xref: /btstack/src/ble/sm.c (revision add51d723886f2b6804901727a90a244133fbe35)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define __BTSTACK_FILE__ "sm.c"
39 
40 #include <stdio.h>
41 #include <string.h>
42 #include <inttypes.h>
43 
44 #include "ble/le_device_db.h"
45 #include "ble/core.h"
46 #include "ble/sm.h"
47 #include "bluetooth_company_id.h"
48 #include "btstack_debug.h"
49 #include "btstack_event.h"
50 #include "btstack_linked_list.h"
51 #include "btstack_memory.h"
52 #include "gap.h"
53 #include "hci.h"
54 #include "hci_dump.h"
55 #include "l2cap.h"
56 
57 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL)
58 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h."
59 #endif
60 
61 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL)
62 #define IS_RESPONDER(role) (role)
63 #else
64 #ifdef ENABLE_LE_CENTRAL
65 // only central - never responder (avoid 'unused variable' warnings)
66 #define IS_RESPONDER(role) (0 && role)
67 #else
68 // only peripheral - always responder (avoid 'unused variable' warnings)
69 #define IS_RESPONDER(role) (1 || role)
70 #endif
71 #endif
72 
73 #ifdef ENABLE_LE_SECURE_CONNECTIONS
74 // assert SM Public Key can be sent/received
75 #if HCI_ACL_PAYLOAD_SIZE < 69
76 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS"
77 #endif
78 
79 #ifdef HAVE_HCI_CONTROLLER_DHKEY_SUPPORT
80 #error "Support for DHKEY Support in HCI Controller not implemented yet. Please use software implementation"
81 #else
82 // #define USE_MBEDTLS_FOR_ECDH
83 #define USE_MICROECC_FOR_ECDH
84 #endif
85 #endif
86 
87 // Software ECDH implementation provided by mbedtls
88 #ifdef USE_MBEDTLS_FOR_ECDH
89 #include "mbedtls/config.h"
90 #include "mbedtls/platform.h"
91 #include "mbedtls/ecp.h"
92 #include "sm_mbedtls_allocator.h"
93 #endif
94 
95 // Software ECDH implementation provided by micro-ecc
96 #ifdef USE_MICROECC_FOR_ECDH
97 #include "uECC.h"
98 #endif
99 
100 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS)
101 #define ENABLE_CMAC_ENGINE
102 #endif
103 
104 //
105 // SM internal types and globals
106 //
107 
108 typedef enum {
109     DKG_W4_WORKING,
110     DKG_CALC_IRK,
111     DKG_W4_IRK,
112     DKG_CALC_DHK,
113     DKG_W4_DHK,
114     DKG_READY
115 } derived_key_generation_t;
116 
117 typedef enum {
118     RAU_W4_WORKING,
119     RAU_IDLE,
120     RAU_GET_RANDOM,
121     RAU_W4_RANDOM,
122     RAU_GET_ENC,
123     RAU_W4_ENC,
124     RAU_SET_ADDRESS,
125 } random_address_update_t;
126 
127 typedef enum {
128     CMAC_IDLE,
129     CMAC_CALC_SUBKEYS,
130     CMAC_W4_SUBKEYS,
131     CMAC_CALC_MI,
132     CMAC_W4_MI,
133     CMAC_CALC_MLAST,
134     CMAC_W4_MLAST
135 } cmac_state_t;
136 
137 typedef enum {
138     JUST_WORKS,
139     PK_RESP_INPUT,  // Initiator displays PK, responder inputs PK
140     PK_INIT_INPUT,  // Responder displays PK, initiator inputs PK
141     OK_BOTH_INPUT,  // Only input on both, both input PK
142     NK_BOTH_INPUT,  // Only numerical compparison (yes/no) on on both sides
143     OOB             // OOB available on both sides
144 } stk_generation_method_t;
145 
146 typedef enum {
147     SM_USER_RESPONSE_IDLE,
148     SM_USER_RESPONSE_PENDING,
149     SM_USER_RESPONSE_CONFIRM,
150     SM_USER_RESPONSE_PASSKEY,
151     SM_USER_RESPONSE_DECLINE
152 } sm_user_response_t;
153 
154 typedef enum {
155     SM_AES128_IDLE,
156     SM_AES128_ACTIVE
157 } sm_aes128_state_t;
158 
159 typedef enum {
160     ADDRESS_RESOLUTION_IDLE,
161     ADDRESS_RESOLUTION_GENERAL,
162     ADDRESS_RESOLUTION_FOR_CONNECTION,
163 } address_resolution_mode_t;
164 
165 typedef enum {
166     ADDRESS_RESOLUTION_SUCEEDED,
167     ADDRESS_RESOLUTION_FAILED,
168 } address_resolution_event_t;
169 
170 typedef enum {
171     EC_KEY_GENERATION_IDLE,
172     EC_KEY_GENERATION_ACTIVE,
173     EC_KEY_GENERATION_W4_KEY,
174     EC_KEY_GENERATION_DONE,
175 } ec_key_generation_state_t;
176 
177 typedef enum {
178     SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 0
179 } sm_state_var_t;
180 
181 //
182 // GLOBAL DATA
183 //
184 
185 static uint8_t test_use_fixed_local_csrk;
186 
187 // configuration
188 static uint8_t sm_accepted_stk_generation_methods;
189 static uint8_t sm_max_encryption_key_size;
190 static uint8_t sm_min_encryption_key_size;
191 static uint8_t sm_auth_req = 0;
192 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
193 static uint8_t sm_slave_request_security;
194 #ifdef ENABLE_LE_SECURE_CONNECTIONS
195 static uint8_t sm_have_ec_keypair;
196 #endif
197 
198 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
199 static sm_key_t sm_persistent_er;
200 static sm_key_t sm_persistent_ir;
201 
202 // derived from sm_persistent_ir
203 static sm_key_t sm_persistent_dhk;
204 static sm_key_t sm_persistent_irk;
205 static uint8_t  sm_persistent_irk_ready = 0;    // used for testing
206 static derived_key_generation_t dkg_state;
207 
208 // derived from sm_persistent_er
209 // ..
