xref: /btstack/src/ble/sm.c (revision c3d71bb2b911bd599f3afcdec63599104f5ecfd3)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
24  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "sm.c"
39 
40 #include <string.h>
41 #include <inttypes.h>
42 
43 #include "ble/le_device_db.h"
44 #include "ble/core.h"
45 #include "ble/sm.h"
46 #include "bluetooth_company_id.h"
47 #include "btstack_bool.h"
48 #include "btstack_crypto.h"
49 #include "btstack_debug.h"
50 #include "btstack_event.h"
51 #include "btstack_linked_list.h"
52 #include "btstack_memory.h"
53 #include "btstack_tlv.h"
54 #include "gap.h"
55 #include "hci.h"
56 #include "hci_dump.h"
57 #include "l2cap.h"
58 
59 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL)
60 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h."
61 #endif
62 
63 #if defined(ENABLE_CROSS_TRANSPORT_KEY_DERIVATION) && (!defined(ENABLE_CLASSIC) || !defined(ENABLE_LE_SECURE_CONNECTIONS))
64 #error "Cross Transport Key Derivation requires support for LE Secure Connections and BR/EDR (Classic)"
65 #endif
66 
67 // assert SM Public Key can be sent/received
68 #ifdef ENABLE_LE_SECURE_CONNECTIONS
69 #if HCI_ACL_PAYLOAD_SIZE < 69
70 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS"
71 #endif
72 #endif
73 
74 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL)
75 #define IS_RESPONDER(role) ((role) == HCI_ROLE_SLAVE)
76 #else
77 #ifdef ENABLE_LE_CENTRAL
78 // only central - never responder (avoid 'unused variable' warnings)
79 #define IS_RESPONDER(role) (0 && ((role) == HCI_ROLE_SLAVE))
80 #else
81 // only peripheral - always responder (avoid 'unused variable' warnings)
82 #define IS_RESPONDER(role) (1 || ((role) == HCI_ROLE_SLAVE))
83 #endif
84 #endif
85 
86 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS)
87 #define USE_CMAC_ENGINE
88 #endif
89 
90 
91 #define BTSTACK_TAG32(A,B,C,D) (((A) << 24) | ((B) << 16) | ((C) << 8) | (D))
92 
93 //
94 // SM internal types and globals
95 //
96 
97 typedef enum {
98     DKG_W4_WORKING,
99     DKG_CALC_IRK,
100     DKG_CALC_DHK,
101     DKG_READY
102 } derived_key_generation_t;
103 
104 typedef enum {
105     RAU_IDLE,
106     RAU_GET_RANDOM,
107     RAU_W4_RANDOM,
108     RAU_GET_ENC,
109     RAU_W4_ENC,
110 } random_address_update_t;
111 
112 typedef enum {
113     CMAC_IDLE,
114     CMAC_CALC_SUBKEYS,
115     CMAC_W4_SUBKEYS,
116     CMAC_CALC_MI,
117     CMAC_W4_MI,
118     CMAC_CALC_MLAST,
119     CMAC_W4_MLAST
120 } cmac_state_t;
121 
122 typedef enum {
123     JUST_WORKS,
124     PK_RESP_INPUT,       // Initiator displays PK, responder inputs PK
125     PK_INIT_INPUT,       // Responder displays PK, initiator inputs PK
126     PK_BOTH_INPUT,       // Only input on both, both input PK
127     NUMERIC_COMPARISON,  // Only numerical compparison (yes/no) on on both sides
128     OOB                  // OOB available on one (SC) or both sides (legacy)
129 } stk_generation_method_t;
130 
131 typedef enum {
132     SM_USER_RESPONSE_IDLE,
133     SM_USER_RESPONSE_PENDING,
134     SM_USER_RESPONSE_CONFIRM,
135     SM_USER_RESPONSE_PASSKEY,
136     SM_USER_RESPONSE_DECLINE
137 } sm_user_response_t;
138 
139 typedef enum {
140     SM_AES128_IDLE,
141     SM_AES128_ACTIVE
142 } sm_aes128_state_t;
143 
144 typedef enum {
145     ADDRESS_RESOLUTION_IDLE,
146     ADDRESS_RESOLUTION_GENERAL,
147     ADDRESS_RESOLUTION_FOR_CONNECTION,
148 } address_resolution_mode_t;
149 
150 typedef enum {
151     ADDRESS_RESOLUTION_SUCCEEDED,
152     ADDRESS_RESOLUTION_FAILED,
153 } address_resolution_event_t;
154 
155 typedef enum {
156     EC_KEY_GENERATION_IDLE,
157     EC_KEY_GENERATION_ACTIVE,
158     EC_KEY_GENERATION_DONE,
159 } ec_key_generation_state_t;
160 
161 typedef enum {
162     SM_STATE_VAR_DHKEY_NEEDED = 1 << 0,
163     SM_STATE_VAR_DHKEY_CALCULATED = 1 << 1,
164     SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 2,
165 } sm_state_var_t;
166 
167 typedef enum {
168     SM_SC_OOB_IDLE,
169     SM_SC_OOB_W4_RANDOM,
170     SM_SC_OOB_W2_CALC_CONFIRM,
171     SM_SC_OOB_W4_CONFIRM,
172 } sm_sc_oob_state_t;
173 
174 typedef uint8_t sm_key24_t[3];
175 typedef uint8_t sm_key56_t[7];
176 typedef uint8_t sm_key256_t[32];
177 
178 //
179 // GLOBAL DATA
180 //
181 
182 static bool sm_initialized;
183 
184 static bool test_use_fixed_local_csrk;
185 static bool test_use_fixed_local_irk;
186 
187 #ifdef ENABLE_TESTING_SUPPORT
188 static uint8_t test_pairing_failure;
189 #endif
190 
191 // configuration
192 static uint8_t sm_accepted_stk_generation_methods;
193 static uint8_t sm_max_encryption_key_size;
194 static uint8_t sm_min_encryption_key_size;
195 static uint8_t sm_auth_req = 0;
196 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
197 static uint32_t sm_fixed_passkey_in_display_role;
198 static bool sm_reconstruct_ltk_without_le_device_db_entry;
199 
200 #ifdef ENABLE_LE_PERIPHERAL
201 static bool sm_slave_request_security;
202 #endif
203 
204 #ifdef ENABLE_LE_SECURE_CONNECTIONS
205 static bool sm_sc_only_mode;
206 static uint8_t sm_sc_oob_random[16];
207 static void (*sm_sc_oob_callback)(const uint8_t * confirm_value, const uint8_t * random_value);
208 static sm_sc_oob_state_t sm_sc_oob_state;
209 #ifdef ENABLE_LE_SECURE_CONNECTIONS_DEBUG_KEY
210 static bool sm_sc_debug_keys_enabled;
211 #endif
212 #endif
213 
214 
215 static bool                  sm_persistent_keys_random_active;
216 static const btstack_tlv_t * sm_tlv_impl;
217 static void *                sm_tlv_context;
218 
219 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
220 static sm_key_t sm_persistent_er;
221 static sm_key_t sm_persistent_ir;
222 
223 // derived from sm_persistent_ir
224 static sm_key_t sm_persistent_dhk;
225 static sm_key_t sm_persistent_irk;
226 static derived_key_generation_t dkg_state;
227 
228 // derived from sm_persistent_er
229 // ..
230 
231 // random address update
232 static random_address_update_t rau_state;
233 static bd_addr_t sm_random_address;
234 
235 #ifdef USE_CMAC_ENGINE
236 // CMAC Calculation: General
237 static btstack_crypto_aes128_cmac_t sm_cmac_request;
238 static void (*sm_cmac_done_callback)(uint8_t hash[8]);
239 static uint8_t sm_cmac_active;
240 static uint8_t sm_cmac_hash[16];
241 #endif
242 
243 // CMAC for ATT Signed Writes
244 #ifdef ENABLE_LE_SIGNED_WRITE
245 static uint16_t        sm_cmac_signed_write_message_len;
246 static uint8_t         sm_cmac_signed_write_header[3];
247 static const uint8_t * sm_cmac_signed_write_message;
248 static uint8_t         sm_cmac_signed_write_sign_counter[4];
249 #endif
250 
251 // CMAC for Secure Connection functions
252 #ifdef ENABLE_LE_SECURE_CONNECTIONS
253 static sm_connection_t * sm_cmac_connection;
254 static uint8_t           sm_cmac_sc_buffer[80];
255 #endif
256 
257 // resolvable private address lookup / CSRK calculation
258 static int       sm_address_resolution_test;
259 static uint8_t   sm_address_resolution_addr_type;
260 static bd_addr_t sm_address_resolution_address;
261 static void *    sm_address_resolution_context;
262 static address_resolution_mode_t sm_address_resolution_mode;
263 static btstack_linked_list_t sm_address_resolution_general_queue;
264 
265 // aes128 crypto engine.
266 static sm_aes128_state_t  sm_aes128_state;
267 
268 // crypto
269 static btstack_crypto_random_t   sm_crypto_random_request;
270 static btstack_crypto_aes128_t   sm_crypto_aes128_request;
271 #ifdef ENABLE_LE_SECURE_CONNECTIONS
272 static btstack_crypto_ecc_p256_t sm_crypto_ecc_p256_request;
273 #endif
274 
275 // temp storage for random data
276 static uint8_t sm_random_data[8];
277 static uint8_t sm_aes128_key[16];
278 static uint8_t sm_aes128_plaintext[16];
279 static uint8_t sm_aes128_ciphertext[16];
280 
281 // to receive events
282 static btstack_packet_callback_registration_t hci_event_callback_registration;
283 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
284 static btstack_packet_callback_registration_t l2cap_event_callback_registration;
285 #endif
286 
287 /* to dispatch sm event */
288 static btstack_linked_list_t sm_event_handlers;
289 
290 /* to schedule calls to sm_run */
291 static btstack_timer_source_t sm_run_timer;
292 
293 // LE Secure Connections
294 #ifdef ENABLE_LE_SECURE_CONNECTIONS
295 static ec_key_generation_state_t ec_key_generation_state;
296 static uint8_t ec_q[64];
297 #endif
298 
299 //
300 // Volume 3, Part H, Chapter 24
301 // "Security shall be initiated by the Security Manager in the device in the master role.
302 // The device in the slave role shall be the responding device."
303 // -> master := initiator, slave := responder
304 //
305 
306 // data needed for security setup
307 typedef struct sm_setup_context {
308 
309     btstack_timer_source_t sm_timeout;
310 
311     // user response, (Phase 1 and/or 2)
312     uint8_t   sm_user_response;
313     uint8_t   sm_keypress_notification; // bitmap: passkey started, digit entered, digit erased, passkey cleared, passkey complete, 3 bit count
314 
315     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
316     uint8_t   sm_key_distribution_send_set;
317     uint8_t   sm_key_distribution_sent_set;
318     uint8_t   sm_key_distribution_expected_set;
319     uint8_t   sm_key_distribution_received_set;
320 
321     // Phase 2 (Pairing over SMP)
322     stk_generation_method_t sm_stk_generation_method;
323     sm_key_t  sm_tk;
324     uint8_t   sm_have_oob_data;
325     bool      sm_use_secure_connections;
326 
327     sm_key_t  sm_c1_t3_value;   // c1 calculation
328     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
329     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
330     sm_key_t  sm_local_random;
331     sm_key_t  sm_local_confirm;
332     sm_key_t  sm_peer_random;
333     sm_key_t  sm_peer_confirm;
334     uint8_t   sm_m_addr_type;   // address and type can be removed
335     uint8_t   sm_s_addr_type;   //  ''
336     bd_addr_t sm_m_address;     //  ''
337     bd_addr_t sm_s_address;     //  ''
338     sm_key_t  sm_ltk;
339 
340     uint8_t   sm_state_vars;
341 #ifdef ENABLE_LE_SECURE_CONNECTIONS
342     uint8_t   sm_peer_q[64];    // also stores random for EC key generation during init
343     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
344     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
345     uint8_t   sm_dhkey[32];
346     sm_key_t  sm_peer_dhkey_check;
347     sm_key_t  sm_local_dhkey_check;
348     sm_key_t  sm_ra;
349     sm_key_t  sm_rb;
350     sm_key_t  sm_t;             // used for f5 and h6
351     sm_key_t  sm_mackey;
352     uint8_t   sm_passkey_bit;   // also stores number of generated random bytes for EC key generation
353 #endif
354 
355     // Phase 3
356 
357     // key distribution, we generate
358     uint16_t  sm_local_y;
359     uint16_t  sm_local_div;
360     uint16_t  sm_local_ediv;
361     uint8_t   sm_local_rand[8];
362     sm_key_t  sm_local_ltk;
363     sm_key_t  sm_local_csrk;
364     sm_key_t  sm_local_irk;
365     // sm_local_address/addr_type not needed
366 
367     // key distribution, received from peer
368     uint16_t  sm_peer_y;
369     uint16_t  sm_peer_div;
370     uint16_t  sm_peer_ediv;
371     uint8_t   sm_peer_rand[8];
372     sm_key_t  sm_peer_ltk;
373     sm_key_t  sm_peer_irk;
374     sm_key_t  sm_peer_csrk;
375     uint8_t   sm_peer_addr_type;
376     bd_addr_t sm_peer_address;
377 #ifdef ENABLE_LE_SIGNED_WRITE
378     int       sm_le_device_index;
379 #endif
380 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
381     link_key_t sm_link_key;
382     link_key_type_t sm_link_key_type;
383 #endif
384 } sm_setup_context_t;
385 
386 //
387 static sm_setup_context_t the_setup;
388 static sm_setup_context_t * setup = &the_setup;
389 
390 // active connection - the one for which the_setup is used for
391 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
392 
393 // @return 1 if oob data is available
394 // stores oob data in provided 16 byte buffer if not null
395 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
396 static int (*sm_get_sc_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random);
397 static bool (*sm_get_ltk_callback)(hci_con_handle_t con_handle, uint8_t addres_type, bd_addr_t addr, uint8_t * ltk);
398 
399 static void sm_run(void);
400 static void sm_state_reset(void);
401 static void sm_done_for_handle(hci_con_handle_t con_handle);
402 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
403 static void sm_cache_ltk(sm_connection_t * connection, const sm_key_t ltk);
404 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
405 static sm_connection_t * sm_get_connection_for_bd_addr_and_type(bd_addr_t address, bd_addr_type_t addr_type);
406 #endif
407 static inline int sm_calc_actual_encryption_key_size(int other);
408 static int sm_validate_stk_generation_method(void);
409 static void sm_handle_encryption_result_address_resolution(void *arg);
410 static void sm_handle_encryption_result_dkg_dhk(void *arg);
411 static void sm_handle_encryption_result_dkg_irk(void *arg);
412 static void sm_handle_encryption_result_enc_a(void *arg);
413 static void sm_handle_encryption_result_enc_b(void *arg);
414 static void sm_handle_encryption_result_enc_c(void *arg);
415 static void sm_handle_encryption_result_enc_csrk(void *arg);
416 static void sm_handle_encryption_result_enc_d(void * arg);
417 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg);
418 static void sm_handle_encryption_result_enc_ph3_y(void *arg);
419 #ifdef ENABLE_LE_PERIPHERAL
420 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg);
421 static void sm_handle_encryption_result_enc_ph4_y(void *arg);
422 #endif
423 static void sm_handle_encryption_result_enc_stk(void *arg);
424 static void sm_handle_encryption_result_rau(void *arg);
425 static void sm_handle_random_result_ph2_tk(void * arg);
426 static void sm_handle_random_result_rau(void * arg);
427 #ifdef ENABLE_LE_SECURE_CONNECTIONS
428 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash));
429 static void sm_ec_generate_new_key(void);
430 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg);
431 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg);
432 static bool sm_passkey_entry(stk_generation_method_t method);
433 #endif
434 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason);
435 
436 static void log_info_hex16(const char * name, uint16_t value){
437     log_info("%-6s 0x%04x", name, value);
438 }
439 
440 // static inline uint8_t sm_pairing_packet_get_code(sm_pairing_packet_t packet){
441 //     return packet[0];
442 // }
443 static inline uint8_t sm_pairing_packet_get_io_capability(sm_pairing_packet_t packet){
444     return packet[1];
445 }
446 static inline uint8_t sm_pairing_packet_get_oob_data_flag(sm_pairing_packet_t packet){
447     return packet[2];
448 }
449 static inline uint8_t sm_pairing_packet_get_auth_req(sm_pairing_packet_t packet){
450     return packet[3];
451 }
452 static inline uint8_t sm_pairing_packet_get_max_encryption_key_size(sm_pairing_packet_t packet){
453     return packet[4];
454 }
455 static inline uint8_t sm_pairing_packet_get_initiator_key_distribution(sm_pairing_packet_t packet){
456     return packet[5];
457 }
458 static inline uint8_t sm_pairing_packet_get_responder_key_distribution(sm_pairing_packet_t packet){
459     return packet[6];
460 }
461 
462 static inline void sm_pairing_packet_set_code(sm_pairing_packet_t packet, uint8_t code){
463     packet[0] = code;
464 }
465 static inline void sm_pairing_packet_set_io_capability(sm_pairing_packet_t packet, uint8_t io_capability){
466     packet[1] = io_capability;
467 }
468 static inline void sm_pairing_packet_set_oob_data_flag(sm_pairing_packet_t packet, uint8_t oob_data_flag){
469     packet[2] = oob_data_flag;
470 }
471 static inline void sm_pairing_packet_set_auth_req(sm_pairing_packet_t packet, uint8_t auth_req){
472     packet[3] = auth_req;
473 }
474 static inline void sm_pairing_packet_set_max_encryption_key_size(sm_pairing_packet_t packet, uint8_t max_encryption_key_size){
475     packet[4] = max_encryption_key_size;
476 }
477 static inline void sm_pairing_packet_set_initiator_key_distribution(sm_pairing_packet_t packet, uint8_t initiator_key_distribution){
478     packet[5] = initiator_key_distribution;
479 }
480 static inline void sm_pairing_packet_set_responder_key_distribution(sm_pairing_packet_t packet, uint8_t responder_key_distribution){
481     packet[6] = responder_key_distribution;
482 }
483 
484 static bool sm_is_null_random(uint8_t random[8]){
485     return btstack_is_null(random, 8);
486 }
487 
488 static bool sm_is_null_key(uint8_t * key){
489     return btstack_is_null(key, 16);
490 }
491 
492 #ifdef ENABLE_LE_SECURE_CONNECTIONS
493 static bool sm_is_ff(const uint8_t * buffer, uint16_t size){
494     uint16_t i;
495     for (i=0; i < size ; i++){
496         if (buffer[i] != 0xff) {
497             return false;
498         }
499     }
500     return true;
501 }
502 #endif
503 
504 // sm_trigger_run allows to schedule callback from main run loop // reduces stack depth
505 static void sm_run_timer_handler(btstack_timer_source_t * ts){
506 	UNUSED(ts);
507 	sm_run();
508 }
509 static void sm_trigger_run(void){
510     if (!sm_initialized) return;
511 	(void)btstack_run_loop_remove_timer(&sm_run_timer);
512 	btstack_run_loop_set_timer(&sm_run_timer, 0);
513 	btstack_run_loop_add_timer(&sm_run_timer);
514 }
515 
516 // Key utils
517 static void sm_reset_tk(void){
518     int i;
519     for (i=0;i<16;i++){
520         setup->sm_tk[i] = 0;
521     }
522 }
523 
524 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
525 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
526 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
527     int i;
528     for (i = max_encryption_size ; i < 16 ; i++){
529         key[15-i] = 0;
530     }
531 }
532 
533 // ER / IR checks
534 static void sm_er_ir_set_default(void){
535     int i;
536     for (i=0;i<16;i++){
537         sm_persistent_er[i] = 0x30 + i;
538         sm_persistent_ir[i] = 0x90 + i;
539     }
540 }
541 
542 static bool sm_er_is_default(void){
543     int i;
544     for (i=0;i<16;i++){
545         if (sm_persistent_er[i] != (0x30+i)) return true;
546     }
547     return false;
548 }
549 
550 static bool sm_ir_is_default(void){
551     int i;
552     for (i=0;i<16;i++){
553         if (sm_persistent_ir[i] != (0x90+i)) return true;
554     }
555     return false;
556 }
557 
558 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
559     UNUSED(channel);
560 
561     // log event
562     hci_dump_btstack_event(packet, size);
563     // dispatch to all event handlers
564     btstack_linked_list_iterator_t it;
565     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
566     while (btstack_linked_list_iterator_has_next(&it)){
567         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
568         entry->callback(packet_type, 0, packet, size);
569     }
570 }
571 
572 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
573     event[0] = type;
574     event[1] = event_size - 2;
575     little_endian_store_16(event, 2, con_handle);
576     event[4] = addr_type;
577     reverse_bd_addr(address, &event[5]);
578 }
579 
580 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
581     uint8_t event[11];
582     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
583     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
584 }
585 
586 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
587     // fetch addr and addr type from db, only called for valid entries
588     bd_addr_t identity_address;
589     int identity_address_type;
590     le_device_db_info(index, &identity_address_type, identity_address, NULL);
591 
592     uint8_t event[20];
593     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
594     event[11] = identity_address_type;
595     reverse_bd_addr(identity_address, &event[12]);
596     little_endian_store_16(event, 18, index);
597     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
598 }
599 
600 static void sm_notify_client_status(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t status){
601     uint8_t event[12];
602     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
603     event[11] = status;
604     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
605 }
606 
607 
608 static void sm_reencryption_started(sm_connection_t * sm_conn){
609 
610     if (sm_conn->sm_reencryption_active) return;
611 
612     sm_conn->sm_reencryption_active = true;
613 
614     int       identity_addr_type;
615     bd_addr_t identity_addr;
616     if (sm_conn->sm_le_db_index >= 0){
617         // fetch addr and addr type from db, only called for valid entries
618         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
619     } else {
620         // for legacy pairing with LTK re-construction, use current peer addr
621         identity_addr_type = sm_conn->sm_peer_addr_type;
622         // cppcheck-suppress uninitvar ; identity_addr is reported as uninitialized although it's the destination of the memcpy
623         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
624     }
625 
626     sm_notify_client_base(SM_EVENT_REENCRYPTION_STARTED, sm_conn->sm_handle, identity_addr_type, identity_addr);
627 }
628 
629 static void sm_reencryption_complete(sm_connection_t * sm_conn, uint8_t status){
630 
631     if (!sm_conn->sm_reencryption_active) return;
632 
633     sm_conn->sm_reencryption_active = false;
634 
635     int       identity_addr_type;
636     bd_addr_t identity_addr;
637     if (sm_conn->sm_le_db_index >= 0){
638         // fetch addr and addr type from db, only called for valid entries
639         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
640     } else {
641         // for legacy pairing with LTK re-construction, use current peer addr
642         identity_addr_type = sm_conn->sm_peer_addr_type;
643         // cppcheck-suppress uninitvar ; identity_addr is reported as uninitialized although it's the destination of the memcpy
644         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
645     }
646 
647     sm_notify_client_status(SM_EVENT_REENCRYPTION_COMPLETE, sm_conn->sm_handle, identity_addr_type, identity_addr, status);
648 }
649 
650 static void sm_pairing_started(sm_connection_t * sm_conn){
651 
652     if (sm_conn->sm_pairing_active) return;
653 
654     sm_conn->sm_pairing_active = true;
655 
656     uint8_t event[11];
657     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_STARTED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
658     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
659 }
660 
661 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason){
662 
663     if (!sm_conn->sm_pairing_active) return;
664 
665     sm_conn->sm_pairing_active = false;
666 
667     uint8_t event[13];
668     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_COMPLETE, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
669     event[11] = status;
670     event[12] = reason;
671     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
672 }
673 
674 // SMP Timeout implementation
675 
676 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
677 // the Security Manager Timer shall be reset and started.
678 //
679 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
680 //
681 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
682 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
683 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
684 // established.
