTIVE
143 } sm_aes128_state_t;
144 
145 typedef enum {
146     ADDRESS_RESOLUTION_IDLE,
147     ADDRESS_RESOLUTION_GENERAL,
148     ADDRESS_RESOLUTION_FOR_CONNECTION,
149 } address_resolution_mode_t;
150 
151 typedef enum {
152     ADDRESS_RESOLUTION_SUCCEEDED,
153     ADDRESS_RESOLUTION_FAILED,
154 } address_resolution_event_t;
155 
156 typedef enum {
157     EC_KEY_GENERATION_IDLE,
158     EC_KEY_GENERATION_ACTIVE,
159     EC_KEY_GENERATION_DONE,
160 } ec_key_generation_state_t;
161 
162 typedef enum {
163     SM_STATE_VAR_DHKEY_NEEDED = 1 << 0,
164     SM_STATE_VAR_DHKEY_CALCULATED = 1 << 1,
165     SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 2,
166 } sm_state_var_t;
167 
168 typedef enum {
169     SM_SC_OOB_IDLE,
170     SM_SC_OOB_W4_RANDOM,
171     SM_SC_OOB_W2_CALC_CONFIRM,
172     SM_SC_OOB_W4_CONFIRM,
173 } sm_sc_oob_state_t;
174 
175 typedef uint8_t sm_key24_t[3];
176 typedef uint8_t sm_key56_t[7];
177 typedef uint8_t sm_key256_t[32];
178 
179 //
180 // GLOBAL DATA
181 //
182 
183 static bool sm_initialized;
184 
185 static bool test_use_fixed_local_csrk;
186 static bool test_use_fixed_local_irk;
187 
188 #ifdef ENABLE_TESTING_SUPPORT
189 static uint8_t test_pairing_failure;
190 #endif
191 
192 // configuration
193 static uint8_t sm_accepted_stk_generation_methods;
194 static uint8_t sm_max_encryption_key_size;
195 static uint8_t sm_min_encryption_key_size;
196 static uint8_t sm_auth_req = 0;
197 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
198 static uint8_t sm_slave_request_security;
199 static uint32_t sm_fixed_passkey_in_display_role;
200 static bool sm_reconstruct_ltk_without_le_device_db_entry;
201 
202 #ifdef ENABLE_LE_SECURE_CONNECTIONS
203 static bool sm_sc_only_mode;
204 static uint8_t sm_sc_oob_random[16];
205 static void (*sm_sc_oob_callback)(const uint8_t * confirm_value, const uint8_t * random_value);
206 static sm_sc_oob_state_t sm_sc_oob_state;
207 #endif
208 
209 
210 static bool                  sm_persistent_keys_random_active;
211 static const btstack_tlv_t * sm_tlv_impl;
212 static void *                sm_tlv_context;
213 
214 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
215 static sm_key_t sm_persistent_er;
216 static sm_key_t sm_persistent_ir;
217 
218 // derived from sm_persistent_ir
219 static sm_key_t sm_persistent_dhk;
220 static sm_key_t sm_persistent_irk;
221 static derived_key_generation_t dkg_state;
222 
223 // derived from sm_persistent_er
224 // ..
225 
226 // random address update
227 static random_address_update_t rau_state;
228 static bd_addr_t sm_random_address;
229 
230 #ifdef USE_CMAC_ENGINE
231 // CMAC Calculation: General
232 static btstack_crypto_aes128_cmac_t sm_cmac_request;
233 static void (*sm_cmac_done_callback)(uint8_t hash[8]);
234 static uint8_t sm_cmac_active;
235 static uint8_t sm_cmac_hash[16];
236 #endif
237 
238 // CMAC for ATT Signed Writes
239 #ifdef ENABLE_LE_SIGNED_WRITE
240 static uint16_t        sm_cmac_signed_write_message_len;
241 static uint8_t         sm_cmac_signed_write_header[3];
242 static const uint8_t * sm_cmac_signed_write_message;
243 static uint8_t         sm_cmac_signed_write_sign_counter[4];
244 #endif
245 
246 // CMAC for Secure Connection functions
247 #ifdef ENABLE_LE_SECURE_CONNECTIONS
248 static sm_connection_t * sm_cmac_connection;
249 static uint8_t           sm_cmac_sc_buffer[80];
250 #endif
251 
252 // resolvable private address lookup / CSRK calculation
253 static int       sm_address_resolution_test;
254 static int       sm_address_resolution_ah_calculation_active;
255 static uint8_t   sm_address_resolution_addr_type;
256 static bd_addr_t sm_address_resolution_address;
257 static void *    sm_address_resolution_context;
258 static address_resolution_mode_t sm_address_resolution_mode;
259 static btstack_linked_list_t sm_address_resolution_general_queue;
260 
261 // aes128 crypto engine.
262 static sm_aes128_state_t  sm_aes128_state;
263 
264 // crypto
265 static btstack_crypto_random_t   sm_crypto_random_request;
266 static btstack_crypto_aes128_t   sm_crypto_aes128_request;
267 #ifdef ENABLE_LE_SECURE_CONNECTIONS
268 static btstack_crypto_ecc_p256_t sm_crypto_ecc_p256_request;
269 #endif
270 
271 // temp storage for random data
272 static uint8_t sm_random_data[8];
273 static uint8_t sm_aes128_key[16];
274 static uint8_t sm_aes128_plaintext[16];
275 static uint8_t sm_aes128_ciphertext[16];
276 
277 // to receive hci events
278 static btstack_packet_callback_registration_t hci_event_callback_registration;
279 
280 /* to dispatch sm event */
281 static btstack_linked_list_t sm_event_handlers;
282 
283 /* to schedule calls to sm_run */
284 static btstack_timer_source_t sm_run_timer;
285 
286 // LE Secure Connections
287 #ifdef ENABLE_LE_SECURE_CONNECTIONS
288 static ec_key_generation_state_t ec_key_generation_state;
289 static uint8_t ec_q[64];
290 #endif
291 
292 //
293 // Volume 3, Part H, Chapter 24
294 // "Security shall be initiated by the Security Manager in the device in the master role.
295 // The device in the slave role shall be the responding device."
296 // -> master := initiator, slave := responder
297 //
298 
299 // data needed for security setup
300 typedef struct sm_setup_context {
301 
302     btstack_timer_source_t sm_timeout;
303 
304     // used in all phases
305     uint8_t   sm_pairing_failed_reason;
306 
307     // user response, (Phase 1 and/or 2)
308     uint8_t   sm_user_response;
309     uint8_t   sm_keypress_notification; // bitmap: passkey started, digit entered, digit erased, passkey cleared, passkey complete, 3 bit count
310 
311     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
312     uint8_t   sm_key_distribution_send_set;
313     uint8_t   sm_key_distribution_sent_set;
314     uint8_t   sm_key_distribution_received_set;
315 
316     // Phase 2 (Pairing over SMP)
317     stk_generation_method_t sm_stk_generation_method;
318     sm_key_t  sm_tk;
319     uint8_t   sm_have_oob_data;
320     uint8_t   sm_use_secure_connections;
321 
322     sm_key_t  sm_c1_t3_value;   // c1 calculation
323     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
324     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
325     sm_key_t  sm_local_random;
326     sm_key_t  sm_local_confirm;
327     sm_key_t  sm_peer_random;
328     sm_key_t  sm_peer_confirm;
329     uint8_t   sm_m_addr_type;   // address and type can be removed
330     uint8_t   sm_s_addr_type;   //  ''
331     bd_addr_t sm_m_address;     //  ''
332     bd_addr_t sm_s_address;     //  ''
333     sm_key_t  sm_ltk;
334 
335     uint8_t   sm_state_vars;
336 #ifdef ENABLE_LE_SECURE_CONNECTIONS
337     uint8_t   sm_peer_q[64];    // also stores random for EC key generation during init
338     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
339     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
340     uint8_t   sm_dhkey[32];
341     sm_key_t  sm_peer_dhkey_check;
342     sm_key_t  sm_local_dhkey_check;
343     sm_key_t  sm_ra;
344     sm_key_t  sm_rb;
345     sm_key_t  sm_t;             // used for f5 and h6
346     sm_key_t  sm_mackey;
347     uint8_t   sm_passkey_bit;   // also stores number of generated random bytes for EC key generation
348 #endif
349 
350     // Phase 3
351 
352     // key distribution, we generate
353     uint16_t  sm_local_y;
354     uint16_t  sm_local_div;
355     uint16_t  sm_local_ediv;
356     uint8_t   sm_local_rand[8];
357     sm_key_t  sm_local_ltk;
358     sm_key_t  sm_local_csrk;
359     sm_key_t  sm_local_irk;
360     // sm_local_address/addr_type not needed
361 
362     // key distribution, received from peer
363     uint16_t  sm_peer_y;
364     uint16_t  sm_peer_div;
365     uint16_t  sm_peer_ediv;
366     uint8_t   sm_peer_rand[8];
367     sm_key_t  sm_peer_ltk;
368     sm_key_t  sm_peer_irk;
369     sm_key_t  sm_peer_csrk;
370     uint8_t   sm_peer_addr_type;
371     bd_addr_t sm_peer_address;
372 #ifdef ENABLE_LE_SIGNED_WRITE
373     int       sm_le_device_index;
374 #endif
375 } sm_setup_context_t;
376 
377 //
378 static sm_setup_context_t the_setup;
379 static sm_setup_context_t * setup = &the_setup;
380 
381 // active connection - the one for which the_setup is used for
382 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
383 
384 // @returns 1 if oob data is available
385 // stores oob data in provided 16 byte buffer if not null
386 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
387 static int (*sm_get_sc_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random);
388 
389 static void sm_run(void);
390 static void sm_done_for_handle(hci_con_handle_t con_handle);
391 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
392 static inline int sm_calc_actual_encryption_key_size(int other);
393 static int sm_validate_stk_generation_method(void);
394 static void sm_handle_encryption_result_address_resolution(void *arg);
395 static void sm_handle_encryption_result_dkg_dhk(void *arg);
396 static void sm_handle_encryption_result_dkg_irk(void *arg);
397 static void sm_handle_encryption_result_enc_a(void *arg);
398 static void sm_handle_encryption_result_enc_b(void *arg);
399 static void sm_handle_encryption_result_enc_c(void *arg);
400 static void sm_handle_encryption_result_enc_csrk(void *arg);
401 static void sm_handle_encryption_result_enc_d(void * arg);
402 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg);
403 static void sm_handle_encryption_result_enc_ph3_y(void *arg);
404 #ifdef ENABLE_LE_PERIPHERAL
405 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg);
406 static void sm_handle_encryption_result_enc_ph4_y(void *arg);
407 #endif
408 static void sm_handle_encryption_result_enc_stk(void *arg);
409 static void sm_handle_encryption_result_rau(void *arg);
410 static void sm_handle_random_result_ph2_tk(void * arg);
411 static void sm_handle_random_result_rau(void * arg);
412 #ifdef ENABLE_LE_SECURE_CONNECTIONS
413 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash));
414 static void sm_ec_generate_new_key(void);
415 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg);
416 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg);
417 static int sm_passkey_entry(stk_generation_method_t method);
418 #endif
419 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason);
420 
421 static void log_info_hex16(const char * name, uint16_t value){
422     log_info("%-6s 0x%04x", name, value);
423 }
424 
425 // static inline uint8_t sm_pairing_packet_get_code(sm_pairing_packet_t packet){
426 //     return packet[0];
427 // }
428 static inline uint8_t sm_pairing_packet_get_io_capability(sm_pairing_packet_t packet){
429     return packet[1];
430 }
431 static inline uint8_t sm_pairing_packet_get_oob_data_flag(sm_pairing_packet_t packet){
432     return packet[2];
433 }
434 static inline uint8_t sm_pairing_packet_get_auth_req(sm_pairing_packet_t packet){
435     return packet[3];
436 }
437 static inline uint8_t sm_pairing_packet_get_max_encryption_key_size(sm_pairing_packet_t packet){
438     return packet[4];
439 }
440 static inline uint8_t sm_pairing_packet_get_initiator_key_distribution(sm_pairing_packet_t packet){
441     return packet[5];
442 }
443 static inline uint8_t sm_pairing_packet_get_responder_key_distribution(sm_pairing_packet_t packet){
444     return packet[6];
445 }
446 
447 static inline void sm_pairing_packet_set_code(sm_pairing_packet_t packet, uint8_t code){
448     packet[0] = code;
449 }
450 static inline void sm_pairing_packet_set_io_capability(sm_pairing_packet_t packet, uint8_t io_capability){
451     packet[1] = io_capability;
452 }
453 static inline void sm_pairing_packet_set_oob_data_flag(sm_pairing_packet_t packet, uint8_t oob_data_flag){
454     packet[2] = oob_data_flag;
455 }
456 static inline void sm_pairing_packet_set_auth_req(sm_pairing_packet_t packet, uint8_t auth_req){
457     packet[3] = auth_req;
458 }
459 static inline void sm_pairing_packet_set_max_encryption_key_size(sm_pairing_packet_t packet, uint8_t max_encryption_key_size){
460     packet[4] = max_encryption_key_size;
461 }
462 static inline void sm_pairing_packet_set_initiator_key_distribution(sm_pairing_packet_t packet, uint8_t initiator_key_distribution){
463     packet[5] = initiator_key_distribution;
464 }
465 static inline void sm_pairing_packet_set_responder_key_distribution(sm_pairing_packet_t packet, uint8_t responder_key_distribution){
466     packet[6] = responder_key_distribution;
467 }
468 
469 // @returns 1 if all bytes are 0
470 static bool sm_is_null(uint8_t * data, int size){
471     int i;
472     for (i=0; i < size ; i++){
473         if (data[i] != 0) {
474             return false;
475         }
476     }
477     return true;
478 }
479 
480 static bool sm_is_null_random(uint8_t random[8]){
481     return sm_is_null(random, 8);
482 }
483 
484 static bool sm_is_null_key(uint8_t * key){
485     return sm_is_null(key, 16);
486 }
487 
488 // sm_trigger_run allows to schedule callback from main run loop // reduces stack depth
489 static void sm_run_timer_handler(btstack_timer_source_t * ts){
490 	UNUSED(ts);
491 	sm_run();
492 }
493 static void sm_trigger_run(void){
494     if (!sm_initialized) return;
495 	(void)btstack_run_loop_remove_timer(&sm_run_timer);
496 	btstack_run_loop_set_timer(&sm_run_timer, 0);
497 	btstack_run_loop_add_timer(&sm_run_timer);
498 }
499 
500 // Key utils
501 static void sm_reset_tk(void){
502     int i;
503     for (i=0;i<16;i++){
504         setup->sm_tk[i] = 0;
505     }
506 }
507 
508 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
509 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
510 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
511     int i;
512     for (i = max_encryption_size ; i < 16 ; i++){
513         key[15-i] = 0;
514     }
515 }
516 
517 // ER / IR checks
518 static void sm_er_ir_set_default(void){
519     int i;
520     for (i=0;i<16;i++){
521         sm_persistent_er[i] = 0x30 + i;
522         sm_persistent_ir[i] = 0x90 + i;
523     }
524 }
525 
526 static int sm_er_is_default(void){
527     int i;
528     for (i=0;i<16;i++){
529         if (sm_persistent_er[i] != (0x30+i)) return 0;
530     }
531     return 1;
532 }
533 
534 static int sm_ir_is_default(void){
535     int i;
536     for (i=0;i<16;i++){
537         if (sm_persistent_ir[i] != (0x90+i)) return 0;
538     }
539     return 1;
540 }
541 
542 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
543     UNUSED(channel);
544 
545     // log event
546     hci_dump_packet(packet_type, 1, packet, size);
547     // dispatch to all event handlers
548     btstack_linked_list_iterator_t it;
549     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
550     while (btstack_linked_list_iterator_has_next(&it)){
551         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
552         entry->callback(packet_type, 0, packet, size);
553     }
554 }
555 
556 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
557     event[0] = type;
558     event[1] = event_size - 2;
559     little_endian_store_16(event, 2, con_handle);
560     event[4] = addr_type;
561     reverse_bd_addr(address, &event[5]);
562 }
563 
564 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
565     uint8_t event[11];
566     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
567     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
568 }
569 
570 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
571     uint8_t event[15];
572     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
573     little_endian_store_32(event, 11, passkey);
574     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
575 }
576 
577 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
578     // fetch addr and addr type from db, only called for valid entries
579     bd_addr_t identity_address;
580     int identity_address_type;
581     le_device_db_info(index, &identity_address_type, identity_address, NULL);
582 
583     uint8_t event[20];
584     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
585     event[11] = identity_address_type;
586     reverse_bd_addr(identity_address, &event[12]);
587     little_endian_store_16(event, 18, index);
588     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
589 }
590 
591 static void sm_notify_client_status(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t status){
592     uint8_t event[12];
593     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
594     event[11] = status;
595     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
596 }
597 
598 
599 static void sm_reencryption_started(sm_connection_t * sm_conn){
600 
601     if (sm_conn->sm_reencryption_active) return;
602 
603     sm_conn->sm_reencryption_active = true;
604 
605     int       identity_addr_type;
606     bd_addr_t identity_addr;
607     if (sm_conn->sm_le_db_index >= 0){
608         // fetch addr and addr type from db, only called for valid entries
609         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
610     } else {
611         // for legacy pairing with LTK re-construction, use current peer addr
612         identity_addr_type = sm_conn->sm_peer_addr_type;
613         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
614     }
615 
616     sm_notify_client_base(SM_EVENT_REENCRYPTION_STARTED, sm_conn->sm_handle, identity_addr_type, identity_addr);
617 }
618 
619 static void sm_reencryption_complete(sm_connection_t * sm_conn, uint8_t status){
620 
621     if (!sm_conn->sm_reencryption_active) return;
622 
623     sm_conn->sm_reencryption_active = false;
624 
625     int       identity_addr_type;
626     bd_addr_t identity_addr;
627     if (sm_conn->sm_le_db_index >= 0){
628         // fetch addr and addr type from db, only called for valid entries
629         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
630     } else {
631         // for legacy pairing with LTK re-construction, use current peer addr
632         identity_addr_type = sm_conn->sm_peer_addr_type;
633         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
634     }
635 
636     sm_notify_client_status(SM_EVENT_REENCRYPTION_COMPLETE, sm_conn->sm_handle, identity_addr_type, identity_addr, status);
637 }
638 
639 static void sm_pairing_started(sm_connection_t * sm_conn){
640 
641     if (sm_conn->sm_pairing_active) return;
642 
643     sm_conn->sm_pairing_active = true;
644 
645     uint8_t event[11];
646     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_STARTED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
647     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
648 }
649 
650 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason){
651 
652     if (!sm_conn->sm_pairing_active) return;
653 
654     uint8_t event[13];
655     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_COMPLETE, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
656     event[11] = status;
657     event[12] = reason;
658     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
659 }
660 
661 // SMP Timeout implementation
662 
663 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
664 // the Security Manager Timer shall be reset and started.
665 //
666 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
667 //
668 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
669 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
670 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
671 // established.