210 
211 // random address update
212 static random_address_update_t rau_state;
213 static bd_addr_t sm_random_address;
214 
215 // CMAC Calculation: General
216 #ifdef ENABLE_CMAC_ENGINE
217 static cmac_state_t sm_cmac_state;
218 static uint16_t     sm_cmac_message_len;
219 static sm_key_t     sm_cmac_k;
220 static sm_key_t     sm_cmac_x;
221 static sm_key_t     sm_cmac_m_last;
222 static uint8_t      sm_cmac_block_current;
223 static uint8_t      sm_cmac_block_count;
224 static uint8_t      (*sm_cmac_get_byte)(uint16_t offset);
225 static void         (*sm_cmac_done_handler)(uint8_t * hash);
226 #endif
227 
228 // CMAC for ATT Signed Writes
229 #ifdef ENABLE_LE_SIGNED_WRITE
230 static uint8_t      sm_cmac_header[3];
231 static const uint8_t * sm_cmac_message;
232 static uint8_t      sm_cmac_sign_counter[4];
233 #endif
234 
235 // CMAC for Secure Connection functions
236 #ifdef ENABLE_LE_SECURE_CONNECTIONS
237 static sm_connection_t * sm_cmac_connection;
238 static uint8_t           sm_cmac_sc_buffer[80];
239 #endif
240 
241 // resolvable private address lookup / CSRK calculation
242 static int       sm_address_resolution_test;
243 static int       sm_address_resolution_ah_calculation_active;
244 static uint8_t   sm_address_resolution_addr_type;
245 static bd_addr_t sm_address_resolution_address;
246 static void *    sm_address_resolution_context;
247 static address_resolution_mode_t sm_address_resolution_mode;
248 static btstack_linked_list_t sm_address_resolution_general_queue;
249 
250 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context
251 static sm_aes128_state_t  sm_aes128_state;
252 static void *             sm_aes128_context;
253 
254 // use aes128 provided by MCU - not needed usually
255 #ifdef HAVE_AES128
256 static uint8_t                aes128_result_flipped[16];
257 static btstack_timer_source_t aes128_timer;
258 void btstack_aes128_calc(uint8_t * key, uint8_t * plaintext, uint8_t * result);
259 #endif
260 
261 // random engine. store context (ususally sm_connection_t)
262 static void * sm_random_context;
263 
264 // to receive hci events
265 static btstack_packet_callback_registration_t hci_event_callback_registration;
266 
267 /* to dispatch sm event */
268 static btstack_linked_list_t sm_event_handlers;
269 
270 // LE Secure Connections
271 #ifdef ENABLE_LE_SECURE_CONNECTIONS
272 static ec_key_generation_state_t ec_key_generation_state;
273 static uint8_t ec_d[32];
274 static uint8_t ec_q[64];
275 #endif
276 
277 // Software ECDH implementation provided by mbedtls
278 #ifdef USE_MBEDTLS_FOR_ECDH
279 // group is always valid
280 static mbedtls_ecp_group   mbedtls_ec_group;
281 #ifndef HAVE_MALLOC
282 // COMP Method with Window 2
283 // 1300 bytes with 23 allocations
284 // #define MBEDTLS_ALLOC_BUFFER_SIZE (1300+23*sizeof(void *))
285 // NAIVE Method with safe cond assignments (without safe cond, order changes and allocations fail)
286 #define MBEDTLS_ALLOC_BUFFER_SIZE (700+18*sizeof(void *))
287 static uint8_t mbedtls_memory_buffer[MBEDTLS_ALLOC_BUFFER_SIZE];
288 #endif
289 #endif
290 
291 //
292 // Volume 3, Part H, Chapter 24
293 // "Security shall be initiated by the Security Manager in the device in the master role.
294 // The device in the slave role shall be the responding device."
295 // -> master := initiator, slave := responder
296 //
297 
298 // data needed for security setup
299 typedef struct sm_setup_context {
300 
301     btstack_timer_source_t sm_timeout;
302 
303     // used in all phases
304     uint8_t   sm_pairing_failed_reason;
305 
306     // user response, (Phase 1 and/or 2)
307     uint8_t   sm_user_response;
308     uint8_t   sm_keypress_notification;
309 
310     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
311     int       sm_key_distribution_send_set;
312     int       sm_key_distribution_received_set;
313 
314     // Phase 2 (Pairing over SMP)
315     stk_generation_method_t sm_stk_generation_method;
316     sm_key_t  sm_tk;
317     uint8_t   sm_use_secure_connections;
318 
319     sm_key_t  sm_c1_t3_value;   // c1 calculation
320     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
321     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
322     sm_key_t  sm_local_random;
323     sm_key_t  sm_local_confirm;
324     sm_key_t  sm_peer_random;
325     sm_key_t  sm_peer_confirm;
326     uint8_t   sm_m_addr_type;   // address and type can be removed
327     uint8_t   sm_s_addr_type;   //  ''
328     bd_addr_t sm_m_address;     //  ''
329     bd_addr_t sm_s_address;     //  ''
330     sm_key_t  sm_ltk;
331 
332     uint8_t   sm_state_vars;
333 #ifdef ENABLE_LE_SECURE_CONNECTIONS
334     uint8_t   sm_peer_q[64];    // also stores random for EC key generation during init
335     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
336     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
337     sm_key_t  sm_peer_dhkey_check;
338     sm_key_t  sm_local_dhkey_check;
339     sm_key_t  sm_ra;
340     sm_key_t  sm_rb;
341     sm_key_t  sm_t;             // used for f5 and h6
342     sm_key_t  sm_mackey;
343     uint8_t   sm_passkey_bit;   // also stores number of generated random bytes for EC key generation
344 #endif
345 
346     // Phase 3
347 
348     // key distribution, we generate
349     uint16_t  sm_local_y;
350     uint16_t  sm_local_div;
351     uint16_t  sm_local_ediv;
352     uint8_t   sm_local_rand[8];
353     sm_key_t  sm_local_ltk;
354     sm_key_t  sm_local_csrk;
355     sm_key_t  sm_local_irk;
356     // sm_local_address/addr_type not needed
357 
358     // key distribution, received from peer
359     uint16_t  sm_peer_y;
360     uint16_t  sm_peer_div;
361     uint16_t  sm_peer_ediv;
362     uint8_t   sm_peer_rand[8];
363     sm_key_t  sm_peer_ltk;
364     sm_key_t  sm_peer_irk;
365     sm_key_t  sm_peer_csrk;
366     uint8_t   sm_peer_addr_type;
367     bd_addr_t sm_peer_address;
368 
369 } sm_setup_context_t;
370 
371 //
372 static sm_setup_context_t the_setup;
373 static sm_setup_context_t * setup = &the_setup;
374 
375 // active connection - the one for which the_setup is used for
376 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
377 
378 // @returns 1 if oob data is available
379 // stores oob data in provided 16 byte buffer if not null
380 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
381 
382 // horizontal: initiator capabilities
383 // vertial:    responder capabilities
384 static const stk_generation_method_t stk_generation_method [5] [5] = {
385     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
386     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
387     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
388     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
389     { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
390 };
391 
392 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
393 #ifdef ENABLE_LE_SECURE_CONNECTIONS
394 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
395     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
396     { JUST_WORKS,      NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
397     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
398     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
399     { PK_RESP_INPUT,   NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
400 };
401 #endif
402 
403 static void sm_run(void);
404 static void sm_done_for_handle(hci_con_handle_t con_handle);
405 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
406 static inline int sm_calc_actual_encryption_key_size(int other);
407 static int sm_validate_stk_generation_method(void);
408 static void sm_handle_encryption_result(uint8_t * data);
409 
410 static void log_info_hex16(const char * name, uint16_t value){
411     log_info("%-6s 0x%04x", name, value);
412 }
413 
414 // @returns 1 if all bytes are 0
415 static int sm_is_null(uint8_t * data, int size){
416     int i;
417     for (i=0; i < size ; i++){
418         if (data[i]) return 0;
419     }
420     return 1;
421 }
422 
423 static int sm_is_null_random(uint8_t random[8]){
424     return sm_is_null(random, 8);
425 }
426 
427 static int sm_is_null_key(uint8_t * key){
428     return sm_is_null(key, 16);
429 }
430 
431 // Key utils
432 static void sm_reset_tk(void){
433     int i;
434     for (i=0;i<16;i++){
435         setup->sm_tk[i] = 0;
436     }
437 }
438 
439 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
440 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
441 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
442     int i;
443     for (i = max_encryption_size ; i < 16 ; i++){
444         key[15-i] = 0;
445     }
446 }
447 
448 // SMP Timeout implementation
449 
450 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
451 // the Security Manager Timer shall be reset and started.