685 
686 static void sm_timeout_handler(btstack_timer_source_t * timer){
687     log_info("SM timeout");
688     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
689     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
690     sm_reencryption_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT);
691     sm_pairing_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT, 0);
692     sm_done_for_handle(sm_conn->sm_handle);
693 
694     // trigger handling of next ready connection
695     sm_run();
696 }
697 static void sm_timeout_start(sm_connection_t * sm_conn){
698     btstack_run_loop_remove_timer(&setup->sm_timeout);
699     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
700     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
701     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
702     btstack_run_loop_add_timer(&setup->sm_timeout);
703 }
704 static void sm_timeout_stop(void){
705     btstack_run_loop_remove_timer(&setup->sm_timeout);
706 }
707 static void sm_timeout_reset(sm_connection_t * sm_conn){
708     sm_timeout_stop();
709     sm_timeout_start(sm_conn);
710 }
711 
712 // end of sm timeout
713 
714 // GAP Random Address updates
715 static gap_random_address_type_t gap_random_adress_type;
716 static btstack_timer_source_t gap_random_address_update_timer;
717 static uint32_t gap_random_adress_update_period;
718 
719 static void gap_random_address_trigger(void){
720     log_info("gap_random_address_trigger, state %u", rau_state);
721     if (rau_state != RAU_IDLE) return;
722     rau_state = RAU_GET_RANDOM;
723     sm_trigger_run();
724 }
725 
726 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
727     UNUSED(timer);
728 
729     log_info("GAP Random Address Update due");
730     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
731     btstack_run_loop_add_timer(&gap_random_address_update_timer);
732     gap_random_address_trigger();
733 }
734 
735 static void gap_random_address_update_start(void){
736     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
737     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
738     btstack_run_loop_add_timer(&gap_random_address_update_timer);
739 }
740 
741 static void gap_random_address_update_stop(void){
742     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
743 }
744 
745 // ah(k,r) helper
746 // r = padding || r
747 // r - 24 bit value
748 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){
749     // r'= padding || r
750     memset(r_prime, 0, 16);
751     (void)memcpy(&r_prime[13], r, 3);
752 }
753 
754 // d1 helper
755 // d' = padding || r || d
756 // d,r - 16 bit values
757 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){
758     // d'= padding || r || d
759     memset(d1_prime, 0, 16);
760     big_endian_store_16(d1_prime, 12, r);
761     big_endian_store_16(d1_prime, 14, d);
762 }
763 
764 // calculate arguments for first AES128 operation in C1 function
765 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){
766 
767     // p1 = pres || preq || rat’ || iat’
768     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
769     // cant octet of pres becomes the most significant octet of p1.
770     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
771     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
772     // p1 is 0x05000800000302070710000001010001."
773 
774     sm_key_t p1;
775     reverse_56(pres, &p1[0]);
776     reverse_56(preq, &p1[7]);
777     p1[14] = rat;
778     p1[15] = iat;
779     log_info_key("p1", p1);
780     log_info_key("r", r);
781 
782     // t1 = r xor p1
783     int i;
784     for (i=0;i<16;i++){
785         t1[i] = r[i] ^ p1[i];
786     }
787     log_info_key("t1", t1);
788 }
789 
790 // calculate arguments for second AES128 operation in C1 function
791 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){
792      // p2 = padding || ia || ra
793     // "The least significant octet of ra becomes the least significant octet of p2 and
794     // the most significant octet of padding becomes the most significant octet of p2.
795     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
796     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
797 
798     sm_key_t p2;
799     // cppcheck-suppress uninitvar ; p2 is reported as uninitialized
800     memset(p2, 0, 16);
801     (void)memcpy(&p2[4], ia, 6);
802     (void)memcpy(&p2[10], ra, 6);
803     log_info_key("p2", p2);
804 
805     // c1 = e(k, t2_xor_p2)
806     int i;
807     for (i=0;i<16;i++){
808         t3[i] = t2[i] ^ p2[i];
809     }
810     log_info_key("t3", t3);
811 }
812 
813 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){
814     log_info_key("r1", r1);
815     log_info_key("r2", r2);
816     (void)memcpy(&r_prime[8], &r2[8], 8);
817     (void)memcpy(&r_prime[0], &r1[8], 8);
818 }
819 
820 
821 // decide on stk generation based on
822 // - pairing request
823 // - io capabilities
824 // - OOB data availability
825 static void sm_setup_tk(void){
826 
827     // horizontal: initiator capabilities
828     // vertial:    responder capabilities
829     static const stk_generation_method_t stk_generation_method [5] [5] = {
830             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
831             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
832             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
833             { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
834             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
835     };
836 
837     // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
838 #ifdef ENABLE_LE_SECURE_CONNECTIONS
839     static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
840             { JUST_WORKS,      JUST_WORKS,         PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT      },
841             { JUST_WORKS,      NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
842             { PK_RESP_INPUT,   PK_RESP_INPUT,      PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT      },
843             { JUST_WORKS,      JUST_WORKS,         JUST_WORKS,      JUST_WORKS,    JUST_WORKS         },
844             { PK_RESP_INPUT,   NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
845     };
846 #endif
847 
848     // default: just works
849     setup->sm_stk_generation_method = JUST_WORKS;
850 
851 #ifdef ENABLE_LE_SECURE_CONNECTIONS
852     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
853                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
854                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0u;
855 #else
856     setup->sm_use_secure_connections = false;
857 #endif
858     log_info("Secure pairing: %u", setup->sm_use_secure_connections);
859 
860 
861     // decide if OOB will be used based on SC vs. Legacy and oob flags
862     bool use_oob;
863     if (setup->sm_use_secure_connections){
864         // In LE Secure Connections pairing, the out of band method is used if at least
865         // one device has the peer device's out of band authentication data available.
866         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) | sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
867     } else {
868         // In LE legacy pairing, the out of band method is used if both the devices have
869         // the other device's out of band authentication data available.
870         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) & sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
871     }
872     if (use_oob){
873         log_info("SM: have OOB data");
874         log_info_key("OOB", setup->sm_tk);
875         setup->sm_stk_generation_method = OOB;
876         return;
877     }
878 
879     // If both devices have not set the MITM option in the Authentication Requirements
880     // Flags, then the IO capabilities shall be ignored and the Just Works association
881     // model shall be used.
882     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0u)
883         &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0u)){
884         log_info("SM: MITM not required by both -> JUST WORKS");
885         return;
886     }
887 
888     // Reset TK as it has been setup in sm_init_setup
889     sm_reset_tk();
890 
891     // Also use just works if unknown io capabilites
892     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
893         return;
894     }
895 
896     // Otherwise the IO capabilities of the devices shall be used to determine the
897     // pairing method as defined in Table 2.4.
898     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
899     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
900 
901 #ifdef ENABLE_LE_SECURE_CONNECTIONS
902     // table not define by default
903     if (setup->sm_use_secure_connections){
904         generation_method = stk_generation_method_with_secure_connection;
905     }
906 #endif
907     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
908 
909     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
910         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
911 }
912 
913 static int sm_key_distribution_flags_for_set(uint8_t key_set){
914     int flags = 0;
915     if ((key_set & SM_KEYDIST_ENC_KEY) != 0u){
916         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
917         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
918     }
919     if ((key_set & SM_KEYDIST_ID_KEY) != 0u){
920         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
921         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
922     }
923     if ((key_set & SM_KEYDIST_SIGN) != 0u){
924         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
925     }
926     return flags;
927 }
928 
929 static void sm_setup_key_distribution(uint8_t keys_to_send, uint8_t keys_to_receive){
930     setup->sm_key_distribution_received_set = 0;
931     setup->sm_key_distribution_expected_set = sm_key_distribution_flags_for_set(keys_to_receive);
932     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(keys_to_send);
933     setup->sm_key_distribution_sent_set = 0;
934 #ifdef ENABLE_LE_SIGNED_WRITE
935     setup->sm_le_device_index = -1;
936 #endif
937 }
938 
939 // CSRK Key Lookup
940 
941 
942 static bool sm_address_resolution_idle(void){
943     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
944 }
945 
946 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
947     (void)memcpy(sm_address_resolution_address, addr, 6);
948     sm_address_resolution_addr_type = addr_type;
949     sm_address_resolution_test = 0;
950     sm_address_resolution_mode = mode;
951     sm_address_resolution_context = context;
952     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
953 }
954 
955 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
956     // check if already in list
957     btstack_linked_list_iterator_t it;
958     sm_lookup_entry_t * entry;
959     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
960     while(btstack_linked_list_iterator_has_next(&it)){
961         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
962         if (entry->address_type != address_type) continue;
963         if (memcmp(entry->address, address, 6) != 0)  continue;
964         // already in list
965         return BTSTACK_BUSY;
966     }
967     entry = btstack_memory_sm_lookup_entry_get();
968     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
969     entry->address_type = (bd_addr_type_t) address_type;
970     (void)memcpy(entry->address, address, 6);
971     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
972     sm_trigger_run();
973     return 0;
974 }
975 
976 // CMAC calculation using AES Engineq
977 #ifdef USE_CMAC_ENGINE
978 
979 static void sm_cmac_done_trampoline(void * arg){
980     UNUSED(arg);
981     sm_cmac_active = 0;
982     (*sm_cmac_done_callback)(sm_cmac_hash);
983     sm_trigger_run();
984 }
985 
986 int sm_cmac_ready(void){
987     return sm_cmac_active == 0u;
988 }
989 #endif
990 
991 #ifdef ENABLE_LE_SECURE_CONNECTIONS
992 // generic cmac calculation
993 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash)){
994     sm_cmac_active = 1;
995     sm_cmac_done_callback = done_callback;
996     btstack_crypto_aes128_cmac_message(&sm_cmac_request, key, message_len, message, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
997 }
998 #endif
999 
1000 // cmac for ATT Message signing
1001 #ifdef ENABLE_LE_SIGNED_WRITE
1002 
1003 static void sm_cmac_generator_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t * hash)){
1004     sm_cmac_active = 1;
1005     sm_cmac_done_callback = done_callback;
1006     btstack_crypto_aes128_cmac_generator(&sm_cmac_request, key, message_len, get_byte_callback, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
1007 }
1008 
1009 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){
1010     if (offset >= sm_cmac_signed_write_message_len) {
1011         log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_signed_write_message_len);
1012         return 0;
1013     }
1014 
1015     offset = sm_cmac_signed_write_message_len - 1 - offset;
1016 
1017     // sm_cmac_signed_write_header[3] | message[] | sm_cmac_signed_write_sign_counter[4]
1018     if (offset < 3){
1019         return sm_cmac_signed_write_header[offset];
1020     }
1021     int actual_message_len_incl_header = sm_cmac_signed_write_message_len - 4;
1022     if (offset <  actual_message_len_incl_header){
1023         return sm_cmac_signed_write_message[offset - 3];
1024     }
1025     return sm_cmac_signed_write_sign_counter[offset - actual_message_len_incl_header];
1026 }
1027 
1028 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
1029     // ATT Message Signing
1030     sm_cmac_signed_write_header[0] = opcode;
1031     little_endian_store_16(sm_cmac_signed_write_header, 1, con_handle);
1032     little_endian_store_32(sm_cmac_signed_write_sign_counter, 0, sign_counter);
1033     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
1034     sm_cmac_signed_write_message     = message;
1035     sm_cmac_signed_write_message_len = total_message_len;
1036     sm_cmac_generator_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler);
1037 }
1038 #endif
1039 
1040 static void sm_trigger_user_response_basic(sm_connection_t * sm_conn, uint8_t event_type){
1041     setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1042     uint8_t event[12];
1043     sm_setup_event_base(event, sizeof(event), event_type, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1044     event[11] = setup->sm_use_secure_connections ? 1 : 0;
1045     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
1046 }
1047 
1048 static void sm_trigger_user_response_passkey(sm_connection_t * sm_conn, uint8_t event_type){
1049     uint8_t event[16];
1050     uint32_t passkey = big_endian_read_32(setup->sm_tk, 12);
1051     sm_setup_event_base(event, sizeof(event), event_type, sm_conn->sm_handle,
1052                         sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1053     event[11] = setup->sm_use_secure_connections ? 1 : 0;
1054     little_endian_store_32(event, 12, passkey);
1055     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
1056 }
1057 
1058 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1059     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1060     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1061     sm_conn->sm_pairing_active = true;
1062     switch (setup->sm_stk_generation_method){
1063         case PK_RESP_INPUT:
1064             if (IS_RESPONDER(sm_conn->sm_role)){
1065                 sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1066             } else {
1067                 sm_trigger_user_response_passkey(sm_conn, SM_EVENT_PASSKEY_DISPLAY_NUMBER);
1068             }
1069             break;
1070         case PK_INIT_INPUT:
1071             if (IS_RESPONDER(sm_conn->sm_role)){
1072                 sm_trigger_user_response_passkey(sm_conn, SM_EVENT_PASSKEY_DISPLAY_NUMBER);
1073             } else {
1074                 sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1075             }
1076             break;
1077         case PK_BOTH_INPUT:
1078             sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1079             break;
1080         case NUMERIC_COMPARISON:
1081             sm_trigger_user_response_passkey(sm_conn, SM_EVENT_NUMERIC_COMPARISON_REQUEST);
1082             break;
1083         case JUST_WORKS:
1084             sm_trigger_user_response_basic(sm_conn, SM_EVENT_JUST_WORKS_REQUEST);
1085             break;
1086         case OOB:
1087             // client already provided OOB data, let's skip notification.
1088             break;
1089         default:
1090             btstack_assert(false);
1091             break;
1092     }
1093 }
1094 
1095 static bool sm_key_distribution_all_received(void) {
1096     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, setup->sm_key_distribution_expected_set);
1097     return (setup->sm_key_distribution_expected_set & setup->sm_key_distribution_received_set) == setup->sm_key_distribution_expected_set;
1098 }
1099 
1100 static void sm_done_for_handle(hci_con_handle_t con_handle){
1101     if (sm_active_connection_handle == con_handle){
1102         sm_timeout_stop();
1103         sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
1104         log_info("sm: connection 0x%x released setup context", con_handle);
1105 
1106 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1107         // generate new ec key after each pairing (that used it)
1108         if (setup->sm_use_secure_connections){
1109             sm_ec_generate_new_key();
1110         }
1111 #endif
1112     }
1113 }
1114 
1115 static void sm_master_pairing_success(sm_connection_t *connection) {// master -> all done
1116     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
1117     sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
1118     sm_done_for_handle(connection->sm_handle);
1119 }
1120 
1121 static int sm_key_distribution_flags_for_auth_req(void){
1122 
1123     int flags = SM_KEYDIST_ID_KEY;
1124     if ((sm_auth_req & SM_AUTHREQ_BONDING) != 0u){
1125         // encryption and signing information only if bonding requested
1126         flags |= SM_KEYDIST_ENC_KEY;
1127 #ifdef ENABLE_LE_SIGNED_WRITE
1128         flags |= SM_KEYDIST_SIGN;
1129 #endif
1130 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1131         // LinkKey for CTKD requires SC and BR/EDR Support
1132         if (hci_classic_supported() && ((sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION) != 0)){
1133         	flags |= SM_KEYDIST_LINK_KEY;
1134         }
1135 #endif
1136     }
1137     return flags;
1138 }
1139 
1140 static void sm_reset_setup(void){
1141     // fill in sm setup
1142     setup->sm_state_vars = 0;
1143     setup->sm_keypress_notification = 0;
1144     setup->sm_have_oob_data = 0;
1145     sm_reset_tk();
1146 }
1147 
1148 static void sm_init_setup(sm_connection_t * sm_conn){
1149     // fill in sm setup
1150     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1151     (void)memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1152 
1153     // query client for Legacy Pairing OOB data
1154     if (sm_get_oob_data != NULL) {
1155         setup->sm_have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1156     }
1157 
1158     // if available and SC supported, also ask for SC OOB Data
1159 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1160     memset(setup->sm_ra, 0, 16);
1161     memset(setup->sm_rb, 0, 16);
1162     if (setup->sm_have_oob_data && (sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION)){
1163         if (sm_get_sc_oob_data != NULL){
1164             if (IS_RESPONDER(sm_conn->sm_role)){
1165                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1166                     sm_conn->sm_peer_addr_type,
1167                     sm_conn->sm_peer_address,
1168                     setup->sm_peer_confirm,
1169                     setup->sm_ra);
1170             } else {
1171                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1172                     sm_conn->sm_peer_addr_type,
1173                     sm_conn->sm_peer_address,
1174                     setup->sm_peer_confirm,
1175                     setup->sm_rb);
1176             }
1177         } else {
1178             setup->sm_have_oob_data = 0;
1179         }
1180     }
1181 #endif
1182 
1183     sm_pairing_packet_t * local_packet;
1184     if (IS_RESPONDER(sm_conn->sm_role)){
1185         // slave
1186         local_packet = &setup->sm_s_pres;
1187         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1188         setup->sm_s_addr_type = sm_conn->sm_own_addr_type;
1189         (void)memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1190         (void)memcpy(setup->sm_s_address, sm_conn->sm_own_address, 6);
1191     } else {
1192         // master
1193         local_packet = &setup->sm_m_preq;
1194         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1195         setup->sm_m_addr_type = sm_conn->sm_own_addr_type;
1196         (void)memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1197         (void)memcpy(setup->sm_m_address, sm_conn->sm_own_address, 6);
1198 
1199         uint8_t key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1200         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1201         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1202     }
1203 
1204     log_info("our  address %s type %u", bd_addr_to_str(sm_conn->sm_own_address), sm_conn->sm_own_addr_type);
1205     log_info("peer address %s type %u", bd_addr_to_str(sm_conn->sm_peer_address), sm_conn->sm_peer_addr_type);
1206 
1207     uint8_t auth_req = sm_auth_req & ~SM_AUTHREQ_CT2;
1208     uint8_t max_encryption_key_size = sm_max_encryption_key_size;
1209 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1210     // enable SC for SC only mode
1211     if (sm_sc_only_mode){
1212         auth_req |= SM_AUTHREQ_SECURE_CONNECTION;
1213         max_encryption_key_size = 16;
1214     }
1215 #endif
1216 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1217 	// set CT2 if SC + Bonding + CTKD
1218 	const uint8_t auth_req_for_ct2 = SM_AUTHREQ_SECURE_CONNECTION | SM_AUTHREQ_BONDING;
1219 	if ((auth_req & auth_req_for_ct2) == auth_req_for_ct2){
1220 		auth_req |= SM_AUTHREQ_CT2;
1221 	}
1222 #endif
1223     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1224     sm_pairing_packet_set_oob_data_flag(*local_packet, setup->sm_have_oob_data);
1225     sm_pairing_packet_set_auth_req(*local_packet, auth_req);
1226     sm_pairing_packet_set_max_encryption_key_size(*local_packet, max_encryption_key_size);
1227 }
1228 
1229 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1230 
1231     sm_pairing_packet_t * remote_packet;
1232     uint8_t               keys_to_send;
1233     uint8_t               keys_to_receive;
1234     if (IS_RESPONDER(sm_conn->sm_role)){
1235         // slave / responder
1236         remote_packet   = &setup->sm_m_preq;
1237         keys_to_send    = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1238         keys_to_receive = sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq);
1239     } else {
1240         // master / initiator
1241         remote_packet   = &setup->sm_s_pres;
1242         keys_to_send    = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1243         keys_to_receive = sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres);
1244     }
1245 
1246     // check key size
1247 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1248     // SC Only mandates 128 bit key size
1249     if (sm_sc_only_mode && (sm_pairing_packet_get_max_encryption_key_size(*remote_packet) < 16)) {
1250         return SM_REASON_ENCRYPTION_KEY_SIZE;
1251     }
1252 #endif
1253     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1254     if (sm_conn->sm_actual_encryption_key_size == 0u) return SM_REASON_ENCRYPTION_KEY_SIZE;
1255 
1256     // decide on STK generation method / SC
1257     sm_setup_tk();
1258     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1259 
1260     // check if STK generation method is acceptable by client
1261     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1262 
1263 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1264     // Check LE SC Only mode
1265     if (sm_sc_only_mode && (setup->sm_use_secure_connections == false)){
1266         log_info("SC Only mode active but SC not possible");
1267         return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1268     }
1269 
1270     // LTK (= encryption information & master identification) only used exchanged for LE Legacy Connection
1271     if (setup->sm_use_secure_connections){
1272         keys_to_send &= ~SM_KEYDIST_ENC_KEY;
1273         keys_to_receive  &= ~SM_KEYDIST_ENC_KEY;
1274     }
1275 #endif
1276 
1277     // identical to responder
1278     sm_setup_key_distribution(keys_to_send, keys_to_receive);
1279 
1280     // JUST WORKS doens't provide authentication
1281     sm_conn->sm_connection_authenticated = (setup->sm_stk_generation_method == JUST_WORKS) ? 0 : 1;
1282 
1283     return 0;
1284 }
1285 
1286 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1287 
1288     // cache and reset context
1289     int matched_device_id = sm_address_resolution_test;
1290     address_resolution_mode_t mode = sm_address_resolution_mode;
1291     void * context = sm_address_resolution_context;
1292 
1293     // reset context
1294     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1295     sm_address_resolution_context = NULL;
1296     sm_address_resolution_test = -1;
1297 
1298     hci_con_handle_t con_handle = HCI_CON_HANDLE_INVALID;
1299     sm_connection_t * sm_connection;
1300     sm_key_t ltk;
1301     bool have_ltk;
1302     int authenticated;
1303 #ifdef ENABLE_LE_CENTRAL
1304     bool trigger_pairing;
1305 #endif
1306 
1307     switch (mode){
1308         case ADDRESS_RESOLUTION_GENERAL:
1309             break;
1310         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1311             sm_connection = (sm_connection_t *) context;
1312             con_handle = sm_connection->sm_handle;
1313 
1314             // have ltk -> start encryption / send security request
1315             // Core 5, Vol 3, Part C, 10.3.2 Initiating a Service Request
1316             // "When a bond has been created between two devices, any reconnection should result in the local device
1317             //  enabling or requesting encryption with the remote device before initiating any service request."