672 
673 static void sm_timeout_handler(btstack_timer_source_t * timer){
674     log_info("SM timeout");
675     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
676     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
677     sm_reencryption_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT);
678     sm_pairing_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT, 0);
679     sm_done_for_handle(sm_conn->sm_handle);
680 
681     // trigger handling of next ready connection
682     sm_run();
683 }
684 static void sm_timeout_start(sm_connection_t * sm_conn){
685     btstack_run_loop_remove_timer(&setup->sm_timeout);
686     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
687     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
688     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
689     btstack_run_loop_add_timer(&setup->sm_timeout);
690 }
691 static void sm_timeout_stop(void){
692     btstack_run_loop_remove_timer(&setup->sm_timeout);
693 }
694 static void sm_timeout_reset(sm_connection_t * sm_conn){
695     sm_timeout_stop();
696     sm_timeout_start(sm_conn);
697 }
698 
699 // end of sm timeout
700 
701 // GAP Random Address updates
702 static gap_random_address_type_t gap_random_adress_type;
703 static btstack_timer_source_t gap_random_address_update_timer;
704 static uint32_t gap_random_adress_update_period;
705 
706 static void gap_random_address_trigger(void){
707     log_info("gap_random_address_trigger, state %u", rau_state);
708     if (rau_state != RAU_IDLE) return;
709     rau_state = RAU_GET_RANDOM;
710     sm_trigger_run();
711 }
712 
713 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
714     UNUSED(timer);
715 
716     log_info("GAP Random Address Update due");
717     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
718     btstack_run_loop_add_timer(&gap_random_address_update_timer);
719     gap_random_address_trigger();
720 }
721 
722 static void gap_random_address_update_start(void){
723     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
724     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
725     btstack_run_loop_add_timer(&gap_random_address_update_timer);
726 }
727 
728 static void gap_random_address_update_stop(void){
729     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
730 }
731 
732 // ah(k,r) helper
733 // r = padding || r
734 // r - 24 bit value
735 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){
736     // r'= padding || r
737     memset(r_prime, 0, 16);
738     (void)memcpy(&r_prime[13], r, 3);
739 }
740 
741 // d1 helper
742 // d' = padding || r || d
743 // d,r - 16 bit values
744 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){
745     // d'= padding || r || d
746     memset(d1_prime, 0, 16);
747     big_endian_store_16(d1_prime, 12, r);
748     big_endian_store_16(d1_prime, 14, d);
749 }
750 
751 // calculate arguments for first AES128 operation in C1 function
752 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){
753 
754     // p1 = pres || preq || rat’ || iat’
755     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
756     // cant octet of pres becomes the most significant octet of p1.
757     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
758     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
759     // p1 is 0x05000800000302070710000001010001."
760 
761     sm_key_t p1;
762     reverse_56(pres, &p1[0]);
763     reverse_56(preq, &p1[7]);
764     p1[14] = rat;
765     p1[15] = iat;
766     log_info_key("p1", p1);
767     log_info_key("r", r);
768 
769     // t1 = r xor p1
770     int i;
771     for (i=0;i<16;i++){
772         t1[i] = r[i] ^ p1[i];
773     }
774     log_info_key("t1", t1);
775 }
776 
777 // calculate arguments for second AES128 operation in C1 function
778 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){
779      // p2 = padding || ia || ra
780     // "The least significant octet of ra becomes the least significant octet of p2 and
781     // the most significant octet of padding becomes the most significant octet of p2.
782     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
783     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
784 
785     sm_key_t p2;
786     memset(p2, 0, 16);
787     (void)memcpy(&p2[4], ia, 6);
788     (void)memcpy(&p2[10], ra, 6);
789     log_info_key("p2", p2);
790 
791     // c1 = e(k, t2_xor_p2)
792     int i;
793     for (i=0;i<16;i++){
794         t3[i] = t2[i] ^ p2[i];
795     }
796     log_info_key("t3", t3);
797 }
798 
799 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){
800     log_info_key("r1", r1);
801     log_info_key("r2", r2);
802     (void)memcpy(&r_prime[8], &r2[8], 8);
803     (void)memcpy(&r_prime[0], &r1[8], 8);
804 }
805 
806 
807 // decide on stk generation based on
808 // - pairing request
809 // - io capabilities
810 // - OOB data availability
811 static void sm_setup_tk(void){
812 
813     // horizontal: initiator capabilities
814     // vertial:    responder capabilities
815     static const stk_generation_method_t stk_generation_method [5] [5] = {
816             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
817             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
818             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
819             { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
820             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
821     };
822 
823     // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
824 #ifdef ENABLE_LE_SECURE_CONNECTIONS
825     static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
826             { JUST_WORKS,      JUST_WORKS,         PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT      },
827             { JUST_WORKS,      NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
828             { PK_RESP_INPUT,   PK_RESP_INPUT,      PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT      },
829             { JUST_WORKS,      JUST_WORKS,         JUST_WORKS,      JUST_WORKS,    JUST_WORKS         },
830             { PK_RESP_INPUT,   NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
831     };
832 #endif
833 
834     // default: just works
835     setup->sm_stk_generation_method = JUST_WORKS;
836 
837 #ifdef ENABLE_LE_SECURE_CONNECTIONS
838     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
839                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
840                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0u;
841 #else
842     setup->sm_use_secure_connections = 0;
843 #endif
844     log_info("Secure pairing: %u", setup->sm_use_secure_connections);
845 
846 
847     // decide if OOB will be used based on SC vs. Legacy and oob flags
848     bool use_oob;
849     if (setup->sm_use_secure_connections){
850         // In LE Secure Connections pairing, the out of band method is used if at least
851         // one device has the peer device's out of band authentication data available.
852         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) | sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
853     } else {
854         // In LE legacy pairing, the out of band method is used if both the devices have
855         // the other device's out of band authentication data available.
856         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) & sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
857     }
858     if (use_oob){
859         log_info("SM: have OOB data");
860         log_info_key("OOB", setup->sm_tk);
861         setup->sm_stk_generation_method = OOB;
862         return;
863     }
864 
865     // If both devices have not set the MITM option in the Authentication Requirements
866     // Flags, then the IO capabilities shall be ignored and the Just Works association
867     // model shall be used.
868     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0u)
869         &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0u)){
870         log_info("SM: MITM not required by both -> JUST WORKS");
871         return;
872     }
873 
874     // Reset TK as it has been setup in sm_init_setup
875     sm_reset_tk();
876 
877     // Also use just works if unknown io capabilites
878     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
879         return;
880     }
881 
882     // Otherwise the IO capabilities of the devices shall be used to determine the
883     // pairing method as defined in Table 2.4.
884     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
885     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
886 
887 #ifdef ENABLE_LE_SECURE_CONNECTIONS
888     // table not define by default
889     if (setup->sm_use_secure_connections){
890         generation_method = stk_generation_method_with_secure_connection;
891     }
892 #endif
893     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
894 
895     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
896         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
897 }
898 
899 static int sm_key_distribution_flags_for_set(uint8_t key_set){
900     int flags = 0;
901     if (key_set & SM_KEYDIST_ENC_KEY){
902         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
903         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
904     }
905     if (key_set & SM_KEYDIST_ID_KEY){
906         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
907         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
908     }
909     if (key_set & SM_KEYDIST_SIGN){
910         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
911     }
912     return flags;
913 }
914 
915 static void sm_setup_key_distribution(uint8_t key_set){
916     setup->sm_key_distribution_received_set = 0;
917     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
918     setup->sm_key_distribution_sent_set = 0;
919 #ifdef ENABLE_LE_SIGNED_WRITE
920     setup->sm_le_device_index = -1;
921 #endif
922 }
923 
924 // CSRK Key Lookup
925 
926 
927 static int sm_address_resolution_idle(void){
928     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
929 }
930 
931 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
932     (void)memcpy(sm_address_resolution_address, addr, 6);
933     sm_address_resolution_addr_type = addr_type;
934     sm_address_resolution_test = 0;
935     sm_address_resolution_mode = mode;
936     sm_address_resolution_context = context;
937     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
938 }
939 
940 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
941     // check if already in list
942     btstack_linked_list_iterator_t it;
943     sm_lookup_entry_t * entry;
944     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
945     while(btstack_linked_list_iterator_has_next(&it)){
946         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
947         if (entry->address_type != address_type) continue;
948         if (memcmp(entry->address, address, 6))  continue;
949         // already in list
950         return BTSTACK_BUSY;
951     }
952     entry = btstack_memory_sm_lookup_entry_get();
953     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
954     entry->address_type = (bd_addr_type_t) address_type;
955     (void)memcpy(entry->address, address, 6);
956     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
957     sm_trigger_run();
958     return 0;
959 }
960 
961 // CMAC calculation using AES Engineq
962 #ifdef USE_CMAC_ENGINE
963 
964 static void sm_cmac_done_trampoline(void * arg){
965     UNUSED(arg);
966     sm_cmac_active = 0;
967     (*sm_cmac_done_callback)(sm_cmac_hash);
968     sm_trigger_run();
969 }
970 
971 int sm_cmac_ready(void){
972     return sm_cmac_active == 0u;
973 }
974 #endif
975 
976 #ifdef ENABLE_LE_SECURE_CONNECTIONS
977 // generic cmac calculation
978 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash)){
979     sm_cmac_active = 1;
980     sm_cmac_done_callback = done_callback;
981     btstack_crypto_aes128_cmac_message(&sm_cmac_request, key, message_len, message, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
982 }
983 #endif
984 
985 // cmac for ATT Message signing
986 #ifdef ENABLE_LE_SIGNED_WRITE
987 
988 static void sm_cmac_generator_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t * hash)){
989     sm_cmac_active = 1;
990     sm_cmac_done_callback = done_callback;
991     btstack_crypto_aes128_cmac_generator(&sm_cmac_request, key, message_len, get_byte_callback, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
992 }
993 
994 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){
995     if (offset >= sm_cmac_signed_write_message_len) {
996         log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_signed_write_message_len);
997         return 0;
998     }
999 
1000     offset = sm_cmac_signed_write_message_len - 1 - offset;
1001 
1002     // sm_cmac_signed_write_header[3] | message[] | sm_cmac_signed_write_sign_counter[4]
1003     if (offset < 3){
1004         return sm_cmac_signed_write_header[offset];
1005     }
1006     int actual_message_len_incl_header = sm_cmac_signed_write_message_len - 4;
1007     if (offset <  actual_message_len_incl_header){
1008         return sm_cmac_signed_write_message[offset - 3];
1009     }
1010     return sm_cmac_signed_write_sign_counter[offset - actual_message_len_incl_header];
1011 }
1012 
1013 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
1014     // ATT Message Signing
1015     sm_cmac_signed_write_header[0] = opcode;
1016     little_endian_store_16(sm_cmac_signed_write_header, 1, con_handle);
1017     little_endian_store_32(sm_cmac_signed_write_sign_counter, 0, sign_counter);
1018     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
1019     sm_cmac_signed_write_message     = message;
1020     sm_cmac_signed_write_message_len = total_message_len;
1021     sm_cmac_generator_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler);
1022 }
1023 #endif
1024 
1025 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1026     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1027     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1028     sm_conn->sm_pairing_active = true;
1029     switch (setup->sm_stk_generation_method){
1030         case PK_RESP_INPUT:
1031             if (IS_RESPONDER(sm_conn->sm_role)){
1032                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1033                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1034             } else {
1035                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1036             }
1037             break;
1038         case PK_INIT_INPUT:
1039             if (IS_RESPONDER(sm_conn->sm_role)){
1040                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1041             } else {
1042                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1043                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1044             }
1045             break;
1046         case PK_BOTH_INPUT:
1047             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1048             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1049             break;
1050         case NUMERIC_COMPARISON:
1051             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1052             sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1053             break;
1054         case JUST_WORKS:
1055             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1056             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1057             break;
1058         case OOB:
1059             // client already provided OOB data, let's skip notification.
1060             break;
1061         default:
1062             btstack_assert(false);
1063             break;
1064     }
1065 }
1066 
1067 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
1068     int recv_flags;
1069     if (IS_RESPONDER(sm_conn->sm_role)){
1070         // slave / responder
1071         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
1072     } else {
1073         // master / initiator
1074         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
1075     }
1076 
1077 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1078     // LTK (= encyrption information & master identification) only used exchanged for LE Legacy Connection
1079     if (setup->sm_use_secure_connections){
1080         recv_flags &= ~(SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION | SM_KEYDIST_FLAG_MASTER_IDENTIFICATION);
1081     }
1082 #endif
1083 
1084     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
1085     return (setup->sm_key_distribution_received_set & recv_flags) == recv_flags;
1086 }
1087 
1088 static void sm_done_for_handle(hci_con_handle_t con_handle){
1089     if (sm_active_connection_handle == con_handle){
1090         sm_timeout_stop();
1091         sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
1092         log_info("sm: connection 0x%x released setup context", con_handle);
1093 
1094 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1095         // generate new ec key after each pairing (that used it)
1096         if (setup->sm_use_secure_connections){
1097             sm_ec_generate_new_key();
1098         }
1099 #endif
1100     }
1101 }
1102 
1103 static void sm_master_pairing_success(sm_connection_t *connection) {// master -> all done
1104     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
1105     sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
1106     sm_done_for_handle(connection->sm_handle);
1107 }
1108 
1109 static int sm_key_distribution_flags_for_auth_req(void){
1110 
1111     int flags = SM_KEYDIST_ID_KEY;
1112     if (sm_auth_req & SM_AUTHREQ_BONDING){
1113         // encryption and signing information only if bonding requested
1114         flags |= SM_KEYDIST_ENC_KEY;
1115 #ifdef ENABLE_LE_SIGNED_WRITE
1116         flags |= SM_KEYDIST_SIGN;
1117 #endif
1118 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1119         // LinkKey for CTKD requires SC
1120         if (sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION){
1121         	flags |= SM_KEYDIST_LINK_KEY;
1122         }
1123 #endif
1124     }
1125     return flags;
1126 }
1127 
1128 static void sm_reset_setup(void){
1129     // fill in sm setup
1130     setup->sm_state_vars = 0;
1131     setup->sm_keypress_notification = 0;
1132     sm_reset_tk();
1133 }
1134 
1135 static void sm_init_setup(sm_connection_t * sm_conn){
1136 
1137     // fill in sm setup
1138     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1139     (void)memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1140 
1141     // query client for Legacy Pairing OOB data
1142     setup->sm_have_oob_data = 0;
1143     if (sm_get_oob_data != NULL) {
1144         setup->sm_have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1145     }
1146 
1147     // if available and SC supported, also ask for SC OOB Data
1148 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1149     memset(setup->sm_ra, 0, 16);
1150     memset(setup->sm_rb, 0, 16);
1151     if (setup->sm_have_oob_data && (sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION)){
1152         if (sm_get_sc_oob_data != NULL){
1153             if (IS_RESPONDER(sm_conn->sm_role)){
1154                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1155                     sm_conn->sm_peer_addr_type,
1156                     sm_conn->sm_peer_address,
1157                     setup->sm_peer_confirm,
1158                     setup->sm_ra);
1159             } else {
1160                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1161                     sm_conn->sm_peer_addr_type,
1162                     sm_conn->sm_peer_address,
1163                     setup->sm_peer_confirm,
1164                     setup->sm_rb);
1165             }
1166         } else {
1167             setup->sm_have_oob_data = 0;
1168         }
1169     }
1170 #endif
1171 
1172     sm_pairing_packet_t * local_packet;
1173     if (IS_RESPONDER(sm_conn->sm_role)){
1174         // slave
1175         local_packet = &setup->sm_s_pres;
1176         gap_le_get_own_address(&setup->sm_s_addr_type, setup->sm_s_address);
1177         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1178         (void)memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1179     } else {
1180         // master
1181         local_packet = &setup->sm_m_preq;
1182         gap_le_get_own_address(&setup->sm_m_addr_type, setup->sm_m_address);
1183         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1184         (void)memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1185 
1186         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1187         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1188         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1189     }
1190 
1191     uint8_t auth_req = sm_auth_req & ~SM_AUTHREQ_CT2;
1192 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1193 	// set CT2 if SC + Bonding + CTKD
1194 	const uint8_t auth_req_for_ct2 = SM_AUTHREQ_SECURE_CONNECTION | SM_AUTHREQ_BONDING;
1195 	if ((auth_req & auth_req_for_ct2) == auth_req_for_ct2){
1196 		auth_req |= SM_AUTHREQ_CT2;
1197 	}
1198 #endif
1199     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1200     sm_pairing_packet_set_oob_data_flag(*local_packet, setup->sm_have_oob_data);
1201     sm_pairing_packet_set_auth_req(*local_packet, auth_req);
1202     sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
1203 }
1204 
1205 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1206 
1207     sm_pairing_packet_t * remote_packet;
1208     int                   remote_key_request;
1209     if (IS_RESPONDER(sm_conn->sm_role)){
1210         // slave / responder
1211         remote_packet      = &setup->sm_m_preq;
1212         remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1213     } else {
1214         // master / initiator
1215         remote_packet      = &setup->sm_s_pres;
1216         remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1217     }
1218 
1219     // check key size
1220     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1221     if (sm_conn->sm_actual_encryption_key_size == 0u) return SM_REASON_ENCRYPTION_KEY_SIZE;
1222 
1223     // decide on STK generation method / SC
1224     sm_setup_tk();
1225     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1226 
1227     // check if STK generation method is acceptable by client
1228     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1229 
1230 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1231     // check LE SC Only mode
1232     if (sm_sc_only_mode && (setup->sm_use_secure_connections == false)){
1233         log_info("SC Only mode active but SC not possible");
1234         return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1235     }
1236 
1237     // LTK (= encyrption information & master identification) only used exchanged for LE Legacy Connection
1238     if (setup->sm_use_secure_connections){
1239         remote_key_request &= ~SM_KEYDIST_ENC_KEY;
1240     }
1241 #endif
1242 
1243     // identical to responder
1244     sm_setup_key_distribution(remote_key_request);
1245 
1246     // JUST WORKS doens't provide authentication
1247     sm_conn->sm_connection_authenticated = (setup->sm_stk_generation_method == JUST_WORKS) ? 0 : 1;
1248 
1249     return 0;
1250 }
1251 
1252 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1253 
1254     // cache and reset context
1255     int matched_device_id = sm_address_resolution_test;
1256     address_resolution_mode_t mode = sm_address_resolution_mode;
1257     void * context = sm_address_resolution_context;
1258 
1259     // reset context
1260     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1261     sm_address_resolution_context = NULL;
1262     sm_address_resolution_test = -1;
1263     hci_con_handle_t con_handle = 0;
1264 
1265     sm_connection_t * sm_connection;
1266     sm_key_t ltk;
1267     bool have_ltk;
1268 #ifdef ENABLE_LE_CENTRAL
1269     bool trigger_pairing;
1270 #endif
1271     switch (mode){
1272         case ADDRESS_RESOLUTION_GENERAL:
1273             break;
1274         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1275             sm_connection = (sm_connection_t *) context;
1276             con_handle = sm_connection->sm_handle;
1277 
1278             // have ltk -> start encryption / send security request
1279             // Core 5, Vol 3, Part C, 10.3.2 Initiating a Service Request
1280             // "When a bond has been created between two devices, any reconnection should result in the local device
1281             //  enabling or requesting encryption with the remote device before initiating any service request."