452 //
453 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
454 //
455 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
456 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
457 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
458 // established.
459 
460 static void sm_timeout_handler(btstack_timer_source_t * timer){
461     log_info("SM timeout");
462     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
463     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
464     sm_done_for_handle(sm_conn->sm_handle);
465 
466     // trigger handling of next ready connection
467     sm_run();
468 }
469 static void sm_timeout_start(sm_connection_t * sm_conn){
470     btstack_run_loop_remove_timer(&setup->sm_timeout);
471     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
472     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
473     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
474     btstack_run_loop_add_timer(&setup->sm_timeout);
475 }
476 static void sm_timeout_stop(void){
477     btstack_run_loop_remove_timer(&setup->sm_timeout);
478 }
479 static void sm_timeout_reset(sm_connection_t * sm_conn){
480     sm_timeout_stop();
481     sm_timeout_start(sm_conn);
482 }
483 
484 // end of sm timeout
485 
486 // GAP Random Address updates
487 static gap_random_address_type_t gap_random_adress_type;
488 static btstack_timer_source_t gap_random_address_update_timer;
489 static uint32_t gap_random_adress_update_period;
490 
491 static void gap_random_address_trigger(void){
492     if (rau_state != RAU_IDLE) return;
493     log_info("gap_random_address_trigger");
494     rau_state = RAU_GET_RANDOM;
495     sm_run();
496 }
497 
498 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
499     UNUSED(timer);
500 
501     log_info("GAP Random Address Update due");
502     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
503     btstack_run_loop_add_timer(&gap_random_address_update_timer);
504     gap_random_address_trigger();
505 }
506 
507 static void gap_random_address_update_start(void){
508     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
509     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
510     btstack_run_loop_add_timer(&gap_random_address_update_timer);
511 }
512 
513 static void gap_random_address_update_stop(void){
514     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
515 }
516 
517 
518 static void sm_random_start(void * context){
519     sm_random_context = context;
520     hci_send_cmd(&hci_le_rand);
521 }
522 
523 #ifdef HAVE_AES128
524 static void aes128_completed(btstack_timer_source_t * ts){
525     UNUSED(ts);
526     sm_handle_encryption_result(&aes128_result_flipped[0]);
527     sm_run();
528 }
529 #endif
530 
531 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
532 // context is made availabe to aes128 result handler by this
533 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
534     sm_aes128_state = SM_AES128_ACTIVE;
535     sm_aes128_context = context;
536 
537 #ifdef HAVE_AES128
538     // calc result directly
539     sm_key_t result;
540     btstack_aes128_calc(key, plaintext, result);
541 
542     // log
543     log_info_key("key", key);
544     log_info_key("txt", plaintext);
545     log_info_key("res", result);
546 
547     // flip
548     reverse_128(&result[0], &aes128_result_flipped[0]);
549 
550     // deliver via timer
551     btstack_run_loop_set_timer_handler(&aes128_timer, &aes128_completed);
552     btstack_run_loop_set_timer(&aes128_timer, 0);    // no delay
553     btstack_run_loop_add_timer(&aes128_timer);
554 #else
555     sm_key_t key_flipped, plaintext_flipped;
556     reverse_128(key, key_flipped);
557     reverse_128(plaintext, plaintext_flipped);
558     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
559 #endif
560 }
561 
562 // ah(k,r) helper
563 // r = padding || r
564 // r - 24 bit value
565 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){
566     // r'= padding || r
567     memset(r_prime, 0, 16);
568     memcpy(&r_prime[13], r, 3);
569 }
570 
571 // d1 helper
572 // d' = padding || r || d
573 // d,r - 16 bit values
574 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){
575     // d'= padding || r || d
576     memset(d1_prime, 0, 16);
577     big_endian_store_16(d1_prime, 12, r);
578     big_endian_store_16(d1_prime, 14, d);
579 }
580 
581 // dm helper
582 // r’ = padding || r
583 // r - 64 bit value
584 static void sm_dm_r_prime(uint8_t r[8], uint8_t * r_prime){
585     memset(r_prime, 0, 16);
586     memcpy(&r_prime[8], r, 8);
587 }
588 
589 // calculate arguments for first AES128 operation in C1 function
590 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){
591 
592     // p1 = pres || preq || rat’ || iat’
593     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
594     // cant octet of pres becomes the most significant octet of p1.
595     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
596     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
597     // p1 is 0x05000800000302070710000001010001."
598 
599     sm_key_t p1;
600     reverse_56(pres, &p1[0]);
601     reverse_56(preq, &p1[7]);
602     p1[14] = rat;
603     p1[15] = iat;
604     log_info_key("p1", p1);
605     log_info_key("r", r);
606 
607     // t1 = r xor p1
608     int i;
609     for (i=0;i<16;i++){
610         t1[i] = r[i] ^ p1[i];
611     }
612     log_info_key("t1", t1);
613 }
614 
615 // calculate arguments for second AES128 operation in C1 function
616 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){
617      // p2 = padding || ia || ra
618     // "The least significant octet of ra becomes the least significant octet of p2 and
619     // the most significant octet of padding becomes the most significant octet of p2.
620     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
621     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
622 
623     sm_key_t p2;
624     memset(p2, 0, 16);
625     memcpy(&p2[4],  ia, 6);
626     memcpy(&p2[10], ra, 6);
627     log_info_key("p2", p2);
628 
629     // c1 = e(k, t2_xor_p2)
630     int i;
631     for (i=0;i<16;i++){
632         t3[i] = t2[i] ^ p2[i];
633     }
634     log_info_key("t3", t3);
635 }
636 
637 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){
638     log_info_key("r1", r1);
639     log_info_key("r2", r2);
640     memcpy(&r_prime[8], &r2[8], 8);
641     memcpy(&r_prime[0], &r1[8], 8);
642 }
643 
644 #ifdef ENABLE_LE_SECURE_CONNECTIONS
645 // Software implementations of crypto toolbox for LE Secure Connection
646 // TODO: replace with code to use AES Engine of HCI Controller
647 typedef uint8_t sm_key24_t[3];
648 typedef uint8_t sm_key56_t[7];
649 typedef uint8_t sm_key256_t[32];
650 
651 #if 0
652 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){
653     uint32_t rk[RKLENGTH(KEYBITS)];
654     int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
655     rijndaelEncrypt(rk, nrounds, plaintext, cyphertext);
656 }
657 
658 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
659     memcpy(k1, k0, 16);
660     sm_shift_left_by_one_bit_inplace(16, k1);
661     if (k0[0] & 0x80){
662         k1[15] ^= 0x87;
663     }
664     memcpy(k2, k1, 16);
665     sm_shift_left_by_one_bit_inplace(16, k2);
666     if (k1[0] & 0x80){
667         k2[15] ^= 0x87;
668     }
669 }
670 
671 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){
672     sm_key_t k0, k1, k2, zero;
673     memset(zero, 0, 16);
674 
675     aes128_calc_cyphertext(key, zero, k0);
676     calc_subkeys(k0, k1, k2);
677 
678     int cmac_block_count = (cmac_message_len + 15) / 16;
679 
680     // step 3: ..