1318 
1319             switch (event){
1320                 case ADDRESS_RESOLUTION_SUCCEEDED:
1321                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1322                     sm_connection->sm_le_db_index = matched_device_id;
1323                     log_info("ADDRESS_RESOLUTION_SUCCEEDED, index %d", sm_connection->sm_le_db_index);
1324 
1325                     le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, &authenticated, NULL, NULL);
1326                     have_ltk = !sm_is_null_key(ltk);
1327 
1328                     if (IS_RESPONDER(sm_connection->sm_role)) {
1329 #ifdef ENABLE_LE_PERIPHERAL
1330                         // IRK required before, continue
1331                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1332                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
1333                             break;
1334                         }
1335                         // Pairing request before, continue
1336                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK){
1337                             sm_connection->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
1338                             break;
1339                         }
1340                         bool trigger_security_request = sm_connection->sm_pairing_requested || sm_slave_request_security;
1341                         sm_connection->sm_pairing_requested = false;
1342 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1343                         // trigger security request for Proactive Authentication if LTK available
1344                         trigger_security_request = trigger_security_request || have_ltk;
1345 #endif
1346 
1347                         log_info("peripheral: pairing request local %u, have_ltk %u => trigger_security_request %u",
1348                                  (int) sm_connection->sm_pairing_requested, (int) have_ltk, trigger_security_request);
1349 
1350                         if (trigger_security_request){
1351                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1352                             if (have_ltk){
1353                                 sm_reencryption_started(sm_connection);
1354                             } else {
1355                                 sm_pairing_started(sm_connection);
1356                             }
1357                             sm_trigger_run();
1358                         }
1359 #endif
1360                     } else {
1361 
1362 #ifdef ENABLE_LE_CENTRAL
1363                         // check if pairing already requested and reset requests
1364                         trigger_pairing = sm_connection->sm_pairing_requested || sm_connection->sm_security_request_received;
1365                         bool auth_required = sm_auth_req & SM_AUTHREQ_MITM_PROTECTION;
1366 
1367                         log_info("central: pairing request local %u, remote %u => trigger_pairing %u. have_ltk %u",
1368                                  (int) sm_connection->sm_pairing_requested, (int) sm_connection->sm_security_request_received, (int) trigger_pairing, (int) have_ltk);
1369                         sm_connection->sm_security_request_received = false;
1370                         sm_connection->sm_pairing_requested = false;
1371                         bool trigger_reencryption = false;
1372 
1373                         if (have_ltk){
1374                             if (trigger_pairing){
1375                                 // if pairing is requested, re-encryption is sufficient, if ltk is already authenticated or we don't require authentication
1376                                 trigger_reencryption = (authenticated != 0) || (auth_required == false);
1377                             } else {
1378 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1379                                 trigger_reencryption = true;
1380 #else
1381                                 log_info("central: defer enabling encryption for bonded device");
1382 #endif
1383                             }
1384                         }
1385 
1386                         if (trigger_reencryption){
1387                             log_info("central: enable encryption for bonded device");
1388                             sm_connection->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
1389                             break;
1390                         }
1391 
1392                         // pairing_request -> send pairing request
1393                         if (trigger_pairing){
1394                             sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1395                             break;
1396                         }
1397 #endif
1398                     }
1399                     break;
1400                 case ADDRESS_RESOLUTION_FAILED:
1401                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1402                     if (IS_RESPONDER(sm_connection->sm_role)) {
1403 #ifdef ENABLE_LE_PERIPHERAL
1404                         // LTK request received before, IRK required -> negative LTK reply
1405                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1406                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
1407                         }
1408                         // Pairing request before, continue
1409                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK){
1410                             sm_connection->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
1411                             break;
1412                         }
1413                         // send security request if requested
1414                         bool trigger_security_request = sm_connection->sm_pairing_requested || sm_slave_request_security;
1415                         sm_connection->sm_pairing_requested = false;
1416                         if (trigger_security_request){
1417                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1418                             sm_pairing_started(sm_connection);
1419                         }
1420                         break;
1421 #endif
1422                     }
1423 #ifdef ENABLE_LE_CENTRAL
1424                     if ((sm_connection->sm_pairing_requested == false) && (sm_connection->sm_security_request_received == false)) break;
1425                     sm_connection->sm_security_request_received = false;
1426                     sm_connection->sm_pairing_requested = false;
1427                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1428 #endif
1429                     break;
1430 
1431                 default:
1432                     btstack_assert(false);
1433                     break;
1434             }
1435             break;
1436         default:
1437             break;
1438     }
1439 
1440     switch (event){
1441         case ADDRESS_RESOLUTION_SUCCEEDED:
1442             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1443             break;
1444         case ADDRESS_RESOLUTION_FAILED:
1445             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1446             break;
1447         default:
1448             btstack_assert(false);
1449             break;
1450     }
1451 }
1452 
1453 static void sm_store_bonding_information(sm_connection_t * sm_conn){
1454     int le_db_index = -1;
1455 
1456     // lookup device based on IRK
1457     if ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
1458         int i;
1459         for (i=0; i < le_device_db_max_count(); i++){
1460             sm_key_t irk;
1461             bd_addr_t address;
1462             int address_type = BD_ADDR_TYPE_UNKNOWN;
1463             le_device_db_info(i, &address_type, address, irk);
1464             // skip unused entries
1465             if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1466             // compare Identity Address
1467             if (memcmp(address, setup->sm_peer_address, 6) != 0) continue;
1468             // compare Identity Resolving Key
1469             if (memcmp(irk, setup->sm_peer_irk, 16) != 0) continue;
1470 
1471             log_info("sm: device found for IRK, updating");
1472             le_db_index = i;
1473             break;
1474         }
1475     } else {
1476         // assert IRK is set to zero
1477         memset(setup->sm_peer_irk, 0, 16);
1478     }
1479 
1480     // if not found, lookup via public address if possible
1481     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1482     if ((le_db_index < 0) && (setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC)){
1483         int i;
1484         for (i=0; i < le_device_db_max_count(); i++){
1485             bd_addr_t address;
1486             int address_type = BD_ADDR_TYPE_UNKNOWN;
1487             le_device_db_info(i, &address_type, address, NULL);
1488             // skip unused entries
1489             if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1490             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1491             if ((address_type == BD_ADDR_TYPE_LE_PUBLIC) && (memcmp(address, setup->sm_peer_address, 6) == 0)){
1492                 log_info("sm: device found for public address, updating");
1493                 le_db_index = i;
1494                 break;
1495             }
1496         }
1497     }
1498 
1499     // if not found, add to db
1500     bool new_to_le_device_db = false;
1501     if (le_db_index < 0) {
1502         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1503         new_to_le_device_db = true;
1504     }
1505 
1506     if (le_db_index >= 0){
1507 
1508 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1509         if (!new_to_le_device_db){
1510             hci_remove_le_device_db_entry_from_resolving_list(le_db_index);
1511         }
1512         hci_load_le_device_db_entry_into_resolving_list(le_db_index);
1513 #else
1514         UNUSED(new_to_le_device_db);
1515 #endif
1516 
1517         sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index);
1518         sm_conn->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1519         sm_conn->sm_le_db_index = le_db_index;
1520 
1521 #ifdef ENABLE_LE_SIGNED_WRITE
1522         // store local CSRK
1523         setup->sm_le_device_index = le_db_index;
1524         if ((setup->sm_key_distribution_sent_set) & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1525             log_info("sm: store local CSRK");
1526             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1527             le_device_db_local_counter_set(le_db_index, 0);
1528         }
1529 
1530         // store remote CSRK
1531         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1532             log_info("sm: store remote CSRK");
1533             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1534             le_device_db_remote_counter_set(le_db_index, 0);
1535         }
1536 #endif
1537         // store encryption information for secure connections: LTK generated by ECDH
1538         if (setup->sm_use_secure_connections){
1539             log_info("sm: store SC LTK (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1540             uint8_t zero_rand[8];
1541             memset(zero_rand, 0, 8);
1542             le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size,
1543                                         sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 1);
1544         }
1545 
1546         // store encryption information for legacy pairing: peer LTK, EDIV, RAND
1547         else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION)
1548         && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){
1549             log_info("sm: set encryption information (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1550             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1551                                         sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 0);
1552 
1553         }
1554     }
1555 }
1556 
1557 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
1558     sm_conn->sm_pairing_failed_reason = reason;
1559     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1560 }
1561 
1562 static int sm_le_device_db_index_lookup(bd_addr_type_t address_type, bd_addr_t address){
1563     int i;
1564     for (i=0; i < le_device_db_max_count(); i++){
1565         bd_addr_t db_address;
1566         int db_address_type = BD_ADDR_TYPE_UNKNOWN;
1567         le_device_db_info(i, &db_address_type, db_address, NULL);
1568         // skip unused entries
1569         if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1570         if ((address_type == (unsigned int)db_address_type) && (memcmp(address, db_address, 6) == 0)){
1571             return i;
1572         }
1573     }
1574     return -1;
1575 }
1576 
1577 static void sm_remove_le_device_db_entry(uint16_t i) {
1578     le_device_db_remove(i);
1579 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1580     // to remove an entry from the resolving list requires its identity address, which was already deleted
1581     // fully reload resolving list instead
1582     gap_load_resolving_list_from_le_device_db();
1583 #endif
1584 }
1585 
1586 static uint8_t sm_key_distribution_validate_received(sm_connection_t * sm_conn){
1587     // if identity is provided, abort if we have bonding with same address but different irk
1588     if ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
1589         int index = sm_le_device_db_index_lookup(BD_ADDR_TYPE_LE_PUBLIC, setup->sm_peer_address);
1590         if (index >= 0){
1591             sm_key_t irk;
1592             le_device_db_info(index, NULL, NULL, irk);
1593             if (memcmp(irk, setup->sm_peer_irk, 16) != 0){
1594                 // IRK doesn't match, delete bonding information
1595                 log_info("New IRK for %s (type %u) does not match stored IRK -> delete bonding information", bd_addr_to_str(sm_conn->sm_peer_address), sm_conn->sm_peer_addr_type);
1596                 sm_remove_le_device_db_entry(index);
1597             }
1598         }
1599     }
1600     return 0;
1601 }
1602 
1603 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1604 
1605     // abort pairing if received keys are not valid
1606     uint8_t reason = sm_key_distribution_validate_received(sm_conn);
1607     if (reason != 0){
1608         sm_pairing_error(sm_conn, reason);
1609         return;
1610     }
1611 
1612     // only store pairing information if both sides are bondable, i.e., the bonadble flag is set
1613     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq)
1614                             & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
1615                             & SM_AUTHREQ_BONDING ) != 0u;
1616 
1617     if (bonding_enabled){
1618         sm_store_bonding_information(sm_conn);
1619     } else {
1620         log_info("Ignoring received keys, bonding not enabled");
1621     }
1622 }
1623 
1624 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
1625     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
1626 }
1627 
1628 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1629 
1630 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn);
1631 static bool sm_passkey_used(stk_generation_method_t method);
1632 static bool sm_just_works_or_numeric_comparison(stk_generation_method_t method);
1633 
1634 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){
1635     if (setup->sm_stk_generation_method == OOB){
1636         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1637     } else {
1638         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_w2_cmac_for_confirmation, (void *)(uintptr_t) sm_conn->sm_handle);
1639     }
1640 }
1641 
1642 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
1643     if (IS_RESPONDER(sm_conn->sm_role)){
1644         // Responder
1645         if (setup->sm_stk_generation_method == OOB){
1646             // generate Nb
1647             log_info("Generate Nb");
1648             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void *)(uintptr_t) sm_conn->sm_handle);
1649         } else {
1650             sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
1651         }
1652     } else {
1653         // Initiator role
1654         switch (setup->sm_stk_generation_method){
1655             case JUST_WORKS:
1656                 sm_sc_prepare_dhkey_check(sm_conn);
1657                 break;
1658 
1659             case NUMERIC_COMPARISON:
1660                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2;
1661                 break;
1662             case PK_INIT_INPUT:
1663             case PK_RESP_INPUT:
1664             case PK_BOTH_INPUT:
1665                 if (setup->sm_passkey_bit < 20u) {
1666                     sm_sc_start_calculating_local_confirm(sm_conn);
1667                 } else {
1668                     sm_sc_prepare_dhkey_check(sm_conn);
1669                 }
1670                 break;
1671             case OOB:
1672                 sm_sc_prepare_dhkey_check(sm_conn);
1673                 break;
1674             default:
1675                 btstack_assert(false);
1676                 break;
1677         }
1678     }
1679 }
1680 
1681 static void sm_sc_cmac_done(uint8_t * hash){
1682     log_info("sm_sc_cmac_done: ");
1683     log_info_hexdump(hash, 16);
1684 
1685     if (sm_sc_oob_state == SM_SC_OOB_W4_CONFIRM){
1686         sm_sc_oob_state = SM_SC_OOB_IDLE;
1687         (*sm_sc_oob_callback)(hash, sm_sc_oob_random);
1688         return;
1689     }
1690 
1691     sm_connection_t * sm_conn = sm_cmac_connection;
1692     sm_cmac_connection = NULL;
1693 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1694     link_key_type_t link_key_type;
1695 #endif
1696 
1697     switch (sm_conn->sm_engine_state){
1698         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1699             (void)memcpy(setup->sm_local_confirm, hash, 16);
1700             sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1701             break;
1702         case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
1703             // check
1704             if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
1705                 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
1706                 break;
1707             }
1708             sm_sc_state_after_receiving_random(sm_conn);
1709             break;
1710         case SM_SC_W4_CALCULATE_G2: {
1711             uint32_t vab = big_endian_read_32(hash, 12) % 1000000;
1712             big_endian_store_32(setup->sm_tk, 12, vab);
1713             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
1714             sm_trigger_user_response(sm_conn);
1715             break;
1716         }
1717         case SM_SC_W4_CALCULATE_F5_SALT:
1718             (void)memcpy(setup->sm_t, hash, 16);
1719             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY;
1720             break;
1721         case SM_SC_W4_CALCULATE_F5_MACKEY:
1722             (void)memcpy(setup->sm_mackey, hash, 16);
1723             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK;
1724             break;
1725         case SM_SC_W4_CALCULATE_F5_LTK:
1726             // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk
1727             // Errata Service Release to the Bluetooth Specification: ESR09
1728             //   E6405 – Cross transport key derivation from a key of size less than 128 bits
1729             //   Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
1730             (void)memcpy(setup->sm_ltk, hash, 16);
1731             (void)memcpy(setup->sm_local_ltk, hash, 16);
1732             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1733             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
1734             break;
1735         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
1736             (void)memcpy(setup->sm_local_dhkey_check, hash, 16);
1737             if (IS_RESPONDER(sm_conn->sm_role)){
1738                 // responder
1739                 if ((setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED) != 0u){
1740                     sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
1741                 } else {
1742                     sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1743                 }
1744             } else {
1745                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1746             }
1747             break;
1748         case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
1749             if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){
1750                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1751                 break;
1752             }
1753             if (IS_RESPONDER(sm_conn->sm_role)){
1754                 // responder
1755                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1756             } else {
1757                 // initiator
1758                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
1759             }
1760             break;
1761 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1762         case SM_SC_W4_CALCULATE_ILK:
1763             (void)memcpy(setup->sm_t, hash, 16);
1764             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY;
1765             break;
1766         case SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY:
1767             reverse_128(hash, setup->sm_t);
1768             link_key_type = sm_conn->sm_connection_authenticated ?
1769                 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1770             log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type);
1771 			gap_store_link_key_for_bd_addr(setup->sm_peer_address, setup->sm_t, link_key_type);
1772             if (IS_RESPONDER(sm_conn->sm_role)){
1773                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
1774             } else {
1775                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1776             }
1777             sm_pairing_complete(sm_conn, ERROR_CODE_SUCCESS, 0);
1778             sm_done_for_handle(sm_conn->sm_handle);
1779             break;
1780         case SM_BR_EDR_W4_CALCULATE_ILK:
1781             (void)memcpy(setup->sm_t, hash, 16);
1782             sm_conn->sm_engine_state = SM_BR_EDR_W2_CALCULATE_LE_LTK;
1783             break;
1784         case SM_BR_EDR_W4_CALCULATE_LE_LTK:
1785             log_info("Derived LE LTK from BR/EDR Link Key");
1786             log_info_key("Link Key", hash);
1787             (void)memcpy(setup->sm_ltk, hash, 16);
1788             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1789             sm_conn->sm_connection_authenticated = setup->sm_link_key_type == AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1790             sm_store_bonding_information(sm_conn);
1791             sm_done_for_handle(sm_conn->sm_handle);
1792             break;
1793 #endif
1794         default:
1795             log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state);
1796             break;
1797     }
1798     sm_trigger_run();
1799 }
1800 
1801 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1802     const uint16_t message_len = 65;
1803     sm_cmac_connection = sm_conn;
1804     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1805     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1806     sm_cmac_sc_buffer[64] = z;
1807     log_info("f4 key");
1808     log_info_hexdump(x, 16);
1809     log_info("f4 message");
1810     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1811     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1812 }
1813 
1814 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
1815 static const uint8_t f5_length[] = { 0x01, 0x00};
1816 
1817 static void f5_calculate_salt(sm_connection_t * sm_conn){
1818 
1819     static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
1820 
1821     log_info("f5_calculate_salt");
1822     // calculate salt for f5
1823     const uint16_t message_len = 32;
1824     sm_cmac_connection = sm_conn;
1825     (void)memcpy(sm_cmac_sc_buffer, setup->sm_dhkey, message_len);
1826     sm_cmac_message_start(f5_salt, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1827 }
1828 
1829 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
1830     const uint16_t message_len = 53;
1831     sm_cmac_connection = sm_conn;
1832 
1833     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
1834     sm_cmac_sc_buffer[0] = 0;
1835     (void)memcpy(sm_cmac_sc_buffer + 01, f5_key_id, 4);
1836     (void)memcpy(sm_cmac_sc_buffer + 05, n1, 16);
1837     (void)memcpy(sm_cmac_sc_buffer + 21, n2, 16);
1838     (void)memcpy(sm_cmac_sc_buffer + 37, a1, 7);
1839     (void)memcpy(sm_cmac_sc_buffer + 44, a2, 7);
1840     (void)memcpy(sm_cmac_sc_buffer + 51, f5_length, 2);
1841     log_info("f5 key");
1842     log_info_hexdump(t, 16);
1843     log_info("f5 message for MacKey");
1844     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1845     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1846 }
1847 
1848 static void f5_calculate_mackey(sm_connection_t * sm_conn){
1849     sm_key56_t bd_addr_master, bd_addr_slave;
1850     bd_addr_master[0] =  setup->sm_m_addr_type;
1851     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1852     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1853     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1854     if (IS_RESPONDER(sm_conn->sm_role)){
1855         // responder
1856         f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1857     } else {
1858         // initiator
1859         f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1860     }
1861 }
1862 
1863 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused
1864 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){
1865     const uint16_t message_len = 53;
1866     sm_cmac_connection = sm_conn;
1867     sm_cmac_sc_buffer[0] = 1;
1868     // 1..52 setup before
1869     log_info("f5 key");
1870     log_info_hexdump(t, 16);
1871     log_info("f5 message for LTK");
1872     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1873     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1874 }
1875 
1876 static void f5_calculate_ltk(sm_connection_t * sm_conn){
1877     f5_ltk(sm_conn, setup->sm_t);
1878 }
1879 
1880 static void f6_setup(const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
1881     (void)memcpy(sm_cmac_sc_buffer, n1, 16);
1882     (void)memcpy(sm_cmac_sc_buffer + 16, n2, 16);
1883     (void)memcpy(sm_cmac_sc_buffer + 32, r, 16);
1884     (void)memcpy(sm_cmac_sc_buffer + 48, io_cap, 3);
1885     (void)memcpy(sm_cmac_sc_buffer + 51, a1, 7);
1886     (void)memcpy(sm_cmac_sc_buffer + 58, a2, 7);
1887 }
1888 
1889 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w){
1890     const uint16_t message_len = 65;
1891     sm_cmac_connection = sm_conn;
1892     log_info("f6 key");
1893     log_info_hexdump(w, 16);
1894     log_info("f6 message");
1895     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1896     sm_cmac_message_start(w, 65, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1897 }
1898 
1899 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
1900 // - U is 256 bits
1901 // - V is 256 bits
1902 // - X is 128 bits
1903 // - Y is 128 bits
1904 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
1905     const uint16_t message_len = 80;
1906     sm_cmac_connection = sm_conn;
1907     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1908     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1909     (void)memcpy(sm_cmac_sc_buffer + 64, y, 16);
1910     log_info("g2 key");
1911     log_info_hexdump(x, 16);
1912     log_info("g2 message");
1913     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1914     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1915 }
1916 
1917 static void g2_calculate(sm_connection_t * sm_conn) {
1918     // calc Va if numeric comparison
1919     if (IS_RESPONDER(sm_conn->sm_role)){
1920         // responder
1921         g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);;
1922     } else {
1923         // initiator
1924         g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce);
1925     }
1926 }
1927 
1928 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1929     uint8_t z = 0;
1930     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1931         // some form of passkey
1932         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1933         z = 0x80u | ((pk >> setup->sm_passkey_bit) & 1u);
1934         setup->sm_passkey_bit++;
1935     }
1936     f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z);
1937 }
1938 
1939 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
1940     // OOB
1941     if (setup->sm_stk_generation_method == OOB){
1942         if (IS_RESPONDER(sm_conn->sm_role)){
1943             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_ra, 0);
1944         } else {
1945             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_rb, 0);
1946         }
1947         return;
1948     }
1949 
1950     uint8_t z = 0;
1951     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1952         // some form of passkey
1953         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1954         // sm_passkey_bit was increased before sending confirm value
1955         z = 0x80u | ((pk >> (setup->sm_passkey_bit-1u)) & 1u);
1956     }
1957     f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z);
1958 }
1959 
1960 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){
1961     log_info("sm_sc_prepare_dhkey_check, DHKEY calculated %u", (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) != 0 ? 1 : 0);
1962 
1963     if ((setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) != 0u){
1964         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1965     } else {
1966         sm_conn->sm_engine_state = SM_SC_W4_CALCULATE_DHKEY;
1967     }
1968 }
1969 
1970 static void sm_sc_dhkey_calculated(void * arg){
1971     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
1972     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
1973     if (sm_conn == NULL) return;
1974 
1975     // check for invalid public key detected by Controller
1976     if (sm_is_ff(setup->sm_dhkey, 32)){
1977         log_info("sm: peer public key invalid");
1978         sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1979         return;
1980     }
1981 
1982     log_info("dhkey");
1983     log_info_hexdump(&setup->sm_dhkey[0], 32);
1984     setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED;
1985     // trigger next step
1986     if (sm_conn->sm_engine_state == SM_SC_W4_CALCULATE_DHKEY){
1987         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1988     }
1989     sm_trigger_run();
1990 }
1991 
1992 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){
1993     // calculate DHKCheck
1994     sm_key56_t bd_addr_master, bd_addr_slave;
1995     bd_addr_master[0] =  setup->sm_m_addr_type;
1996     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1997     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1998     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1999     uint8_t iocap_a[3];
2000     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2001     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2002     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2003     uint8_t iocap_b[3];
2004     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2005     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2006     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2007     if (IS_RESPONDER(sm_conn->sm_role)){
2008         // responder
2009         f6_setup(setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2010         f6_engine(sm_conn, setup->sm_mackey);
2011     } else {
2012         // initiator
2013         f6_setup( setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2014         f6_engine(sm_conn, setup->sm_mackey);
2015     }
2016 }
2017 
2018 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){
2019     // validate E = f6()
2020     sm_key56_t bd_addr_master, bd_addr_slave;
2021     bd_addr_master[0] =  setup->sm_m_addr_type;
2022     bd_addr_slave[0]  =  setup->sm_s_addr_type;
2023     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
2024     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
2025 
2026     uint8_t iocap_a[3];
2027     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2028     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2029     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2030     uint8_t iocap_b[3];
2031     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2032     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2033     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2034     if (IS_RESPONDER(sm_conn->sm_role)){
2035         // responder
2036         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2037         f6_engine(sm_conn, setup->sm_mackey);
2038     } else {
2039         // initiator
2040         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2041         f6_engine(sm_conn, setup->sm_mackey);
2042     }
2043 }
2044 
2045 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2046 
2047 //
2048 // Link Key Conversion Function h6
2049 //
2050 // h6(W, keyID) = AES-CMAC_W(keyID)
2051 // - W is 128 bits
2052 // - keyID is 32 bits
2053 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){
2054     const uint16_t message_len = 4;
2055     sm_cmac_connection = sm_conn;
2056     big_endian_store_32(sm_cmac_sc_buffer, 0, key_id);
2057     log_info("h6 key");
2058     log_info_hexdump(w, 16);
2059     log_info("h6 message");
2060     log_info_hexdump(sm_cmac_sc_buffer, message_len);
2061     sm_cmac_message_start(w, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
2062 }
2063 //
2064 // Link Key Conversion Function h7
2065 //
2066 // h7(SALT, W) = AES-CMAC_SALT(W)
2067 // - SALT is 128 bits
2068 // - W    is 128 bits
2069 static void h7_engine(sm_connection_t * sm_conn, const sm_key_t salt, const sm_key_t w) {
2070 	const uint16_t message_len = 16;
2071 	sm_cmac_connection = sm_conn;
2072 	log_info("h7 key");
2073 	log_info_hexdump(salt, 16);
2074 	log_info("h7 message");
2075 	log_info_hexdump(w, 16);
2076 	sm_cmac_message_start(salt, message_len, w, &sm_sc_cmac_done);
2077 }
2078 
2079 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated)
2080 // Errata Service Release to the Bluetooth Specification: ESR09
2081 //   E6405 – Cross transport key derivation from a key of size less than 128 bits
2082 //   "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
2083 
2084 static void h6_calculate_ilk_from_le_ltk(sm_connection_t * sm_conn){
2085     h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031);    // "tmp1"
2086 }
2087 
2088 static void h6_calculate_ilk_from_br_edr(sm_connection_t * sm_conn){
2089     h6_engine(sm_conn, setup->sm_link_key, 0x746D7032);    // "tmp2"
2090 }
2091 
2092 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){
2093     h6_engine(sm_conn, setup->sm_t, 0x6c656272);    // "lebr"
2094 }
2095 
2096 static void h6_calculate_le_ltk(sm_connection_t * sm_conn){
2097     h6_engine(sm_conn, setup->sm_t, 0x62726C65);    // "brle"
2098 }
2099 
2100 static void h7_calculate_ilk_from_le_ltk(sm_connection_t * sm_conn){
2101 	const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x31};  // "tmp1"
2102 	h7_engine(sm_conn, salt, setup->sm_local_ltk);
2103 }
2104 
2105 static void h7_calculate_ilk_from_br_edr(sm_connection_t * sm_conn){
2106     const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x32};  // "tmp2"
2107     h7_engine(sm_conn, salt, setup->sm_link_key);
2108 }
2109 
2110 static void sm_ctkd_fetch_br_edr_link_key(sm_connection_t * sm_conn){
2111     hci_connection_t * hci_connection = hci_connection_for_handle(sm_conn->sm_handle);
2112     btstack_assert(hci_connection != NULL);
2113     reverse_128(hci_connection->link_key, setup->sm_link_key);
2114     setup->sm_link_key_type =  hci_connection->link_key_type;
2115 }
2116 
2117 static void sm_ctkd_start_from_br_edr(sm_connection_t * sm_conn){
2118     // only derive LTK if EncKey is set by both
2119     bool derive_ltk = (sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres) &
2120                               sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres) & SM_KEYDIST_ENC_KEY) != 0;
2121     if (derive_ltk){
2122         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2123         sm_conn->sm_engine_state = use_h7 ? SM_BR_EDR_W2_CALCULATE_ILK_USING_H7 : SM_BR_EDR_W2_CALCULATE_ILK_USING_H6;
2124     } else {
2125         sm_done_for_handle(sm_conn->sm_handle);
2126     }
2127 }
2128 
2129 #endif
2130 
2131 #endif
2132 
2133 // key management legacy connections:
2134 // - potentially two different LTKs based on direction. each device stores LTK provided by peer
2135 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect)
2136 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder
2137 // - responder  reconnects: responder uses LTK receveived from master
2138 
2139 // key management secure connections:
2140 // - both devices store same LTK from ECDH key exchange.