1282 
1283             switch (event){
1284                 case ADDRESS_RESOLUTION_SUCCEEDED:
1285                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1286                     sm_connection->sm_le_db_index = matched_device_id;
1287                     log_info("ADDRESS_RESOLUTION_SUCCEEDED, index %d", sm_connection->sm_le_db_index);
1288 
1289                     le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
1290                     have_ltk = !sm_is_null_key(ltk);
1291 
1292                     if (sm_connection->sm_role) {
1293 #ifdef ENABLE_LE_PERIPHERAL
1294                         // IRK required before, continue
1295                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1296                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
1297                             break;
1298                         }
1299                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK){
1300                             sm_connection->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
1301                             break;
1302                         }
1303                         bool trigger_security_request = (sm_connection->sm_pairing_requested != 0) || (sm_slave_request_security != 0);
1304                         sm_connection->sm_pairing_requested = 0;
1305 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1306                         // trigger security request for Proactive Authentication if LTK available
1307                         trigger_security_request = trigger_security_request || have_ltk;
1308 #endif
1309 
1310                         log_info("peripheral: pairing request local %u, have_ltk %u => trigger_security_request %u",
1311                                  sm_connection->sm_pairing_requested, (int) have_ltk, trigger_security_request);
1312 
1313                         if (trigger_security_request){
1314                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1315                             if (have_ltk){
1316                                 sm_reencryption_started(sm_connection);
1317                             } else {
1318                                 sm_pairing_started(sm_connection);
1319                             }
1320                             sm_trigger_run();
1321                         }
1322 #endif
1323                     } else {
1324 
1325 #ifdef ENABLE_LE_CENTRAL
1326                         // check if pairing already requested and reset requests
1327                         trigger_pairing = sm_connection->sm_pairing_requested || sm_connection->sm_security_request_received;
1328                         log_info("central: pairing request local %u, remote %u => trigger_pairing %u. have_ltk %u",
1329                                  sm_connection->sm_pairing_requested, sm_connection->sm_security_request_received, (int) trigger_pairing, (int) have_ltk);
1330                         sm_connection->sm_security_request_received = 0;
1331                         sm_connection->sm_pairing_requested = 0;
1332                         bool trigger_reencryption = false;
1333 
1334                         if (have_ltk){
1335 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1336                             trigger_reencryption = true;
1337 #else
1338                             if (trigger_pairing){
1339                                 trigger_reencryption = true;
1340                             } else {
1341                                 log_info("central: defer enabling encryption for bonded device");
1342                             }
1343 #endif
1344                         }
1345 
1346                         if (trigger_reencryption){
1347                             log_info("central: enable encryption for bonded device");
1348                             sm_connection->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
1349                             break;
1350                         }
1351 
1352                         // pairing_request -> send pairing request
1353                         if (trigger_pairing){
1354                             sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1355                             break;
1356                         }
1357 #endif
1358                     }
1359                     break;
1360                 case ADDRESS_RESOLUTION_FAILED:
1361                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1362                     if (sm_connection->sm_role) {
1363 #ifdef ENABLE_LE_PERIPHERAL
1364                         // LTK request received before, IRK required -> negative LTK reply
1365                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1366                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
1367                         }
1368                         // send security request if requested
1369                         bool trigger_security_request = (sm_connection->sm_pairing_requested != 0) || (sm_slave_request_security != 0);
1370                         sm_connection->sm_pairing_requested = 0;
1371                         if (trigger_security_request){
1372                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1373                             sm_pairing_started(sm_connection);
1374                         }
1375                         break;
1376 #endif
1377                     }
1378 #ifdef ENABLE_LE_CENTRAL
1379                     if (!sm_connection->sm_pairing_requested && !sm_connection->sm_security_request_received) break;
1380                     sm_connection->sm_security_request_received = 0;
1381                     sm_connection->sm_pairing_requested = 0;
1382                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1383 #endif
1384                     break;
1385 
1386                 default:
1387                     btstack_assert(false);
1388                     break;
1389             }
1390             break;
1391         default:
1392             break;
1393     }
1394 
1395     switch (event){
1396         case ADDRESS_RESOLUTION_SUCCEEDED:
1397             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1398             break;
1399         case ADDRESS_RESOLUTION_FAILED:
1400             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1401             break;
1402         default:
1403             btstack_assert(false);
1404             break;
1405     }
1406 }
1407 
1408 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1409 
1410     int le_db_index = -1;
1411 
1412     // only store pairing information if both sides are bondable, i.e., the bonadble flag is set
1413     bool bonding_enabed = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
1414                          & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
1415                          & SM_AUTHREQ_BONDING ) != 0u;
1416 
1417     if (bonding_enabed){
1418 
1419         // lookup device based on IRK
1420         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1421             int i;
1422             for (i=0; i < le_device_db_max_count(); i++){
1423                 sm_key_t irk;
1424                 bd_addr_t address;
1425                 int address_type = BD_ADDR_TYPE_UNKNOWN;
1426                 le_device_db_info(i, &address_type, address, irk);
1427                 // skip unused entries
1428                 if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1429                 // compare IRK
1430                 if (memcmp(irk, setup->sm_peer_irk, 16) != 0) continue;
1431 
1432                 log_info("sm: device found for IRK, updating");
1433                 le_db_index = i;
1434                 break;
1435             }
1436         } else {
1437             // assert IRK is set to zero
1438             memset(setup->sm_peer_irk, 0, 16);
1439         }
1440 
1441         // if not found, lookup via public address if possible
1442         log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1443         if ((le_db_index < 0) && (setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC)){
1444             int i;
1445             for (i=0; i < le_device_db_max_count(); i++){
1446                 bd_addr_t address;
1447                 int address_type = BD_ADDR_TYPE_UNKNOWN;
1448                 le_device_db_info(i, &address_type, address, NULL);
1449                 // skip unused entries
1450                 if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1451                 log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1452                 if ((address_type == BD_ADDR_TYPE_LE_PUBLIC) && (memcmp(address, setup->sm_peer_address, 6) == 0)){
1453                     log_info("sm: device found for public address, updating");
1454                     le_db_index = i;
1455                     break;
1456                 }
1457             }
1458         }
1459 
1460         // if not found, add to db
1461         bool new_to_le_device_db = false;
1462         if (le_db_index < 0) {
1463             le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1464 			new_to_le_device_db = true;
1465         }
1466 
1467         if (le_db_index >= 0){
1468 
1469 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1470         	if (!new_to_le_device_db){
1471 				hci_remove_le_device_db_entry_from_resolving_list(le_db_index);
1472         	}
1473 			hci_load_le_device_db_entry_into_resolving_list(le_db_index);
1474 #else
1475 			UNUSED(new_to_le_device_db);
1476 #endif
1477 
1478             sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index);
1479             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1480 
1481 #ifdef ENABLE_LE_SIGNED_WRITE
1482             // store local CSRK
1483             setup->sm_le_device_index = le_db_index;
1484             if ((setup->sm_key_distribution_sent_set) & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1485                 log_info("sm: store local CSRK");
1486                 le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1487                 le_device_db_local_counter_set(le_db_index, 0);
1488             }
1489 
1490             // store remote CSRK
1491             if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1492                 log_info("sm: store remote CSRK");
1493                 le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1494                 le_device_db_remote_counter_set(le_db_index, 0);
1495             }
1496 #endif
1497             // store encryption information for secure connections: LTK generated by ECDH
1498             if (setup->sm_use_secure_connections){
1499                 log_info("sm: store SC LTK (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1500                 uint8_t zero_rand[8];
1501                 memset(zero_rand, 0, 8);
1502                 le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size,
1503                     sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 1);
1504             }
1505 
1506             // store encryption information for legacy pairing: peer LTK, EDIV, RAND
1507             else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION)
1508                    && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){
1509                 log_info("sm: set encryption information (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1510                 le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1511                     sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 0);
1512 
1513             }
1514         }
1515     } else {
1516         log_info("Ignoring received keys, bonding not enabled");
1517     }
1518 
1519     // keep le_db_index
1520     sm_conn->sm_le_db_index = le_db_index;
1521 }
1522 
1523 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
1524     setup->sm_pairing_failed_reason = reason;
1525     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1526 }
1527 
1528 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
1529     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
1530 }
1531 
1532 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1533 
1534 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn);
1535 static int sm_passkey_used(stk_generation_method_t method);
1536 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method);
1537 
1538 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){
1539     if (setup->sm_stk_generation_method == OOB){
1540         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1541     } else {
1542         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_w2_cmac_for_confirmation, (void *)(uintptr_t) sm_conn->sm_handle);
1543     }
1544 }
1545 
1546 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
1547     if (IS_RESPONDER(sm_conn->sm_role)){
1548         // Responder
1549         if (setup->sm_stk_generation_method == OOB){
1550             // generate Nb
1551             log_info("Generate Nb");
1552             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void *)(uintptr_t) sm_conn->sm_handle);
1553         } else {
1554             sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
1555         }
1556     } else {
1557         // Initiator role
1558         switch (setup->sm_stk_generation_method){
1559             case JUST_WORKS:
1560                 sm_sc_prepare_dhkey_check(sm_conn);
1561                 break;
1562 
1563             case NUMERIC_COMPARISON:
1564                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2;
1565                 break;
1566             case PK_INIT_INPUT:
1567             case PK_RESP_INPUT:
1568             case PK_BOTH_INPUT:
1569                 if (setup->sm_passkey_bit < 20u) {
1570                     sm_sc_start_calculating_local_confirm(sm_conn);
1571                 } else {
1572                     sm_sc_prepare_dhkey_check(sm_conn);
1573                 }
1574                 break;
1575             case OOB:
1576                 sm_sc_prepare_dhkey_check(sm_conn);
1577                 break;
1578             default:
1579                 btstack_assert(false);
1580                 break;
1581         }
1582     }
1583 }
1584 
1585 static void sm_sc_cmac_done(uint8_t * hash){
1586     log_info("sm_sc_cmac_done: ");
1587     log_info_hexdump(hash, 16);
1588 
1589     if (sm_sc_oob_state == SM_SC_OOB_W4_CONFIRM){
1590         sm_sc_oob_state = SM_SC_OOB_IDLE;
1591         (*sm_sc_oob_callback)(hash, sm_sc_oob_random);
1592         return;
1593     }
1594 
1595     sm_connection_t * sm_conn = sm_cmac_connection;
1596     sm_cmac_connection = NULL;
1597 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1598     link_key_type_t link_key_type;
1599 #endif
1600 
1601     switch (sm_conn->sm_engine_state){
1602         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1603             (void)memcpy(setup->sm_local_confirm, hash, 16);
1604             sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1605             break;
1606         case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
1607             // check
1608             if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
1609                 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
1610                 break;
1611             }
1612             sm_sc_state_after_receiving_random(sm_conn);
1613             break;
1614         case SM_SC_W4_CALCULATE_G2: {
1615             uint32_t vab = big_endian_read_32(hash, 12) % 1000000;
1616             big_endian_store_32(setup->sm_tk, 12, vab);
1617             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
1618             sm_trigger_user_response(sm_conn);
1619             break;
1620         }
1621         case SM_SC_W4_CALCULATE_F5_SALT:
1622             (void)memcpy(setup->sm_t, hash, 16);
1623             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY;
1624             break;
1625         case SM_SC_W4_CALCULATE_F5_MACKEY:
1626             (void)memcpy(setup->sm_mackey, hash, 16);
1627             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK;
1628             break;
1629         case SM_SC_W4_CALCULATE_F5_LTK:
1630             // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk
1631             // Errata Service Release to the Bluetooth Specification: ESR09
1632             //   E6405 – Cross transport key derivation from a key of size less than 128 bits
1633             //   Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
1634             (void)memcpy(setup->sm_ltk, hash, 16);
1635             (void)memcpy(setup->sm_local_ltk, hash, 16);
1636             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1637             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
1638             break;
1639         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
1640             (void)memcpy(setup->sm_local_dhkey_check, hash, 16);
1641             if (IS_RESPONDER(sm_conn->sm_role)){
1642                 // responder
1643                 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED){
1644                     sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
1645                 } else {
1646                     sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1647                 }
1648             } else {
1649                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1650             }
1651             break;
1652         case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
1653             if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){
1654                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1655                 break;
1656             }
1657             if (IS_RESPONDER(sm_conn->sm_role)){
1658                 // responder
1659                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1660             } else {
1661                 // initiator
1662                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
1663             }
1664             break;
1665 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1666         case SM_SC_W4_CALCULATE_ILK:
1667             (void)memcpy(setup->sm_t, hash, 16);
1668             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY;
1669             break;
1670         case SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY:
1671             reverse_128(hash, setup->sm_t);
1672             link_key_type = sm_conn->sm_connection_authenticated ?
1673                 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1674             log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type);
1675 			gap_store_link_key_for_bd_addr(setup->sm_peer_address, setup->sm_t, link_key_type);
1676             if (IS_RESPONDER(sm_conn->sm_role)){
1677                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
1678             } else {
1679                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1680             }
1681             sm_pairing_complete(sm_conn, ERROR_CODE_SUCCESS, 0);
1682             sm_done_for_handle(sm_conn->sm_handle);
1683             break;
1684 #endif
1685         default:
1686             log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state);
1687             break;
1688     }
1689     sm_trigger_run();
1690 }
1691 
1692 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1693     const uint16_t message_len = 65;
1694     sm_cmac_connection = sm_conn;
1695     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1696     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1697     sm_cmac_sc_buffer[64] = z;
1698     log_info("f4 key");
1699     log_info_hexdump(x, 16);
1700     log_info("f4 message");
1701     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1702     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1703 }
1704 
1705 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
1706 static const uint8_t f5_length[] = { 0x01, 0x00};
1707 
1708 static void f5_calculate_salt(sm_connection_t * sm_conn){
1709 
1710     static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
1711 
1712     log_info("f5_calculate_salt");
1713     // calculate salt for f5
1714     const uint16_t message_len = 32;
1715     sm_cmac_connection = sm_conn;
1716     (void)memcpy(sm_cmac_sc_buffer, setup->sm_dhkey, message_len);
1717     sm_cmac_message_start(f5_salt, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1718 }
1719 
1720 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
1721     const uint16_t message_len = 53;
1722     sm_cmac_connection = sm_conn;
1723 
1724     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
1725     sm_cmac_sc_buffer[0] = 0;
1726     (void)memcpy(sm_cmac_sc_buffer + 01, f5_key_id, 4);
1727     (void)memcpy(sm_cmac_sc_buffer + 05, n1, 16);
1728     (void)memcpy(sm_cmac_sc_buffer + 21, n2, 16);
1729     (void)memcpy(sm_cmac_sc_buffer + 37, a1, 7);
1730     (void)memcpy(sm_cmac_sc_buffer + 44, a2, 7);
1731     (void)memcpy(sm_cmac_sc_buffer + 51, f5_length, 2);
1732     log_info("f5 key");
1733     log_info_hexdump(t, 16);
1734     log_info("f5 message for MacKey");
1735     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1736     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1737 }
1738 
1739 static void f5_calculate_mackey(sm_connection_t * sm_conn){
1740     sm_key56_t bd_addr_master, bd_addr_slave;
1741     bd_addr_master[0] =  setup->sm_m_addr_type;
1742     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1743     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1744     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1745     if (IS_RESPONDER(sm_conn->sm_role)){
1746         // responder
1747         f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1748     } else {
1749         // initiator
1750         f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1751     }
1752 }
1753 
1754 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused
1755 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){
1756     const uint16_t message_len = 53;
1757     sm_cmac_connection = sm_conn;
1758     sm_cmac_sc_buffer[0] = 1;
1759     // 1..52 setup before
1760     log_info("f5 key");
1761     log_info_hexdump(t, 16);
1762     log_info("f5 message for LTK");
1763     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1764     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1765 }
1766 
1767 static void f5_calculate_ltk(sm_connection_t * sm_conn){
1768     f5_ltk(sm_conn, setup->sm_t);
1769 }
1770 
1771 static void f6_setup(const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
1772     (void)memcpy(sm_cmac_sc_buffer, n1, 16);
1773     (void)memcpy(sm_cmac_sc_buffer + 16, n2, 16);
1774     (void)memcpy(sm_cmac_sc_buffer + 32, r, 16);
1775     (void)memcpy(sm_cmac_sc_buffer + 48, io_cap, 3);
1776     (void)memcpy(sm_cmac_sc_buffer + 51, a1, 7);
1777     (void)memcpy(sm_cmac_sc_buffer + 58, a2, 7);
1778 }
1779 
1780 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w){
1781     const uint16_t message_len = 65;
1782     sm_cmac_connection = sm_conn;
1783     log_info("f6 key");
1784     log_info_hexdump(w, 16);
1785     log_info("f6 message");
1786     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1787     sm_cmac_message_start(w, 65, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1788 }
1789 
1790 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
1791 // - U is 256 bits
1792 // - V is 256 bits
1793 // - X is 128 bits
1794 // - Y is 128 bits
1795 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
1796     const uint16_t message_len = 80;
1797     sm_cmac_connection = sm_conn;
1798     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1799     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1800     (void)memcpy(sm_cmac_sc_buffer + 64, y, 16);
1801     log_info("g2 key");
1802     log_info_hexdump(x, 16);
1803     log_info("g2 message");
1804     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1805     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1806 }
1807 
1808 static void g2_calculate(sm_connection_t * sm_conn) {
1809     // calc Va if numeric comparison
1810     if (IS_RESPONDER(sm_conn->sm_role)){
1811         // responder
1812         g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);;
1813     } else {
1814         // initiator
1815         g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce);
1816     }
1817 }
1818 
1819 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1820     uint8_t z = 0;
1821     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1822         // some form of passkey
1823         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1824         z = 0x80u | ((pk >> setup->sm_passkey_bit) & 1u);
1825         setup->sm_passkey_bit++;
1826     }
1827     f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z);
1828 }
1829 
1830 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
1831     // OOB
1832     if (setup->sm_stk_generation_method == OOB){
1833         if (IS_RESPONDER(sm_conn->sm_role)){
1834             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_ra, 0);
1835         } else {
1836             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_rb, 0);
1837         }
1838         return;
1839     }
1840 
1841     uint8_t z = 0;
1842     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1843         // some form of passkey
1844         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1845         // sm_passkey_bit was increased before sending confirm value
1846         z = 0x80u | ((pk >> (setup->sm_passkey_bit-1u)) & 1u);
1847     }
1848     f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z);
1849 }
1850 
1851 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){
1852     log_info("sm_sc_prepare_dhkey_check, DHKEY calculated %u", (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) ? 1 : 0);
1853 
1854     if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED){
1855         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1856         return;
1857     } else {
1858         sm_conn->sm_engine_state = SM_SC_W4_CALCULATE_DHKEY;
1859     }
1860 }
1861 
1862 static void sm_sc_dhkey_calculated(void * arg){
1863     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
1864     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
1865     if (sm_conn == NULL) return;
1866 
1867     log_info("dhkey");
1868     log_info_hexdump(&setup->sm_dhkey[0], 32);
1869     setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED;
1870     // trigger next step
1871     if (sm_conn->sm_engine_state == SM_SC_W4_CALCULATE_DHKEY){
1872         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1873     }
1874     sm_trigger_run();
1875 }
1876 
1877 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){
1878     // calculate DHKCheck
1879     sm_key56_t bd_addr_master, bd_addr_slave;
1880     bd_addr_master[0] =  setup->sm_m_addr_type;
1881     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1882     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1883     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1884     uint8_t iocap_a[3];
1885     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1886     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1887     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1888     uint8_t iocap_b[3];
1889     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1890     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1891     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1892     if (IS_RESPONDER(sm_conn->sm_role)){
1893         // responder
1894         f6_setup(setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1895         f6_engine(sm_conn, setup->sm_mackey);
1896     } else {
1897         // initiator
1898         f6_setup( setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1899         f6_engine(sm_conn, setup->sm_mackey);
1900     }
1901 }
1902 
1903 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){
1904     // validate E = f6()
1905     sm_key56_t bd_addr_master, bd_addr_slave;
1906     bd_addr_master[0] =  setup->sm_m_addr_type;
1907     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1908     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1909     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1910 
1911     uint8_t iocap_a[3];
1912     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1913     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1914     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1915     uint8_t iocap_b[3];
1916     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1917     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1918     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1919     if (IS_RESPONDER(sm_conn->sm_role)){
1920         // responder
1921         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1922         f6_engine(sm_conn, setup->sm_mackey);
1923     } else {
1924         // initiator
1925         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1926         f6_engine(sm_conn, setup->sm_mackey);
1927     }
1928 }
1929 
1930 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1931 
1932 //
1933 // Link Key Conversion Function h6
1934 //
1935 // h6(W, keyID) = AES-CMAC_W(keyID)
1936 // - W is 128 bits
1937 // - keyID is 32 bits
1938 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){
1939     const uint16_t message_len = 4;
1940     sm_cmac_connection = sm_conn;
1941     big_endian_store_32(sm_cmac_sc_buffer, 0, key_id);
1942     log_info("h6 key");
1943     log_info_hexdump(w, 16);
1944     log_info("h6 message");
1945     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1946     sm_cmac_message_start(w, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1947 }
1948 //
1949 // Link Key Conversion Function h7
1950 //
1951 // h7(SALT, W) = AES-CMAC_SALT(W)
1952 // - SALT is 128 bits
1953 // - W    is 128 bits
1954 static void h7_engine(sm_connection_t * sm_conn, const sm_key_t salt, const sm_key_t w) {
1955 	const uint16_t message_len = 16;
1956 	sm_cmac_connection = sm_conn;
1957 	log_info("h7 key");
1958 	log_info_hexdump(salt, 16);
1959 	log_info("h7 message");
1960 	log_info_hexdump(w, 16);
1961 	sm_cmac_message_start(salt, message_len, w, &sm_sc_cmac_done);
1962 }
1963 
1964 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated)
1965 // Errata Service Release to the Bluetooth Specification: ESR09
1966 //   E6405 – Cross transport key derivation from a key of size less than 128 bits
1967 //   "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
1968 
1969 static void h6_calculate_ilk(sm_connection_t * sm_conn){
1970     h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031);    // "tmp1"
1971 }
1972 
1973 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){
1974     h6_engine(sm_conn, setup->sm_t, 0x6c656272);    // "lebr"
1975 }
1976 
1977 static void h7_calculate_ilk(sm_connection_t * sm_conn){
1978 	const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x31};  // "tmp1"
1979 	h7_engine(sm_conn, salt, setup->sm_local_ltk);
1980 }
1981 #endif
1982 
1983 #endif
1984 
1985 // key management legacy connections:
1986 // - potentially two different LTKs based on direction. each device stores LTK provided by peer
1987 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect)
1988 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder
1989 // - responder  reconnects: responder uses LTK receveived from master
1990 
1991 // key management secure connections:
1992 // - both devices store same LTK from ECDH key exchange.