681     if (cmac_block_count==0){
682         cmac_block_count = 1;
683     }
684 
685     // step 4: set m_last
686     sm_key_t cmac_m_last;
687     int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0;
688     int i;
689     if (sm_cmac_last_block_complete){
690         for (i=0;i<16;i++){
691             cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i];
692         }
693     } else {
694         int valid_octets_in_last_block = cmac_message_len & 0x0f;
695         for (i=0;i<16;i++){
696             if (i < valid_octets_in_last_block){
697                 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i];
698                 continue;
699             }
700             if (i == valid_octets_in_last_block){
701                 cmac_m_last[i] = 0x80 ^ k2[i];
702                 continue;
703             }
704             cmac_m_last[i] = k2[i];
705         }
706     }
707 
708     // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count);
709     // LOG_KEY(cmac_m_last);
710 
711     // Step 5
712     sm_key_t cmac_x;
713     memset(cmac_x, 0, 16);
714 
715     // Step 6
716     sm_key_t sm_cmac_y;
717     for (int block = 0 ; block < cmac_block_count-1 ; block++){
718         for (i=0;i<16;i++){
719             sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i];
720         }
721         aes128_calc_cyphertext(key, sm_cmac_y, cmac_x);
722     }
723     for (i=0;i<16;i++){
724         sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
725     }
726 
727     // Step 7
728     aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac);
729 }
730 #endif
731 #endif
732 
733 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
734     event[0] = type;
735     event[1] = event_size - 2;
736     little_endian_store_16(event, 2, con_handle);
737     event[4] = addr_type;
738     reverse_bd_addr(address, &event[5]);
739 }
740 
741 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
742     UNUSED(channel);
743 
744     // log event
745     hci_dump_packet(packet_type, 1, packet, size);
746     // dispatch to all event handlers
747     btstack_linked_list_iterator_t it;
748     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
749     while (btstack_linked_list_iterator_has_next(&it)){
750         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
751         entry->callback(packet_type, 0, packet, size);
752     }
753 }
754 
755 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
756     uint8_t event[11];
757     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
758     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
759 }
760 
761 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
762     uint8_t event[15];
763     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
764     little_endian_store_32(event, 11, passkey);
765     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
766 }
767 
768 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
769     // fetch addr and addr type from db
770     bd_addr_t identity_address;
771     int identity_address_type;
772     le_device_db_info(index, &identity_address_type, identity_address, NULL);
773 
774     uint8_t event[19];
775     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
776     event[11] = identity_address_type;
777     reverse_bd_addr(identity_address, &event[12]);
778     event[18] = index;
779     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
780 }
781 
782 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
783 
784     uint8_t event[18];
785     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
786     event[11] = result;
787     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
788 }
789 
790 // decide on stk generation based on
791 // - pairing request
792 // - io capabilities
793 // - OOB data availability
794 static void sm_setup_tk(void){
795 
796     // default: just works
797     setup->sm_stk_generation_method = JUST_WORKS;
798 
799 #ifdef ENABLE_LE_SECURE_CONNECTIONS
800     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
801                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
802                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0;
803     memset(setup->sm_ra, 0, 16);
804     memset(setup->sm_rb, 0, 16);
805 #else
806     setup->sm_use_secure_connections = 0;
807 #endif
808 
809     // If both devices have not set the MITM option in the Authentication Requirements
810     // Flags, then the IO capabilities shall be ignored and the Just Works association
811     // model shall be used.
812     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0)
813     &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){
814         log_info("SM: MITM not required by both -> JUST WORKS");
815         return;
816     }
817 
818     // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient
819 
820     // If both devices have out of band authentication data, then the Authentication
821     // Requirements Flags shall be ignored when selecting the pairing method and the
822     // Out of Band pairing method shall be used.
823     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq)
824     &&  sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){
825         log_info("SM: have OOB data");
826         log_info_key("OOB", setup->sm_tk);
827         setup->sm_stk_generation_method = OOB;
828         return;
829     }
830 
831     // Reset TK as it has been setup in sm_init_setup
832     sm_reset_tk();
833 
834     // Also use just works if unknown io capabilites
835     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
836         return;
837     }
838 
839     // Otherwise the IO capabilities of the devices shall be used to determine the
840     // pairing method as defined in Table 2.4.
841     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
842     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
843 
844 #ifdef ENABLE_LE_SECURE_CONNECTIONS
845     // table not define by default
846     if (setup->sm_use_secure_connections){
847         generation_method = stk_generation_method_with_secure_connection;
848     }
849 #endif
850     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
851 
852     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
853         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
854 }
855 
856 static int sm_key_distribution_flags_for_set(uint8_t key_set){
857     int flags = 0;
858     if (key_set & SM_KEYDIST_ENC_KEY){
859         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
860         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
861     }
862     if (key_set & SM_KEYDIST_ID_KEY){
863         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
864         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
865     }
866     if (key_set & SM_KEYDIST_SIGN){
867         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
868     }
869     return flags;
870 }
871 
872 static void sm_setup_key_distribution(uint8_t key_set){
873     setup->sm_key_distribution_received_set = 0;
874     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
875 }
876 
877 // CSRK Key Lookup
878 
879 
880 static int sm_address_resolution_idle(void){
881     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
882 }
883 
884 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
885     memcpy(sm_address_resolution_address, addr, 6);
886     sm_address_resolution_addr_type = addr_type;
887     sm_address_resolution_test = 0;
888     sm_address_resolution_mode = mode;
889     sm_address_resolution_context = context;
890     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
891 }
892 
893 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
894     // check if already in list
895     btstack_linked_list_iterator_t it;
896     sm_lookup_entry_t * entry;
897     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
898     while(btstack_linked_list_iterator_has_next(&it)){
899         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
900         if (entry->address_type != address_type) continue;
901         if (memcmp(entry->address, address, 6))  continue;
902         // already in list
903         return BTSTACK_BUSY;
904     }
905     entry = btstack_memory_sm_lookup_entry_get();
906     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
907     entry->address_type = (bd_addr_type_t) address_type;
908     memcpy(entry->address, address, 6);
909     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
910     sm_run();
911     return 0;
912 }
913 
914 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
915 static inline void sm_next_responding_state(sm_connection_t * sm_conn){
916     sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
917 }
918 static inline void dkg_next_state(void){
919     dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
920 }
921 static inline void rau_next_state(void){
922     rau_state = (random_address_update_t) (((int)rau_state) + 1);
923 }
924 
925 // CMAC calculation using AES Engine
926 #ifdef ENABLE_CMAC_ENGINE
927 
928 static inline void sm_cmac_next_state(void){
929     sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
930 }
931 
932 static int sm_cmac_last_block_complete(void){
933     if (sm_cmac_message_len == 0) return 0;
934     return (sm_cmac_message_len & 0x0f) == 0;
935 }
936 
937 int sm_cmac_ready(void){
938     return sm_cmac_state == CMAC_IDLE;
939 }
940 
941 // generic cmac calculation
942 void sm_cmac_general_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){
943     // Generalized CMAC
944     memcpy(sm_cmac_k, key, 16);
945     memset(sm_cmac_x, 0, 16);
946     sm_cmac_block_current = 0;
947     sm_cmac_message_len  = message_len;
948     sm_cmac_done_handler = done_callback;
949     sm_cmac_get_byte     = get_byte_callback;
950 
951     // step 2: n := ceil(len/const_Bsize);
952     sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
953 
954     // step 3: ..