2141 
2142 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL)
2143 static void sm_load_security_info(sm_connection_t * sm_connection){
2144     int encryption_key_size;
2145     int authenticated;
2146     int authorized;
2147     int secure_connection;
2148 
2149     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
2150     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
2151                                 &encryption_key_size, &authenticated, &authorized, &secure_connection);
2152     log_info("db index %u, key size %u, authenticated %u, authorized %u, secure connetion %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized, secure_connection);
2153     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
2154     sm_connection->sm_connection_authenticated = authenticated;
2155     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
2156     sm_connection->sm_connection_sc = secure_connection != 0;
2157 }
2158 #endif
2159 
2160 #ifdef ENABLE_LE_PERIPHERAL
2161 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){
2162     (void)memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
2163     setup->sm_local_ediv = sm_connection->sm_local_ediv;
2164     // re-establish used key encryption size
2165     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2166     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7u] & 0x0fu) + 1u;
2167     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
2168     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7u] & 0x10u) >> 4u;
2169     // Legacy paring -> not SC
2170     sm_connection->sm_connection_sc = false;
2171     log_info("sm: received ltk request with key size %u, authenticated %u",
2172             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
2173 }
2174 #endif
2175 
2176 // distributed key generation
2177 static bool sm_run_dpkg(void){
2178     switch (dkg_state){
2179         case DKG_CALC_IRK:
2180             // already busy?
2181             if (sm_aes128_state == SM_AES128_IDLE) {
2182                 log_info("DKG_CALC_IRK started");
2183                 // IRK = d1(IR, 1, 0)
2184                 sm_d1_d_prime(1, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2185                 sm_aes128_state = SM_AES128_ACTIVE;
2186                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_irk, sm_handle_encryption_result_dkg_irk, NULL);
2187                 return true;
2188             }
2189             break;
2190         case DKG_CALC_DHK:
2191             // already busy?
2192             if (sm_aes128_state == SM_AES128_IDLE) {
2193                 log_info("DKG_CALC_DHK started");
2194                 // DHK = d1(IR, 3, 0)
2195                 sm_d1_d_prime(3, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2196                 sm_aes128_state = SM_AES128_ACTIVE;
2197                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_dhk, sm_handle_encryption_result_dkg_dhk, NULL);
2198                 return true;
2199             }
2200             break;
2201         default:
2202             break;
2203     }
2204     return false;
2205 }
2206 
2207 // random address updates
2208 static bool sm_run_rau(void){
2209     switch (rau_state){
2210         case RAU_GET_RANDOM:
2211             rau_state = RAU_W4_RANDOM;
2212             btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_address, 6, &sm_handle_random_result_rau, NULL);
2213             return true;
2214         case RAU_GET_ENC:
2215             // already busy?
2216             if (sm_aes128_state == SM_AES128_IDLE) {
2217                 sm_ah_r_prime(sm_random_address, sm_aes128_plaintext);
2218                 sm_aes128_state = SM_AES128_ACTIVE;
2219                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_irk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_rau, NULL);
2220                 return true;
2221             }
2222             break;
2223         default:
2224             break;
2225     }
2226     return false;
2227 }
2228 
2229 // device lookup with IRK
2230 static bool sm_run_irk_lookup(void){
2231     btstack_linked_list_iterator_t it;
2232 
2233     // -- if IRK lookup ready, find connection that require csrk lookup
2234     if (sm_address_resolution_idle()){
2235         hci_connections_get_iterator(&it);
2236         while(btstack_linked_list_iterator_has_next(&it)){
2237             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2238             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
2239             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
2240                 // and start lookup
2241                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
2242                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
2243                 break;
2244             }
2245         }
2246     }
2247 
2248     // -- if csrk lookup ready, resolved addresses for received addresses
2249     if (sm_address_resolution_idle()) {
2250         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
2251             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
2252             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
2253             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
2254             btstack_memory_sm_lookup_entry_free(entry);
2255         }
2256     }
2257 
2258     // -- Continue with device lookup by public or resolvable private address
2259     if (!sm_address_resolution_idle()){
2260         bool started_aes128 = false;
2261         while (sm_address_resolution_test < le_device_db_max_count()){
2262             int addr_type = BD_ADDR_TYPE_UNKNOWN;
2263             bd_addr_t addr;
2264             sm_key_t irk;
2265             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
2266 
2267             // skip unused entries
2268             if (addr_type == BD_ADDR_TYPE_UNKNOWN){
2269                 sm_address_resolution_test++;
2270                 continue;
2271             }
2272 
2273             log_info("LE Device Lookup: device %u of %u - type %u, %s", sm_address_resolution_test,
2274                      le_device_db_max_count(), addr_type, bd_addr_to_str(addr));
2275 
2276             // map resolved identity addresses to regular addresses
2277             int regular_addr_type = sm_address_resolution_addr_type & 1;
2278             if ((regular_addr_type == addr_type) && (memcmp(addr, sm_address_resolution_address, 6) == 0)){
2279                 log_info("LE Device Lookup: found by { addr_type, address} ");
2280                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
2281                 break;
2282             }
2283 
2284             // if connection type is not random (i.e. public or resolved identity), it must be a different entry
2285             if (sm_address_resolution_addr_type != BD_ADDR_TYPE_LE_RANDOM){
2286                 sm_address_resolution_test++;
2287                 continue;
2288             }
2289 
2290             // skip AH if no IRK
2291             if (sm_is_null_key(irk)){
2292                 sm_address_resolution_test++;
2293                 continue;
2294             }
2295 
2296             if (sm_aes128_state == SM_AES128_ACTIVE) break;
2297 
2298             log_info("LE Device Lookup: calculate AH");
2299             log_info_key("IRK", irk);
2300 
2301             (void)memcpy(sm_aes128_key, irk, 16);
2302             sm_ah_r_prime(sm_address_resolution_address, sm_aes128_plaintext);
2303             sm_aes128_state = SM_AES128_ACTIVE;
2304             btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_aes128_key, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_address_resolution, NULL);
2305             started_aes128 = true;
2306             break;
2307         }
2308 
2309         if (started_aes128){
2310             return true;
2311         }
2312 
2313         if (sm_address_resolution_test >= le_device_db_max_count()){
2314             log_info("LE Device Lookup: not found");
2315             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
2316         }
2317     }
2318     return false;
2319 }
2320 
2321 // SC OOB
2322 static bool sm_run_oob(void){
2323 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2324     switch (sm_sc_oob_state){
2325         case SM_SC_OOB_W2_CALC_CONFIRM:
2326             if (!sm_cmac_ready()) break;
2327             sm_sc_oob_state = SM_SC_OOB_W4_CONFIRM;
2328             f4_engine(NULL, ec_q, ec_q, sm_sc_oob_random, 0);
2329             return true;
2330         default:
2331             break;
2332     }
2333 #endif
2334     return false;
2335 }
2336 
2337 static void sm_send_connectionless(sm_connection_t * sm_connection, const uint8_t * buffer, uint16_t size){
2338     l2cap_send_connectionless(sm_connection->sm_handle, sm_connection->sm_cid, (uint8_t*) buffer, size);
2339 }
2340 
2341 // handle basic actions that don't requires the full context
2342 static bool sm_run_basic(void){
2343     btstack_linked_list_iterator_t it;
2344     hci_connections_get_iterator(&it);
2345     while(btstack_linked_list_iterator_has_next(&it)){
2346         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2347         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2348         switch(sm_connection->sm_engine_state){
2349 
2350             // general
2351             case SM_GENERAL_SEND_PAIRING_FAILED: {
2352                 uint8_t buffer[2];
2353                 buffer[0] = SM_CODE_PAIRING_FAILED;
2354                 buffer[1] = sm_connection->sm_pairing_failed_reason;
2355                 sm_connection->sm_engine_state = sm_connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2356                 sm_send_connectionless(sm_connection, (uint8_t*) buffer, sizeof(buffer));
2357                 sm_pairing_complete(sm_connection, ERROR_CODE_AUTHENTICATION_FAILURE, sm_connection->sm_pairing_failed_reason);
2358                 sm_done_for_handle(sm_connection->sm_handle);
2359                 break;
2360             }
2361 
2362             // responder side
2363             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
2364                 sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2365                 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2366                 return true;
2367 
2368 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2369             case SM_SC_RECEIVED_LTK_REQUEST:
2370                 switch (sm_connection->sm_irk_lookup_state){
2371                     case IRK_LOOKUP_FAILED:
2372                         log_info("LTK Request: IRK Lookup Failed)");
2373                         sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2374                         hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2375                         return true;
2376                     default:
2377                         break;
2378                 }
2379                 break;
2380 #endif
2381             default:
2382                 break;
2383         }
2384     }
2385     return false;
2386 }
2387 
2388 static void sm_run_activate_connection(void){
2389     // Find connections that requires setup context and make active if no other is locked
2390     btstack_linked_list_iterator_t it;
2391     hci_connections_get_iterator(&it);
2392     while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
2393         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2394         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2395         // - if no connection locked and we're ready/waiting for setup context, fetch it and start
2396         bool done = true;
2397         int err;
2398         UNUSED(err);
2399 
2400 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2401         // assert ec key is ready
2402         if (   (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED)
2403             || (sm_connection->sm_engine_state == SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST)
2404 			|| (sm_connection->sm_engine_state == SM_RESPONDER_SEND_SECURITY_REQUEST)){
2405             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
2406                 sm_ec_generate_new_key();
2407             }
2408             if (ec_key_generation_state != EC_KEY_GENERATION_DONE){
2409                 continue;
2410             }
2411         }
2412 #endif
2413 
2414         switch (sm_connection->sm_engine_state) {
2415 #ifdef ENABLE_LE_PERIPHERAL
2416             case SM_RESPONDER_SEND_SECURITY_REQUEST:
2417             case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2418             case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
2419 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2420             case SM_SC_RECEIVED_LTK_REQUEST:
2421 #endif
2422 #endif
2423 #ifdef ENABLE_LE_CENTRAL
2424             case SM_INITIATOR_PH4_HAS_LTK:
2425 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2426 #endif
2427 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2428             case SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED:
2429             case SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST:
2430 #endif
2431 				// just lock context
2432 				break;
2433             default:
2434                 done = false;
2435                 break;
2436         }
2437         if (done){
2438             sm_active_connection_handle = sm_connection->sm_handle;
2439             log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state);
2440         }
2441     }
2442 }
2443 
2444 static void sm_run_send_keypress_notification(sm_connection_t * connection){
2445     int i;
2446     uint8_t flags       = setup->sm_keypress_notification & 0x1fu;
2447     uint8_t num_actions = setup->sm_keypress_notification >> 5;
2448     uint8_t action = 0;
2449     for (i=SM_KEYPRESS_PASSKEY_ENTRY_STARTED;i<=SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED;i++){
2450         if ((flags & (1u<<i)) != 0u){
2451             bool clear_flag = true;
2452             switch (i){
2453                 case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
2454                 case SM_KEYPRESS_PASSKEY_CLEARED:
2455                 case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
2456                 default:
2457                     break;
2458                 case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
2459                 case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
2460                     num_actions--;
2461                     clear_flag = num_actions == 0u;
2462                     break;
2463             }
2464             if (clear_flag){
2465                 flags &= ~(1<<i);
2466             }
2467             action = i;
2468             break;
2469         }
2470     }
2471     setup->sm_keypress_notification = (num_actions << 5) | flags;
2472 
2473     // send keypress notification
2474     uint8_t buffer[2];
2475     buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION;
2476     buffer[1] = action;
2477     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2478 
2479     // try
2480     l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, connection->sm_cid);
2481 }
2482 
2483 static void sm_run_distribute_keys(sm_connection_t * connection){
2484     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION) != 0u){
2485         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2486         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2487         uint8_t buffer[17];
2488         buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2489         reverse_128(setup->sm_ltk, &buffer[1]);
2490         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2491         sm_timeout_reset(connection);
2492         return;
2493     }
2494     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION) != 0u){
2495         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2496         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2497         uint8_t buffer[11];
2498         buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2499         little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2500         reverse_64(setup->sm_local_rand, &buffer[3]);
2501         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2502         sm_timeout_reset(connection);
2503         return;
2504     }
2505     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
2506         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2507         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2508         uint8_t buffer[17];
2509         buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2510         reverse_128(sm_persistent_irk, &buffer[1]);
2511         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2512         sm_timeout_reset(connection);
2513         return;
2514     }
2515     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0u){
2516         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2517         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2518         bd_addr_t local_address;
2519         uint8_t buffer[8];
2520         buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2521         switch (gap_random_address_get_mode()){
2522             case GAP_RANDOM_ADDRESS_TYPE_OFF:
2523             case GAP_RANDOM_ADDRESS_TYPE_STATIC:
2524                 // public or static random
2525                 gap_le_get_own_address(&buffer[1], local_address);
2526                 break;
2527             case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2528             case GAP_RANDOM_ADDRESS_RESOLVABLE:
2529                 // fallback to public
2530                 gap_local_bd_addr(local_address);
2531                 buffer[1] = 0;
2532                 break;
2533             default:
2534                 btstack_assert(false);
2535                 break;
2536         }
2537         reverse_bd_addr(local_address, &buffer[2]);
2538         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2539         sm_timeout_reset(connection);
2540         return;
2541     }
2542     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION) != 0u){
2543         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2544         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2545 
2546 #ifdef ENABLE_LE_SIGNED_WRITE
2547         // hack to reproduce test runs
2548                     if (test_use_fixed_local_csrk){
2549                         memset(setup->sm_local_csrk, 0xcc, 16);
2550                     }
2551 
2552                     // store local CSRK
2553                     if (setup->sm_le_device_index >= 0){
2554                         log_info("sm: store local CSRK");
2555                         le_device_db_local_csrk_set(setup->sm_le_device_index, setup->sm_local_csrk);
2556                         le_device_db_local_counter_set(setup->sm_le_device_index, 0);
2557                     }
2558 #endif
2559 
2560         uint8_t buffer[17];
2561         buffer[0] = SM_CODE_SIGNING_INFORMATION;
2562         reverse_128(setup->sm_local_csrk, &buffer[1]);
2563         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2564         sm_timeout_reset(connection);
2565         return;
2566     }
2567     btstack_assert(false);
2568 }
2569 
2570 static bool sm_ctkd_from_le(sm_connection_t *sm_connection) {
2571 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2572     // requirements to derive link key from  LE:
2573     // - use secure connections
2574     if (setup->sm_use_secure_connections == 0) return false;
2575     // - bonding needs to be enabled:
2576     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_BONDING ) != 0u;
2577     if (!bonding_enabled) return false;
2578     // - need identity address / public addr
2579     bool have_identity_address_info = ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0) || (setup->sm_peer_addr_type == 0);
2580     if (!have_identity_address_info) return false;
2581     // - there is no stored BR/EDR link key or the derived key has at least the same level of authentication (bail if stored key has higher authentication)
2582     //   this requirement is motivated by BLURtooth paper. The paper recommends to not overwrite keys at all.
2583     //      If SC is authenticated, we consider it safe to overwrite a stored key.
2584     //      If stored link key is not authenticated, it could already be compromised by a MITM attack. Allowing overwrite by unauthenticated derived key does not make it worse.
2585     uint8_t link_key[16];
2586     link_key_type_t link_key_type;
2587     bool have_link_key             = gap_get_link_key_for_bd_addr(setup->sm_peer_address, link_key, &link_key_type);
2588     bool link_key_authenticated    = gap_authenticated_for_link_key_type(link_key_type);
2589     bool derived_key_authenticated = sm_connection->sm_connection_authenticated != 0;
2590     if (have_link_key && link_key_authenticated && !derived_key_authenticated) {
2591         return false;
2592     }
2593     // get started (all of the above are true)
2594     return true;
2595 #else
2596     UNUSED(sm_connection);
2597 	return false;
2598 #endif
2599 }
2600 
2601 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2602 static bool sm_ctkd_from_classic(sm_connection_t * sm_connection){
2603     hci_connection_t * hci_connection = hci_connection_for_handle(sm_connection->sm_handle);
2604     btstack_assert(hci_connection != NULL);
2605     // requirements to derive ltk from BR/EDR:
2606     // - BR/EDR uses secure connections
2607     if (gap_secure_connection_for_link_key_type(hci_connection->link_key_type) == false) return false;
2608     // - there is no stored LTK or the derived key has at least the same level of authentication (bail if LTK is authenticated but Link Key isn't)
2609     bool link_key_authenticated = gap_authenticated_for_link_key_type(hci_connection->link_key_type);
2610     if (link_key_authenticated) return true;
2611     int index = sm_le_device_db_index_lookup(BD_ADDR_TYPE_LE_PUBLIC, hci_connection->address);
2612     if (index >= 0){
2613         int ltk_authenticated;
2614         sm_key_t ltk;
2615         le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, &ltk_authenticated, NULL, NULL);
2616         bool have_ltk = !sm_is_null_key(ltk);
2617         if (have_ltk && ltk_authenticated) return false;
2618     }
2619     return true;
2620 }
2621 #endif
2622 
2623 static void sm_key_distribution_complete_responder(sm_connection_t * connection){
2624     if (sm_ctkd_from_le(connection)){
2625         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2626         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2627     } else {
2628         connection->sm_engine_state = SM_RESPONDER_IDLE;
2629         sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
2630         sm_done_for_handle(connection->sm_handle);
2631     }
2632 }
2633 
2634 static void sm_key_distribution_complete_initiator(sm_connection_t * connection){
2635     if (sm_ctkd_from_le(connection)){
2636         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2637         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2638     } else {
2639         sm_master_pairing_success(connection);
2640     }
2641 }
2642 
2643 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2644 static void sm_run_state_sc_send_confirmation(sm_connection_t *connection) {
2645     uint8_t buffer[17];
2646     buffer[0] = SM_CODE_PAIRING_CONFIRM;
2647     reverse_128(setup->sm_local_confirm, &buffer[1]);
2648     if (IS_RESPONDER(connection->sm_role)){
2649         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2650     } else {
2651         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2652     }
2653     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2654     sm_timeout_reset(connection);
2655 }
2656 
2657 static void sm_run_state_sc_send_pairing_random(sm_connection_t *connection) {
2658     uint8_t buffer[17];
2659     buffer[0] = SM_CODE_PAIRING_RANDOM;
2660     reverse_128(setup->sm_local_nonce, &buffer[1]);
2661     log_info("stk method %u, bit num: %u", setup->sm_stk_generation_method, setup->sm_passkey_bit);
2662     if (sm_passkey_entry(setup->sm_stk_generation_method) && (setup->sm_passkey_bit < 20u)){
2663         log_info("SM_SC_SEND_PAIRING_RANDOM A");
2664         if (IS_RESPONDER(connection->sm_role)){
2665             // responder
2666             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2667         } else {
2668             // initiator
2669             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2670         }
2671     } else {
2672         log_info("SM_SC_SEND_PAIRING_RANDOM B");
2673         if (IS_RESPONDER(connection->sm_role)){
2674             // responder
2675             if (setup->sm_stk_generation_method == NUMERIC_COMPARISON){
2676                 log_info("SM_SC_SEND_PAIRING_RANDOM B1");
2677                 connection->sm_engine_state = SM_SC_W2_CALCULATE_G2;
2678             } else {
2679                 log_info("SM_SC_SEND_PAIRING_RANDOM B2");
2680                 sm_sc_prepare_dhkey_check(connection);
2681             }
2682         } else {
2683             // initiator
2684             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2685         }
2686     }
2687     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2688     sm_timeout_reset(connection);
2689 }
2690 
2691 static void sm_run_state_sc_send_dhkey_check_command(sm_connection_t *connection) {
2692     uint8_t buffer[17];
2693     buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
2694     reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
2695 
2696     if (IS_RESPONDER(connection->sm_role)){
2697         connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
2698     } else {
2699         connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
2700     }
2701 
2702     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2703     sm_timeout_reset(connection);
2704 }
2705 
2706 static void sm_run_state_sc_send_public_key_command(sm_connection_t *connection) {
2707     bool trigger_user_response   = false;
2708     bool trigger_start_calculating_local_confirm = false;
2709     uint8_t buffer[65];
2710     buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
2711     //
2712     reverse_256(&ec_q[0],  &buffer[1]);
2713     reverse_256(&ec_q[32], &buffer[33]);
2714 
2715 #ifdef ENABLE_TESTING_SUPPORT
2716     if (test_pairing_failure == SM_REASON_DHKEY_CHECK_FAILED){
2717             log_info("testing_support: invalidating public key");
2718             // flip single bit of public key coordinate
2719             buffer[1] ^= 1;
2720         }
2721 #endif
2722 
2723     // stk generation method
2724 // passkey entry: notify app to show passkey or to request passkey
2725     switch (setup->sm_stk_generation_method){
2726         case JUST_WORKS:
2727         case NUMERIC_COMPARISON:
2728             if (IS_RESPONDER(connection->sm_role)){
2729                 // responder
2730                 trigger_start_calculating_local_confirm = true;
2731                 connection->sm_engine_state = SM_SC_W4_LOCAL_NONCE;
2732             } else {
2733                 // initiator
2734                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2735             }
2736             break;
2737         case PK_INIT_INPUT:
2738         case PK_RESP_INPUT:
2739         case PK_BOTH_INPUT:
2740             // use random TK for display
2741             (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
2742             (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
2743             setup->sm_passkey_bit = 0;
2744 
2745             if (IS_RESPONDER(connection->sm_role)){
2746                 // responder
2747                 connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2748             } else {
2749                 // initiator
2750                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2751             }
2752             trigger_user_response = true;
2753             break;
2754         case OOB:
2755             if (IS_RESPONDER(connection->sm_role)){
2756                 // responder
2757                 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2758             } else {
2759                 // initiator
2760                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2761             }
2762             break;
2763         default:
2764             btstack_assert(false);
2765             break;
2766     }
2767 
2768     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2769     sm_timeout_reset(connection);
2770 
2771     // trigger user response and calc confirm after sending pdu
2772     if (trigger_user_response){
2773         sm_trigger_user_response(connection);
2774     }
2775     if (trigger_start_calculating_local_confirm){
2776         sm_sc_start_calculating_local_confirm(connection);
2777     }
2778 }
2779 #endif
2780 
2781 static bool sm_run_non_connection_logic(void){
2782     bool done;;
2783 
2784     done = sm_run_dpkg();
2785     if (done) return true;
2786 
2787     done = sm_run_rau();
2788     if (done) return true;
2789 
2790     done = sm_run_irk_lookup();
2791     if (done) return true;
2792 
2793     done = sm_run_oob();
2794     return done;
2795 }
2796 
2797 static void sm_run(void){
2798 
2799     // assert that stack has already bootet
2800     if (hci_get_state() != HCI_STATE_WORKING) return;
2801 
2802     // assert that we can send at least commands
2803     if (!hci_can_send_command_packet_now()) return;
2804 
2805     // pause until IR/ER are ready
2806     if (sm_persistent_keys_random_active) return;
2807 
2808     // non-connection related behaviour
2809     bool done = sm_run_non_connection_logic();
2810     if (done) return;
2811 
2812     // assert that we can send at least commands - cmd might have been sent by crypto engine
2813     if (!hci_can_send_command_packet_now()) return;
2814 
2815     // handle basic actions that don't requires the full context
2816     done = sm_run_basic();
2817     if (done) return;
2818 
2819     //
2820     // active connection handling
2821     // -- use loop to handle next connection if lock on setup context is released
2822 
2823     while (true) {
2824 
2825         sm_run_activate_connection();
2826 
2827         if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return;
2828 
2829         //
2830         // active connection handling
2831         //
2832 
2833         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle);
2834         if (!connection) {
2835             log_info("no connection for handle 0x%04x", sm_active_connection_handle);
2836             return;
2837         }
2838 
2839         // assert that we could send a SM PDU - not needed for all of the following
2840         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, connection->sm_cid)) {
2841             log_info("cannot send now, requesting can send now event");
2842             l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, connection->sm_cid);
2843             return;
2844         }
2845 
2846         // send keypress notifications
2847         if (setup->sm_keypress_notification != 0u){
2848             sm_run_send_keypress_notification(connection);
2849             return;
2850         }
2851 
2852 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2853         // assert that sm cmac engine is ready
2854         if (sm_cmac_ready() == false){
2855             break;
2856         }
2857 #endif
2858 
2859         int key_distribution_flags;
2860         UNUSED(key_distribution_flags);
2861 #ifdef ENABLE_LE_PERIPHERAL
2862         int err;
2863         bool have_ltk;
2864         uint8_t ltk[16];
2865 #endif
2866 
2867         log_info("sm_run: state %u", connection->sm_engine_state);
2868         switch (connection->sm_engine_state){
2869 
2870             // secure connections, initiator + responding states
2871 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2872             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
2873                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
2874                 sm_sc_calculate_local_confirm(connection);
2875                 break;
2876             case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
2877                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
2878                 sm_sc_calculate_remote_confirm(connection);
2879                 break;
2880             case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
2881                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK;
2882                 sm_sc_calculate_f6_for_dhkey_check(connection);
2883                 break;
2884             case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
2885                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
2886                 sm_sc_calculate_f6_to_verify_dhkey_check(connection);
2887                 break;
2888             case SM_SC_W2_CALCULATE_F5_SALT:
2889                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT;
2890                 f5_calculate_salt(connection);
2891                 break;
2892             case SM_SC_W2_CALCULATE_F5_MACKEY:
2893                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY;
2894                 f5_calculate_mackey(connection);
2895                 break;
2896             case SM_SC_W2_CALCULATE_F5_LTK:
2897                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK;
2898                 f5_calculate_ltk(connection);
2899                 break;
2900             case SM_SC_W2_CALCULATE_G2:
2901                 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2;
2902                 g2_calculate(connection);
2903                 break;
2904 #endif
2905 
2906 #ifdef ENABLE_LE_CENTRAL
2907             // initiator side
2908 
2909             case SM_INITIATOR_PH4_HAS_LTK: {
2910 				sm_reset_setup();
2911 				sm_load_security_info(connection);
2912 