1993 
1994 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL)
1995 static void sm_load_security_info(sm_connection_t * sm_connection){
1996     int encryption_key_size;
1997     int authenticated;
1998     int authorized;
1999     int secure_connection;
2000 
2001     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
2002     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
2003                                 &encryption_key_size, &authenticated, &authorized, &secure_connection);
2004     log_info("db index %u, key size %u, authenticated %u, authorized %u, secure connetion %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized, secure_connection);
2005     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
2006     sm_connection->sm_connection_authenticated = authenticated;
2007     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
2008     sm_connection->sm_connection_sc = secure_connection;
2009 }
2010 #endif
2011 
2012 #ifdef ENABLE_LE_PERIPHERAL
2013 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){
2014     (void)memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
2015     setup->sm_local_ediv = sm_connection->sm_local_ediv;
2016     // re-establish used key encryption size
2017     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2018     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7u] & 0x0fu) + 1u;
2019     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
2020     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7u] & 0x10u) >> 4u;
2021     // Legacy paring -> not SC
2022     sm_connection->sm_connection_sc = 0;
2023     log_info("sm: received ltk request with key size %u, authenticated %u",
2024             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
2025 }
2026 #endif
2027 
2028 // distributed key generation
2029 static bool sm_run_dpkg(void){
2030     switch (dkg_state){
2031         case DKG_CALC_IRK:
2032             // already busy?
2033             if (sm_aes128_state == SM_AES128_IDLE) {
2034                 log_info("DKG_CALC_IRK started");
2035                 // IRK = d1(IR, 1, 0)
2036                 sm_d1_d_prime(1, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2037                 sm_aes128_state = SM_AES128_ACTIVE;
2038                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_irk, sm_handle_encryption_result_dkg_irk, NULL);
2039                 return true;
2040             }
2041             break;
2042         case DKG_CALC_DHK:
2043             // already busy?
2044             if (sm_aes128_state == SM_AES128_IDLE) {
2045                 log_info("DKG_CALC_DHK started");
2046                 // DHK = d1(IR, 3, 0)
2047                 sm_d1_d_prime(3, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2048                 sm_aes128_state = SM_AES128_ACTIVE;
2049                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_dhk, sm_handle_encryption_result_dkg_dhk, NULL);
2050                 return true;
2051             }
2052             break;
2053         default:
2054             break;
2055     }
2056     return false;
2057 }
2058 
2059 // random address updates
2060 static bool sm_run_rau(void){
2061     switch (rau_state){
2062         case RAU_GET_RANDOM:
2063             rau_state = RAU_W4_RANDOM;
2064             btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_address, 6, &sm_handle_random_result_rau, NULL);
2065             return true;
2066         case RAU_GET_ENC:
2067             // already busy?
2068             if (sm_aes128_state == SM_AES128_IDLE) {
2069                 sm_ah_r_prime(sm_random_address, sm_aes128_plaintext);
2070                 sm_aes128_state = SM_AES128_ACTIVE;
2071                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_irk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_rau, NULL);
2072                 return true;
2073             }
2074             break;
2075         case RAU_SET_ADDRESS:
2076             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
2077             rau_state = RAU_IDLE;
2078             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
2079             return true;
2080         default:
2081             break;
2082     }
2083     return false;
2084 }
2085 
2086 // CSRK Lookup
2087 static bool sm_run_csrk(void){
2088     btstack_linked_list_iterator_t it;
2089 
2090     // -- if csrk lookup ready, find connection that require csrk lookup
2091     if (sm_address_resolution_idle()){
2092         hci_connections_get_iterator(&it);
2093         while(btstack_linked_list_iterator_has_next(&it)){
2094             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2095             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
2096             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
2097                 // and start lookup
2098                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
2099                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
2100                 break;
2101             }
2102         }
2103     }
2104 
2105     // -- if csrk lookup ready, resolved addresses for received addresses
2106     if (sm_address_resolution_idle()) {
2107         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
2108             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
2109             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
2110             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
2111             btstack_memory_sm_lookup_entry_free(entry);
2112         }
2113     }
2114 
2115     // -- Continue with CSRK device lookup by public or resolvable private address
2116     if (!sm_address_resolution_idle()){
2117         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_max_count());
2118         while (sm_address_resolution_test < le_device_db_max_count()){
2119             int addr_type = BD_ADDR_TYPE_UNKNOWN;
2120             bd_addr_t addr;
2121             sm_key_t irk;
2122             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
2123             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
2124 
2125             // skip unused entries
2126             if (addr_type == BD_ADDR_TYPE_UNKNOWN){
2127                 sm_address_resolution_test++;
2128                 continue;
2129             }
2130 
2131             if ((sm_address_resolution_addr_type == addr_type) && (memcmp(addr, sm_address_resolution_address, 6) == 0)){
2132                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
2133                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
2134                 break;
2135             }
2136 
2137             // if connection type is public, it must be a different one
2138             if (sm_address_resolution_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
2139                 sm_address_resolution_test++;
2140                 continue;
2141             }
2142 
2143             if (sm_aes128_state == SM_AES128_ACTIVE) break;
2144 
2145             log_info("LE Device Lookup: calculate AH");
2146             log_info_key("IRK", irk);
2147 
2148             (void)memcpy(sm_aes128_key, irk, 16);
2149             sm_ah_r_prime(sm_address_resolution_address, sm_aes128_plaintext);
2150             sm_address_resolution_ah_calculation_active = 1;
2151             sm_aes128_state = SM_AES128_ACTIVE;
2152             btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_aes128_key, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_address_resolution, NULL);
2153             return true;
2154         }
2155 
2156         if (sm_address_resolution_test >= le_device_db_max_count()){
2157             log_info("LE Device Lookup: not found");
2158             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
2159         }
2160     }
2161     return false;
2162 }
2163 
2164 // SC OOB
2165 static bool sm_run_oob(void){
2166 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2167     switch (sm_sc_oob_state){
2168         case SM_SC_OOB_W2_CALC_CONFIRM:
2169             if (!sm_cmac_ready()) break;
2170             sm_sc_oob_state = SM_SC_OOB_W4_CONFIRM;
2171             f4_engine(NULL, ec_q, ec_q, sm_sc_oob_random, 0);
2172             return true;
2173         default:
2174             break;
2175     }
2176 #endif
2177     return false;
2178 }
2179 
2180 // handle basic actions that don't requires the full context
2181 static bool sm_run_basic(void){
2182     btstack_linked_list_iterator_t it;
2183     hci_connections_get_iterator(&it);
2184     while(btstack_linked_list_iterator_has_next(&it)){
2185         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2186         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2187         switch(sm_connection->sm_engine_state){
2188             // responder side
2189             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
2190                 sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2191                 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2192                 return true;
2193 
2194 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2195             case SM_SC_RECEIVED_LTK_REQUEST:
2196                 switch (sm_connection->sm_irk_lookup_state){
2197                     case IRK_LOOKUP_FAILED:
2198                         log_info("LTK Request: IRK Lookup Failed)");
2199                         sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2200                         hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2201                         return true;
2202                     default:
2203                         break;
2204                 }
2205                 break;
2206 #endif
2207             default:
2208                 break;
2209         }
2210     }
2211     return false;
2212 }
2213 
2214 static void sm_run_activate_connection(void){
2215     // Find connections that requires setup context and make active if no other is locked
2216     btstack_linked_list_iterator_t it;
2217     hci_connections_get_iterator(&it);
2218     while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
2219         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2220         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2221         // - if no connection locked and we're ready/waiting for setup context, fetch it and start
2222         bool done = true;
2223         int err;
2224         UNUSED(err);
2225 
2226 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2227         // assert ec key is ready
2228         if (   (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED)
2229             || (sm_connection->sm_engine_state == SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST)
2230 			|| (sm_connection->sm_engine_state == SM_RESPONDER_SEND_SECURITY_REQUEST)){
2231             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
2232                 sm_ec_generate_new_key();
2233             }
2234             if (ec_key_generation_state != EC_KEY_GENERATION_DONE){
2235                 continue;
2236             }
2237         }
2238 #endif
2239 
2240         switch (sm_connection->sm_engine_state) {
2241 #ifdef ENABLE_LE_PERIPHERAL
2242             case SM_RESPONDER_SEND_SECURITY_REQUEST:
2243             case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2244             case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
2245 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2246             case SM_SC_RECEIVED_LTK_REQUEST:
2247 #endif
2248 #endif
2249 #ifdef ENABLE_LE_CENTRAL
2250             case SM_INITIATOR_PH4_HAS_LTK:
2251 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2252 #endif
2253 				// just lock context
2254 				break;
2255             default:
2256                 done = false;
2257                 break;
2258         }
2259         if (done){
2260             sm_active_connection_handle = sm_connection->sm_handle;
2261             log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state);
2262         }
2263     }
2264 }
2265 
2266 static void sm_run_send_keypress_notification(sm_connection_t * connection){
2267     int i;
2268     uint8_t flags       = setup->sm_keypress_notification & 0x1fu;
2269     uint8_t num_actions = setup->sm_keypress_notification >> 5;
2270     uint8_t action = 0;
2271     for (i=SM_KEYPRESS_PASSKEY_ENTRY_STARTED;i<=SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED;i++){
2272         if (flags & (1u<<i)){
2273             bool clear_flag = true;
2274             switch (i){
2275                 case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
2276                 case SM_KEYPRESS_PASSKEY_CLEARED:
2277                 case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
2278                 default:
2279                     break;
2280                 case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
2281                 case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
2282                     num_actions--;
2283                     clear_flag = num_actions == 0u;
2284                     break;
2285             }
2286             if (clear_flag){
2287                 flags &= ~(1<<i);
2288             }
2289             action = i;
2290             break;
2291         }
2292     }
2293     setup->sm_keypress_notification = (num_actions << 5) | flags;
2294 
2295     // send keypress notification
2296     uint8_t buffer[2];
2297     buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION;
2298     buffer[1] = action;
2299     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2300 
2301     // try
2302     l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
2303 }
2304 
2305 static void sm_run_distribute_keys(sm_connection_t * connection){
2306     if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
2307         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2308         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2309         uint8_t buffer[17];
2310         buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2311         reverse_128(setup->sm_ltk, &buffer[1]);
2312         l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2313         sm_timeout_reset(connection);
2314         return;
2315     }
2316     if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
2317         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2318         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2319         uint8_t buffer[11];
2320         buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2321         little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2322         reverse_64(setup->sm_local_rand, &buffer[3]);
2323         l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2324         sm_timeout_reset(connection);
2325         return;
2326     }
2327     if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
2328         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2329         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2330         uint8_t buffer[17];
2331         buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2332         reverse_128(sm_persistent_irk, &buffer[1]);
2333         l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2334         sm_timeout_reset(connection);
2335         return;
2336     }
2337     if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
2338         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2339         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2340         bd_addr_t local_address;
2341         uint8_t buffer[8];
2342         buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2343         switch (gap_random_address_get_mode()){
2344             case GAP_RANDOM_ADDRESS_TYPE_OFF:
2345             case GAP_RANDOM_ADDRESS_TYPE_STATIC:
2346                 // public or static random
2347                 gap_le_get_own_address(&buffer[1], local_address);
2348                 break;
2349             case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2350             case GAP_RANDOM_ADDRESS_RESOLVABLE:
2351                 // fallback to public
2352                 gap_local_bd_addr(local_address);
2353                 buffer[1] = 0;
2354                 break;
2355             default:
2356                 btstack_assert(false);
2357                 break;
2358         }
2359         reverse_bd_addr(local_address, &buffer[2]);
2360         l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2361         sm_timeout_reset(connection);
2362         return;
2363     }
2364     if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
2365         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2366         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2367 
2368 #ifdef ENABLE_LE_SIGNED_WRITE
2369         // hack to reproduce test runs
2370                     if (test_use_fixed_local_csrk){
2371                         memset(setup->sm_local_csrk, 0xcc, 16);
2372                     }
2373 
2374                     // store local CSRK
2375                     if (setup->sm_le_device_index >= 0){
2376                         log_info("sm: store local CSRK");
2377                         le_device_db_local_csrk_set(setup->sm_le_device_index, setup->sm_local_csrk);
2378                         le_device_db_local_counter_set(setup->sm_le_device_index, 0);
2379                     }
2380 #endif
2381 
2382         uint8_t buffer[17];
2383         buffer[0] = SM_CODE_SIGNING_INFORMATION;
2384         reverse_128(setup->sm_local_csrk, &buffer[1]);
2385         l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2386         sm_timeout_reset(connection);
2387         return;
2388     }
2389     btstack_assert(false);
2390 }
2391 
2392 static bool sm_ctkd_from_le(sm_connection_t *sm_connection) {
2393 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2394     // requirements to derive link key from  LE:
2395     // - use secure connections
2396     if (setup->sm_use_secure_connections == 0) return false;
2397     // - bonding needs to be enabled:
2398     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_BONDING ) != 0u;
2399     if (!bonding_enabled) return false;
2400     // - need identity address / public addr
2401     bool have_identity_address_info = ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0) || (setup->sm_peer_addr_type == 0);
2402     if (!have_identity_address_info) return false;
2403     // - there is no stored BR/EDR link key or the derived key has at least the same level of authentication (bail if stored key has higher authentication)
2404     //   this requirement is motivated by BLURtooth paper. The paper recommends to not overwrite keys at all.
2405     //      If SC is authenticated, we consider it safe to overwrite a stored key.
2406     //      If stored link key is not authenticated, it could already be compromised by a MITM attack. Allowing overwrite by unauthenticated derived key does not make it worse.