955     if (sm_cmac_block_count==0){
956         sm_cmac_block_count = 1;
957     }
958     log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
959 
960     // first, we need to compute l for k1, k2, and m_last
961     sm_cmac_state = CMAC_CALC_SUBKEYS;
962 
963     // let's go
964     sm_run();
965 }
966 #endif
967 
968 // cmac for ATT Message signing
969 #ifdef ENABLE_LE_SIGNED_WRITE
970 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){
971     if (offset >= sm_cmac_message_len) {
972         log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
973         return 0;
974     }
975 
976     offset = sm_cmac_message_len - 1 - offset;
977 
978     // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
979     if (offset < 3){
980         return sm_cmac_header[offset];
981     }
982     int actual_message_len_incl_header = sm_cmac_message_len - 4;
983     if (offset <  actual_message_len_incl_header){
984         return sm_cmac_message[offset - 3];
985     }
986     return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
987 }
988 
989 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
990     // ATT Message Signing
991     sm_cmac_header[0] = opcode;
992     little_endian_store_16(sm_cmac_header, 1, con_handle);
993     little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter);
994     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
995     sm_cmac_message = message;
996     sm_cmac_general_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler);
997 }
998 #endif
999 
1000 #ifdef ENABLE_CMAC_ENGINE
1001 static void sm_cmac_handle_aes_engine_ready(void){
1002     switch (sm_cmac_state){
1003         case CMAC_CALC_SUBKEYS: {
1004             sm_key_t const_zero;
1005             memset(const_zero, 0, 16);
1006             sm_cmac_next_state();
1007             sm_aes128_start(sm_cmac_k, const_zero, NULL);
1008             break;
1009         }
1010         case CMAC_CALC_MI: {
1011             int j;
1012             sm_key_t y;
1013             for (j=0;j<16;j++){
1014                 y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j);
1015             }
1016             sm_cmac_block_current++;
1017             sm_cmac_next_state();
1018             sm_aes128_start(sm_cmac_k, y, NULL);
1019             break;
1020         }
1021         case CMAC_CALC_MLAST: {
1022             int i;
1023             sm_key_t y;
1024             for (i=0;i<16;i++){
1025                 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
1026             }
1027             log_info_key("Y", y);
1028             sm_cmac_block_current++;
1029             sm_cmac_next_state();
1030             sm_aes128_start(sm_cmac_k, y, NULL);
1031             break;
1032         }
1033         default:
1034             log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
1035             break;
1036     }
1037 }
1038 
1039 // CMAC Implementation using AES128 engine
1040 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
1041     int i;
1042     int carry = 0;
1043     for (i=len-1; i >= 0 ; i--){
1044         int new_carry = data[i] >> 7;
1045         data[i] = data[i] << 1 | carry;
1046         carry = new_carry;
1047     }
1048 }
1049 
1050 static void sm_cmac_handle_encryption_result(sm_key_t data){
1051     switch (sm_cmac_state){
1052         case CMAC_W4_SUBKEYS: {
1053             sm_key_t k1;
1054             memcpy(k1, data, 16);
1055             sm_shift_left_by_one_bit_inplace(16, k1);
1056             if (data[0] & 0x80){
1057                 k1[15] ^= 0x87;
1058             }
1059             sm_key_t k2;
1060             memcpy(k2, k1, 16);
1061             sm_shift_left_by_one_bit_inplace(16, k2);
1062             if (k1[0] & 0x80){
1063                 k2[15] ^= 0x87;
1064             }
1065 
1066             log_info_key("k", sm_cmac_k);
1067             log_info_key("k1", k1);
1068             log_info_key("k2", k2);
1069 
1070             // step 4: set m_last
1071             int i;
1072             if (sm_cmac_last_block_complete()){
1073                 for (i=0;i<16;i++){
1074                     sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
1075                 }
1076             } else {
1077                 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
1078                 for (i=0;i<16;i++){
1079                     if (i < valid_octets_in_last_block){
1080                         sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
1081                         continue;
1082                     }
1083                     if (i == valid_octets_in_last_block){
1084                         sm_cmac_m_last[i] = 0x80 ^ k2[i];
1085                         continue;
1086                     }
1087                     sm_cmac_m_last[i] = k2[i];
1088                 }
1089             }
1090 
1091             // next
1092             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1093             break;
1094         }
1095         case CMAC_W4_MI:
1096             memcpy(sm_cmac_x, data, 16);
1097             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1098             break;
1099         case CMAC_W4_MLAST:
1100             // done
1101             log_info("Setting CMAC Engine to IDLE");
1102             sm_cmac_state = CMAC_IDLE;
1103             log_info_key("CMAC", data);
1104             sm_cmac_done_handler(data);
1105             break;
1106         default:
1107             log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
1108             break;
1109     }
1110 }
1111 #endif
1112 
1113 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1114     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1115     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1116     switch (setup->sm_stk_generation_method){
1117         case PK_RESP_INPUT:
1118             if (IS_RESPONDER(sm_conn->sm_role)){
1119                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1120                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1121             } else {
1122                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1123             }
1124             break;
1125         case PK_INIT_INPUT:
1126             if (IS_RESPONDER(sm_conn->sm_role)){
1127                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1128             } else {
1129                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1130                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1131             }
1132             break;
1133         case OK_BOTH_INPUT:
1134             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1135             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1136             break;
1137         case NK_BOTH_INPUT:
1138             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1139             sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1140             break;
1141         case JUST_WORKS:
1142             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1143             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1144             break;
1145         case OOB:
1146             // client already provided OOB data, let's skip notification.