2913                 // cache key before using
2914                 sm_cache_ltk(connection, setup->sm_peer_ltk);
2915 
2916                 sm_key_t peer_ltk_flipped;
2917                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
2918                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
2919                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
2920                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
2921                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
2922                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
2923 
2924                 // notify after sending
2925                 sm_reencryption_started(connection);
2926                 return;
2927             }
2928 
2929 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2930 				sm_reset_setup();
2931 				sm_init_setup(connection);
2932 
2933                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
2934                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
2935                 sm_send_connectionless(connection, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
2936                 sm_timeout_reset(connection);
2937 
2938                 // notify after sending
2939                 sm_pairing_started(connection);
2940                 break;
2941 #endif
2942 
2943 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2944             case SM_SC_SEND_PUBLIC_KEY_COMMAND:
2945                 sm_run_state_sc_send_public_key_command(connection);
2946                 break;
2947             case SM_SC_SEND_CONFIRMATION:
2948                 sm_run_state_sc_send_confirmation(connection);
2949                 break;
2950             case SM_SC_SEND_PAIRING_RANDOM:
2951                 sm_run_state_sc_send_pairing_random(connection);
2952                 break;
2953             case SM_SC_SEND_DHKEY_CHECK_COMMAND:
2954                 sm_run_state_sc_send_dhkey_check_command(connection);
2955                 break;
2956 #endif
2957 
2958 #ifdef ENABLE_LE_PERIPHERAL
2959 
2960 			case SM_RESPONDER_SEND_SECURITY_REQUEST: {
2961 				const uint8_t buffer[2] = {SM_CODE_SECURITY_REQUEST, sm_auth_req};
2962 				connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
2963 				sm_send_connectionless(connection,  (uint8_t *) buffer, sizeof(buffer));
2964 				sm_timeout_start(connection);
2965 				break;
2966 			}
2967 
2968 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2969 			case SM_SC_RECEIVED_LTK_REQUEST:
2970 				switch (connection->sm_irk_lookup_state){
2971 					case IRK_LOOKUP_SUCCEEDED:
2972 						// assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null
2973 						// start using context by loading security info
2974 						sm_reset_setup();
2975 						sm_load_security_info(connection);
2976 						if ((setup->sm_peer_ediv == 0u) && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){
2977 							(void)memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16);
2978 							connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
2979                             sm_reencryption_started(connection);
2980                             sm_trigger_run();
2981 							break;
2982 						}
2983 						log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)");
2984 						connection->sm_engine_state = SM_RESPONDER_IDLE;
2985 						hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
2986 						return;
2987 					default:
2988 						// just wait until IRK lookup is completed
2989 						break;
2990 				}
2991 				break;
2992 #endif /* ENABLE_LE_SECURE_CONNECTIONS */
2993 
2994 			case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2995                 sm_reset_setup();
2996 
2997 			    // handle Pairing Request with LTK available
2998                 switch (connection->sm_irk_lookup_state) {
2999                     case IRK_LOOKUP_SUCCEEDED:
3000                         le_device_db_encryption_get(connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
3001                         have_ltk = !sm_is_null_key(ltk);
3002                         if (have_ltk){
3003                             log_info("pairing request but LTK available");
3004                             // emit re-encryption start/fail sequence
3005                             sm_reencryption_started(connection);
3006                             sm_reencryption_complete(connection, ERROR_CODE_PIN_OR_KEY_MISSING);
3007                         }
3008                         break;
3009                     default:
3010                         break;
3011                 }
3012 
3013 				sm_init_setup(connection);
3014 
3015 				// recover pairing request
3016 				(void)memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
3017 				err = sm_stk_generation_init(connection);
3018 
3019 #ifdef ENABLE_TESTING_SUPPORT
3020 				if ((0 < test_pairing_failure) && (test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED)){
3021                         log_info("testing_support: respond with pairing failure %u", test_pairing_failure);
3022                         err = test_pairing_failure;
3023                     }
3024 #endif
3025 				if (err != 0){
3026                     // emit pairing started/failed sequence
3027                     sm_pairing_started(connection);
3028                     sm_pairing_error(connection, err);
3029 					sm_trigger_run();
3030 					break;
3031 				}
3032 
3033 				sm_timeout_start(connection);
3034 
3035 				// generate random number first, if we need to show passkey, otherwise send response
3036 				if (setup->sm_stk_generation_method == PK_INIT_INPUT){
3037 					btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk, (void *)(uintptr_t) connection->sm_handle);
3038 					break;
3039 				}
3040 
3041 				/* fall through */
3042 
3043             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
3044                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
3045 
3046                 // start with initiator key dist flags
3047                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
3048 
3049 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3050                 // LTK (= encryption information & master identification) only exchanged for LE Legacy Connection
3051                 if (setup->sm_use_secure_connections){
3052                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
3053                 }
3054 #endif
3055                 // setup in response
3056                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
3057                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
3058 
3059                 // update key distribution after ENC was dropped
3060                 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres), sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
3061 
3062                 if (setup->sm_use_secure_connections){
3063                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
3064                 } else {
3065                     connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
3066                 }
3067 
3068                 sm_send_connectionless(connection, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
3069                 sm_timeout_reset(connection);
3070 
3071                 // notify after sending
3072                 sm_pairing_started(connection);
3073 
3074                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
3075                 if (!setup->sm_use_secure_connections || (setup->sm_stk_generation_method == JUST_WORKS)){
3076                     sm_trigger_user_response(connection);
3077                 }
3078                 return;
3079 #endif
3080 
3081             case SM_PH2_SEND_PAIRING_RANDOM: {
3082                 uint8_t buffer[17];
3083                 buffer[0] = SM_CODE_PAIRING_RANDOM;
3084                 reverse_128(setup->sm_local_random, &buffer[1]);
3085                 if (IS_RESPONDER(connection->sm_role)){
3086                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
3087                 } else {
3088                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
3089                 }
3090                 sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
3091                 sm_timeout_reset(connection);
3092                 break;
3093             }
3094 
3095             case SM_PH2_C1_GET_ENC_A:
3096                 // already busy?
3097                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3098                 // calculate confirm using aes128 engine - step 1
3099                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
3100                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_A;
3101                 sm_aes128_state = SM_AES128_ACTIVE;
3102                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_a, (void *)(uintptr_t) connection->sm_handle);
3103                 break;
3104 
3105             case SM_PH2_C1_GET_ENC_C:
3106                 // already busy?
3107                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3108                 // calculate m_confirm using aes128 engine - step 1
3109                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
3110                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_C;
3111                 sm_aes128_state = SM_AES128_ACTIVE;
3112                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_c, (void *)(uintptr_t) connection->sm_handle);
3113                 break;
3114 
3115             case SM_PH2_CALC_STK:
3116                 // already busy?
3117                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3118                 // calculate STK
3119                 if (IS_RESPONDER(connection->sm_role)){
3120                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, sm_aes128_plaintext);
3121                 } else {
3122                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3123                 }
3124                 connection->sm_engine_state = SM_PH2_W4_STK;
3125                 sm_aes128_state = SM_AES128_ACTIVE;
3126                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3127                 break;
3128 
3129             case SM_PH3_Y_GET_ENC:
3130                 // already busy?
3131                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3132                 // PH3B2 - calculate Y from      - enc
3133 
3134                 // dm helper (was sm_dm_r_prime)
3135                 // r' = padding || r
3136                 // r - 64 bit value
3137                 memset(&sm_aes128_plaintext[0], 0, 8);
3138                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
3139 
3140                 // Y = dm(DHK, Rand)
3141                 connection->sm_engine_state = SM_PH3_Y_W4_ENC;
3142                 sm_aes128_state = SM_AES128_ACTIVE;
3143                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph3_y, (void *)(uintptr_t) connection->sm_handle);
3144                 break;
3145 
3146             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
3147                 uint8_t buffer[17];
3148                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
3149                 reverse_128(setup->sm_local_confirm, &buffer[1]);
3150                 if (IS_RESPONDER(connection->sm_role)){
3151                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
3152                 } else {
3153                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
3154                 }
3155                 sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
3156                 sm_timeout_reset(connection);
3157                 return;
3158             }
3159 #ifdef ENABLE_LE_PERIPHERAL
3160             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
3161                 // cache key before using
3162                 sm_cache_ltk(connection, setup->sm_ltk);
3163                 sm_key_t stk_flipped;
3164                 reverse_128(setup->sm_ltk, stk_flipped);
3165                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3166                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
3167                 return;
3168             }
3169             case SM_RESPONDER_PH4_SEND_LTK_REPLY: {
3170                 // allow to override LTK
3171                 if (sm_get_ltk_callback != NULL){
3172                     (void)(*sm_get_ltk_callback)(connection->sm_handle, connection->sm_peer_addr_type, connection->sm_peer_address, setup->sm_ltk);
3173                 }
3174                 // cache key before using
3175                 sm_cache_ltk(connection, setup->sm_ltk);
3176                 sm_key_t ltk_flipped;
3177                 reverse_128(setup->sm_ltk, ltk_flipped);
3178                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
3179                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
3180                 return;
3181             }
3182 
3183 			case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
3184                 // already busy?
3185                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3186                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
3187 
3188 				sm_reset_setup();
3189 				sm_start_calculating_ltk_from_ediv_and_rand(connection);
3190 
3191 				sm_reencryption_started(connection);
3192 
3193                 // dm helper (was sm_dm_r_prime)
3194                 // r' = padding || r
3195                 // r - 64 bit value
3196                 memset(&sm_aes128_plaintext[0], 0, 8);
3197                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
3198 
3199                 // Y = dm(DHK, Rand)
3200                 connection->sm_engine_state = SM_RESPONDER_PH4_Y_W4_ENC;
3201                 sm_aes128_state = SM_AES128_ACTIVE;
3202                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph4_y, (void *)(uintptr_t) connection->sm_handle);
3203                 return;
3204 #endif
3205 #ifdef ENABLE_LE_CENTRAL
3206             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
3207                 // cache key before using
3208                 sm_cache_ltk(connection, setup->sm_ltk);
3209 
3210                 sm_key_t stk_flipped;
3211                 reverse_128(setup->sm_ltk, stk_flipped);
3212                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3213                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
3214                 return;
3215             }
3216 #endif
3217 
3218             case SM_PH3_DISTRIBUTE_KEYS:
3219                 // send next key
3220                 if (setup->sm_key_distribution_send_set != 0){
3221                     sm_run_distribute_keys(connection);
3222                 }
3223 
3224                 // more to send?
3225                 if (setup->sm_key_distribution_send_set != 0){
3226                     return;
3227                 }
3228 
3229                 // keys are sent
3230                 if (IS_RESPONDER(connection->sm_role)){
3231                     // slave -> receive master keys if any
3232                     if (sm_key_distribution_all_received()){
3233                         sm_key_distribution_handle_all_received(connection);
3234                         sm_key_distribution_complete_responder(connection);
3235                         // start CTKD right away
3236                         continue;
3237                     } else {
3238                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3239                     }
3240                 } else {
3241                     sm_master_pairing_success(connection);
3242                 }
3243                 break;
3244 
3245 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3246             case SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST:
3247                 // fill in sm setup (lite version of sm_init_setup)
3248                 sm_reset_setup();
3249                 setup->sm_peer_addr_type = connection->sm_peer_addr_type;
3250                 setup->sm_m_addr_type = connection->sm_peer_addr_type;
3251                 setup->sm_s_addr_type = connection->sm_own_addr_type;
3252                 (void) memcpy(setup->sm_peer_address, connection->sm_peer_address, 6);
3253                 (void) memcpy(setup->sm_m_address, connection->sm_peer_address, 6);
3254                 (void) memcpy(setup->sm_s_address, connection->sm_own_address, 6);
3255                 setup->sm_use_secure_connections = true;
3256                 sm_ctkd_fetch_br_edr_link_key(connection);
3257 
3258                 // Enc Key and IRK if requested
3259                 key_distribution_flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_ENC_KEY;
3260 #ifdef ENABLE_LE_SIGNED_WRITE
3261                 // Plus signing key if supported
3262                 key_distribution_flags |= SM_KEYDIST_ID_KEY;
3263 #endif
3264                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
3265                 sm_pairing_packet_set_io_capability(setup->sm_m_preq, 0);
3266                 sm_pairing_packet_set_oob_data_flag(setup->sm_m_preq, 0);
3267                 sm_pairing_packet_set_auth_req(setup->sm_m_preq, SM_AUTHREQ_CT2);
3268                 sm_pairing_packet_set_max_encryption_key_size(setup->sm_m_preq, sm_max_encryption_key_size);
3269                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
3270                 sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
3271 
3272                 // set state and send pairing response
3273                 sm_timeout_start(connection);
3274                 connection->sm_engine_state = SM_BR_EDR_INITIATOR_W4_PAIRING_RESPONSE;
3275                 sm_send_connectionless(connection, (uint8_t *) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
3276                 break;
3277 
3278             case SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED:
3279                 // fill in sm setup (lite version of sm_init_setup)
3280                 sm_reset_setup();
3281                 setup->sm_peer_addr_type = connection->sm_peer_addr_type;
3282                 setup->sm_m_addr_type = connection->sm_peer_addr_type;
3283                 setup->sm_s_addr_type = connection->sm_own_addr_type;
3284                 (void) memcpy(setup->sm_peer_address, connection->sm_peer_address, 6);
3285                 (void) memcpy(setup->sm_m_address, connection->sm_peer_address, 6);
3286                 (void) memcpy(setup->sm_s_address, connection->sm_own_address, 6);
3287                 setup->sm_use_secure_connections = true;
3288                 sm_ctkd_fetch_br_edr_link_key(connection);
3289                 (void) memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
3290 
3291                 // Enc Key and IRK if requested
3292                 key_distribution_flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_ENC_KEY;
3293 #ifdef ENABLE_LE_SIGNED_WRITE
3294                 // Plus signing key if supported
3295                 key_distribution_flags |= SM_KEYDIST_ID_KEY;
3296 #endif
3297                 // drop flags not requested by initiator
3298                 key_distribution_flags &= sm_pairing_packet_get_initiator_key_distribution(connection->sm_m_preq);
3299 
3300                 // If Secure Connections pairing has been initiated over BR/EDR, the following fields of the SM Pairing Request PDU are reserved for future use:
3301                 // - the IO Capability field,
3302                 // - the OOB data flag field, and
3303                 // - all bits in the Auth Req field except the CT2 bit.
3304                 sm_pairing_packet_set_code(setup->sm_s_pres, SM_CODE_PAIRING_RESPONSE);
3305                 sm_pairing_packet_set_io_capability(setup->sm_s_pres, 0);
3306                 sm_pairing_packet_set_oob_data_flag(setup->sm_s_pres, 0);
3307                 sm_pairing_packet_set_auth_req(setup->sm_s_pres, SM_AUTHREQ_CT2);
3308                 sm_pairing_packet_set_max_encryption_key_size(setup->sm_s_pres, connection->sm_actual_encryption_key_size);
3309                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, key_distribution_flags);
3310                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, key_distribution_flags);
3311 
3312                 // configure key distribution, LTK is derived locally
3313                 key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
3314                 sm_setup_key_distribution(key_distribution_flags, key_distribution_flags);
3315 
3316                 // set state and send pairing response
3317                 sm_timeout_start(connection);
3318                 connection->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
3319                 sm_send_connectionless(connection, (uint8_t *) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
3320                 break;
3321             case SM_BR_EDR_DISTRIBUTE_KEYS:
3322                 if (setup->sm_key_distribution_send_set != 0) {
3323                     sm_run_distribute_keys(connection);
3324                     return;
3325                 }
3326                 // keys are sent
3327                 if (IS_RESPONDER(connection->sm_role)) {
3328                     // responder -> receive master keys if there are any
3329                     if (!sm_key_distribution_all_received()){
3330                         connection->sm_engine_state = SM_BR_EDR_RECEIVE_KEYS;
3331                         break;
3332                     }
3333                 }
3334                 // otherwise start CTKD right away (responder and no keys to receive / initiator)
3335                 sm_ctkd_start_from_br_edr(connection);
3336                 continue;
3337             case SM_SC_W2_CALCULATE_ILK_USING_H6:
3338                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
3339                 h6_calculate_ilk_from_le_ltk(connection);
3340                 break;
3341             case SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY:
3342                 connection->sm_engine_state = SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY;
3343                 h6_calculate_br_edr_link_key(connection);
3344                 break;
3345             case SM_SC_W2_CALCULATE_ILK_USING_H7:
3346                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
3347                 h7_calculate_ilk_from_le_ltk(connection);
3348                 break;
3349             case SM_BR_EDR_W2_CALCULATE_ILK_USING_H6:
3350                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_ILK;
3351                 h6_calculate_ilk_from_br_edr(connection);
3352                 break;
3353             case SM_BR_EDR_W2_CALCULATE_LE_LTK:
3354                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_LE_LTK;
3355                 h6_calculate_le_ltk(connection);
3356                 break;
3357             case SM_BR_EDR_W2_CALCULATE_ILK_USING_H7:
3358                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_ILK;
3359                 h7_calculate_ilk_from_br_edr(connection);
3360                 break;
3361 #endif
3362 
3363             default:
3364                 break;
3365         }
3366 
3367         // check again if active connection was released
3368         if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break;
3369     }
3370 }
3371 
3372 // sm_aes128_state stays active
3373 static void sm_handle_encryption_result_enc_a(void *arg){
3374     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3375     sm_aes128_state = SM_AES128_IDLE;
3376 
3377     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3378     if (connection == NULL) return;
3379 
3380     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3381     sm_aes128_state = SM_AES128_ACTIVE;
3382     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, setup->sm_local_confirm, sm_handle_encryption_result_enc_b, (void *)(uintptr_t) connection->sm_handle);
3383 }
3384 
3385 static void sm_handle_encryption_result_enc_b(void *arg){
3386     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3387     sm_aes128_state = SM_AES128_IDLE;
3388 
3389     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3390     if (connection == NULL) return;
3391 
3392     log_info_key("c1!", setup->sm_local_confirm);
3393     connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
3394     sm_trigger_run();
3395 }
3396 
3397 // sm_aes128_state stays active
3398 static void sm_handle_encryption_result_enc_c(void *arg){
3399     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3400     sm_aes128_state = SM_AES128_IDLE;
3401 
3402     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3403     if (connection == NULL) return;
3404 
3405     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3406     sm_aes128_state = SM_AES128_ACTIVE;
3407     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, sm_aes128_ciphertext, sm_handle_encryption_result_enc_d, (void *)(uintptr_t) connection->sm_handle);
3408 }
3409 
3410 static void sm_handle_encryption_result_enc_d(void * arg){
3411     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3412     sm_aes128_state = SM_AES128_IDLE;
3413 
3414     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3415     if (connection == NULL) return;
3416 
3417     log_info_key("c1!", sm_aes128_ciphertext);
3418     if (memcmp(setup->sm_peer_confirm, sm_aes128_ciphertext, 16) != 0){
3419         sm_pairing_error(connection, SM_REASON_CONFIRM_VALUE_FAILED);
3420         sm_trigger_run();
3421         return;
3422     }
3423     if (IS_RESPONDER(connection->sm_role)){
3424         connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
3425         sm_trigger_run();
3426     } else {
3427         sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3428         sm_aes128_state = SM_AES128_ACTIVE;
3429         btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3430     }
3431 }
3432 
3433 static void sm_handle_encryption_result_enc_stk(void *arg){
3434     sm_aes128_state = SM_AES128_IDLE;
3435     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3436 
3437     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3438     if (connection == NULL) return;
3439 
3440     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3441     log_info_key("stk", setup->sm_ltk);
3442     if (IS_RESPONDER(connection->sm_role)){
3443         connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
3444     } else {
3445         connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
3446     }
3447     sm_trigger_run();
3448 }
3449 
3450 // sm_aes128_state stays active
3451 static void sm_handle_encryption_result_enc_ph3_y(void *arg){
3452     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3453     sm_aes128_state = SM_AES128_IDLE;
3454 
3455     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3456     if (connection == NULL) return;
3457 
3458     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3459     log_info_hex16("y", setup->sm_local_y);
3460     // PH3B3 - calculate EDIV
3461     setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
3462     log_info_hex16("ediv", setup->sm_local_ediv);
3463     // PH3B4 - calculate LTK         - enc
3464     // LTK = d1(ER, DIV, 0))
3465     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3466     sm_aes128_state = SM_AES128_ACTIVE;
3467     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph3_ltk, (void *)(uintptr_t) connection->sm_handle);
3468 }
3469 
3470 #ifdef ENABLE_LE_PERIPHERAL
3471 // sm_aes128_state stays active
3472 static void sm_handle_encryption_result_enc_ph4_y(void *arg){
3473     sm_aes128_state = SM_AES128_IDLE;
3474     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3475 
3476     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3477     if (connection == NULL) return;
3478 
3479     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3480     log_info_hex16("y", setup->sm_local_y);
3481 
3482     // PH3B3 - calculate DIV
3483     setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
3484     log_info_hex16("ediv", setup->sm_local_ediv);
3485     // PH3B4 - calculate LTK         - enc
3486     // LTK = d1(ER, DIV, 0))
3487     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3488     sm_aes128_state = SM_AES128_ACTIVE;
3489     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph4_ltk, (void *)(uintptr_t) connection->sm_handle);
3490 }
3491 #endif
3492 
3493 // sm_aes128_state stays active
3494 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg){
3495     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3496     sm_aes128_state = SM_AES128_IDLE;
3497 
3498     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3499     if (connection == NULL) return;
3500 
3501     log_info_key("ltk", setup->sm_ltk);
3502     // calc CSRK next
3503     sm_d1_d_prime(setup->sm_local_div, 1, sm_aes128_plaintext);
3504     sm_aes128_state = SM_AES128_ACTIVE;
3505     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_local_csrk, sm_handle_encryption_result_enc_csrk, (void *)(uintptr_t) connection->sm_handle);
3506 }
3507 
3508 static void sm_handle_encryption_result_enc_csrk(void *arg){
3509     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3510     sm_aes128_state = SM_AES128_IDLE;
3511 
3512     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3513     if (connection == NULL) return;
3514 
3515     sm_aes128_state = SM_AES128_IDLE;
3516     log_info_key("csrk", setup->sm_local_csrk);
3517     if (setup->sm_key_distribution_send_set != 0u){
3518         connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3519     } else {
3520         // no keys to send, just continue
3521         if (IS_RESPONDER(connection->sm_role)){
3522             if (sm_key_distribution_all_received()){
3523                 sm_key_distribution_handle_all_received(connection);
3524                 sm_key_distribution_complete_responder(connection);
3525             } else {
3526                 // slave -> receive master keys
3527                 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3528             }
3529         } else {
3530             sm_key_distribution_complete_initiator(connection);
3531         }
3532     }
3533     sm_trigger_run();
3534 }
3535 
3536 #ifdef ENABLE_LE_PERIPHERAL
3537 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg){
3538     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3539     sm_aes128_state = SM_AES128_IDLE;
3540 
3541     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3542     if (connection == NULL) return;
3543 
3544     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3545     log_info_key("ltk", setup->sm_ltk);
3546     connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
3547     sm_trigger_run();
3548 }
3549 #endif
3550 
3551 static void sm_handle_encryption_result_address_resolution(void *arg){
3552     UNUSED(arg);
3553     sm_aes128_state = SM_AES128_IDLE;
3554 
3555     // compare calulated address against connecting device
3556     uint8_t * hash = &sm_aes128_ciphertext[13];
3557     if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
3558         log_info("LE Device Lookup: matched resolvable private address");
3559         sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
3560         sm_trigger_run();
3561         return;
3562     }
3563     // no match, try next
3564     sm_address_resolution_test++;
3565     sm_trigger_run();
3566 }
3567 
3568 static void sm_handle_encryption_result_dkg_irk(void *arg){
3569     UNUSED(arg);
3570     sm_aes128_state = SM_AES128_IDLE;
3571 
3572     log_info_key("irk", sm_persistent_irk);
3573     dkg_state = DKG_CALC_DHK;
3574     sm_trigger_run();
3575 }
3576 
3577 static void sm_handle_encryption_result_dkg_dhk(void *arg){
3578     UNUSED(arg);
3579     sm_aes128_state = SM_AES128_IDLE;
3580 
3581     log_info_key("dhk", sm_persistent_dhk);
3582     dkg_state = DKG_READY;
3583     sm_trigger_run();
3584 }
3585 
3586 static void sm_handle_encryption_result_rau(void *arg){
3587     UNUSED(arg);
3588     sm_aes128_state = SM_AES128_IDLE;
3589 
3590     (void)memcpy(&sm_random_address[3], &sm_aes128_ciphertext[13], 3);
3591     rau_state = RAU_IDLE;
3592     hci_le_random_address_set(sm_random_address);
3593 
3594     sm_trigger_run();
3595 }
3596 
3597 static void sm_handle_random_result_rau(void * arg){
3598     UNUSED(arg);
3599     // non-resolvable vs. resolvable
3600     switch (gap_random_adress_type){
3601         case GAP_RANDOM_ADDRESS_RESOLVABLE:
3602             // resolvable: use random as prand and calc address hash
3603             // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
3604             sm_random_address[0u] &= 0x3fu;
3605             sm_random_address[0u] |= 0x40u;
3606             rau_state = RAU_GET_ENC;
3607             break;
3608         case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
3609         default:
3610             // "The two most significant bits of the address shall be equal to ‘0’""
3611             sm_random_address[0u] &= 0x3fu;
3612             rau_state = RAU_IDLE;
3613             hci_le_random_address_set(sm_random_address);
3614             break;
3615     }
3616     sm_trigger_run();
3617 }
3618 
3619 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3620 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg){
3621     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3622     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3623     if (connection == NULL) return;
3624 
3625     connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
3626     sm_trigger_run();
3627 }
3628 
3629 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg){
3630     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3631     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3632     if (connection == NULL) return;
3633 
3634     connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
3635     sm_trigger_run();
3636 }
3637 #endif
3638 