2407     uint8_t link_key[16];
2408     link_key_type_t link_key_type;
2409     bool have_link_key             = gap_get_link_key_for_bd_addr(setup->sm_peer_address, link_key, &link_key_type);
2410     bool link_key_authenticated    = gap_authenticated_for_link_key_type(link_key_type) != 0;
2411     bool derived_key_authenticated = sm_connection->sm_connection_authenticated != 0;
2412     if (have_link_key && link_key_authenticated && !derived_key_authenticated) {
2413         return false;
2414     }
2415     // get started (all of the above are true)
2416     return true;
2417 #else
2418     UNUSED(sm_connection);
2419 	return false;
2420 #endif
2421 }
2422 
2423 static void sm_key_distribution_complete_responder(sm_connection_t * connection){
2424     if (sm_ctkd_from_le(connection)){
2425         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2426         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2427     } else {
2428         connection->sm_engine_state = SM_RESPONDER_IDLE;
2429         sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
2430         sm_done_for_handle(connection->sm_handle);
2431     }
2432 }
2433 
2434 static void sm_key_distribution_complete_initiator(sm_connection_t * connection){
2435     if (sm_ctkd_from_le(connection)){
2436         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2437         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2438     } else {
2439         sm_master_pairing_success(connection);
2440     }
2441 }
2442 
2443 static void sm_run(void){
2444 
2445     // assert that stack has already bootet
2446     if (hci_get_state() != HCI_STATE_WORKING) return;
2447 
2448     // assert that we can send at least commands
2449     if (!hci_can_send_command_packet_now()) return;
2450 
2451     // pause until IR/ER are ready
2452     if (sm_persistent_keys_random_active) return;
2453 
2454     bool done;
2455 
2456     //
2457     // non-connection related behaviour
2458     //
2459 
2460     done = sm_run_dpkg();
2461     if (done) return;
2462 
2463     done = sm_run_rau();
2464     if (done) return;
2465 
2466     done = sm_run_csrk();
2467     if (done) return;
2468 
2469     done = sm_run_oob();
2470     if (done) return;
2471 
2472     // assert that we can send at least commands - cmd might have been sent by crypto engine
2473     if (!hci_can_send_command_packet_now()) return;
2474 
2475     // handle basic actions that don't requires the full context
2476     done = sm_run_basic();
2477     if (done) return;
2478 
2479     //
2480     // active connection handling
2481     // -- use loop to handle next connection if lock on setup context is released
2482 
2483     while (true) {
2484 
2485         sm_run_activate_connection();
2486 
2487         if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return;
2488 
2489         //
2490         // active connection handling
2491         //
2492 
2493         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle);
2494         if (!connection) {
2495             log_info("no connection for handle 0x%04x", sm_active_connection_handle);
2496             return;
2497         }
2498 
2499         // assert that we could send a SM PDU - not needed for all of the following
2500         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
2501             log_info("cannot send now, requesting can send now event");
2502             l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
2503             return;
2504         }
2505 
2506         // send keypress notifications
2507         if (setup->sm_keypress_notification){
2508             sm_run_send_keypress_notification(connection);
2509             return;
2510         }
2511 
2512         int key_distribution_flags;
2513         UNUSED(key_distribution_flags);
2514 		int err;
2515 		UNUSED(err);
2516         bool have_ltk;
2517         uint8_t ltk[16];
2518 
2519         log_info("sm_run: state %u", connection->sm_engine_state);
2520         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
2521             log_info("sm_run // cannot send");
2522         }
2523         switch (connection->sm_engine_state){
2524 
2525             // general
2526             case SM_GENERAL_SEND_PAIRING_FAILED: {
2527                 uint8_t buffer[2];
2528                 buffer[0] = SM_CODE_PAIRING_FAILED;
2529                 buffer[1] = setup->sm_pairing_failed_reason;
2530                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2531                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2532                 sm_pairing_complete(connection, ERROR_CODE_AUTHENTICATION_FAILURE, setup->sm_pairing_failed_reason);
2533                 sm_done_for_handle(connection->sm_handle);
2534                 break;
2535             }
2536 
2537             // secure connections, initiator + responding states
2538 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2539             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
2540                 if (!sm_cmac_ready()) break;
2541                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
2542                 sm_sc_calculate_local_confirm(connection);
2543                 break;
2544             case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
2545                 if (!sm_cmac_ready()) break;
2546                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
2547                 sm_sc_calculate_remote_confirm(connection);
2548                 break;
2549             case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
2550                 if (!sm_cmac_ready()) break;
2551                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK;
2552                 sm_sc_calculate_f6_for_dhkey_check(connection);
2553                 break;
2554             case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
2555                 if (!sm_cmac_ready()) break;
2556                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
2557                 sm_sc_calculate_f6_to_verify_dhkey_check(connection);
2558                 break;
2559             case SM_SC_W2_CALCULATE_F5_SALT:
2560                 if (!sm_cmac_ready()) break;
2561                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT;
2562                 f5_calculate_salt(connection);
2563                 break;
2564             case SM_SC_W2_CALCULATE_F5_MACKEY:
2565                 if (!sm_cmac_ready()) break;
2566                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY;
2567                 f5_calculate_mackey(connection);
2568                 break;
2569             case SM_SC_W2_CALCULATE_F5_LTK:
2570                 if (!sm_cmac_ready()) break;
2571                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK;
2572                 f5_calculate_ltk(connection);
2573                 break;
2574             case SM_SC_W2_CALCULATE_G2:
2575                 if (!sm_cmac_ready()) break;
2576                 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2;
2577                 g2_calculate(connection);
2578                 break;
2579 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2580             case SM_SC_W2_CALCULATE_ILK_USING_H6:
2581                 if (!sm_cmac_ready()) break;
2582                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
2583                 h6_calculate_ilk(connection);
2584                 break;
2585             case SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY:
2586                 if (!sm_cmac_ready()) break;
2587                 connection->sm_engine_state = SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY;
2588                 h6_calculate_br_edr_link_key(connection);
2589                 break;
2590 			case SM_SC_W2_CALCULATE_ILK_USING_H7:
2591 				if (!sm_cmac_ready()) break;
2592 				connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
2593 				h7_calculate_ilk(connection);
2594 				break;
2595 #endif
2596 #endif
2597 
2598 #ifdef ENABLE_LE_CENTRAL
2599             // initiator side
2600 
2601             case SM_INITIATOR_PH4_HAS_LTK: {
2602 				sm_reset_setup();
2603 				sm_load_security_info(connection);
2604                 sm_reencryption_started(connection);
2605 
2606                 sm_key_t peer_ltk_flipped;
2607                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
2608                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
2609                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
2610                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
2611                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
2612                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
2613                 return;
2614             }
2615 
2616 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2617 				sm_reset_setup();
2618 				sm_init_setup(connection);
2619 				sm_timeout_start(connection);
2620 				sm_pairing_started(connection);
2621 
2622                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
2623                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
2624                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
2625                 sm_timeout_reset(connection);
2626                 break;
2627 #endif
2628 
2629 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2630 
2631             case SM_SC_SEND_PUBLIC_KEY_COMMAND: {
2632                 bool trigger_user_response   = false;
2633                 bool trigger_start_calculating_local_confirm = false;
2634                 uint8_t buffer[65];
2635                 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
2636                 //
2637                 reverse_256(&ec_q[0],  &buffer[1]);
2638                 reverse_256(&ec_q[32], &buffer[33]);
2639 
2640 #ifdef ENABLE_TESTING_SUPPORT
2641                 if (test_pairing_failure == SM_REASON_DHKEY_CHECK_FAILED){
2642                     log_info("testing_support: invalidating public key");
2643                     // flip single bit of public key coordinate
2644                     buffer[1] ^= 1;
2645                 }
2646 #endif
2647 
2648                 // stk generation method
2649                 // passkey entry: notify app to show passkey or to request passkey
2650                 switch (setup->sm_stk_generation_method){
2651                     case JUST_WORKS:
2652                     case NUMERIC_COMPARISON:
2653                         if (IS_RESPONDER(connection->sm_role)){
2654                             // responder
2655                             trigger_start_calculating_local_confirm = true;
2656                             connection->sm_engine_state = SM_SC_W4_LOCAL_NONCE;
2657                         } else {
2658                             // initiator
2659                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2660                         }
2661                         break;
2662                     case PK_INIT_INPUT:
2663                     case PK_RESP_INPUT:
2664                     case PK_BOTH_INPUT:
2665                         // use random TK for display
2666                         (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
2667                         (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
2668                         setup->sm_passkey_bit = 0;
2669 
2670                         if (IS_RESPONDER(connection->sm_role)){
2671                             // responder
2672                             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2673                         } else {
2674                             // initiator
2675                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2676                         }
2677                         trigger_user_response = true;
2678                         break;
2679                     case OOB:
2680                         if (IS_RESPONDER(connection->sm_role)){
2681                             // responder
2682                             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2683                         } else {
2684                             // initiator
2685                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2686                         }
2687                         break;
2688                     default:
2689                         btstack_assert(false);
2690                         break;
2691                 }
2692 
2693                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2694                 sm_timeout_reset(connection);
2695 
2696                 // trigger user response and calc confirm after sending pdu
2697                 if (trigger_user_response){
2698                     sm_trigger_user_response(connection);
2699                 }
2700                 if (trigger_start_calculating_local_confirm){
2701                     sm_sc_start_calculating_local_confirm(connection);
2702                 }
2703                 break;
2704             }
2705             case SM_SC_SEND_CONFIRMATION: {
2706                 uint8_t buffer[17];
2707                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
2708                 reverse_128(setup->sm_local_confirm, &buffer[1]);
2709                 if (IS_RESPONDER(connection->sm_role)){
2710                     connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2711                 } else {
2712                     connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2713                 }
2714                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2715                 sm_timeout_reset(connection);
2716                 break;
2717             }
2718             case SM_SC_SEND_PAIRING_RANDOM: {
2719                 uint8_t buffer[17];
2720                 buffer[0] = SM_CODE_PAIRING_RANDOM;
2721                 reverse_128(setup->sm_local_nonce, &buffer[1]);
2722                 log_info("stk method %u, bit num: %u", setup->sm_stk_generation_method, setup->sm_passkey_bit);
2723                 if (sm_passkey_entry(setup->sm_stk_generation_method) && (setup->sm_passkey_bit < 20u)){
2724                     log_info("SM_SC_SEND_PAIRING_RANDOM A");
2725                     if (IS_RESPONDER(connection->sm_role)){
2726                         // responder
2727                         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2728                     } else {
2729                         // initiator
2730                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2731                     }
2732                 } else {
2733                     log_info("SM_SC_SEND_PAIRING_RANDOM B");
2734                     if (IS_RESPONDER(connection->sm_role)){
2735                         // responder
2736                         if (setup->sm_stk_generation_method == NUMERIC_COMPARISON){
2737                             log_info("SM_SC_SEND_PAIRING_RANDOM B1");
2738                             connection->sm_engine_state = SM_SC_W2_CALCULATE_G2;
2739                         } else {
2740                             log_info("SM_SC_SEND_PAIRING_RANDOM B2");
2741                             sm_sc_prepare_dhkey_check(connection);
2742                         }
2743                     } else {
2744                         // initiator
2745                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2746                     }
2747                 }
2748                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2749                 sm_timeout_reset(connection);
2750                 break;
2751             }
2752             case SM_SC_SEND_DHKEY_CHECK_COMMAND: {
2753                 uint8_t buffer[17];
2754                 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
2755                 reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
2756 
2757                 if (IS_RESPONDER(connection->sm_role)){
2758                     connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
2759                 } else {
2760                     connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
2761                 }
2762 
2763                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2764                 sm_timeout_reset(connection);
2765                 break;
2766             }
2767 
2768 #endif
2769 
2770 #ifdef ENABLE_LE_PERIPHERAL
2771 
2772 			case SM_RESPONDER_SEND_SECURITY_REQUEST: {
2773 				const uint8_t buffer[2] = {SM_CODE_SECURITY_REQUEST, sm_auth_req};
2774 				connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
2775 				l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL,  (uint8_t *) buffer, sizeof(buffer));
2776 				sm_timeout_start(connection);
2777 				break;
2778 			}
2779 
2780 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2781 			case SM_SC_RECEIVED_LTK_REQUEST:
2782 				switch (connection->sm_irk_lookup_state){
2783 					case IRK_LOOKUP_SUCCEEDED:
2784 						// assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null
2785 						// start using context by loading security info
2786 						sm_reset_setup();
2787 						sm_load_security_info(connection);
2788 						if ((setup->sm_peer_ediv == 0u) && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){
2789 							(void)memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16);
2790 							connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
2791                             sm_reencryption_started(connection);
2792                             sm_trigger_run();
2793 							break;
2794 						}
2795 						log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)");
2796 						connection->sm_engine_state = SM_RESPONDER_IDLE;
2797 						hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
2798 						return;
2799 					default:
2800 						// just wait until IRK lookup is completed
2801 						break;
2802 				}
2803 				break;
2804 #endif /* ENABLE_LE_SECURE_CONNECTIONS */
2805 
2806 			case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2807                 sm_reset_setup();
2808 
2809 			    // handle Pairing Request with LTK available
2810                 switch (connection->sm_irk_lookup_state) {
2811                     case IRK_LOOKUP_SUCCEEDED:
2812                         le_device_db_encryption_get(connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
2813                         have_ltk = !sm_is_null_key(ltk);
2814                         if (have_ltk){
2815                             log_info("pairing request but LTK available");
2816                             // emit re-encryption start/fail sequence
2817                             sm_reencryption_started(connection);
2818                             sm_reencryption_complete(connection, ERROR_CODE_PIN_OR_KEY_MISSING);
2819                         }
2820                         break;
2821                     default:
2822                         break;
2823                 }
2824 
2825 				sm_init_setup(connection);
2826                 sm_pairing_started(connection);
2827 
2828 				// recover pairing request
2829 				(void)memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
2830 				err = sm_stk_generation_init(connection);
2831 
2832 #ifdef ENABLE_TESTING_SUPPORT
2833 				if ((0 < test_pairing_failure) && (test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED)){
2834                         log_info("testing_support: respond with pairing failure %u", test_pairing_failure);
2835                         err = test_pairing_failure;
2836                     }
2837 #endif
2838 				if (err != 0){
2839 					setup->sm_pairing_failed_reason = err;
2840 					connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2841 					sm_trigger_run();
2842 					break;
2843 				}
2844 
2845 				sm_timeout_start(connection);
2846 
2847 				// generate random number first, if we need to show passkey, otherwise send response
2848 				if (setup->sm_stk_generation_method == PK_INIT_INPUT){
2849 					btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk, (void *)(uintptr_t) connection->sm_handle);
2850 					break;
2851 				}
2852 
2853 				/* fall through */
2854 
2855             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
2856                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
2857 
2858                 // start with initiator key dist flags
2859                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
2860 
2861 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2862                 // LTK (= encyrption information & master identification) only exchanged for LE Legacy Connection
2863                 if (setup->sm_use_secure_connections){
2864                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
2865                 }
2866 #endif
2867                 // setup in response
2868                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
2869                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
2870 
2871                 // update key distribution after ENC was dropped
2872                 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
2873 
2874                 if (setup->sm_use_secure_connections){
2875                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2876                 } else {
2877                     connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
2878                 }
2879 
2880                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
2881                 sm_timeout_reset(connection);
2882                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
2883                 if (!setup->sm_use_secure_connections || (setup->sm_stk_generation_method == JUST_WORKS)){
2884                     sm_trigger_user_response(connection);
2885                 }
2886                 return;
2887 #endif
2888 
2889             case SM_PH2_SEND_PAIRING_RANDOM: {
2890                 uint8_t buffer[17];
2891                 buffer[0] = SM_CODE_PAIRING_RANDOM;
2892                 reverse_128(setup->sm_local_random, &buffer[1]);
2893                 if (IS_RESPONDER(connection->sm_role)){
2894                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
2895                 } else {
2896                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
2897                 }
2898                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2899                 sm_timeout_reset(connection);
2900                 break;
2901             }
2902 
2903             case SM_PH2_C1_GET_ENC_A:
2904                 // already busy?
2905                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2906                 // calculate confirm using aes128 engine - step 1
2907                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
2908                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_A;
2909                 sm_aes128_state = SM_AES128_ACTIVE;
2910                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_a, (void *)(uintptr_t) connection->sm_handle);
2911                 break;
2912 
2913             case SM_PH2_C1_GET_ENC_C:
2914                 // already busy?
2915                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2916                 // calculate m_confirm using aes128 engine - step 1
2917                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
2918                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_C;
2919                 sm_aes128_state = SM_AES128_ACTIVE;
2920                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_c, (void *)(uintptr_t) connection->sm_handle);
2921                 break;
2922 
2923             case SM_PH2_CALC_STK:
2924                 // already busy?
2925                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2926                 // calculate STK
2927                 if (IS_RESPONDER(connection->sm_role)){
2928                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, sm_aes128_plaintext);
2929                 } else {
2930                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
2931                 }
2932                 connection->sm_engine_state = SM_PH2_W4_STK;
2933                 sm_aes128_state = SM_AES128_ACTIVE;
2934                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
2935                 break;
2936 
2937             case SM_PH3_Y_GET_ENC:
2938                 // already busy?
2939                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2940                 // PH3B2 - calculate Y from      - enc
2941 
2942                 // dm helper (was sm_dm_r_prime)
2943                 // r' = padding || r
2944                 // r - 64 bit value
2945                 memset(&sm_aes128_plaintext[0], 0, 8);
2946                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
2947 
2948                 // Y = dm(DHK, Rand)
2949                 connection->sm_engine_state = SM_PH3_Y_W4_ENC;
2950                 sm_aes128_state = SM_AES128_ACTIVE;
2951                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph3_y, (void *)(uintptr_t) connection->sm_handle);
2952                 break;
2953 
2954             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
2955                 uint8_t buffer[17];
2956                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
2957                 reverse_128(setup->sm_local_confirm, &buffer[1]);
2958                 if (IS_RESPONDER(connection->sm_role)){
2959                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
2960                 } else {
2961                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
2962                 }
2963                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2964                 sm_timeout_reset(connection);
2965                 return;
2966             }
2967 #ifdef ENABLE_LE_PERIPHERAL
2968             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
2969                 sm_key_t stk_flipped;
2970                 reverse_128(setup->sm_ltk, stk_flipped);
2971                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2972                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
2973                 return;
2974             }
2975             case SM_RESPONDER_PH4_SEND_LTK_REPLY: {
2976                 sm_key_t ltk_flipped;
2977                 reverse_128(setup->sm_ltk, ltk_flipped);
2978                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
2979                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
2980                 return;
2981             }
2982 
2983 			case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
2984                 // already busy?