1147             break;
1148     }
1149 }
1150 
1151 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
1152     int recv_flags;
1153     if (IS_RESPONDER(sm_conn->sm_role)){
1154         // slave / responder
1155         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
1156     } else {
1157         // master / initiator
1158         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
1159     }
1160     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
1161     return recv_flags == setup->sm_key_distribution_received_set;
1162 }
1163 
1164 static void sm_done_for_handle(hci_con_handle_t con_handle){
1165     if (sm_active_connection_handle == con_handle){
1166         sm_timeout_stop();
1167         sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
1168         log_info("sm: connection 0x%x released setup context", con_handle);
1169     }
1170 }
1171 
1172 static int sm_key_distribution_flags_for_auth_req(void){
1173     int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
1174     if (sm_auth_req & SM_AUTHREQ_BONDING){
1175         // encryption information only if bonding requested
1176         flags |= SM_KEYDIST_ENC_KEY;
1177     }
1178     return flags;
1179 }
1180 
1181 static void sm_reset_setup(void){
1182     // fill in sm setup
1183     setup->sm_state_vars = 0;
1184     setup->sm_keypress_notification = 0xff;
1185     sm_reset_tk();
1186 }
1187 
1188 static void sm_init_setup(sm_connection_t * sm_conn){
1189 
1190     // fill in sm setup
1191     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1192     memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1193 
1194     // query client for OOB data
1195     int have_oob_data = 0;
1196     if (sm_get_oob_data) {
1197         have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1198     }
1199 
1200     sm_pairing_packet_t * local_packet;
1201     if (IS_RESPONDER(sm_conn->sm_role)){
1202         // slave
1203         local_packet = &setup->sm_s_pres;
1204         gap_le_get_own_address(&setup->sm_s_addr_type, setup->sm_s_address);
1205         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1206         memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1207     } else {
1208         // master
1209         local_packet = &setup->sm_m_preq;
1210         gap_le_get_own_address(&setup->sm_m_addr_type, setup->sm_m_address);
1211         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1212         memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1213 
1214         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1215         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1216         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1217     }
1218 
1219     uint8_t auth_req = sm_auth_req;
1220     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1221     sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data);
1222     sm_pairing_packet_set_auth_req(*local_packet, auth_req);
1223     sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
1224 }
1225 
1226 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1227 
1228     sm_pairing_packet_t * remote_packet;
1229     int                   remote_key_request;
1230     if (IS_RESPONDER(sm_conn->sm_role)){
1231         // slave / responder
1232         remote_packet      = &setup->sm_m_preq;
1233         remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1234     } else {
1235         // master / initiator
1236         remote_packet      = &setup->sm_s_pres;
1237         remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1238     }
1239 
1240     // check key size
1241     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1242     if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
1243 
1244     // decide on STK generation method
1245     sm_setup_tk();
1246     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1247 
1248     // check if STK generation method is acceptable by client
1249     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1250 
1251     // identical to responder
1252     sm_setup_key_distribution(remote_key_request);
1253 
1254     // JUST WORKS doens't provide authentication
1255     sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
1256 
1257     return 0;
1258 }
1259 
1260 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1261 
1262     // cache and reset context
1263     int matched_device_id = sm_address_resolution_test;
1264     address_resolution_mode_t mode = sm_address_resolution_mode;
1265     void * context = sm_address_resolution_context;
1266 
1267     // reset context
1268     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1269     sm_address_resolution_context = NULL;
1270     sm_address_resolution_test = -1;
1271     hci_con_handle_t con_handle = 0;
1272 
1273     sm_connection_t * sm_connection;
1274 #ifdef ENABLE_LE_CENTRAL
1275     sm_key_t ltk;
1276 #endif
1277     switch (mode){
1278         case ADDRESS_RESOLUTION_GENERAL:
1279             break;
1280         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1281             sm_connection = (sm_connection_t *) context;
1282             con_handle = sm_connection->sm_handle;
1283             switch (event){
1284                 case ADDRESS_RESOLUTION_SUCEEDED:
1285                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1286                     sm_connection->sm_le_db_index = matched_device_id;
1287                     log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
1288 #ifdef ENABLE_LE_CENTRAL
1289                     if (sm_connection->sm_role) break;
1290                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1291                     sm_connection->sm_security_request_received = 0;
1292                     sm_connection->sm_bonding_requested = 0;
1293                     le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL);
1294                     if (!sm_is_null_key(ltk)){
1295                         sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
1296                     } else {
1297                         sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1298                     }
1299 #endif
1300                     break;
1301                 case ADDRESS_RESOLUTION_FAILED:
1302                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1303 #ifdef ENABLE_LE_CENTRAL
1304                     if (sm_connection->sm_role) break;
1305                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1306                     sm_connection->sm_security_request_received = 0;
1307                     sm_connection->sm_bonding_requested = 0;
1308                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1309 #endif
1310                     break;
1311             }
1312             break;
1313         default:
1314             break;
1315     }
1316 
1317     switch (event){
1318         case ADDRESS_RESOLUTION_SUCEEDED:
1319             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1320             break;
1321         case ADDRESS_RESOLUTION_FAILED:
1322             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1323             break;
1324     }
1325 }
1326 
1327 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1328 
1329     int le_db_index = -1;
1330 
1331     // lookup device based on IRK
1332     if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1333         int i;
1334         for (i=0; i < le_device_db_count(); i++){
1335             sm_key_t irk;
1336             bd_addr_t address;
1337             int address_type;
1338             le_device_db_info(i, &address_type, address, irk);
1339             if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
1340                 log_info("sm: device found for IRK, updating");
1341                 le_db_index = i;
1342                 break;
1343             }
1344         }
1345     }
1346 
1347     // if not found, lookup via public address if possible
1348     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1349     if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
1350         int i;
1351         for (i=0; i < le_device_db_count(); i++){
1352             bd_addr_t address;
1353             int address_type;
1354             le_device_db_info(i, &address_type, address, NULL);
1355             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1356             if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
1357                 log_info("sm: device found for public address, updating");
1358                 le_db_index = i;
1359                 break;
1360             }
1361         }
1362     }
1363 
1364     // if not found, add to db
1365     if (le_db_index < 0) {
1366         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1367     }
1368 
1369     sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index);
1370 
1371     if (le_db_index >= 0){
1372 
1373 #ifdef ENABLE_LE_SIGNED_WRITE
1374         // store local CSRK
1375         if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1376             log_info("sm: store local CSRK");
1377             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1378             le_device_db_local_counter_set(le_db_index, 0);
1379         }
1380 
1381         // store remote CSRK
1382         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1383             log_info("sm: store remote CSRK");