3639 static void sm_handle_random_result_ph2_random(void * arg){
3640     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3641     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3642     if (connection == NULL) return;
3643 
3644     connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
3645     sm_trigger_run();
3646 }
3647 
3648 static void sm_handle_random_result_ph2_tk(void * arg){
3649     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3650     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3651     if (connection == NULL) return;
3652 
3653     sm_reset_tk();
3654     uint32_t tk;
3655     if (sm_fixed_passkey_in_display_role == 0xffffffffU){
3656         // map random to 0-999999 without speding much cycles on a modulus operation
3657         tk = little_endian_read_32(sm_random_data,0);
3658         tk = tk & 0xfffff;  // 1048575
3659         if (tk >= 999999u){
3660             tk = tk - 999999u;
3661         }
3662     } else {
3663         // override with pre-defined passkey
3664         tk = sm_fixed_passkey_in_display_role;
3665     }
3666     big_endian_store_32(setup->sm_tk, 12, tk);
3667     if (IS_RESPONDER(connection->sm_role)){
3668         connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
3669     } else {
3670         if (setup->sm_use_secure_connections){
3671             connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3672         } else {
3673             connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3674             sm_trigger_user_response(connection);
3675             // response_idle == nothing <--> sm_trigger_user_response() did not require response
3676             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3677                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) connection->sm_handle);
3678             }
3679         }
3680     }
3681     sm_trigger_run();
3682 }
3683 
3684 static void sm_handle_random_result_ph3_div(void * arg){
3685     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3686     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3687     if (connection == NULL) return;
3688 
3689     // use 16 bit from random value as div
3690     setup->sm_local_div = big_endian_read_16(sm_random_data, 0);
3691     log_info_hex16("div", setup->sm_local_div);
3692     connection->sm_engine_state = SM_PH3_Y_GET_ENC;
3693     sm_trigger_run();
3694 }
3695 
3696 static void sm_handle_random_result_ph3_random(void * arg){
3697     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3698     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3699     if (connection == NULL) return;
3700 
3701     reverse_64(sm_random_data, setup->sm_local_rand);
3702     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
3703     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xf0u) + (connection->sm_actual_encryption_key_size - 1u);
3704     // no db for authenticated flag hack: store flag in bit 4 of LSB
3705     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xefu) + (connection->sm_connection_authenticated << 4u);
3706     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 2, &sm_handle_random_result_ph3_div, (void *)(uintptr_t) connection->sm_handle);
3707 }
3708 static void sm_validate_er_ir(void){
3709     // warn about default ER/IR
3710     bool warning = false;
3711     if (sm_ir_is_default()){
3712         warning = true;
3713         log_error("Persistent IR not set with sm_set_ir. Use of private addresses will cause pairing issues");
3714     }
3715     if (sm_er_is_default()){
3716         warning = true;
3717         log_error("Persistent ER not set with sm_set_er. Legacy Pairing LTK is not secure");
3718     }
3719     if (warning) {
3720         log_error("Please configure btstack_tlv to let BTstack setup ER and IR keys");
3721     }
3722 }
3723 
3724 static void sm_handle_random_result_ir(void *arg){
3725     sm_persistent_keys_random_active = false;
3726     if (arg != NULL){
3727         // key generated, store in tlv
3728         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3729         log_info("Generated IR key. Store in TLV status: %d", status);
3730         UNUSED(status);
3731     }
3732     log_info_key("IR", sm_persistent_ir);
3733     dkg_state = DKG_CALC_IRK;
3734 
3735     if (test_use_fixed_local_irk){
3736         log_info_key("IRK", sm_persistent_irk);
3737         dkg_state = DKG_CALC_DHK;
3738     }
3739 
3740     sm_trigger_run();
3741 }
3742 
3743 static void sm_handle_random_result_er(void *arg){
3744     sm_persistent_keys_random_active = false;
3745     if (arg != NULL){
3746         // key generated, store in tlv
3747         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3748         log_info("Generated ER key. Store in TLV status: %d", status);
3749         UNUSED(status);
3750     }
3751     log_info_key("ER", sm_persistent_er);
3752 
3753     // try load ir
3754     int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3755     if (key_size == 16){
3756         // ok, let's continue
3757         log_info("IR from TLV");
3758         sm_handle_random_result_ir( NULL );
3759     } else {
3760         // invalid, generate new random one
3761         sm_persistent_keys_random_active = true;
3762         btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_ir, 16, &sm_handle_random_result_ir, &sm_persistent_ir);
3763     }
3764 }
3765 
3766 static void sm_connection_init(sm_connection_t * sm_conn, hci_con_handle_t con_handle, uint8_t role, uint8_t peer_addr_type, bd_addr_t peer_address){
3767 
3768     // connection info
3769     sm_conn->sm_handle = con_handle;
3770     sm_conn->sm_role = role;
3771     sm_conn->sm_peer_addr_type = peer_addr_type;
3772     memcpy(sm_conn->sm_peer_address, peer_address, 6);
3773 
3774     // security properties
3775     sm_conn->sm_connection_encrypted = 0;
3776     sm_conn->sm_connection_authenticated = 0;
3777     sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
3778     sm_conn->sm_le_db_index = -1;
3779     sm_conn->sm_reencryption_active = false;
3780 
3781     // prepare CSRK lookup (does not involve setup)
3782     sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
3783 
3784     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
3785 }
3786 
3787 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3788 static void sm_event_handle_classic_encryption_event(sm_connection_t * sm_conn, hci_con_handle_t con_handle){
3789     // CTKD requires BR/EDR Secure Connection
3790     if (sm_conn->sm_connection_encrypted != 2) return;
3791     // prepare for pairing request
3792     if (IS_RESPONDER(sm_conn->sm_role)){
3793         sm_conn->sm_engine_state = SM_BR_EDR_RESPONDER_W4_PAIRING_REQUEST;
3794     } else if (sm_conn->sm_pairing_requested){
3795         // check if remote supports fixed channels
3796         bool defer = true;
3797         const hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
3798         if (hci_connection->l2cap_state.information_state == L2CAP_INFORMATION_STATE_DONE){
3799             // check if remote supports SMP over BR/EDR
3800             if ((hci_connection->l2cap_state.fixed_channels_supported & (1 << L2CAP_CID_BR_EDR_SECURITY_MANAGER)) != 0){
3801                 log_info("CTKD: SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST");
3802                 sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST;
3803             } else {
3804                 defer = false;
3805             }
3806         } else {
3807             // wait for fixed channel info
3808             log_info("CTKD: SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK");
3809             sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK;
3810         }
3811         if (defer){
3812             hci_dedicated_bonding_defer_disconnect(con_handle, true);
3813         }
3814     }
3815 }
3816 #endif
3817 
3818 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
3819 
3820     UNUSED(channel);    // ok: there is no channel
3821     UNUSED(size);       // ok: fixed format HCI events
3822 
3823     sm_connection_t * sm_conn;
3824     hci_con_handle_t  con_handle;
3825     uint8_t           status;
3826     bd_addr_t         addr;
3827     bd_addr_type_t    addr_type;
3828 
3829     switch (packet_type) {
3830 
3831 		case HCI_EVENT_PACKET:
3832 			switch (hci_event_packet_get_type(packet)) {
3833 
3834                 case BTSTACK_EVENT_STATE:
3835                     switch (btstack_event_state_get_state(packet)){
3836                         case HCI_STATE_WORKING:
3837                             log_info("HCI Working!");
3838                             // setup IR/ER with TLV
3839                             btstack_tlv_get_instance(&sm_tlv_impl, &sm_tlv_context);
3840                             if (sm_tlv_impl != NULL){
3841                                 int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3842                                 if (key_size == 16){
3843                                     // ok, let's continue
3844                                     log_info("ER from TLV");
3845                                     sm_handle_random_result_er( NULL );
3846                                 } else {
3847                                     // invalid, generate random one
3848                                     sm_persistent_keys_random_active = true;
3849                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_er, 16, &sm_handle_random_result_er, &sm_persistent_er);
3850                                 }
3851                             } else {
3852                                 sm_validate_er_ir();
3853                                 dkg_state = DKG_CALC_IRK;
3854 
3855                                 if (test_use_fixed_local_irk){
3856                                     log_info_key("IRK", sm_persistent_irk);
3857                                     dkg_state = DKG_CALC_DHK;
3858                                 }
3859                             }
3860 
3861 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3862                             // trigger ECC key generation
3863                             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
3864                                 sm_ec_generate_new_key();
3865                             }
3866 #endif
3867 
3868                             // restart random address updates after power cycle
3869                             if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_STATIC){
3870                                 gap_random_address_set(sm_random_address);
3871                             } else {
3872                                 gap_random_address_set_mode(gap_random_adress_type);
3873                             }
3874                             break;
3875 
3876                         case HCI_STATE_OFF:
3877                         case HCI_STATE_HALTING:
3878                             log_info("SM: reset state");
3879                             // stop random address update
3880                             gap_random_address_update_stop();
3881                             // reset state
3882                             sm_state_reset();
3883                             break;
3884 
3885                         default:
3886                             break;
3887                     }
3888 					break;
3889 
3890 #ifdef ENABLE_CLASSIC
3891 			    case HCI_EVENT_CONNECTION_COMPLETE:
3892 			        // ignore if connection failed
3893 			        if (hci_event_connection_complete_get_status(packet)) return;
3894 
3895 			        con_handle = hci_event_connection_complete_get_connection_handle(packet);
3896 			        sm_conn = sm_get_connection_for_handle(con_handle);
3897 			        if (!sm_conn) break;
3898 
3899                     hci_event_connection_complete_get_bd_addr(packet, addr);
3900 			        sm_connection_init(sm_conn,
3901                                        con_handle,
3902                                        (uint8_t) gap_get_role(con_handle),
3903                                        BD_ADDR_TYPE_LE_PUBLIC,
3904                                        addr);
3905 			        // classic connection corresponds to public le address
3906 			        sm_conn->sm_own_addr_type = BD_ADDR_TYPE_LE_PUBLIC;
3907                     gap_local_bd_addr(sm_conn->sm_own_address);
3908                     sm_conn->sm_cid = L2CAP_CID_BR_EDR_SECURITY_MANAGER;
3909                     sm_conn->sm_engine_state = SM_BR_EDR_W4_ENCRYPTION_COMPLETE;
3910 			        break;
3911 #endif
3912 
3913 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3914 			    case HCI_EVENT_SIMPLE_PAIRING_COMPLETE:
3915 			        if (hci_event_simple_pairing_complete_get_status(packet) != ERROR_CODE_SUCCESS) break;
3916                     hci_event_simple_pairing_complete_get_bd_addr(packet, addr);
3917                     sm_conn = sm_get_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
3918                     if (sm_conn == NULL) break;
3919                     sm_conn->sm_pairing_requested = true;
3920 			        break;
3921 #endif
3922 
3923 			    case HCI_EVENT_META_GAP:
3924 			        switch (hci_event_gap_meta_get_subevent_code(packet)) {
3925 			            case GAP_SUBEVENT_LE_CONNECTION_COMPLETE:
3926 			                // ignore if connection failed
3927 			                if (gap_subevent_le_connection_complete_get_status(packet) != ERROR_CODE_SUCCESS) break;
3928 
3929 			                con_handle = gap_subevent_le_connection_complete_get_connection_handle(packet);
3930 			                sm_conn = sm_get_connection_for_handle(con_handle);
3931 			                if (!sm_conn) break;
3932 
3933                             // Get current peer address
3934                             addr_type = gap_subevent_le_connection_complete_get_peer_address_type(packet);
3935                             if (hci_is_le_identity_address_type(addr_type)){
3936                                 addr_type = BD_ADDR_TYPE_LE_RANDOM;
3937                                 gap_subevent_le_connection_complete_get_peer_resolvable_private_address(packet, addr);
3938                             } else {
3939                                 gap_subevent_le_connection_complete_get_peer_address(packet, addr);
3940                             }
3941 			                sm_connection_init(sm_conn,
3942                                                con_handle,
3943                                                gap_subevent_le_connection_complete_get_role(packet),
3944                                                addr_type,
3945                                                addr);
3946 			                sm_conn->sm_cid = L2CAP_CID_SECURITY_MANAGER_PROTOCOL;
3947 
3948 			                // track our addr used for this connection and set state
3949 #ifdef ENABLE_LE_PERIPHERAL
3950 			                if (gap_subevent_le_connection_complete_get_role(packet) != 0){
3951 			                    // responder - use own address from advertisements
3952 #ifdef ENABLE_LE_EXTENDED_ADVERTISING
3953                                 if (hci_le_extended_advertising_supported()){
3954                                     // cache local resolvable address
3955                                     // note: will be overwritten if random or private address was used in adv set by HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED
3956                                     sm_conn->sm_own_addr_type = BD_ADDR_TYPE_LE_RANDOM;
3957                                     gap_subevent_le_connection_complete_get_local_resolvable_private_address(packet,sm_conn->sm_own_address);
3958                                 } else
3959 #endif
3960                                 {
3961                                     gap_le_get_own_advertisements_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address);
3962                                 }
3963 			                    sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3964 			                }
3965 #endif
3966 #ifdef ENABLE_LE_CENTRAL
3967 			                if (gap_subevent_le_connection_complete_get_role(packet) == 0){
3968 			                    // initiator - use own address from create connection
3969 			                    gap_le_get_own_connection_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address);
3970 			                    sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3971 			                }
3972 #endif
3973 			                break;
3974 			            default:
3975 			                break;
3976 			        }
3977 			        break;
3978                 case HCI_EVENT_LE_META:
3979                     switch (hci_event_le_meta_get_subevent_code(packet)) {
3980 #ifdef ENABLE_LE_PERIPHERAL
3981 #ifdef ENABLE_LE_EXTENDED_ADVERTISING
3982                         case HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED:
3983                             if (hci_subevent_le_advertising_set_terminated_get_status(packet) == ERROR_CODE_SUCCESS){
3984                                 uint8_t advertising_handle = hci_subevent_le_advertising_set_terminated_get_advertising_handle(packet);
3985                                 con_handle = hci_subevent_le_advertising_set_terminated_get_connection_handle(packet);
3986                                 sm_conn = sm_get_connection_for_handle(con_handle);
3987                                 if (!sm_conn) break;
3988 
3989                                 gap_le_get_own_advertising_set_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address, advertising_handle);
3990                                 log_info("Adv set %u terminated -> use addr type %u, addr %s for con handle 0x%04x", advertising_handle, sm_conn->sm_own_addr_type,
3991                                          bd_addr_to_str(sm_conn->sm_own_address), con_handle);
3992                             }
3993                             break;
3994 #endif
3995 #endif
3996                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
3997                             con_handle = hci_subevent_le_long_term_key_request_get_connection_handle(packet);
3998                             sm_conn = sm_get_connection_for_handle(con_handle);
3999                             if (!sm_conn) break;
4000 
4001                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
4002                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
4003                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
4004                                 break;
4005                             }
4006                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
4007                                 // PH2 SEND LTK as we need to exchange keys in PH3
4008                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
4009                                 break;
4010                             }
4011 
4012                             // store rand and ediv
4013                             reverse_64(&packet[5], sm_conn->sm_local_rand);
4014                             sm_conn->sm_local_ediv = hci_subevent_le_long_term_key_request_get_encryption_diversifier(packet);
4015 
4016                             // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a
4017                             // potentially stored LTK is from the master
4018                             if ((sm_conn->sm_local_ediv != 0u) || !sm_is_null_random(sm_conn->sm_local_rand)){
4019                                 if (sm_reconstruct_ltk_without_le_device_db_entry){
4020                                     sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
4021                                     break;
4022                                 }
4023                                 // additionally check if remote is in LE Device DB if requested
4024                                 switch(sm_conn->sm_irk_lookup_state){
4025                                     case IRK_LOOKUP_FAILED:
4026                                         log_info("LTK Request: device not in device db");
4027                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
4028                                         break;
4029                                     case IRK_LOOKUP_SUCCEEDED:
4030                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
4031                                         break;
4032                                     default:
4033                                         // wait for irk look doen
4034                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK;
4035                                         break;
4036                                 }
4037                                 break;
4038                             }
4039 
4040 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4041                             sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST;
4042 #else
4043                             log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported");
4044                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
4045 #endif
4046                             break;
4047 
4048                         default:
4049                             break;
4050                     }
4051                     break;
4052 
4053                 case HCI_EVENT_ENCRYPTION_CHANGE:
4054                 case HCI_EVENT_ENCRYPTION_CHANGE_V2:
4055                 	con_handle = hci_event_encryption_change_get_connection_handle(packet);
4056                     sm_conn = sm_get_connection_for_handle(con_handle);
4057                     if (!sm_conn) break;
4058 
4059                     sm_conn->sm_connection_encrypted = hci_event_encryption_change_get_encryption_enabled(packet);
4060                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
4061                         sm_conn->sm_actual_encryption_key_size);
4062                     log_info("event handler, state %u", sm_conn->sm_engine_state);
4063 
4064                     switch (sm_conn->sm_engine_state){
4065 
4066                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4067                             // encryption change event concludes re-encryption for bonded devices (even if it fails)
4068                             if (sm_conn->sm_connection_encrypted != 0u) {
4069                                 status = ERROR_CODE_SUCCESS;
4070                                 if (IS_RESPONDER(sm_conn->sm_role)){
4071                                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
4072                                 } else {
4073                                     sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4074                                 }
4075                             } else {
4076                                 status = hci_event_encryption_change_get_status(packet);
4077                                 // set state to 'RE-ENCRYPTION FAILED' to allow pairing but prevent other interactions
4078                                 // also, gap_reconnect_security_setup_active will return true
4079                                 sm_conn->sm_engine_state = SM_GENERAL_REENCRYPTION_FAILED;
4080                             }
4081 
4082                             // emit re-encryption complete
4083                             sm_reencryption_complete(sm_conn, status);
4084 
4085                             // notify client, if pairing was requested before
4086                             if (sm_conn->sm_pairing_requested){
4087                                 sm_conn->sm_pairing_requested = false;
4088                                 sm_pairing_complete(sm_conn, status, 0);
4089                             }
4090 
4091                             sm_done_for_handle(sm_conn->sm_handle);
4092                             break;
4093 
4094                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4095                             if (!sm_conn->sm_connection_encrypted) break;
4096                             // handler for HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE
4097                             // contains the same code for this state
4098                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
4099                             if (IS_RESPONDER(sm_conn->sm_role)){
4100                                 // slave
4101                                 if (sm_conn->sm_connection_sc){
4102                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4103                                 } else {
4104                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4105                                 }
4106                             } else {
4107                                 // master
4108                                 if (sm_key_distribution_all_received()){
4109                                     // skip receiving keys as there are none
4110                                     sm_key_distribution_handle_all_received(sm_conn);
4111                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4112                                 } else {
4113                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
4114                                 }
4115                             }
4116                             break;
4117 
4118 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4119                         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4120                             sm_event_handle_classic_encryption_event(sm_conn, con_handle);
4121                             break;
4122 #endif
4123                         default:
4124                             break;
4125                     }
4126                     break;
4127 
4128                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
4129                     con_handle = little_endian_read_16(packet, 3);
4130                     sm_conn = sm_get_connection_for_handle(con_handle);
4131                     if (!sm_conn) break;
4132 
4133                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
4134                     log_info("event handler, state %u", sm_conn->sm_engine_state);
4135                     // continue if part of initial pairing
4136                     switch (sm_conn->sm_engine_state){
4137                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4138                             if (IS_RESPONDER(sm_conn->sm_role)){
4139                                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
4140                             } else {
4141                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4142                             }
4143                             sm_done_for_handle(sm_conn->sm_handle);
4144                             break;
4145                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4146                             // handler for HCI_EVENT_ENCRYPTION_CHANGE
4147                             // contains the same code for this state
4148                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
4149                             if (IS_RESPONDER(sm_conn->sm_role)){
4150                                 // slave
4151                                 if (sm_conn->sm_connection_sc){
4152                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4153                                 } else {
4154                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4155                                 }
4156                             } else {
4157                                 // master
4158                                 if (sm_key_distribution_all_received()){
4159                                     // skip receiving keys as there are none
4160                                     sm_key_distribution_handle_all_received(sm_conn);
4161                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4162                                 } else {
4163                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
4164                                 }
4165                             }
4166                             break;
4167 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4168                         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4169                             sm_event_handle_classic_encryption_event(sm_conn, con_handle);
4170                             break;
4171 #endif
4172                         default:
4173                             break;
4174                     }
4175                     break;
4176 
4177 
4178                 case HCI_EVENT_DISCONNECTION_COMPLETE:
4179                     con_handle = little_endian_read_16(packet, 3);
4180                     sm_done_for_handle(con_handle);
4181                     sm_conn = sm_get_connection_for_handle(con_handle);
4182                     if (!sm_conn) break;
4183 
4184                     // pairing failed, if it was ongoing
4185                     switch (sm_conn->sm_engine_state){
4186                         case SM_GENERAL_IDLE:
4187                         case SM_INITIATOR_CONNECTED:
4188                         case SM_RESPONDER_IDLE:
4189                             break;
4190                         default:
4191                             sm_reencryption_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
4192                             sm_pairing_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION, 0);
4193                             break;
4194                     }
4195 
4196                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
4197                     sm_conn->sm_handle = 0;
4198                     break;
4199 
4200                 case HCI_EVENT_COMMAND_COMPLETE:
4201                     if (hci_event_command_complete_get_command_opcode(packet) == HCI_OPCODE_HCI_READ_BD_ADDR) {
4202                         // set local addr for le device db
4203                         reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr);
4204                         le_device_db_set_local_bd_addr(addr);
4205                     }
4206                     break;
4207 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4208                 case L2CAP_EVENT_INFORMATION_RESPONSE:
4209                     con_handle = l2cap_event_information_response_get_con_handle(packet);
4210                     sm_conn = sm_get_connection_for_handle(con_handle);
4211                     if (!sm_conn) break;
4212                     if (sm_conn->sm_engine_state == SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK){
4213                         // check if remote supports SMP over BR/EDR
4214                         const hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
4215                         if ((hci_connection->l2cap_state.fixed_channels_supported & (1 << L2CAP_CID_BR_EDR_SECURITY_MANAGER)) != 0){
4216                             sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST;
4217                         } else {
4218                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4219                             hci_dedicated_bonding_defer_disconnect(con_handle, false);
4220                         }
4221                     }
4222                     break;
4223 #endif
4224                 default:
4225                     break;
4226 			}
4227             break;
4228         default:
4229             break;
4230 	}
4231 
4232     sm_run();
4233 }
4234 
4235 static inline int sm_calc_actual_encryption_key_size(int other){
4236     if (other < sm_min_encryption_key_size) return 0;
4237     if (other < sm_max_encryption_key_size) return other;
4238     return sm_max_encryption_key_size;
4239 }
4240 
4241 
4242 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4243 static bool sm_just_works_or_numeric_comparison(stk_generation_method_t method){
4244     switch (method){
4245         case JUST_WORKS:
4246         case NUMERIC_COMPARISON:
4247             return true;
4248         default:
4249             return false;
4250     }
4251 }
4252 // responder
4253 
4254 static bool sm_passkey_used(stk_generation_method_t method){
4255     switch (method){
4256         case PK_RESP_INPUT:
4257             return true;
4258         default:
4259             return 0;
4260     }
4261 }
4262 
4263 static bool sm_passkey_entry(stk_generation_method_t method){
4264     switch (method){
4265         case PK_RESP_INPUT:
4266         case PK_INIT_INPUT:
4267         case PK_BOTH_INPUT:
4268             return true;
4269         default:
4270             return false;
4271     }
4272 }
4273 
4274 #endif
4275 
4276 /**
4277  * @return ok
4278  */
4279 static int sm_validate_stk_generation_method(void){
4280     // check if STK generation method is acceptable by client
4281     switch (setup->sm_stk_generation_method){
4282         case JUST_WORKS:
4283             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0u;
4284         case PK_RESP_INPUT:
4285         case PK_INIT_INPUT:
4286         case PK_BOTH_INPUT:
4287             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0u;
4288         case OOB:
4289             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0u;
4290         case NUMERIC_COMPARISON:
4291             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0u;
4292         default:
4293             return 0;
4294     }
4295 }
4296 
4297 #ifdef ENABLE_LE_CENTRAL
4298 static void sm_initiator_connected_handle_security_request(sm_connection_t * sm_conn, const uint8_t *packet){
4299 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4300     if (sm_sc_only_mode){
4301         uint8_t auth_req = packet[1];
4302         if ((auth_req & SM_AUTHREQ_SECURE_CONNECTION) == 0){
4303             sm_pairing_error(sm_conn, SM_REASON_AUTHENTHICATION_REQUIREMENTS);
4304             return;
4305         }
4306     }
4307 #else
4308     UNUSED(packet);
4309 #endif
4310 
4311     int have_ltk;
4312     uint8_t ltk[16];
4313 
4314     // IRK complete?