2985                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2986                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
2987 
2988 				sm_reset_setup();
2989 				sm_start_calculating_ltk_from_ediv_and_rand(connection);
2990 
2991 				sm_reencryption_started(connection);
2992 
2993                 // dm helper (was sm_dm_r_prime)
2994                 // r' = padding || r
2995                 // r - 64 bit value
2996                 memset(&sm_aes128_plaintext[0], 0, 8);
2997                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
2998 
2999                 // Y = dm(DHK, Rand)
3000                 connection->sm_engine_state = SM_RESPONDER_PH4_Y_W4_ENC;
3001                 sm_aes128_state = SM_AES128_ACTIVE;
3002                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph4_y, (void *)(uintptr_t) connection->sm_handle);
3003                 return;
3004 #endif
3005 #ifdef ENABLE_LE_CENTRAL
3006             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
3007                 sm_key_t stk_flipped;
3008                 reverse_128(setup->sm_ltk, stk_flipped);
3009                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3010                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
3011                 return;
3012             }
3013 #endif
3014 
3015             case SM_PH3_DISTRIBUTE_KEYS:
3016                 if (setup->sm_key_distribution_send_set != 0){
3017                     sm_run_distribute_keys(connection);
3018                     return;
3019                 }
3020 
3021                 // keys are sent
3022                 if (IS_RESPONDER(connection->sm_role)){
3023                     // slave -> receive master keys if any
3024                     if (sm_key_distribution_all_received(connection)){
3025                         sm_key_distribution_handle_all_received(connection);
3026                         sm_key_distribution_complete_responder(connection);
3027                         // start CTKD right away
3028                         continue;
3029                     } else {
3030                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3031                     }
3032                 } else {
3033                     sm_master_pairing_success(connection);
3034                 }
3035                 break;
3036 
3037             default:
3038                 break;
3039         }
3040 
3041         // check again if active connection was released
3042         if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break;
3043     }
3044 }
3045 
3046 // sm_aes128_state stays active
3047 static void sm_handle_encryption_result_enc_a(void *arg){
3048     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3049     sm_aes128_state = SM_AES128_IDLE;
3050 
3051     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3052     if (connection == NULL) return;
3053 
3054     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3055     sm_aes128_state = SM_AES128_ACTIVE;
3056     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, setup->sm_local_confirm, sm_handle_encryption_result_enc_b, (void *)(uintptr_t) connection->sm_handle);
3057 }
3058 
3059 static void sm_handle_encryption_result_enc_b(void *arg){
3060     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3061     sm_aes128_state = SM_AES128_IDLE;
3062 
3063     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3064     if (connection == NULL) return;
3065 
3066     log_info_key("c1!", setup->sm_local_confirm);
3067     connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
3068     sm_trigger_run();
3069 }
3070 
3071 // sm_aes128_state stays active
3072 static void sm_handle_encryption_result_enc_c(void *arg){
3073     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3074     sm_aes128_state = SM_AES128_IDLE;
3075 
3076     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3077     if (connection == NULL) return;
3078 
3079     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3080     sm_aes128_state = SM_AES128_ACTIVE;
3081     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, sm_aes128_ciphertext, sm_handle_encryption_result_enc_d, (void *)(uintptr_t) connection->sm_handle);
3082 }
3083 
3084 static void sm_handle_encryption_result_enc_d(void * arg){
3085     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3086     sm_aes128_state = SM_AES128_IDLE;
3087 
3088     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3089     if (connection == NULL) return;
3090 
3091     log_info_key("c1!", sm_aes128_ciphertext);
3092     if (memcmp(setup->sm_peer_confirm, sm_aes128_ciphertext, 16) != 0){
3093         setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
3094         connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
3095         sm_trigger_run();
3096         return;
3097     }
3098     if (IS_RESPONDER(connection->sm_role)){
3099         connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
3100         sm_trigger_run();
3101     } else {
3102         sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3103         sm_aes128_state = SM_AES128_ACTIVE;
3104         btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3105     }
3106 }
3107 
3108 static void sm_handle_encryption_result_enc_stk(void *arg){
3109     sm_aes128_state = SM_AES128_IDLE;
3110     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3111 
3112     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3113     if (connection == NULL) return;
3114 
3115     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3116     log_info_key("stk", setup->sm_ltk);
3117     if (IS_RESPONDER(connection->sm_role)){
3118         connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
3119     } else {
3120         connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
3121     }
3122     sm_trigger_run();
3123 }
3124 
3125 // sm_aes128_state stays active
3126 static void sm_handle_encryption_result_enc_ph3_y(void *arg){
3127     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3128     sm_aes128_state = SM_AES128_IDLE;
3129 
3130     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3131     if (connection == NULL) return;
3132 
3133     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3134     log_info_hex16("y", setup->sm_local_y);
3135     // PH3B3 - calculate EDIV
3136     setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
3137     log_info_hex16("ediv", setup->sm_local_ediv);
3138     // PH3B4 - calculate LTK         - enc
3139     // LTK = d1(ER, DIV, 0))
3140     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3141     sm_aes128_state = SM_AES128_ACTIVE;
3142     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph3_ltk, (void *)(uintptr_t) connection->sm_handle);
3143 }
3144 
3145 #ifdef ENABLE_LE_PERIPHERAL
3146 // sm_aes128_state stays active
3147 static void sm_handle_encryption_result_enc_ph4_y(void *arg){
3148     sm_aes128_state = SM_AES128_IDLE;
3149     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3150 
3151     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3152     if (connection == NULL) return;
3153 
3154     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3155     log_info_hex16("y", setup->sm_local_y);
3156 
3157     // PH3B3 - calculate DIV
3158     setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
3159     log_info_hex16("ediv", setup->sm_local_ediv);
3160     // PH3B4 - calculate LTK         - enc
3161     // LTK = d1(ER, DIV, 0))
3162     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3163     sm_aes128_state = SM_AES128_ACTIVE;
3164     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph4_ltk, (void *)(uintptr_t) connection->sm_handle);
3165 }
3166 #endif
3167 
3168 // sm_aes128_state stays active
3169 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg){
3170     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3171     sm_aes128_state = SM_AES128_IDLE;
3172 
3173     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3174     if (connection == NULL) return;
3175 
3176     log_info_key("ltk", setup->sm_ltk);
3177     // calc CSRK next
3178     sm_d1_d_prime(setup->sm_local_div, 1, sm_aes128_plaintext);
3179     sm_aes128_state = SM_AES128_ACTIVE;
3180     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_local_csrk, sm_handle_encryption_result_enc_csrk, (void *)(uintptr_t) connection->sm_handle);
3181 }
3182 
3183 static void sm_handle_encryption_result_enc_csrk(void *arg){
3184     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3185     sm_aes128_state = SM_AES128_IDLE;
3186 
3187     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3188     if (connection == NULL) return;
3189 
3190     sm_aes128_state = SM_AES128_IDLE;
3191     log_info_key("csrk", setup->sm_local_csrk);
3192     if (setup->sm_key_distribution_send_set){
3193         connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3194     } else {
3195         // no keys to send, just continue
3196         if (IS_RESPONDER(connection->sm_role)){
3197             // slave -> receive master keys
3198             connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3199         } else {
3200             sm_key_distribution_complete_initiator(connection);
3201         }
3202     }
3203     sm_trigger_run();
3204 }
3205 
3206 #ifdef ENABLE_LE_PERIPHERAL
3207 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg){
3208     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3209     sm_aes128_state = SM_AES128_IDLE;
3210 
3211     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3212     if (connection == NULL) return;
3213 
3214     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3215     log_info_key("ltk", setup->sm_ltk);
3216     connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
3217     sm_trigger_run();
3218 }
3219 #endif
3220 
3221 static void sm_handle_encryption_result_address_resolution(void *arg){
3222     UNUSED(arg);
3223     sm_aes128_state = SM_AES128_IDLE;
3224 
3225     sm_address_resolution_ah_calculation_active = 0;
3226     // compare calulated address against connecting device
3227     uint8_t * hash = &sm_aes128_ciphertext[13];
3228     if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
3229         log_info("LE Device Lookup: matched resolvable private address");
3230         sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
3231         sm_trigger_run();
3232         return;
3233     }
3234     // no match, try next
3235     sm_address_resolution_test++;
3236     sm_trigger_run();
3237 }
3238 
3239 static void sm_handle_encryption_result_dkg_irk(void *arg){
3240     UNUSED(arg);
3241     sm_aes128_state = SM_AES128_IDLE;
3242 
3243     log_info_key("irk", sm_persistent_irk);
3244     dkg_state = DKG_CALC_DHK;
3245     sm_trigger_run();
3246 }
3247 
3248 static void sm_handle_encryption_result_dkg_dhk(void *arg){
3249     UNUSED(arg);
3250     sm_aes128_state = SM_AES128_IDLE;
3251 
3252     log_info_key("dhk", sm_persistent_dhk);
3253     dkg_state = DKG_READY;
3254     sm_trigger_run();
3255 }
3256 
3257 static void sm_handle_encryption_result_rau(void *arg){
3258     UNUSED(arg);
3259     sm_aes128_state = SM_AES128_IDLE;
3260 
3261     (void)memcpy(&sm_random_address[3], &sm_aes128_ciphertext[13], 3);
3262     rau_state = RAU_SET_ADDRESS;
3263     sm_trigger_run();
3264 }
3265 
3266 static void sm_handle_random_result_rau(void * arg){
3267     UNUSED(arg);
3268     // non-resolvable vs. resolvable
3269     switch (gap_random_adress_type){
3270         case GAP_RANDOM_ADDRESS_RESOLVABLE:
3271             // resolvable: use random as prand and calc address hash
3272             // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
3273             sm_random_address[0u] &= 0x3fu;
3274             sm_random_address[0u] |= 0x40u;
3275             rau_state = RAU_GET_ENC;
3276             break;
3277         case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
3278         default:
3279             // "The two most significant bits of the address shall be equal to ‘0’""
3280             sm_random_address[0u] &= 0x3fu;
3281             rau_state = RAU_SET_ADDRESS;
3282             break;
3283     }
3284     sm_trigger_run();
3285 }
3286 
3287 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3288 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg){
3289     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3290     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3291     if (connection == NULL) return;
3292 
3293     connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
3294     sm_trigger_run();
3295 }
3296 
3297 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg){
3298     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3299     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3300     if (connection == NULL) return;
3301 
3302     connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
3303     sm_trigger_run();
3304 }
3305 #endif
3306 
3307 static void sm_handle_random_result_ph2_random(void * arg){
3308     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3309     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3310     if (connection == NULL) return;
3311 
3312     connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
3313     sm_trigger_run();
3314 }
3315 
3316 static void sm_handle_random_result_ph2_tk(void * arg){
3317     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3318     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3319     if (connection == NULL) return;
3320 
3321     sm_reset_tk();
3322     uint32_t tk;
3323     if (sm_fixed_passkey_in_display_role == 0xffffffff){
3324         // map random to 0-999999 without speding much cycles on a modulus operation
3325         tk = little_endian_read_32(sm_random_data,0);
3326         tk = tk & 0xfffff;  // 1048575
3327         if (tk >= 999999u){
3328             tk = tk - 999999u;
3329         }
3330     } else {
3331         // override with pre-defined passkey
3332         tk = sm_fixed_passkey_in_display_role;
3333     }
3334     big_endian_store_32(setup->sm_tk, 12, tk);
3335     if (IS_RESPONDER(connection->sm_role)){
3336         connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
3337     } else {
3338         if (setup->sm_use_secure_connections){
3339             connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3340         } else {
3341             connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3342             sm_trigger_user_response(connection);
3343             // response_idle == nothing <--> sm_trigger_user_response() did not require response
3344             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3345                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) connection->sm_handle);
3346             }
3347         }
3348     }
3349     sm_trigger_run();
3350 }
3351 
3352 static void sm_handle_random_result_ph3_div(void * arg){
3353     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3354     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3355     if (connection == NULL) return;
3356 
3357     // use 16 bit from random value as div
3358     setup->sm_local_div = big_endian_read_16(sm_random_data, 0);
3359     log_info_hex16("div", setup->sm_local_div);
3360     connection->sm_engine_state = SM_PH3_Y_GET_ENC;
3361     sm_trigger_run();
3362 }
3363 
3364 static void sm_handle_random_result_ph3_random(void * arg){
3365     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3366     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3367     if (connection == NULL) return;
3368 
3369     reverse_64(sm_random_data, setup->sm_local_rand);
3370     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
3371     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xf0u) + (connection->sm_actual_encryption_key_size - 1u);
3372     // no db for authenticated flag hack: store flag in bit 4 of LSB
3373     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xefu) + (connection->sm_connection_authenticated << 4u);
3374     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 2, &sm_handle_random_result_ph3_div, (void *)(uintptr_t) connection->sm_handle);
3375 }
3376 static void sm_validate_er_ir(void){
3377     // warn about default ER/IR
3378     bool warning = false;
3379     if (sm_ir_is_default()){
3380         warning = true;
3381         log_error("Persistent IR not set with sm_set_ir. Use of private addresses will cause pairing issues");
3382     }
3383     if (sm_er_is_default()){
3384         warning = true;
3385         log_error("Persistent ER not set with sm_set_er. Legacy Pairing LTK is not secure");
3386     }
3387     if (warning) {
3388         log_error("Please configure btstack_tlv to let BTstack setup ER and IR keys");
3389     }
3390 }
3391 
3392 static void sm_handle_random_result_ir(void *arg){
3393     sm_persistent_keys_random_active = false;
3394     if (arg != NULL){
3395         // key generated, store in tlv
3396         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3397         log_info("Generated IR key. Store in TLV status: %d", status);
3398         UNUSED(status);
3399     }
3400     log_info_key("IR", sm_persistent_ir);
3401     dkg_state = DKG_CALC_IRK;
3402 
3403     if (test_use_fixed_local_irk){
3404         log_info_key("IRK", sm_persistent_irk);
3405         dkg_state = DKG_CALC_DHK;
3406     }
3407 
3408     sm_trigger_run();
3409 }
3410 
3411 static void sm_handle_random_result_er(void *arg){
3412     sm_persistent_keys_random_active = false;
3413     if (arg != 0){
3414         // key generated, store in tlv
3415         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3416         log_info("Generated ER key. Store in TLV status: %d", status);
3417         UNUSED(status);
3418     }
3419     log_info_key("ER", sm_persistent_er);
3420 
3421     // try load ir
3422     int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3423     if (key_size == 16){
3424         // ok, let's continue
3425         log_info("IR from TLV");
3426         sm_handle_random_result_ir( NULL );
3427     } else {
3428         // invalid, generate new random one
3429         sm_persistent_keys_random_active = true;
3430         btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_ir, 16, &sm_handle_random_result_ir, &sm_persistent_ir);
3431     }
3432 }
3433 
3434 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
3435 
3436     UNUSED(channel);    // ok: there is no channel
3437     UNUSED(size);       // ok: fixed format HCI events
3438 
3439     sm_connection_t * sm_conn;
3440     hci_con_handle_t  con_handle;
3441     uint8_t           status;
3442     switch (packet_type) {
3443 
3444 		case HCI_EVENT_PACKET:
3445 			switch (hci_event_packet_get_type(packet)) {
3446 
3447                 case BTSTACK_EVENT_STATE:
3448 					// bt stack activated, get started
3449 					if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
3450                         log_info("HCI Working!");
3451 
3452                         // setup IR/ER with TLV
3453                         btstack_tlv_get_instance(&sm_tlv_impl, &sm_tlv_context);
3454                         if (sm_tlv_impl != NULL){
3455                             int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3456                             if (key_size == 16){
3457                                 // ok, let's continue
3458                                 log_info("ER from TLV");
3459                                 sm_handle_random_result_er( NULL );
3460                             } else {
3461                                 // invalid, generate random one
3462                                 sm_persistent_keys_random_active = true;
3463                                 btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_er, 16, &sm_handle_random_result_er, &sm_persistent_er);
3464                             }
3465                         } else {
3466                             sm_validate_er_ir();
3467                             dkg_state = DKG_CALC_IRK;
3468 
3469                             if (test_use_fixed_local_irk){
3470                                 log_info_key("IRK", sm_persistent_irk);
3471                                 dkg_state = DKG_CALC_DHK;
3472                             }
3473                         }
3474 
3475                         // restart random address updates after power cycle
3476                         gap_random_address_set_mode(gap_random_adress_type);
3477 					}
3478 					break;
3479 
3480                 case HCI_EVENT_LE_META:
3481                     switch (packet[2]) {
3482                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
3483 
3484                             log_info("sm: connected");
3485 
3486                             if (packet[3]) return; // connection failed
3487 
3488                             con_handle = little_endian_read_16(packet, 4);
3489                             sm_conn = sm_get_connection_for_handle(con_handle);
3490                             if (!sm_conn) break;
3491 
3492                             sm_conn->sm_handle = con_handle;
3493                             sm_conn->sm_role = packet[6];
3494                             sm_conn->sm_peer_addr_type = packet[7];
3495                             reverse_bd_addr(&packet[8], sm_conn->sm_peer_address);
3496 
3497                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
3498 
3499                             // reset security properties
3500                             sm_conn->sm_connection_encrypted = 0;
3501                             sm_conn->sm_connection_authenticated = 0;
3502                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
3503                             sm_conn->sm_le_db_index = -1;
3504                             sm_conn->sm_reencryption_active = false;
3505 
3506                             // prepare CSRK lookup (does not involve setup)
3507                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
3508 
3509                             // just connected -> everything else happens in sm_run()
3510                             if (IS_RESPONDER(sm_conn->sm_role)){
3511                                 // peripheral
3512                                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3513                                 break;
3514                             } else {
3515                                 // master
3516                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3517                             }
3518                             break;
3519 
3520                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
3521                             con_handle = little_endian_read_16(packet, 3);
3522                             sm_conn = sm_get_connection_for_handle(con_handle);
3523                             if (!sm_conn) break;
3524 
3525                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
3526                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
3527                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
3528                                 break;
3529                             }
3530                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
3531                                 // PH2 SEND LTK as we need to exchange keys in PH3
3532                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
3533                                 break;
3534                             }
3535 
3536                             // store rand and ediv
3537                             reverse_64(&packet[5], sm_conn->sm_local_rand);
3538                             sm_conn->sm_local_ediv = little_endian_read_16(packet, 13);
3539 
3540                             // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a
3541                             // potentially stored LTK is from the master
3542                             if ((sm_conn->sm_local_ediv != 0u) || !sm_is_null_random(sm_conn->sm_local_rand)){
3543                                 if (sm_reconstruct_ltk_without_le_device_db_entry){
3544                                     sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
3545                                     break;
3546                                 }
3547                                 // additionally check if remote is in LE Device DB if requested
3548                                 switch(sm_conn->sm_irk_lookup_state){
3549                                     case IRK_LOOKUP_FAILED:
3550                                         log_info("LTK Request: device not in device db");
3551                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
3552                                         break;
3553                                     case IRK_LOOKUP_SUCCEEDED:
3554                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
3555                                         break;
3556                                     default:
3557                                         // wait for irk look doen
3558                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK;
3559                                         break;
3560                                 }
3561                                 break;
3562                             }
3563 
3564 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3565                             sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST;
3566 #else
3567                             log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported");
3568                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
3569 #endif
3570                             break;
3571 
3572                         default:
3573                             break;
3574                     }
3575                     break;
3576 
3577                 case HCI_EVENT_ENCRYPTION_CHANGE:
3578                 	con_handle = hci_event_encryption_change_get_connection_handle(packet);
3579                     sm_conn = sm_get_connection_for_handle(con_handle);
3580                     if (!sm_conn) break;
3581 
3582                     sm_conn->sm_connection_encrypted = hci_event_encryption_change_get_encryption_enabled(packet);
3583                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
3584                         sm_conn->sm_actual_encryption_key_size);
3585                     log_info("event handler, state %u", sm_conn->sm_engine_state);
3586 
3587                     switch (sm_conn->sm_engine_state){
3588 
3589                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
3590                             // encryption change event concludes re-encryption for bonded devices (even if it fails)
3591                             if (sm_conn->sm_connection_encrypted) {
3592                                 status = ERROR_CODE_SUCCESS;
3593                                 if (sm_conn->sm_role){
3594                                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3595                                 } else {
3596                                     sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3597                                 }
3598                             } else {
3599                                 status = hci_event_encryption_change_get_status(packet);
3600                                 // set state to 'RE-ENCRYPTION FAILED' to allow pairing but prevent other interactions
3601                                 // also, gap_reconnect_security_setup_active will return true
3602                                 sm_conn->sm_engine_state = SM_GENERAL_REENCRYPTION_FAILED;
3603                             }
3604 
3605                             // emit re-encryption complete
3606                             sm_reencryption_complete(sm_conn, status);
3607 
3608                             // notify client, if pairing was requested before
3609                             if (sm_conn->sm_pairing_requested){
3610                                 sm_conn->sm_pairing_requested = 0;
3611                                 sm_pairing_complete(sm_conn, status, 0);
3612                             }
3613 
3614                             sm_done_for_handle(sm_conn->sm_handle);
3615                             break;
3616 
3617                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
3618                             if (!sm_conn->sm_connection_encrypted) break;
3619                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