1384             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1385             le_device_db_remote_counter_set(le_db_index, 0);
1386         }
1387 #endif
1388         // store encryption information for secure connections: LTK generated by ECDH
1389         if (setup->sm_use_secure_connections){
1390             log_info("sm: store SC LTK (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1391             uint8_t zero_rand[8];
1392             memset(zero_rand, 0, 8);
1393             le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size,
1394                 sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1395         }
1396 
1397         // store encryption infromation for legacy pairing: peer LTK, EDIV, RAND
1398         else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION)
1399                && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){
1400             log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1401             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1402                 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1403 
1404         }
1405     }
1406 
1407     // keep le_db_index
1408     sm_conn->sm_le_db_index = le_db_index;
1409 }
1410 
1411 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
1412     setup->sm_pairing_failed_reason = reason;
1413     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1414 }
1415 
1416 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
1417     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
1418 }
1419 
1420 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1421 
1422 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn);
1423 static int sm_passkey_used(stk_generation_method_t method);
1424 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method);
1425 
1426 static void sm_log_ec_keypair(void){
1427     log_info("Elliptic curve: X");
1428     log_info_hexdump(&ec_q[0],32);
1429     log_info("Elliptic curve: Y");
1430     log_info_hexdump(&ec_q[32],32);
1431 }
1432 
1433 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){
1434     if (sm_passkey_used(setup->sm_stk_generation_method)){
1435         sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A;
1436     } else {
1437         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1438     }
1439 }
1440 
1441 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
1442     if (IS_RESPONDER(sm_conn->sm_role)){
1443         // Responder
1444         sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
1445     } else {
1446         // Initiator role
1447         switch (setup->sm_stk_generation_method){
1448             case JUST_WORKS:
1449                 sm_sc_prepare_dhkey_check(sm_conn);
1450                 break;
1451 
1452             case NK_BOTH_INPUT:
1453                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2;
1454                 break;
1455             case PK_INIT_INPUT:
1456             case PK_RESP_INPUT:
1457             case OK_BOTH_INPUT:
1458                 if (setup->sm_passkey_bit < 20) {
1459                     sm_sc_start_calculating_local_confirm(sm_conn);
1460                 } else {
1461                     sm_sc_prepare_dhkey_check(sm_conn);
1462                 }
1463                 break;
1464             case OOB:
1465                 // TODO: implement SC OOB
1466                 break;
1467         }
1468     }
1469 }
1470 
1471 static uint8_t sm_sc_cmac_get_byte(uint16_t offset){
1472     return sm_cmac_sc_buffer[offset];
1473 }
1474 
1475 static void sm_sc_cmac_done(uint8_t * hash){
1476     log_info("sm_sc_cmac_done: ");
1477     log_info_hexdump(hash, 16);
1478 
1479     sm_connection_t * sm_conn = sm_cmac_connection;
1480     sm_cmac_connection = NULL;
1481     link_key_type_t link_key_type;
1482 
1483     switch (sm_conn->sm_engine_state){
1484         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1485             memcpy(setup->sm_local_confirm, hash, 16);
1486             sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1487             break;
1488         case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
1489             // check
1490             if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
1491                 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
1492                 break;
1493             }
1494             sm_sc_state_after_receiving_random(sm_conn);
1495             break;
1496         case SM_SC_W4_CALCULATE_G2: {
1497             uint32_t vab = big_endian_read_32(hash, 12) % 1000000;
1498             big_endian_store_32(setup->sm_tk, 12, vab);
1499             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
1500             sm_trigger_user_response(sm_conn);
1501             break;
1502         }
1503         case SM_SC_W4_CALCULATE_F5_SALT:
1504             memcpy(setup->sm_t, hash, 16);
1505             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY;
1506             break;
1507         case SM_SC_W4_CALCULATE_F5_MACKEY:
1508             memcpy(setup->sm_mackey, hash, 16);
1509             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK;
1510             break;
1511         case SM_SC_W4_CALCULATE_F5_LTK:
1512             // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk
1513             // Errata Service Release to the Bluetooth Specification: ESR09
1514             //   E6405 – Cross transport key derivation from a key of size less than 128 bits
1515             //   Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
1516             memcpy(setup->sm_ltk, hash, 16);
1517             memcpy(setup->sm_local_ltk, hash, 16);
1518             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1519             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
1520             break;
1521         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
1522             memcpy(setup->sm_local_dhkey_check, hash, 16);
1523             if (IS_RESPONDER(sm_conn->sm_role)){
1524                 // responder
1525                 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED){
1526                     sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
1527                 } else {
1528                     sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1529                 }
1530             } else {
1531                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1532             }
1533             break;
1534         case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
1535             if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){
1536                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1537                 break;
1538             }
1539             if (IS_RESPONDER(sm_conn->sm_role)){
1540                 // responder
1541                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1542             } else {
1543                 // initiator
1544                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
1545             }
1546             break;
1547         case SM_SC_W4_CALCULATE_H6_ILK:
1548             memcpy(setup->sm_t, hash, 16);
1549             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY;
1550             break;
1551         case SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY:
1552             reverse_128(hash, setup->sm_t);
1553             link_key_type = sm_conn->sm_connection_authenticated ?
1554                 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1555             if (IS_RESPONDER(sm_conn->sm_role)){
1556 #ifdef ENABLE_CLASSIC
1557                 gap_store_link_key_for_bd_addr(setup->sm_m_address, setup->sm_t, link_key_type);
1558 #endif
1559                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
1560             } else {
1561 #ifdef ENABLE_CLASSIC
1562                 gap_store_link_key_for_bd_addr(setup->sm_s_address, setup->sm_t, link_key_type);
1563 #endif
1564                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1565             }
1566             sm_done_for_handle(sm_conn->sm_handle);
1567             break;
1568         default:
1569             log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state);
1570             break;
1571     }
1572     sm_run();
1573 }
1574 
1575 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1576     const uint16_t message_len = 65;
1577     sm_cmac_connection = sm_conn;
1578     memcpy(sm_cmac_sc_buffer, u, 32);
1579     memcpy(sm_cmac_sc_buffer+32, v, 32);
1580     sm_cmac_sc_buffer[64] = z;
1581     log_info("f4 key");
1582     log_info_hexdump(x, 16);
1583     log_info("f4 message");
1584     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1585     sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1586 }
1587 
1588 static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
1589 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
1590 static const uint8_t f5_length[] = { 0x01, 0x00};
1591 
1592 static void sm_sc_calculate_dhkey(sm_key256_t dhkey){
1593     memset(dhkey, 0, 32);
1594 #ifdef USE_MBEDTLS_FOR_ECDH
1595     // da * Pb
1596     mbedtls_mpi d;
1597     mbedtls_ecp_point Q;
1598     mbedtls_ecp_point DH;
1599     mbedtls_mpi_init(&d);
1600     mbedtls_ecp_point_init(&Q);
1601     mbedtls_ecp_point_init(&DH);
1602     mbedtls_mpi_read_binary(&d, ec_d, 32);
1603     mbedtls_mpi_read_binary(&Q.X, &setup->sm_peer_q[0] , 32);