4315     switch (sm_conn->sm_irk_lookup_state){
4316         case IRK_LOOKUP_FAILED:
4317             // start pairing
4318             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4319             break;
4320         case IRK_LOOKUP_SUCCEEDED:
4321             le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
4322             have_ltk = !sm_is_null_key(ltk);
4323             log_info("central: security request - have_ltk %u, encryption %u", have_ltk, sm_conn->sm_connection_encrypted);
4324             if (have_ltk && (sm_conn->sm_connection_encrypted == 0)){
4325                 // start re-encrypt if we have LTK and the connection is not already encrypted
4326                 sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
4327             } else {
4328                 // start pairing
4329                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4330             }
4331             break;
4332         default:
4333             // otherwise, store security request
4334             sm_conn->sm_security_request_received = true;
4335             break;
4336     }
4337 }
4338 #endif
4339 
4340 static uint8_t sm_pdu_validate_and_get_opcode(uint8_t packet_type, const uint8_t *packet, uint16_t size){
4341 
4342     // size of complete sm_pdu used to validate input
4343     static const uint8_t sm_pdu_size[] = {
4344             0,  // 0x00 invalid opcode
4345             7,  // 0x01 pairing request
4346             7,  // 0x02 pairing response
4347             17, // 0x03 pairing confirm
4348             17, // 0x04 pairing random
4349             2,  // 0x05 pairing failed
4350             17, // 0x06 encryption information
4351             11, // 0x07 master identification
4352             17, // 0x08 identification information
4353             8,  // 0x09 identify address information
4354             17, // 0x0a signing information
4355             2,  // 0x0b security request
4356             65, // 0x0c pairing public key
4357             17, // 0x0d pairing dhk check
4358             2,  // 0x0e keypress notification
4359     };
4360 
4361     if (packet_type != SM_DATA_PACKET) return 0;
4362     if (size == 0u) return 0;
4363 
4364     uint8_t sm_pdu_code = packet[0];
4365 
4366     // validate pdu size
4367     if (sm_pdu_code >= sizeof(sm_pdu_size)) return 0;
4368     if (sm_pdu_size[sm_pdu_code] != size)   return 0;
4369 
4370     return sm_pdu_code;
4371 }
4372 
4373 static void sm_pdu_handler(sm_connection_t *sm_conn, uint8_t sm_pdu_code, const uint8_t *packet) {
4374     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, sm_pdu_code);
4375 
4376     int err;
4377     uint8_t max_encryption_key_size;
4378     UNUSED(err);
4379 
4380     switch (sm_conn->sm_engine_state){
4381 
4382         // a sm timeout requires a new physical connection
4383         case SM_GENERAL_TIMEOUT:
4384             return;
4385 
4386 #ifdef ENABLE_LE_CENTRAL
4387 
4388         // Initiator
4389         case SM_INITIATOR_CONNECTED:
4390             if ((sm_pdu_code != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
4391                 sm_pdu_received_in_wrong_state(sm_conn);
4392                 break;
4393             }
4394             sm_initiator_connected_handle_security_request(sm_conn, packet);
4395             break;
4396 
4397         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
4398             // Core 5, Vol 3, Part H, 2.4.6:
4399             // "The master shall ignore the slave’s Security Request if the master has sent a Pairing Request
4400             //  without receiving a Pairing Response from the slave or if the master has initiated encryption mode setup."
4401             if (sm_pdu_code == SM_CODE_SECURITY_REQUEST){
4402                 log_info("Ignoring Security Request");
4403                 break;
4404             }
4405 
4406             // all other pdus are incorrect
4407             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
4408                 sm_pdu_received_in_wrong_state(sm_conn);
4409                 break;
4410             }
4411 
4412             // store pairing request
4413             (void)memcpy(&setup->sm_s_pres, packet,
4414                          sizeof(sm_pairing_packet_t));
4415 
4416             // validate encryption key size
4417             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_s_pres);
4418             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4419                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4420                 break;
4421             }
4422 
4423             err = sm_stk_generation_init(sm_conn);
4424 
4425 #ifdef ENABLE_TESTING_SUPPORT
4426             if (0 < test_pairing_failure && test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED){
4427                 log_info("testing_support: abort with pairing failure %u", test_pairing_failure);
4428                 err = test_pairing_failure;
4429             }
4430 #endif
4431 
4432             if (err != 0){
4433                 sm_pairing_error(sm_conn, err);
4434                 break;
4435             }
4436 
4437             // generate random number first, if we need to show passkey
4438             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
4439                 btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk,  (void *)(uintptr_t) sm_conn->sm_handle);
4440                 break;
4441             }
4442 
4443 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4444             if (setup->sm_use_secure_connections){
4445                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
4446                 if (setup->sm_stk_generation_method == JUST_WORKS){
4447                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4448                     sm_trigger_user_response(sm_conn);
4449                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
4450                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4451                     }
4452                 } else {
4453                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4454                 }
4455                 break;
4456             }
4457 #endif
4458             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4459             sm_trigger_user_response(sm_conn);
4460             // response_idle == nothing <--> sm_trigger_user_response() did not require response
4461             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
4462                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4463             }
4464             break;
4465 
4466         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
4467             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4468                 sm_pdu_received_in_wrong_state(sm_conn);
4469                 break;
4470             }
4471 
4472             // store s_confirm
4473             reverse_128(&packet[1], setup->sm_peer_confirm);
4474 
4475             // abort if s_confirm matches m_confirm
4476             if (memcmp(setup->sm_local_confirm, setup->sm_peer_confirm, 16) == 0){
4477                 sm_pdu_received_in_wrong_state(sm_conn);
4478                 break;
4479             }
4480 
4481 #ifdef ENABLE_TESTING_SUPPORT
4482             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4483                 log_info("testing_support: reset confirm value");
4484                 memset(setup->sm_peer_confirm, 0, 16);
4485             }
4486 #endif
4487             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
4488             break;
4489 
4490         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
4491             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4492                 sm_pdu_received_in_wrong_state(sm_conn);
4493                 break;;
4494             }
4495 
4496             // received random value
4497             reverse_128(&packet[1], setup->sm_peer_random);
4498             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4499             break;
4500 
4501         case SM_INITIATOR_PH4_HAS_LTK:
4502         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4503             // ignore Security Request, see SM_INITIATOR_PH1_W4_PAIRING_RESPONSE above
4504             if (sm_pdu_code != SM_CODE_SECURITY_REQUEST){
4505                 sm_pdu_received_in_wrong_state(sm_conn);
4506             }
4507             break;
4508 #endif
4509 
4510 #ifdef ENABLE_LE_PERIPHERAL
4511         // Responder
4512         case SM_RESPONDER_IDLE:
4513         case SM_RESPONDER_SEND_SECURITY_REQUEST:
4514         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
4515             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
4516                 sm_pdu_received_in_wrong_state(sm_conn);
4517                 break;;
4518             }
4519 
4520             // store pairing request
4521             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
4522 
4523             // validation encryption key size
4524             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(sm_conn->sm_m_preq);
4525             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4526                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4527                 break;
4528             }
4529 
4530             // check if IRK completed
4531             switch (sm_conn->sm_irk_lookup_state){
4532                 case IRK_LOOKUP_SUCCEEDED:
4533                 case IRK_LOOKUP_FAILED:
4534                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
4535                     break;
4536                 default:
4537                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK;
4538                     break;
4539             }
4540             break;
4541 #endif
4542 
4543 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4544         case SM_SC_W4_PUBLIC_KEY_COMMAND:
4545             if (sm_pdu_code != SM_CODE_PAIRING_PUBLIC_KEY){
4546                 sm_pdu_received_in_wrong_state(sm_conn);
4547                 break;
4548             }
4549 
4550             // store public key for DH Key calculation
4551             reverse_256(&packet[01], &setup->sm_peer_q[0]);
4552             reverse_256(&packet[33], &setup->sm_peer_q[32]);
4553 
4554             // CVE-2020-26558: abort pairing if remote uses the same public key
4555             if (memcmp(&setup->sm_peer_q, ec_q, 64) == 0){
4556                 log_info("Remote PK matches ours");
4557                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4558                 break;
4559             }
4560 
4561             // validate public key
4562             err = btstack_crypto_ecc_p256_validate_public_key(setup->sm_peer_q);
4563             if (err != 0){
4564                 log_info("sm: peer public key invalid %x", err);
4565                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4566                 break;
4567             }
4568 
4569             // start calculating dhkey
4570             btstack_crypto_ecc_p256_calculate_dhkey(&sm_crypto_ecc_p256_request, setup->sm_peer_q, setup->sm_dhkey, sm_sc_dhkey_calculated, (void*)(uintptr_t) sm_conn->sm_handle);
4571 
4572 
4573             log_info("public key received, generation method %u", setup->sm_stk_generation_method);
4574             if (IS_RESPONDER(sm_conn->sm_role)){
4575                 // responder
4576                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4577             } else {
4578                 // initiator
4579                 // stk generation method
4580                 // passkey entry: notify app to show passkey or to request passkey
4581                 switch (setup->sm_stk_generation_method){
4582                     case JUST_WORKS:
4583                     case NUMERIC_COMPARISON:
4584                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
4585                         break;
4586                     case PK_RESP_INPUT:
4587                         sm_sc_start_calculating_local_confirm(sm_conn);
4588                         break;
4589                     case PK_INIT_INPUT:
4590                     case PK_BOTH_INPUT:
4591                         if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4592                             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4593                             break;
4594                         }
4595                         sm_sc_start_calculating_local_confirm(sm_conn);
4596                         break;
4597                     case OOB:
4598                         // generate Nx
4599                         log_info("Generate Na");
4600                         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4601                         break;
4602                     default:
4603                         btstack_assert(false);
4604                         break;
4605                 }
4606             }
4607             break;
4608 
4609         case SM_SC_W4_CONFIRMATION:
4610             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4611                 sm_pdu_received_in_wrong_state(sm_conn);
4612                 break;
4613             }
4614             // received confirm value
4615             reverse_128(&packet[1], setup->sm_peer_confirm);
4616 
4617 #ifdef ENABLE_TESTING_SUPPORT
4618             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4619                 log_info("testing_support: reset confirm value");
4620                 memset(setup->sm_peer_confirm, 0, 16);
4621             }
4622 #endif
4623             if (IS_RESPONDER(sm_conn->sm_role)){
4624                 // responder
4625                 if (sm_passkey_used(setup->sm_stk_generation_method)){
4626                     if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4627                         // still waiting for passkey
4628                         sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4629                         break;
4630                     }
4631                 }
4632                 sm_sc_start_calculating_local_confirm(sm_conn);
4633             } else {
4634                 // initiator
4635                 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
4636                     btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4637                 } else {
4638                     sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
4639                 }
4640             }
4641             break;
4642 
4643         case SM_SC_W4_PAIRING_RANDOM:
4644             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4645                 sm_pdu_received_in_wrong_state(sm_conn);
4646                 break;
4647             }
4648 
4649             // received random value
4650             reverse_128(&packet[1], setup->sm_peer_nonce);
4651 
4652             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
4653             // only check for JUST WORK/NC in initiator role OR passkey entry
4654             log_info("SM_SC_W4_PAIRING_RANDOM, responder: %u, just works: %u, passkey used %u, passkey entry %u",
4655                      IS_RESPONDER(sm_conn->sm_role), sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method),
4656                      sm_passkey_used(setup->sm_stk_generation_method), sm_passkey_entry(setup->sm_stk_generation_method));
4657             if ( (!IS_RESPONDER(sm_conn->sm_role) && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method))
4658             ||   (sm_passkey_entry(setup->sm_stk_generation_method)) ) {
4659                  sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4660                  break;
4661             }
4662 
4663             // OOB
4664             if (setup->sm_stk_generation_method == OOB){
4665 
4666                 // setup local random, set to zero if remote did not receive our data
4667                 log_info("Received nonce, setup local random ra/rb for dhkey check");
4668                 if (IS_RESPONDER(sm_conn->sm_role)){
4669                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) == 0u){
4670                         log_info("Reset rb as A does not have OOB data");
4671                         memset(setup->sm_rb, 0, 16);
4672                     } else {
4673                         (void)memcpy(setup->sm_rb, sm_sc_oob_random, 16);
4674                         log_info("Use stored rb");
4675                         log_info_hexdump(setup->sm_rb, 16);
4676                     }
4677                 }  else {
4678                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres) == 0u){
4679                         log_info("Reset ra as B does not have OOB data");
4680                         memset(setup->sm_ra, 0, 16);
4681                     } else {
4682                         (void)memcpy(setup->sm_ra, sm_sc_oob_random, 16);
4683                         log_info("Use stored ra");
4684                         log_info_hexdump(setup->sm_ra, 16);
4685                     }
4686                 }
4687 
4688                 // validate confirm value if Cb = f4(PKb, Pkb, rb, 0) for OOB if data received
4689                 if (setup->sm_have_oob_data){
4690                      sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4691                      break;
4692                 }
4693             }
4694 
4695             // TODO: we only get here for Responder role with JW/NC
4696             sm_sc_state_after_receiving_random(sm_conn);
4697             break;
4698 
4699         case SM_SC_W2_CALCULATE_G2:
4700         case SM_SC_W4_CALCULATE_G2:
4701         case SM_SC_W4_CALCULATE_DHKEY:
4702         case SM_SC_W2_CALCULATE_F5_SALT:
4703         case SM_SC_W4_CALCULATE_F5_SALT:
4704         case SM_SC_W2_CALCULATE_F5_MACKEY:
4705         case SM_SC_W4_CALCULATE_F5_MACKEY:
4706         case SM_SC_W2_CALCULATE_F5_LTK:
4707         case SM_SC_W4_CALCULATE_F5_LTK:
4708         case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
4709         case SM_SC_W4_DHKEY_CHECK_COMMAND:
4710         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
4711         case SM_SC_W4_USER_RESPONSE:
4712             if (sm_pdu_code != SM_CODE_PAIRING_DHKEY_CHECK){
4713                 sm_pdu_received_in_wrong_state(sm_conn);
4714                 break;
4715             }
4716             // store DHKey Check
4717             setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED;
4718             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
4719 
4720             // have we been only waiting for dhkey check command?
4721             if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){
4722                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
4723             }
4724             break;
4725 #endif
4726 
4727 #ifdef ENABLE_LE_PERIPHERAL
4728         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
4729             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4730                 sm_pdu_received_in_wrong_state(sm_conn);
4731                 break;
4732             }
4733 
4734             // received confirm value
4735             reverse_128(&packet[1], setup->sm_peer_confirm);
4736 
4737 #ifdef ENABLE_TESTING_SUPPORT
4738             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4739                 log_info("testing_support: reset confirm value");
4740                 memset(setup->sm_peer_confirm, 0, 16);
4741             }
4742 #endif
4743             // notify client to hide shown passkey
4744             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
4745                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
4746             }
4747 
4748             // handle user cancel pairing?
4749             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
4750                 sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
4751                 break;
4752             }
4753 
4754             // wait for user action?
4755             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
4756                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4757                 break;
4758             }
4759 
4760             // calculate and send local_confirm
4761             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4762             break;
4763 
4764         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
4765             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4766                 sm_pdu_received_in_wrong_state(sm_conn);
4767                 break;;
4768             }
4769 
4770             // received random value
4771             reverse_128(&packet[1], setup->sm_peer_random);
4772             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4773             break;
4774 #endif
4775 
4776         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4777         case SM_PH3_RECEIVE_KEYS:
4778             switch(sm_pdu_code){
4779                 case SM_CODE_ENCRYPTION_INFORMATION:
4780                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
4781                     reverse_128(&packet[1], setup->sm_peer_ltk);
4782                     break;
4783 
4784                 case SM_CODE_MASTER_IDENTIFICATION:
4785                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
4786                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
4787                     reverse_64(&packet[3], setup->sm_peer_rand);
4788                     break;
4789 
4790                 case SM_CODE_IDENTITY_INFORMATION:
4791                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4792                     reverse_128(&packet[1], setup->sm_peer_irk);
4793                     break;
4794 
4795                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4796                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4797                     setup->sm_peer_addr_type = packet[1];
4798                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4799                     break;
4800 
4801                 case SM_CODE_SIGNING_INFORMATION:
4802                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4803                     reverse_128(&packet[1], setup->sm_peer_csrk);
4804                     break;
4805                 default:
4806                     // Unexpected PDU
4807                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4808                     break;
4809             }
4810             // done with key distribution?