3620                             if (IS_RESPONDER(sm_conn->sm_role)){
3621                                 // slave
3622                                 if (setup->sm_use_secure_connections){
3623                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3624                                 } else {
3625                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
3626                                 }
3627                             } else {
3628                                 // master
3629                                 if (sm_key_distribution_all_received(sm_conn)){
3630                                     // skip receiving keys as there are none
3631                                     sm_key_distribution_handle_all_received(sm_conn);
3632                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
3633                                 } else {
3634                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3635                                 }
3636                             }
3637                             break;
3638                         default:
3639                             break;
3640                     }
3641                     break;
3642 
3643                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
3644                     con_handle = little_endian_read_16(packet, 3);
3645                     sm_conn = sm_get_connection_for_handle(con_handle);
3646                     if (!sm_conn) break;
3647 
3648                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
3649                     log_info("event handler, state %u", sm_conn->sm_engine_state);
3650                     // continue if part of initial pairing
3651                     switch (sm_conn->sm_engine_state){
3652                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
3653                             if (sm_conn->sm_role){
3654                                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3655                             } else {
3656                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3657                             }
3658                             sm_done_for_handle(sm_conn->sm_handle);
3659                             break;
3660                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
3661                             if (IS_RESPONDER(sm_conn->sm_role)){
3662                                 // slave
3663                                 btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
3664                             } else {
3665                                 // master
3666                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3667                             }
3668                             break;
3669                         default:
3670                             break;
3671                     }
3672                     break;
3673 
3674 
3675                 case HCI_EVENT_DISCONNECTION_COMPLETE:
3676                     con_handle = little_endian_read_16(packet, 3);
3677                     sm_done_for_handle(con_handle);
3678                     sm_conn = sm_get_connection_for_handle(con_handle);
3679                     if (!sm_conn) break;
3680 
3681                     // pairing failed, if it was ongoing
3682                     switch (sm_conn->sm_engine_state){
3683                         case SM_GENERAL_IDLE:
3684                         case SM_INITIATOR_CONNECTED:
3685                         case SM_RESPONDER_IDLE:
3686                             break;
3687                         default:
3688                             sm_reencryption_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
3689                             sm_pairing_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION, 0);
3690                             break;
3691                     }
3692 
3693                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
3694                     sm_conn->sm_handle = 0;
3695                     break;
3696 
3697 				case HCI_EVENT_COMMAND_COMPLETE:
3698                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)){
3699                         // set local addr for le device db
3700                         bd_addr_t addr;
3701                         reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr);
3702                         le_device_db_set_local_bd_addr(addr);
3703                     }
3704                     break;
3705                 default:
3706                     break;
3707 			}
3708             break;
3709         default:
3710             break;
3711 	}
3712 
3713     sm_run();
3714 }
3715 
3716 static inline int sm_calc_actual_encryption_key_size(int other){
3717     if (other < sm_min_encryption_key_size) return 0;
3718     if (other < sm_max_encryption_key_size) return other;
3719     return sm_max_encryption_key_size;
3720 }
3721 
3722 
3723 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3724 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method){
3725     switch (method){
3726         case JUST_WORKS:
3727         case NUMERIC_COMPARISON:
3728             return 1;
3729         default:
3730             return 0;
3731     }
3732 }
3733 // responder
3734 
3735 static int sm_passkey_used(stk_generation_method_t method){
3736     switch (method){
3737         case PK_RESP_INPUT:
3738             return 1;
3739         default:
3740             return 0;
3741     }
3742 }
3743 
3744 static int sm_passkey_entry(stk_generation_method_t method){
3745     switch (method){
3746         case PK_RESP_INPUT:
3747         case PK_INIT_INPUT:
3748         case PK_BOTH_INPUT:
3749             return 1;
3750         default:
3751             return 0;
3752     }
3753 }
3754 
3755 #endif
3756 
3757 /**
3758  * @return ok
3759  */
3760 static int sm_validate_stk_generation_method(void){
3761     // check if STK generation method is acceptable by client
3762     switch (setup->sm_stk_generation_method){
3763         case JUST_WORKS:
3764             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0u;
3765         case PK_RESP_INPUT:
3766         case PK_INIT_INPUT:
3767         case PK_BOTH_INPUT:
3768             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0u;
3769         case OOB:
3770             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0u;
3771         case NUMERIC_COMPARISON:
3772             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0u;
3773         default:
3774             return 0;
3775     }
3776 }
3777 
3778 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
3779 
3780     // size of complete sm_pdu used to validate input
3781     static const uint8_t sm_pdu_size[] = {
3782             0,  // 0x00 invalid opcode
3783             7,  // 0x01 pairing request
3784             7,  // 0x02 pairing response
3785             17, // 0x03 pairing confirm
3786             17, // 0x04 pairing random
3787             2,  // 0x05 pairing failed
3788             17, // 0x06 encryption information
3789             11, // 0x07 master identification
3790             17, // 0x08 identification information
3791             8,  // 0x09 identify address information
3792             17, // 0x0a signing information
3793             2,  // 0x0b security request
3794             65, // 0x0c pairing public key
3795             17, // 0x0d pairing dhk check
3796             2,  // 0x0e keypress notification
3797     };
3798 
3799     if ((packet_type == HCI_EVENT_PACKET) && (packet[0] == L2CAP_EVENT_CAN_SEND_NOW)){
3800         sm_run();
3801     }
3802 
3803     if (packet_type != SM_DATA_PACKET) return;
3804     if (size == 0u) return;
3805 
3806     uint8_t sm_pdu_code = packet[0];
3807 
3808     // validate pdu size
3809     if (sm_pdu_code >= sizeof(sm_pdu_size)) return;
3810     if (sm_pdu_size[sm_pdu_code] != size)   return;
3811 
3812     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3813     if (!sm_conn) return;
3814 
3815     if (sm_pdu_code == SM_CODE_PAIRING_FAILED){
3816         sm_reencryption_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE);
3817         sm_pairing_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE, packet[1]);
3818         sm_done_for_handle(con_handle);
3819         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
3820         return;
3821     }
3822 
3823     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, sm_pdu_code);
3824 
3825     int err;
3826     UNUSED(err);
3827 
3828     if (sm_pdu_code == SM_CODE_KEYPRESS_NOTIFICATION){
3829         uint8_t buffer[5];
3830         buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION;
3831         buffer[1] = 3;
3832         little_endian_store_16(buffer, 2, con_handle);
3833         buffer[4] = packet[1];
3834         sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer));
3835         return;
3836     }
3837 
3838 #ifdef ENABLE_LE_CENTRAL
3839     int have_ltk;
3840     uint8_t ltk[16];
3841 #endif
3842 
3843     switch (sm_conn->sm_engine_state){
3844 
3845         // a sm timeout requires a new physical connection
3846         case SM_GENERAL_TIMEOUT:
3847             return;
3848 
3849 #ifdef ENABLE_LE_CENTRAL
3850 
3851         // Initiator
3852         case SM_INITIATOR_CONNECTED:
3853             if ((sm_pdu_code != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
3854                 sm_pdu_received_in_wrong_state(sm_conn);
3855                 break;
3856             }
3857 
3858             // IRK complete?
3859             switch (sm_conn->sm_irk_lookup_state){
3860                 case IRK_LOOKUP_FAILED:
3861                     // start pairing
3862                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3863                     break;
3864                 case IRK_LOOKUP_SUCCEEDED:
3865                     le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
3866                     have_ltk = !sm_is_null_key(ltk);
3867                     log_info("central: security request - have_ltk %u", have_ltk);
3868                     if (have_ltk){
3869                         // start re-encrypt
3870                         sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
3871                     } else {
3872                         // start pairing
3873                         sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3874                     }
3875                     break;
3876                 default:
3877                     // otherwise, store security request
3878                     sm_conn->sm_security_request_received = 1;
3879                     break;
3880             }
3881             break;
3882 
3883         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
3884             // Core 5, Vol 3, Part H, 2.4.6:
3885             // "The master shall ignore the slave’s Security Request if the master has sent a Pairing Request
3886             //  without receiving a Pairing Response from the slave or if the master has initiated encryption mode setup."
3887             if (sm_pdu_code == SM_CODE_SECURITY_REQUEST){
3888                 log_info("Ignoring Security Request");
3889                 break;
3890             }
3891 
3892             // all other pdus are incorrect
3893             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
3894                 sm_pdu_received_in_wrong_state(sm_conn);
3895                 break;
3896             }
3897 
3898             // store pairing request
3899             (void)memcpy(&setup->sm_s_pres, packet,
3900                          sizeof(sm_pairing_packet_t));
3901             err = sm_stk_generation_init(sm_conn);
3902 
3903 #ifdef ENABLE_TESTING_SUPPORT
3904             if (0 < test_pairing_failure && test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED){
3905                 log_info("testing_support: abort with pairing failure %u", test_pairing_failure);
3906                 err = test_pairing_failure;
3907             }
3908 #endif
3909 
3910             if (err != 0){
3911                 setup->sm_pairing_failed_reason = err;
3912                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
3913                 break;
3914             }
3915 
3916             // generate random number first, if we need to show passkey
3917             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
3918                 btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk,  (void *)(uintptr_t) sm_conn->sm_handle);
3919                 break;
3920             }
3921 
3922 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3923             if (setup->sm_use_secure_connections){
3924                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
3925                 if (setup->sm_stk_generation_method == JUST_WORKS){
3926                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3927                     sm_trigger_user_response(sm_conn);
3928                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3929                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3930                     }
3931                 } else {
3932                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3933                 }
3934                 break;
3935             }
3936 #endif
3937             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3938             sm_trigger_user_response(sm_conn);
3939             // response_idle == nothing <--> sm_trigger_user_response() did not require response
3940             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3941                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
3942             }
3943             break;
3944 
3945         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
3946             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
3947                 sm_pdu_received_in_wrong_state(sm_conn);
3948                 break;
3949             }
3950 
3951             // store s_confirm
3952             reverse_128(&packet[1], setup->sm_peer_confirm);
3953 
3954             // abort if s_confirm matches m_confirm
3955             if (memcmp(setup->sm_local_confirm, setup->sm_peer_confirm, 16) == 0){
3956                 sm_pdu_received_in_wrong_state(sm_conn);
3957                 break;
3958             }
3959 
3960 #ifdef ENABLE_TESTING_SUPPORT
3961             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
3962                 log_info("testing_support: reset confirm value");
3963                 memset(setup->sm_peer_confirm, 0, 16);
3964             }
3965 #endif
3966             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
3967             break;
3968 
3969         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
3970             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
3971                 sm_pdu_received_in_wrong_state(sm_conn);
3972                 break;;
3973             }
3974 
3975             // received random value
3976             reverse_128(&packet[1], setup->sm_peer_random);
3977             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
3978             break;
3979 #endif
3980 
3981 #ifdef ENABLE_LE_PERIPHERAL
3982         // Responder
3983         case SM_RESPONDER_IDLE:
3984         case SM_RESPONDER_SEND_SECURITY_REQUEST:
3985         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
3986             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
3987                 sm_pdu_received_in_wrong_state(sm_conn);
3988                 break;;
3989             }
3990 
3991             // store pairing request
3992             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
3993 
3994             // check if IRK completed
3995             switch (sm_conn->sm_irk_lookup_state){
3996                 case IRK_LOOKUP_SUCCEEDED:
3997                 case IRK_LOOKUP_FAILED:
3998                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
3999                     break;
4000                 default:
4001                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK;
4002                     break;
4003             }
4004             break;
4005 #endif
4006 
4007 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4008         case SM_SC_W4_PUBLIC_KEY_COMMAND:
4009             if (sm_pdu_code != SM_CODE_PAIRING_PUBLIC_KEY){
4010                 sm_pdu_received_in_wrong_state(sm_conn);
4011                 break;
4012             }
4013 
4014             // store public key for DH Key calculation
4015             reverse_256(&packet[01], &setup->sm_peer_q[0]);
4016             reverse_256(&packet[33], &setup->sm_peer_q[32]);
4017 
4018             // validate public key
4019             err = btstack_crypto_ecc_p256_validate_public_key(setup->sm_peer_q);
4020             if (err != 0){
4021                 log_error("sm: peer public key invalid %x", err);
4022                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4023                 break;
4024             }
4025 
4026             // start calculating dhkey
4027             btstack_crypto_ecc_p256_calculate_dhkey(&sm_crypto_ecc_p256_request, setup->sm_peer_q, setup->sm_dhkey, sm_sc_dhkey_calculated, (void*)(uintptr_t) sm_conn->sm_handle);
4028 
4029 
4030             log_info("public key received, generation method %u", setup->sm_stk_generation_method);
4031             if (IS_RESPONDER(sm_conn->sm_role)){
4032                 // responder
4033                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4034             } else {
4035                 // initiator
4036                 // stk generation method
4037                 // passkey entry: notify app to show passkey or to request passkey
4038                 switch (setup->sm_stk_generation_method){
4039                     case JUST_WORKS:
4040                     case NUMERIC_COMPARISON:
4041                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
4042                         break;
4043                     case PK_RESP_INPUT:
4044                         sm_sc_start_calculating_local_confirm(sm_conn);
4045                         break;
4046                     case PK_INIT_INPUT:
4047                     case PK_BOTH_INPUT:
4048                         if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4049                             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4050                             break;
4051                         }
4052                         sm_sc_start_calculating_local_confirm(sm_conn);
4053                         break;
4054                     case OOB:
4055                         // generate Nx
4056                         log_info("Generate Na");
4057                         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4058                         break;
4059                     default:
4060                         btstack_assert(false);
4061                         break;
4062                 }
4063             }
4064             break;
4065 
4066         case SM_SC_W4_CONFIRMATION:
4067             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4068                 sm_pdu_received_in_wrong_state(sm_conn);
4069                 break;
4070             }
4071             // received confirm value
4072             reverse_128(&packet[1], setup->sm_peer_confirm);
4073 
4074 #ifdef ENABLE_TESTING_SUPPORT
4075             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4076                 log_info("testing_support: reset confirm value");
4077                 memset(setup->sm_peer_confirm, 0, 16);
4078             }
4079 #endif
4080             if (IS_RESPONDER(sm_conn->sm_role)){
4081                 // responder
4082                 if (sm_passkey_used(setup->sm_stk_generation_method)){
4083                     if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4084                         // still waiting for passkey
4085                         sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4086                         break;
4087                     }
4088                 }
4089                 sm_sc_start_calculating_local_confirm(sm_conn);
4090             } else {
4091                 // initiator
4092                 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
4093                     btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4094                 } else {
4095                     sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
4096                 }
4097             }
4098             break;
4099 
4100         case SM_SC_W4_PAIRING_RANDOM:
4101             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4102                 sm_pdu_received_in_wrong_state(sm_conn);
4103                 break;
4104             }
4105 
4106             // received random value
4107             reverse_128(&packet[1], setup->sm_peer_nonce);
4108 
4109             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
4110             // only check for JUST WORK/NC in initiator role OR passkey entry
4111             log_info("SM_SC_W4_PAIRING_RANDOM, responder: %u, just works: %u, passkey used %u, passkey entry %u",
4112                      IS_RESPONDER(sm_conn->sm_role), sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method),
4113                      sm_passkey_used(setup->sm_stk_generation_method), sm_passkey_entry(setup->sm_stk_generation_method));
4114             if ( (!IS_RESPONDER(sm_conn->sm_role) && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method))
4115             ||   (sm_passkey_entry(setup->sm_stk_generation_method)) ) {
4116                  sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4117                  break;
4118             }
4119 
4120             // OOB
4121             if (setup->sm_stk_generation_method == OOB){
4122 
4123                 // setup local random, set to zero if remote did not receive our data
4124                 log_info("Received nonce, setup local random ra/rb for dhkey check");
4125                 if (IS_RESPONDER(sm_conn->sm_role)){
4126                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) == 0u){
4127                         log_info("Reset rb as A does not have OOB data");
4128                         memset(setup->sm_rb, 0, 16);
4129                     } else {
4130                         (void)memcpy(setup->sm_rb, sm_sc_oob_random, 16);
4131                         log_info("Use stored rb");
4132                         log_info_hexdump(setup->sm_rb, 16);
4133                     }
4134                 }  else {
4135                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres) == 0u){
4136                         log_info("Reset ra as B does not have OOB data");
4137                         memset(setup->sm_ra, 0, 16);
4138                     } else {
4139                         (void)memcpy(setup->sm_ra, sm_sc_oob_random, 16);
4140                         log_info("Use stored ra");
4141                         log_info_hexdump(setup->sm_ra, 16);
4142                     }
4143                 }
4144 
4145                 // validate confirm value if Cb = f4(PKb, Pkb, rb, 0) for OOB if data received
4146                 if (setup->sm_have_oob_data){
4147                      sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4148                      break;
4149                 }
4150             }
4151 
4152             // TODO: we only get here for Responder role with JW/NC
4153             sm_sc_state_after_receiving_random(sm_conn);
4154             break;
4155 
4156         case SM_SC_W2_CALCULATE_G2:
4157         case SM_SC_W4_CALCULATE_G2:
4158         case SM_SC_W4_CALCULATE_DHKEY:
4159         case SM_SC_W2_CALCULATE_F5_SALT:
4160         case SM_SC_W4_CALCULATE_F5_SALT:
4161         case SM_SC_W2_CALCULATE_F5_MACKEY:
4162         case SM_SC_W4_CALCULATE_F5_MACKEY:
4163         case SM_SC_W2_CALCULATE_F5_LTK:
4164         case SM_SC_W4_CALCULATE_F5_LTK:
4165         case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
4166         case SM_SC_W4_DHKEY_CHECK_COMMAND:
4167         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
4168         case SM_SC_W4_USER_RESPONSE:
4169             if (sm_pdu_code != SM_CODE_PAIRING_DHKEY_CHECK){
4170                 sm_pdu_received_in_wrong_state(sm_conn);
4171                 break;
4172             }
4173             // store DHKey Check
4174             setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED;
4175             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
4176 
4177             // have we been only waiting for dhkey check command?
4178             if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){
4179                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
4180             }
4181             break;
4182 #endif
4183 
4184 #ifdef ENABLE_LE_PERIPHERAL
4185         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
4186             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4187                 sm_pdu_received_in_wrong_state(sm_conn);
4188                 break;
4189             }
4190 
4191             // received confirm value
4192             reverse_128(&packet[1], setup->sm_peer_confirm);
4193 
4194 #ifdef ENABLE_TESTING_SUPPORT
4195             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4196                 log_info("testing_support: reset confirm value");
4197                 memset(setup->sm_peer_confirm, 0, 16);
4198             }
4199 #endif
4200             // notify client to hide shown passkey
4201             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
4202                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
4203             }
4204 
4205             // handle user cancel pairing?
4206             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
4207                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEY_ENTRY_FAILED;
4208                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
4209                 break;
4210             }
4211 
4212             // wait for user action?
4213             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
4214                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4215                 break;
4216             }
4217 
4218             // calculate and send local_confirm
4219             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4220             break;
4221 
4222         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
4223             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4224                 sm_pdu_received_in_wrong_state(sm_conn);
4225                 break;;
4226             }
4227 
4228             // received random value
4229             reverse_128(&packet[1], setup->sm_peer_random);
4230             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4231             break;
4232 #endif
4233 
4234         case SM_PH3_RECEIVE_KEYS:
4235             switch(sm_pdu_code){
4236                 case SM_CODE_ENCRYPTION_INFORMATION:
4237                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
4238                     reverse_128(&packet[1], setup->sm_peer_ltk);
4239                     break;
4240 
4241                 case SM_CODE_MASTER_IDENTIFICATION:
4242                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
4243                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
4244                     reverse_64(&packet[3], setup->sm_peer_rand);
4245                     break;
4246 
4247                 case SM_CODE_IDENTITY_INFORMATION:
4248                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4249                     reverse_128(&packet[1], setup->sm_peer_irk);
4250                     break;
4251 
4252                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4253                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4254                     setup->sm_peer_addr_type = packet[1];
4255                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4256                     break;
4257 
4258                 case SM_CODE_SIGNING_INFORMATION:
4259                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4260                     reverse_128(&packet[1], setup->sm_peer_csrk);
4261                     break;
4262                 default:
4263                     // Unexpected PDU
4264                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4265                     break;
4266             }
4267             // done with key distribution?