4811             if (sm_key_distribution_all_received()){
4812 
4813                 sm_key_distribution_handle_all_received(sm_conn);
4814 
4815                 if (IS_RESPONDER(sm_conn->sm_role)){
4816                     sm_key_distribution_complete_responder(sm_conn);
4817                 } else {
4818                     if (setup->sm_use_secure_connections){
4819                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4820                     } else {
4821                         btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4822                     }
4823                 }
4824             }
4825             break;
4826 
4827 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4828 
4829         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4830             // GAP/DM/LEP/BI-02-C - reject CTKD if P-192 encryption is used
4831             if (sm_pdu_code == SM_CODE_PAIRING_REQUEST){
4832                 sm_pairing_error(sm_conn, SM_REASON_CROSS_TRANSPORT_KEY_DERIVATION_NOT_ALLOWED);
4833             }
4834             break;
4835 
4836         case SM_BR_EDR_INITIATOR_W4_PAIRING_RESPONSE:
4837 
4838             // dedicated bonding complete
4839             hci_dedicated_bonding_defer_disconnect(sm_conn->sm_handle, false);
4840 
4841             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
4842                 sm_pdu_received_in_wrong_state(sm_conn);
4843                 break;
4844             }
4845             // store pairing response
4846             (void)memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
4847 
4848             // validate encryption key size
4849             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_s_pres);
4850             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4851                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4852                 break;
4853             }
4854             sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(max_encryption_key_size);
4855             // SC Only mandates 128 bit key size
4856             if (sm_sc_only_mode && (sm_conn->sm_actual_encryption_key_size < 16)) {
4857                 sm_conn->sm_actual_encryption_key_size  = 0;
4858             }
4859             if (sm_conn->sm_actual_encryption_key_size == 0){
4860                 sm_pairing_error(sm_conn, SM_REASON_ENCRYPTION_KEY_SIZE);
4861                 break;
4862             }
4863 
4864             // prepare key exchange, LTK is derived locally
4865             sm_setup_key_distribution(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres) & ~SM_KEYDIST_ENC_KEY,
4866                                       sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres) & ~SM_KEYDIST_ENC_KEY);
4867 
4868             // skip receive if there are none
4869             if (sm_key_distribution_all_received()){
4870                 // distribute keys in run handles 'no keys to send'
4871                 sm_conn->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
4872             } else {
4873                 sm_conn->sm_engine_state = SM_BR_EDR_RECEIVE_KEYS;
4874             }
4875             break;
4876 
4877         case SM_BR_EDR_RESPONDER_W4_PAIRING_REQUEST:
4878             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
4879                 sm_pdu_received_in_wrong_state(sm_conn);
4880                 break;
4881             }
4882 
4883             // store pairing request
4884             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
4885 
4886             // validate encryption key size
4887             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(sm_conn->sm_m_preq);
4888             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4889                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4890                 break;
4891             }
4892             sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(max_encryption_key_size);
4893             // SC Only mandates 128 bit key size
4894             if (sm_sc_only_mode && (sm_conn->sm_actual_encryption_key_size < 16)) {
4895                 sm_conn->sm_actual_encryption_key_size  = 0;
4896             }
4897             if (sm_conn->sm_actual_encryption_key_size == 0){
4898                 sm_pairing_error(sm_conn, SM_REASON_ENCRYPTION_KEY_SIZE);
4899                 break;
4900             }
4901             // trigger response
4902             if (sm_ctkd_from_classic(sm_conn)){
4903                 sm_conn->sm_engine_state = SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED;
4904             } else {
4905                 sm_pairing_error(sm_conn, SM_REASON_CROSS_TRANSPORT_KEY_DERIVATION_NOT_ALLOWED);
4906             }
4907             break;
4908 
4909         case SM_BR_EDR_RECEIVE_KEYS:
4910             switch(sm_pdu_code){
4911                 case SM_CODE_IDENTITY_INFORMATION:
4912                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4913                     reverse_128(&packet[1], setup->sm_peer_irk);
4914                     break;
4915                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4916                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4917                     setup->sm_peer_addr_type = packet[1];
4918                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4919                     break;
4920                 case SM_CODE_SIGNING_INFORMATION:
4921                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4922                     reverse_128(&packet[1], setup->sm_peer_csrk);
4923                     break;
4924                 default:
4925                     // Unexpected PDU
4926                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4927                     break;
4928             }
4929 
4930             // all keys received
4931             if (sm_key_distribution_all_received()){
4932                 if (IS_RESPONDER(sm_conn->sm_role)){
4933                     // responder -> keys exchanged, derive LE LTK
4934                     sm_ctkd_start_from_br_edr(sm_conn);
4935                 } else {
4936                     // initiator -> send our keys if any
4937                     sm_conn->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
4938                 }
4939             }
4940             break;
4941 #endif
4942 
4943         default:
4944             // Unexpected PDU
4945             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
4946             sm_pdu_received_in_wrong_state(sm_conn);
4947             break;
4948     }
4949 
4950     // try to send next pdu
4951     sm_trigger_run();
4952 }
4953 
4954 static void sm_channel_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
4955 
4956     if ((packet_type == HCI_EVENT_PACKET) && (packet[0] == L2CAP_EVENT_CAN_SEND_NOW)){
4957         sm_run();
4958     }
4959 
4960     uint8_t sm_pdu_code = sm_pdu_validate_and_get_opcode(packet_type, packet, size);
4961     if (sm_pdu_code == 0) return;
4962 
4963     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4964     if (!sm_conn) return;
4965 
4966     if (sm_pdu_code == SM_CODE_PAIRING_FAILED){
4967         sm_reencryption_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE);
4968         sm_pairing_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE, packet[1]);
4969         sm_done_for_handle(con_handle);
4970         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
4971         return;
4972     }
4973 
4974     if (sm_pdu_code == SM_CODE_KEYPRESS_NOTIFICATION){
4975         uint8_t buffer[5];
4976         buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION;
4977         buffer[1] = 3;
4978         little_endian_store_16(buffer, 2, con_handle);
4979         buffer[4] = packet[1];
4980         sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer));
4981         return;
4982     }
4983 
4984     sm_pdu_handler(sm_conn, sm_pdu_code, packet);
4985 }
4986 
4987 // Security Manager Client API
4988 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_data)){
4989     sm_get_oob_data = get_oob_data_callback;
4990 }
4991 
4992 void sm_register_sc_oob_data_callback( int (*get_sc_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random)){
4993     sm_get_sc_oob_data = get_sc_oob_data_callback;
4994 }
4995 
4996 void sm_register_ltk_callback( bool (*get_ltk_callback)(hci_con_handle_t con_handle, uint8_t address_type, bd_addr_t addr, uint8_t * ltk)){
4997     sm_get_ltk_callback = get_ltk_callback;
4998 }
4999 
5000 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
5001     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
5002 }
5003 
5004 void sm_remove_event_handler(btstack_packet_callback_registration_t * callback_handler){
5005     btstack_linked_list_remove(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
5006 }
5007 
5008 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
5009     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
5010 }
5011 
5012 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
5013 	sm_min_encryption_key_size = min_size;
5014 	sm_max_encryption_key_size = max_size;
5015 }
5016 
5017 void sm_set_authentication_requirements(uint8_t auth_req){
5018 #ifndef ENABLE_LE_SECURE_CONNECTIONS
5019     if (auth_req & SM_AUTHREQ_SECURE_CONNECTION){
5020         log_error("ENABLE_LE_SECURE_CONNECTIONS not defined, but requested by app. Dropping SC flag");
5021         auth_req &= ~SM_AUTHREQ_SECURE_CONNECTION;
5022     }
5023 #endif
5024     sm_auth_req = auth_req;
5025 }
5026 
5027 void sm_set_io_capabilities(io_capability_t io_capability){
5028     sm_io_capabilities = io_capability;
5029 }
5030 
5031 #ifdef ENABLE_LE_PERIPHERAL
5032 void sm_set_request_security(bool enable){
5033     sm_slave_request_security = enable;
5034 }
5035 #endif
5036 
5037 void sm_set_er(sm_key_t er){
5038     (void)memcpy(sm_persistent_er, er, 16);
5039 }
5040 
5041 void sm_set_ir(sm_key_t ir){
5042     (void)memcpy(sm_persistent_ir, ir, 16);
5043 }
5044 
5045 // Testing support only
5046 void sm_test_set_irk(sm_key_t irk){
5047     (void)memcpy(sm_persistent_irk, irk, 16);
5048     dkg_state = DKG_CALC_DHK;
5049     test_use_fixed_local_irk = true;
5050 }
5051 
5052 void sm_test_use_fixed_local_csrk(void){
5053     test_use_fixed_local_csrk = true;
5054 }
5055 
5056 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5057 static void sm_ec_generated(void * arg){
5058     UNUSED(arg);
5059     ec_key_generation_state = EC_KEY_GENERATION_DONE;
5060     // trigger pairing if pending for ec key
5061     sm_trigger_run();
5062 }
5063 static void sm_ec_generate_new_key(void) {
5064     log_info("sm: generate new ec key");
5065 #ifdef ENABLE_LE_SECURE_CONNECTIONS_DEBUG_KEY
5066     // LE Secure Connections Debug Key
5067     const uint8_t debug_key_public[64] = {
5068         0x20, 0xb0, 0x03, 0xd2, 0xf2, 0x97, 0xbe, 0x2c, 0x5e, 0x2c, 0x83, 0xa7, 0xe9, 0xf9, 0xa5, 0xb9,
5069         0xef, 0xf4, 0x91, 0x11, 0xac, 0xf4, 0xfd, 0xdb, 0xcc, 0x03, 0x01, 0x48, 0x0e, 0x35, 0x9d, 0xe6,
5070         0xdc, 0x80, 0x9c, 0x49, 0x65, 0x2a, 0xeb, 0x6d, 0x63, 0x32, 0x9a, 0xbf, 0x5a, 0x52, 0x15, 0x5c,
5071         0x76, 0x63, 0x45, 0xc2, 0x8f, 0xed, 0x30, 0x24, 0x74, 0x1c, 0x8e, 0xd0, 0x15, 0x89, 0xd2, 0x8b
5072     };
5073     const uint8_t debug_key_private[32] = {
5074         0x3f, 0x49, 0xf6, 0xd4, 0xa3, 0xc5, 0x5f, 0x38, 0x74, 0xc9, 0xb3, 0xe3, 0xd2, 0x10, 0x3f, 0x50,
5075         0x4a, 0xff, 0x60, 0x7b, 0xeb, 0x40, 0xb7, 0x99, 0x58, 0x99, 0xb8, 0xa6, 0xcd, 0x3c, 0x1a, 0xbd
5076     };
5077     if (sm_sc_debug_keys_enabled) {
5078         memcpy(ec_q, debug_key_public, 64);
5079         btstack_crypto_ecc_p256_set_key(debug_key_public, debug_key_private);
5080         ec_key_generation_state = EC_KEY_GENERATION_DONE;
5081     } else
5082 #endif
5083     {
5084         ec_key_generation_state = EC_KEY_GENERATION_ACTIVE;
5085         btstack_crypto_ecc_p256_generate_key(&sm_crypto_ecc_p256_request, ec_q, &sm_ec_generated, NULL);
5086     }
5087 }
5088 #endif
5089 
5090 #ifdef ENABLE_TESTING_SUPPORT
5091 void sm_test_set_pairing_failure(int reason){
5092     test_pairing_failure = reason;
5093 }
5094 #endif
5095 
5096 static void sm_state_reset(void) {
5097 #ifdef USE_CMAC_ENGINE
5098     sm_cmac_active  = 0;
5099 #endif
5100     dkg_state = DKG_W4_WORKING;
5101     rau_state = RAU_IDLE;
5102     sm_aes128_state = SM_AES128_IDLE;
5103     sm_address_resolution_test = -1;    // no private address to resolve yet
5104     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
5105     sm_address_resolution_general_queue = NULL;
5106     sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
5107     sm_persistent_keys_random_active = false;
5108 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5109     ec_key_generation_state = EC_KEY_GENERATION_IDLE;
5110 #endif
5111 }
5112 
5113 void sm_init(void){
5114 
5115     if (sm_initialized) return;
5116 
5117     // set default ER and IR values (should be unique - set by app or sm later using TLV)
5118     sm_er_ir_set_default();
5119 
5120     // defaults
5121     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
5122                                        | SM_STK_GENERATION_METHOD_OOB
5123                                        | SM_STK_GENERATION_METHOD_PASSKEY
5124                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
5125 
5126     sm_max_encryption_key_size = 16;
5127     sm_min_encryption_key_size = 7;
5128 
5129     sm_fixed_passkey_in_display_role = 0xffffffffU;
5130     sm_reconstruct_ltk_without_le_device_db_entry = true;
5131 
5132     gap_random_adress_update_period = 15 * 60 * 1000L;
5133 
5134     test_use_fixed_local_csrk = false;
5135 
5136     // other
5137     btstack_run_loop_set_timer_handler(&sm_run_timer, &sm_run_timer_handler);
5138 
5139     // register for HCI Events
5140     hci_event_callback_registration.callback = &sm_event_packet_handler;
5141     hci_add_event_handler(&hci_event_callback_registration);
5142 
5143 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
5144     // register for L2CAP events
5145     l2cap_event_callback_registration.callback = &sm_event_packet_handler;
5146     l2cap_add_event_handler(&l2cap_event_callback_registration);
5147 #endif
5148 
5149     //
5150     btstack_crypto_init();
5151 
5152     // init le_device_db
5153     le_device_db_init();
5154 
5155     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
5156     l2cap_register_fixed_channel(sm_channel_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
5157 #ifdef ENABLE_CLASSIC
5158     l2cap_register_fixed_channel(sm_channel_handler, L2CAP_CID_BR_EDR_SECURITY_MANAGER);
5159 #endif
5160 
5161     // state
5162     sm_state_reset();
5163 
5164     sm_initialized = true;
5165 }
5166 
5167 void sm_deinit(void){
5168     sm_initialized = false;
5169     btstack_run_loop_remove_timer(&sm_run_timer);
5170 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined (ENABLE_LE_SECURE_CONNECTION_DEBUG_KEY)
5171     sm_sc_debug_keys_enabled = false;
5172 #endif
5173 }
5174 
5175 void sm_use_fixed_passkey_in_display_role(uint32_t passkey){
5176     sm_fixed_passkey_in_display_role = passkey;
5177 }
5178 
5179 void sm_allow_ltk_reconstruction_without_le_device_db_entry(int allow){
5180     sm_reconstruct_ltk_without_le_device_db_entry = allow != 0;
5181 }
5182 
5183 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
5184     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
5185     if (!hci_con) return NULL;
5186     return &hci_con->sm_connection;
5187 }
5188 
5189 static void sm_cache_ltk(sm_connection_t * connection, const sm_key_t ltk){
5190     hci_connection_t * hci_con = hci_connection_for_handle(connection->sm_handle);
5191     btstack_assert(hci_con != NULL);
5192     memcpy(hci_con->link_key, ltk, 16);
5193     hci_con->link_key_type = COMBINATION_KEY;
5194 }
5195 
5196 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
5197 static sm_connection_t * sm_get_connection_for_bd_addr_and_type(bd_addr_t address, bd_addr_type_t addr_type){
5198     hci_connection_t * hci_con = hci_connection_for_bd_addr_and_type(address, addr_type);
5199     if (!hci_con) return NULL;
5200     return &hci_con->sm_connection;
5201 }
5202 #endif
5203 
5204 // @deprecated: map onto sm_request_pairing
5205 void sm_send_security_request(hci_con_handle_t con_handle){
5206     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5207     if (!sm_conn) return;
5208     if (!IS_RESPONDER(sm_conn->sm_role)) return;
5209     sm_request_pairing(con_handle);
5210 }
5211 
5212 // request pairing
5213 void sm_request_pairing(hci_con_handle_t con_handle){
5214     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5215     if (!sm_conn) return;     // wrong connection
5216 
5217     bool have_ltk;
5218     uint8_t ltk[16];
5219     bool auth_required;
5220     int authenticated;
5221     bool trigger_reencryption;
5222     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
5223     if (IS_RESPONDER(sm_conn->sm_role)){
5224         switch (sm_conn->sm_engine_state){
5225             case SM_GENERAL_IDLE:
5226             case SM_RESPONDER_IDLE:
5227                 switch (sm_conn->sm_irk_lookup_state){
5228                     case IRK_LOOKUP_SUCCEEDED:
5229                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
5230                         have_ltk = !sm_is_null_key(ltk);
5231                         log_info("have ltk %u", have_ltk);
5232                         if (have_ltk){
5233                             sm_conn->sm_pairing_requested = true;
5234                             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
5235                             sm_reencryption_started(sm_conn);
5236                             break;
5237                         }
5238                         /* fall through */
5239 
5240                     case IRK_LOOKUP_FAILED:
5241                         sm_conn->sm_pairing_requested = true;
5242                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
5243                         sm_pairing_started(sm_conn);
5244                         break;
5245                     default:
5246                         log_info("irk lookup pending");
5247                         sm_conn->sm_pairing_requested = true;
5248                         break;
5249                 }
5250                 break;
5251             default:
5252                 break;
5253         }
5254     } else {
5255         // used as a trigger to start central/master/initiator security procedures
5256         switch (sm_conn->sm_engine_state){
5257             case SM_INITIATOR_CONNECTED:
5258                 switch (sm_conn->sm_irk_lookup_state){
5259                     case IRK_LOOKUP_SUCCEEDED:
5260                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, &authenticated, NULL, NULL);
5261                         have_ltk = !sm_is_null_key(ltk);
5262                         auth_required = sm_auth_req & SM_AUTHREQ_MITM_PROTECTION;
5263                         // re-encrypt is sufficient if we have ltk and that is either already authenticated or we don't require authentication
5264                         trigger_reencryption = have_ltk && ((authenticated != 0) || (auth_required == false));
5265                         log_info("have ltk %u, authenticated %u, auth required %u => reencrypt %u", have_ltk, authenticated, auth_required, trigger_reencryption);
5266                         if (trigger_reencryption){
5267                             sm_conn->sm_pairing_requested = true;
5268                             sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
5269                             break;
5270                         }
5271                         /* fall through */
5272 
5273                     case IRK_LOOKUP_FAILED:
5274                         sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
5275                         break;
5276                     default:
5277                         log_info("irk lookup pending");
5278                         sm_conn->sm_pairing_requested = true;
5279                         break;
5280                 }
5281                 break;
5282             case SM_GENERAL_REENCRYPTION_FAILED:
5283                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
5284                 break;
5285             case SM_GENERAL_IDLE:
5286                 sm_conn->sm_pairing_requested = true;
5287                 break;
5288             default:
5289                 break;
5290         }
5291     }
5292     sm_trigger_run();
5293 }
5294 
5295 // called by client app on authorization request
5296 void sm_authorization_decline(hci_con_handle_t con_handle){
5297     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5298     if (!sm_conn) return;     // wrong connection
5299     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
5300     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
5301 }
5302 
5303 void sm_authorization_grant(hci_con_handle_t con_handle){
5304     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5305     if (!sm_conn) return;     // wrong connection
5306     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
5307     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
5308 }
5309 
5310 // GAP Bonding API
5311 
5312 void sm_bonding_decline(hci_con_handle_t con_handle){
5313     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5314     if (!sm_conn) return;     // wrong connection
5315     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
5316     log_info("decline, state %u", sm_conn->sm_engine_state);
5317     switch(sm_conn->sm_engine_state){
5318 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5319         case SM_SC_W4_USER_RESPONSE:
5320         case SM_SC_W4_CONFIRMATION:
5321         case SM_SC_W4_PUBLIC_KEY_COMMAND:
5322 #endif
5323         case SM_PH1_W4_USER_RESPONSE:
5324             switch (setup->sm_stk_generation_method){
5325                 case PK_RESP_INPUT:
5326                 case PK_INIT_INPUT:
5327                 case PK_BOTH_INPUT:
5328                     sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
5329                     break;
5330                 case NUMERIC_COMPARISON:
5331                     sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
5332                     break;
5333                 case JUST_WORKS:
5334                 case OOB:
5335                     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
5336                     break;
5337                 default:
5338                     btstack_assert(false);
5339                     break;
5340             }
5341             break;
5342         default:
5343             break;
5344     }
5345     sm_trigger_run();
5346 }
5347 
5348 void sm_just_works_confirm(hci_con_handle_t con_handle){
5349     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5350     if (!sm_conn) return;     // wrong connection
5351     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
5352     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
5353         if (setup->sm_use_secure_connections){
5354             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
5355         } else {
5356             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
5357         }
5358     }
5359 
5360 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5361     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
5362         sm_sc_prepare_dhkey_check(sm_conn);
5363     }
5364 #endif
5365 
5366     sm_trigger_run();
5367 }
5368 
5369 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
5370     // for now, it's the same
5371     sm_just_works_confirm(con_handle);
5372 }
5373 
5374 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
5375     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5376     if (!sm_conn) return;     // wrong connection
5377     sm_reset_tk();
5378     big_endian_store_32(setup->sm_tk, 12, passkey);
5379     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
5380     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
5381         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
5382     }
5383 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5384     (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
5385     (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
5386     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
5387         sm_sc_start_calculating_local_confirm(sm_conn);
5388     }
5389 #endif
5390     sm_trigger_run();
5391 }
5392 
5393 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){
5394     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5395     if (!sm_conn) return;     // wrong connection
5396     if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return;
5397     uint8_t num_actions = setup->sm_keypress_notification >> 5;
5398     uint8_t flags = setup->sm_keypress_notification & 0x1fu;
5399     switch (action){
5400         case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
5401         case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
5402             flags |= (1u << action);
5403             break;
5404         case SM_KEYPRESS_PASSKEY_CLEARED:
5405             // clear counter, keypress & erased flags + set passkey cleared
5406             flags = (flags & 0x19u) | (1u << SM_KEYPRESS_PASSKEY_CLEARED);
5407             break;
5408         case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
5409             if ((flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED)) != 0u){
5410                 // erase actions queued
5411                 num_actions--;
5412                 if (num_actions == 0u){
5413                     // clear counter, keypress & erased flags
5414                     flags &= 0x19u;
5415                 }
5416                 break;
5417             }
5418             num_actions++;
5419             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED);
5420             break;
5421         case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
5422             if ((flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED)) != 0u){
5423                 // enter actions queued
5424                 num_actions--;
5425                 if (num_actions == 0u){
5426                     // clear counter, keypress & erased flags
5427                     flags &= 0x19u;
5428                 }
5429                 break;
5430             }
5431             num_actions++;
5432             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED);
5433             break;
5434         default:
5435             break;
5436     }
5437     setup->sm_keypress_notification = (num_actions << 5) | flags;
5438     sm_trigger_run();
5439 }
5440 
5441 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5442 static void sm_handle_random_result_oob(void * arg){
5443     UNUSED(arg);
5444     sm_sc_oob_state = SM_SC_OOB_W2_CALC_CONFIRM;
5445     sm_trigger_run();
5446 }
5447 uint8_t sm_generate_sc_oob_data(void (*callback)(const uint8_t * confirm_value, const uint8_t * random_value)){
5448 
5449     static btstack_crypto_random_t   sm_crypto_random_oob_request;
5450 
5451     if (sm_sc_oob_state != SM_SC_OOB_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
5452     sm_sc_oob_callback = callback;
5453     sm_sc_oob_state = SM_SC_OOB_W4_RANDOM;
5454     btstack_crypto_random_generate(&sm_crypto_random_oob_request, sm_sc_oob_random, 16, &sm_handle_random_result_oob, NULL);
5455     return 0;
5456 }
5457 #endif
5458 
5459 /**
5460  * @brief Get Identity Resolving state
5461  * @param con_handle
5462  * @return irk_lookup_state_t
5463  */
5464 irk_lookup_state_t sm_identity_resolving_state(hci_con_handle_t con_handle){
5465     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5466     if (!sm_conn) return IRK_LOOKUP_IDLE;
5467     return sm_conn->sm_irk_lookup_state;
5468 }
5469 
5470 /**
5471  * @brief Identify device in LE Device DB
5472  * @param handle
5473  * @return index from le_device_db or -1 if not found/identified
5474  */
5475 int sm_le_device_index(hci_con_handle_t con_handle ){
5476     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5477     if (!sm_conn) return -1;
5478     return sm_conn->sm_le_db_index;
5479 }
5480 
5481 uint8_t sm_get_ltk(hci_con_handle_t con_handle, sm_key_t ltk){
5482     hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
5483     if (hci_connection == NULL){
5484         return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
5485     }
5486     if (hci_connection->link_key_type == INVALID_LINK_KEY){
5487         return ERROR_CODE_PIN_OR_KEY_MISSING;
5488     }
5489     memcpy(ltk, hci_connection->link_key, 16);
5490     return ERROR_CODE_SUCCESS;
5491 }
5492 
5493 static int gap_random_address_type_requires_updates(void){
5494     switch (gap_random_adress_type){
5495         case GAP_RANDOM_ADDRESS_TYPE_OFF:
5496         case GAP_RANDOM_ADDRESS_TYPE_STATIC:
5497             return 0;
5498         default:
5499             return 1;
5500     }
5501 }
5502 
5503 static uint8_t own_address_type(void){
5504     switch (gap_random_adress_type){
5505         case GAP_RANDOM_ADDRESS_TYPE_OFF:
5506             return BD_ADDR_TYPE_LE_PUBLIC;
5507         default:
5508             return BD_ADDR_TYPE_LE_RANDOM;
5509     }
5510 }
5511 
5512 // GAP LE API
5513 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
5514     gap_random_address_update_stop();
5515     gap_random_adress_type = random_address_type;
5516     hci_le_set_own_address_type(own_address_type());
5517     if (!gap_random_address_type_requires_updates()) return;
5518     gap_random_address_update_start();
5519     gap_random_address_trigger();
5520 }
5521 
5522 gap_random_address_type_t gap_random_address_get_mode(void){
5523     return gap_random_adress_type;
5524 }
5525 
5526 void gap_random_address_set_update_period(int period_ms){
5527     gap_random_adress_update_period = period_ms;
5528     if (!gap_random_address_type_requires_updates()) return;
5529     gap_random_address_update_stop();
5530     gap_random_address_update_start();
5531 }
5532 
5533 void gap_random_address_set(const bd_addr_t addr){
5534     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC);
5535     (void)memcpy(sm_random_address, addr, 6);
5536     // assert msb bits are set to '11'
5537     sm_random_address[0] |= 0xc0;
5538     hci_le_random_address_set(sm_random_address);
5539 }
5540 
5541 #ifdef ENABLE_LE_PERIPHERAL
5542 /*
5543  * @brief Set Advertisement Paramters
5544  * @param adv_int_min
5545  * @param adv_int_max
5546  * @param adv_type
5547  * @param direct_address_type
5548  * @param direct_address
5549  * @param channel_map
5550  * @param filter_policy
5551  *
5552  * @note own_address_type is used from gap_random_address_set_mode
5553  */
5554 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
5555     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
5556     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type,
5557         direct_address_typ, direct_address, channel_map, filter_policy);
5558 }
5559 #endif
5560 
5561 bool gap_reconnect_security_setup_active(hci_con_handle_t con_handle){
5562     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5563      // wrong connection
5564     if (!sm_conn) return false;
5565     // already encrypted
5566     if (sm_conn->sm_connection_encrypted) return false;
5567     // irk status?
5568     switch(sm_conn->sm_irk_lookup_state){
5569         case IRK_LOOKUP_FAILED:
5570             // done, cannot setup encryption
5571             return false;
5572         case IRK_LOOKUP_SUCCEEDED:
5573             break;
5574         default:
5575             // IR Lookup pending
5576             return true;
5577     }
5578     // IRK Lookup Succeeded, re-encryption should be initiated. When done, state gets reset or indicates failure
5579     if (sm_conn->sm_engine_state == SM_GENERAL_REENCRYPTION_FAILED) return false;
5580     if (sm_conn->sm_role != 0){
5581         return sm_conn->sm_engine_state != SM_RESPONDER_IDLE;
5582     } else {
5583         return sm_conn->sm_engine_state != SM_INITIATOR_CONNECTED;
5584     }
5585 }
5586 
5587 void sm_set_secure_connections_only_mode(bool enable){
5588 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5589     sm_sc_only_mode = enable;
5590 #else
5591     // SC Only mode not possible without support for SC
5592     btstack_assert(enable == false);
5593 #endif
5594 }
5595 
5596 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined (ENABLE_LE_SECURE_CONNECTION_DEBUG_KEY)
5597 void sm_test_enable_secure_connections_debug_keys(void) {
5598     log_info("Enable LE Secure Connection Debug Keys for testing");
5599     sm_sc_debug_keys_enabled = true;
5600     // set debug key
5601     sm_ec_generate_new_key();
5602 }
5603 #endif
5604 
5605 const uint8_t * gap_get_persistent_irk(void){
5606     return sm_persistent_irk;
5607 }
5608 
5609 void gap_delete_bonding(bd_addr_type_t address_type, bd_addr_t address){
5610     int index = sm_le_device_db_index_lookup(address_type, address);
5611     if (index >= 0){
5612         sm_remove_le_device_db_entry(index);
5613     }
5614 }
5615