4268             if (sm_key_distribution_all_received(sm_conn)){
4269 
4270                 sm_key_distribution_handle_all_received(sm_conn);
4271 
4272                 if (IS_RESPONDER(sm_conn->sm_role)){
4273                     sm_key_distribution_complete_responder(sm_conn);
4274                 } else {
4275                     if (setup->sm_use_secure_connections){
4276                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4277                     } else {
4278                         btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4279                     }
4280                 }
4281             }
4282             break;
4283         default:
4284             // Unexpected PDU
4285             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
4286             break;
4287     }
4288 
4289     // try to send next pdu
4290     sm_trigger_run();
4291 }
4292 
4293 // Security Manager Client API
4294 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_data)){
4295     sm_get_oob_data = get_oob_data_callback;
4296 }
4297 
4298 void sm_register_sc_oob_data_callback( int (*get_sc_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random)){
4299     sm_get_sc_oob_data = get_sc_oob_data_callback;
4300 }
4301 
4302 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
4303     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
4304 }
4305 
4306 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
4307     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
4308 }
4309 
4310 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
4311 	sm_min_encryption_key_size = min_size;
4312 	sm_max_encryption_key_size = max_size;
4313 }
4314 
4315 void sm_set_authentication_requirements(uint8_t auth_req){
4316 #ifndef ENABLE_LE_SECURE_CONNECTIONS
4317     if (auth_req & SM_AUTHREQ_SECURE_CONNECTION){
4318         log_error("ENABLE_LE_SECURE_CONNECTIONS not defined, but requested by app. Dropping SC flag");
4319         auth_req &= ~SM_AUTHREQ_SECURE_CONNECTION;
4320     }
4321 #endif
4322     sm_auth_req = auth_req;
4323 }
4324 
4325 void sm_set_io_capabilities(io_capability_t io_capability){
4326     sm_io_capabilities = io_capability;
4327 }
4328 
4329 #ifdef ENABLE_LE_PERIPHERAL
4330 void sm_set_request_security(int enable){
4331     sm_slave_request_security = enable;
4332 }
4333 #endif
4334 
4335 void sm_set_er(sm_key_t er){
4336     (void)memcpy(sm_persistent_er, er, 16);
4337 }
4338 
4339 void sm_set_ir(sm_key_t ir){
4340     (void)memcpy(sm_persistent_ir, ir, 16);
4341 }
4342 
4343 // Testing support only
4344 void sm_test_set_irk(sm_key_t irk){
4345     (void)memcpy(sm_persistent_irk, irk, 16);
4346     dkg_state = DKG_CALC_DHK;
4347     test_use_fixed_local_irk = true;
4348 }
4349 
4350 void sm_test_use_fixed_local_csrk(void){
4351     test_use_fixed_local_csrk = true;
4352 }
4353 
4354 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4355 static void sm_ec_generated(void * arg){
4356     UNUSED(arg);
4357     ec_key_generation_state = EC_KEY_GENERATION_DONE;
4358     // trigger pairing if pending for ec key
4359     sm_trigger_run();
4360 }
4361 static void sm_ec_generate_new_key(void){
4362     log_info("sm: generate new ec key");
4363     ec_key_generation_state = EC_KEY_GENERATION_ACTIVE;
4364     btstack_crypto_ecc_p256_generate_key(&sm_crypto_ecc_p256_request, ec_q, &sm_ec_generated, NULL);
4365 }
4366 #endif
4367 
4368 #ifdef ENABLE_TESTING_SUPPORT
4369 void sm_test_set_pairing_failure(int reason){
4370     test_pairing_failure = reason;
4371 }
4372 #endif
4373 
4374 void sm_init(void){
4375 
4376     if (sm_initialized) return;
4377 
4378     // set default ER and IR values (should be unique - set by app or sm later using TLV)
4379     sm_er_ir_set_default();
4380 
4381     // defaults
4382     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
4383                                        | SM_STK_GENERATION_METHOD_OOB
4384                                        | SM_STK_GENERATION_METHOD_PASSKEY
4385                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
4386 
4387     sm_max_encryption_key_size = 16;
4388     sm_min_encryption_key_size = 7;
4389 
4390     sm_fixed_passkey_in_display_role = 0xffffffff;
4391     sm_reconstruct_ltk_without_le_device_db_entry = true;
4392 
4393 #ifdef USE_CMAC_ENGINE
4394     sm_cmac_active  = 0;
4395 #endif
4396     dkg_state = DKG_W4_WORKING;
4397     rau_state = RAU_IDLE;
4398     sm_aes128_state = SM_AES128_IDLE;
4399     sm_address_resolution_test = -1;    // no private address to resolve yet
4400     sm_address_resolution_ah_calculation_active = 0;
4401     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
4402     sm_address_resolution_general_queue = NULL;
4403 
4404     gap_random_adress_update_period = 15 * 60 * 1000L;
4405     sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
4406 
4407     test_use_fixed_local_csrk = false;
4408 
4409     btstack_run_loop_set_timer_handler(&sm_run_timer, &sm_run_timer_handler);
4410 
4411     // register for HCI Events from HCI
4412     hci_event_callback_registration.callback = &sm_event_packet_handler;
4413     hci_add_event_handler(&hci_event_callback_registration);
4414 
4415     //
4416     btstack_crypto_init();
4417 
4418     // init le_device_db
4419     le_device_db_init();
4420 
4421     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
4422     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
4423 
4424 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4425     sm_ec_generate_new_key();
4426 #endif
4427 
4428     sm_initialized = true;
4429 }
4430 
4431 void sm_use_fixed_passkey_in_display_role(uint32_t passkey){
4432     sm_fixed_passkey_in_display_role = passkey;
4433 }
4434 
4435 void sm_allow_ltk_reconstruction_without_le_device_db_entry(int allow){
4436     sm_reconstruct_ltk_without_le_device_db_entry = allow != 0;
4437 }
4438 
4439 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
4440     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
4441     if (!hci_con) return NULL;
4442     return &hci_con->sm_connection;
4443 }
4444 
4445 // @deprecated: map onto sm_request_pairing
4446 void sm_send_security_request(hci_con_handle_t con_handle){
4447     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4448     if (!sm_conn) return;
4449     if (!IS_RESPONDER(sm_conn->sm_role)) return;
4450     sm_request_pairing(con_handle);
4451 }
4452 
4453 // request pairing
4454 void sm_request_pairing(hci_con_handle_t con_handle){
4455     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4456     if (!sm_conn) return;     // wrong connection
4457 
4458     bool have_ltk;
4459     uint8_t ltk[16];
4460     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
4461     if (IS_RESPONDER(sm_conn->sm_role)){
4462         switch (sm_conn->sm_engine_state){
4463             case SM_GENERAL_IDLE:
4464             case SM_RESPONDER_IDLE:
4465                 switch (sm_conn->sm_irk_lookup_state){
4466                     case IRK_LOOKUP_SUCCEEDED:
4467                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
4468                         have_ltk = !sm_is_null_key(ltk);
4469                         log_info("have ltk %u", have_ltk);
4470                         if (have_ltk){
4471                             sm_conn->sm_pairing_requested = 1;
4472                             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
4473                             sm_reencryption_started(sm_conn);
4474                             break;
4475                         }
4476                         /* fall through */
4477 
4478                     case IRK_LOOKUP_FAILED:
4479                         sm_conn->sm_pairing_requested = 1;
4480                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
4481                         sm_pairing_started(sm_conn);
4482                         break;
4483                     default:
4484                         log_info("irk lookup pending");
4485                         sm_conn->sm_pairing_requested = 1;
4486                         break;
4487                 }
4488                 break;
4489             default:
4490                 break;
4491         }
4492     } else {
4493         // used as a trigger to start central/master/initiator security procedures
4494         switch (sm_conn->sm_engine_state){
4495             case SM_INITIATOR_CONNECTED:
4496                 switch (sm_conn->sm_irk_lookup_state){
4497                     case IRK_LOOKUP_SUCCEEDED:
4498                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
4499                         have_ltk = !sm_is_null_key(ltk);
4500                         log_info("have ltk %u", have_ltk);
4501                         if (have_ltk){
4502                             sm_conn->sm_pairing_requested = 1;
4503                             sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
4504                             break;
4505                         }
4506                         /* fall through */
4507 
4508                     case IRK_LOOKUP_FAILED:
4509                         sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4510                         break;
4511                     default:
4512                         log_info("irk lookup pending");
4513                         sm_conn->sm_pairing_requested = 1;
4514                         break;
4515                 }
4516                 break;
4517             case SM_GENERAL_REENCRYPTION_FAILED:
4518                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4519                 break;
4520             case SM_GENERAL_IDLE:
4521                 sm_conn->sm_pairing_requested = 1;
4522                 break;
4523             default:
4524                 break;
4525         }
4526     }
4527     sm_trigger_run();
4528 }
4529 
4530 // called by client app on authorization request
4531 void sm_authorization_decline(hci_con_handle_t con_handle){
4532     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4533     if (!sm_conn) return;     // wrong connection
4534     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
4535     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
4536 }
4537 
4538 void sm_authorization_grant(hci_con_handle_t con_handle){
4539     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4540     if (!sm_conn) return;     // wrong connection
4541     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
4542     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
4543 }
4544 
4545 // GAP Bonding API
4546 
4547 void sm_bonding_decline(hci_con_handle_t con_handle){
4548     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4549     if (!sm_conn) return;     // wrong connection
4550     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
4551     log_info("decline, state %u", sm_conn->sm_engine_state);
4552     switch(sm_conn->sm_engine_state){
4553 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4554         case SM_SC_W4_USER_RESPONSE:
4555         case SM_SC_W4_CONFIRMATION:
4556         case SM_SC_W4_PUBLIC_KEY_COMMAND:
4557 #endif
4558         case SM_PH1_W4_USER_RESPONSE:
4559             switch (setup->sm_stk_generation_method){
4560                 case PK_RESP_INPUT:
4561                 case PK_INIT_INPUT:
4562                 case PK_BOTH_INPUT:
4563                     sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
4564                     break;
4565                 case NUMERIC_COMPARISON:
4566                     sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
4567                     break;
4568                 case JUST_WORKS:
4569                 case OOB:
4570                     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
4571                     break;
4572                 default:
4573                     btstack_assert(false);
4574                     break;
4575             }
4576             break;
4577         default:
4578             break;
4579     }
4580     sm_trigger_run();
4581 }
4582 
4583 void sm_just_works_confirm(hci_con_handle_t con_handle){
4584     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4585     if (!sm_conn) return;     // wrong connection
4586     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
4587     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
4588         if (setup->sm_use_secure_connections){
4589             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4590         } else {
4591             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4592         }
4593     }
4594 
4595 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4596     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
4597         sm_sc_prepare_dhkey_check(sm_conn);
4598     }
4599 #endif
4600 
4601     sm_trigger_run();
4602 }
4603 
4604 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
4605     // for now, it's the same
4606     sm_just_works_confirm(con_handle);
4607 }
4608 
4609 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
4610     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4611     if (!sm_conn) return;     // wrong connection
4612     sm_reset_tk();
4613     big_endian_store_32(setup->sm_tk, 12, passkey);
4614     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
4615     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
4616         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4617     }
4618 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4619     (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
4620     (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
4621     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
4622         sm_sc_start_calculating_local_confirm(sm_conn);
4623     }
4624 #endif
4625     sm_trigger_run();
4626 }
4627 
4628 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){
4629     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4630     if (!sm_conn) return;     // wrong connection
4631     if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return;
4632     uint8_t num_actions = setup->sm_keypress_notification >> 5;
4633     uint8_t flags = setup->sm_keypress_notification & 0x1fu;
4634     switch (action){
4635         case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
4636         case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
4637             flags |= (1u << action);
4638             break;
4639         case SM_KEYPRESS_PASSKEY_CLEARED:
4640             // clear counter, keypress & erased flags + set passkey cleared
4641             flags = (flags & 0x19u) | (1u << SM_KEYPRESS_PASSKEY_CLEARED);
4642             break;
4643         case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
4644             if (flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED)){
4645                 // erase actions queued
4646                 num_actions--;
4647                 if (num_actions == 0u){
4648                     // clear counter, keypress & erased flags
4649                     flags &= 0x19u;
4650                 }
4651                 break;
4652             }
4653             num_actions++;
4654             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED);
4655             break;
4656         case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
4657             if (flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED)){
4658                 // enter actions queued
4659                 num_actions--;
4660                 if (num_actions == 0u){
4661                     // clear counter, keypress & erased flags
4662                     flags &= 0x19u;
4663                 }
4664                 break;
4665             }
4666             num_actions++;
4667             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED);
4668             break;
4669         default:
4670             break;
4671     }
4672     setup->sm_keypress_notification = (num_actions << 5) | flags;
4673     sm_trigger_run();
4674 }
4675 
4676 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4677 static void sm_handle_random_result_oob(void * arg){
4678     UNUSED(arg);
4679     sm_sc_oob_state = SM_SC_OOB_W2_CALC_CONFIRM;
4680     sm_trigger_run();
4681 }
4682 uint8_t sm_generate_sc_oob_data(void (*callback)(const uint8_t * confirm_value, const uint8_t * random_value)){
4683 
4684     static btstack_crypto_random_t   sm_crypto_random_oob_request;
4685 
4686     if (sm_sc_oob_state != SM_SC_OOB_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
4687     sm_sc_oob_callback = callback;
4688     sm_sc_oob_state = SM_SC_OOB_W4_RANDOM;
4689     btstack_crypto_random_generate(&sm_crypto_random_oob_request, sm_sc_oob_random, 16, &sm_handle_random_result_oob, NULL);
4690     return 0;
4691 }
4692 #endif
4693 
4694 /**
4695  * @brief Get Identity Resolving state
4696  * @param con_handle
4697  * @return irk_lookup_state_t
4698  */
4699 irk_lookup_state_t sm_identity_resolving_state(hci_con_handle_t con_handle){
4700     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4701     if (!sm_conn) return IRK_LOOKUP_IDLE;
4702     return sm_conn->sm_irk_lookup_state;
4703 }
4704 
4705 /**
4706  * @brief Identify device in LE Device DB
4707  * @param handle
4708  * @returns index from le_device_db or -1 if not found/identified
4709  */
4710 int sm_le_device_index(hci_con_handle_t con_handle ){
4711     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4712     if (!sm_conn) return -1;
4713     return sm_conn->sm_le_db_index;
4714 }
4715 
4716 static int gap_random_address_type_requires_updates(void){
4717     switch (gap_random_adress_type){
4718         case GAP_RANDOM_ADDRESS_TYPE_OFF:
4719         case GAP_RANDOM_ADDRESS_TYPE_STATIC:
4720             return 0;
4721         default:
4722             return 1;
4723     }
4724 }
4725 
4726 static uint8_t own_address_type(void){
4727     switch (gap_random_adress_type){
4728         case GAP_RANDOM_ADDRESS_TYPE_OFF:
4729             return BD_ADDR_TYPE_LE_PUBLIC;
4730         default:
4731             return BD_ADDR_TYPE_LE_RANDOM;
4732     }
4733 }
4734 
4735 // GAP LE API
4736 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
4737     gap_random_address_update_stop();
4738     gap_random_adress_type = random_address_type;
4739     hci_le_set_own_address_type(own_address_type());
4740     if (!gap_random_address_type_requires_updates()) return;
4741     gap_random_address_update_start();
4742     gap_random_address_trigger();
4743 }
4744 
4745 gap_random_address_type_t gap_random_address_get_mode(void){
4746     return gap_random_adress_type;
4747 }
4748 
4749 void gap_random_address_set_update_period(int period_ms){
4750     gap_random_adress_update_period = period_ms;
4751     if (!gap_random_address_type_requires_updates()) return;
4752     gap_random_address_update_stop();
4753     gap_random_address_update_start();
4754 }
4755 
4756 void gap_random_address_set(const bd_addr_t addr){
4757     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC);
4758     (void)memcpy(sm_random_address, addr, 6);
4759     rau_state = RAU_SET_ADDRESS;
4760     sm_trigger_run();
4761 }
4762 
4763 #ifdef ENABLE_LE_PERIPHERAL
4764 /*
4765  * @brief Set Advertisement Paramters
4766  * @param adv_int_min
4767  * @param adv_int_max
4768  * @param adv_type
4769  * @param direct_address_type
4770  * @param direct_address
4771  * @param channel_map
4772  * @param filter_policy
4773  *
4774  * @note own_address_type is used from gap_random_address_set_mode
4775  */
4776 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
4777     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
4778     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type,
4779         direct_address_typ, direct_address, channel_map, filter_policy);
4780 }
4781 #endif
4782 
4783 int gap_reconnect_security_setup_active(hci_con_handle_t con_handle){
4784     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4785      // wrong connection
4786     if (!sm_conn) return 0;
4787     // already encrypted
4788     if (sm_conn->sm_connection_encrypted) return 0;
4789     // irk status?
4790     switch(sm_conn->sm_irk_lookup_state){
4791         case IRK_LOOKUP_FAILED:
4792             // done, cannot setup encryption
4793             return 0;
4794         case IRK_LOOKUP_SUCCEEDED:
4795             break;
4796         default:
4797             // IR Lookup pending
4798             return 1;
4799     }
4800     // IRK Lookup Succeeded, re-encryption should be initiated. When done, state gets reset or indicates failure
4801     if (sm_conn->sm_engine_state == SM_GENERAL_REENCRYPTION_FAILED) return 0;
4802     if (sm_conn->sm_role){
4803         return sm_conn->sm_engine_state != SM_RESPONDER_IDLE;
4804     } else {
4805         return sm_conn->sm_engine_state != SM_INITIATOR_CONNECTED;
4806     }
4807 }
4808 
4809 void sm_set_secure_connections_only_mode(bool enable){
4810 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4811     sm_sc_only_mode = enable;
4812 #else
4813     // SC Only mode not possible without support for SC
4814     btstack_assert(enable == false);
4815 #endif
4816 }
4817 
4818 const uint8_t * gap_get_persistent_irk(void){
4819     return sm_persistent_irk;
4820 }
4821 
4822 void gap_delete_bonding(bd_addr_type_t address_type, bd_addr_t address){
4823     uint16_t i;
4824     for (i=0; i < le_device_db_max_count(); i++){
4825         bd_addr_t entry_address;
4826         int entry_address_type = BD_ADDR_TYPE_UNKNOWN;
4827         le_device_db_info(i, &entry_address_type, entry_address, NULL);
4828         // skip unused entries
4829         if (entry_address_type == (int) BD_ADDR_TYPE_UNKNOWN) continue;
4830         if ((entry_address_type == (int) address_type) && (memcmp(entry_address, address, 6) == 0)){
4831 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
4832             hci_remove_le_device_db_entry_from_resolving_list(i);
4833 #endif
4834             le_device_db_remove(i);
4835             break;
4836         }
4837     }
4838 }
4839