1604     mbedtls_mpi_read_binary(&Q.Y, &setup->sm_peer_q[32], 32);
1605     mbedtls_mpi_lset(&Q.Z, 1);
1606     mbedtls_ecp_mul(&mbedtls_ec_group, &DH, &d, &Q, NULL, NULL);
1607     mbedtls_mpi_write_binary(&DH.X, dhkey, 32);
1608     mbedtls_ecp_point_free(&DH);
1609     mbedtls_mpi_free(&d);
1610     mbedtls_ecp_point_free(&Q);
1611 #endif
1612 #ifdef USE_MICROECC_FOR_ECDH
1613 #if uECC_SUPPORTS_secp256r1
1614     // standard version
1615     uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey, uECC_secp256r1());
1616 #else
1617     // static version
1618     uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey);
1619 #endif
1620 #endif
1621     log_info("dhkey");
1622     log_info_hexdump(dhkey, 32);
1623 }
1624 
1625 static void f5_calculate_salt(sm_connection_t * sm_conn){
1626     // calculate DHKEY
1627     sm_key256_t dhkey;
1628     sm_sc_calculate_dhkey(dhkey);
1629 
1630     // calculate salt for f5
1631     const uint16_t message_len = 32;
1632     sm_cmac_connection = sm_conn;
1633     memcpy(sm_cmac_sc_buffer, dhkey, message_len);
1634     sm_cmac_general_start(f5_salt, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1635 }
1636 
1637 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
1638     const uint16_t message_len = 53;
1639     sm_cmac_connection = sm_conn;
1640 
1641     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
1642     sm_cmac_sc_buffer[0] = 0;
1643     memcpy(sm_cmac_sc_buffer+01, f5_key_id, 4);
1644     memcpy(sm_cmac_sc_buffer+05, n1, 16);
1645     memcpy(sm_cmac_sc_buffer+21, n2, 16);
1646     memcpy(sm_cmac_sc_buffer+37, a1, 7);
1647     memcpy(sm_cmac_sc_buffer+44, a2, 7);
1648     memcpy(sm_cmac_sc_buffer+51, f5_length, 2);
1649     log_info("f5 key");
1650     log_info_hexdump(t, 16);
1651     log_info("f5 message for MacKey");
1652     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1653     sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1654 }
1655 
1656 static void f5_calculate_mackey(sm_connection_t * sm_conn){
1657     sm_key56_t bd_addr_master, bd_addr_slave;
1658     bd_addr_master[0] =  setup->sm_m_addr_type;
1659     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1660     memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1661     memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1662     if (IS_RESPONDER(sm_conn->sm_role)){
1663         // responder
1664         f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1665     } else {
1666         // initiator
1667         f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1668     }
1669 }
1670 
1671 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused
1672 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){
1673     const uint16_t message_len = 53;
1674     sm_cmac_connection = sm_conn;
1675     sm_cmac_sc_buffer[0] = 1;
1676     // 1..52 setup before
1677     log_info("f5 key");
1678     log_info_hexdump(t, 16);
1679     log_info("f5 message for LTK");
1680     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1681     sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1682 }
1683 
1684 static void f5_calculate_ltk(sm_connection_t * sm_conn){
1685     f5_ltk(sm_conn, setup->sm_t);
1686 }
1687 
1688 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
1689     const uint16_t message_len = 65;
1690     sm_cmac_connection = sm_conn;
1691     memcpy(sm_cmac_sc_buffer, n1, 16);
1692     memcpy(sm_cmac_sc_buffer+16, n2, 16);
1693     memcpy(sm_cmac_sc_buffer+32, r, 16);
1694     memcpy(sm_cmac_sc_buffer+48, io_cap, 3);
1695     memcpy(sm_cmac_sc_buffer+51, a1, 7);
1696     memcpy(sm_cmac_sc_buffer+58, a2, 7);
1697     log_info("f6 key");
1698     log_info_hexdump(w, 16);
1699     log_info("f6 message");
1700     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1701     sm_cmac_general_start(w, 65, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1702 }
1703 
1704 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
1705 // - U is 256 bits
1706 // - V is 256 bits
1707 // - X is 128 bits
1708 // - Y is 128 bits
1709 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
1710     const uint16_t message_len = 80;
1711     sm_cmac_connection = sm_conn;
1712     memcpy(sm_cmac_sc_buffer, u, 32);
1713     memcpy(sm_cmac_sc_buffer+32, v, 32);
1714     memcpy(sm_cmac_sc_buffer+64, y, 16);
1715     log_info("g2 key");
1716     log_info_hexdump(x, 16);
1717     log_info("g2 message");
1718     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1719     sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1720 }
1721 
1722 static void g2_calculate(sm_connection_t * sm_conn) {
1723     // calc Va if numeric comparison
1724     if (IS_RESPONDER(sm_conn->sm_role)){
1725         // responder
1726         g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);;
1727     } else {
1728         // initiator
1729         g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce);
1730     }
1731 }
1732 
1733 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1734     uint8_t z = 0;
1735     if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1736         // some form of passkey
1737         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1738         z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1);
1739         setup->sm_passkey_bit++;
1740     }
1741     f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z);
1742 }
1743 
1744 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
1745     uint8_t z = 0;
1746     if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1747         // some form of passkey
1748         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1749         // sm_passkey_bit was increased before sending confirm value
1750         z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1);
1751     }
1752     f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z);
1753 }
1754 
1755 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){
1756     sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1757 }
1758 
1759 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){
1760     // calculate DHKCheck
1761     sm_key56_t bd_addr_master, bd_addr_slave;
1762     bd_addr_master[0] =  setup->sm_m_addr_type;
1763     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1764     memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1765     memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1766     uint8_t iocap_a[3];
1767     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1768     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1769     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1770     uint8_t iocap_b[3];
1771     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1772     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1773     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1774     if (IS_RESPONDER(sm_conn->sm_role)){
1775         // responder
1776         f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1777     } else {
1778         // initiator
1779         f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1780     }
1781 }
1782 
1783 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){
1784     // validate E = f6()
1785     sm_key56_t bd_addr_master, bd_addr_slave;
1786     bd_addr_master[0] =  setup->sm_m_addr_type;
1787     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1788     memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1789     memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1790 
1791     uint8_t iocap_a[3];
1792     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1793     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1794     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1795     uint8_t iocap_b[3];
1796     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1797     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1798     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1799     if (IS_RESPONDER(sm_conn->sm_role)){
1800         // responder
1801         f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1802     } else {
1803         // initiator
1804         f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1805     }
1806 }
1807 
1808 
1809 //
1810 // Link Key Conversion Function h6
1811 //
1812 // h6(W, keyID) = AES-CMACW(keyID)
1813 // - W is 128 bits
1814 // - keyID is 32 bits
1815 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){
1816     const uint16_t message_len = 4;
1817     sm_cmac_connection = sm_conn;
1818     big_endian_store_32(sm_cmac_sc_buffer, 0, key_id);
1819     log_info("h6 key");
1820     log_info_hexdump(w, 16);
1821     log_info("h6 message");
1822     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1823     sm_cmac_general_start(w, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1824 }
1825 
1826 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated)
1827 // Errata Service Release to the Bluetooth Specification: ESR09
1828 //   E6405 – Cross transport key derivation from a key of size less than 128 bits
1829 //   "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
1830 static void h6_calculate_ilk(sm_connection_t * sm_conn){
1831     h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031);    // "tmp1"
1832 }
1833 
1834 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){
1835     h6_engine(sm_conn, setup->sm_t, 0x6c656272);    // "lebr"
1836 }
1837 
1838 #endif
1839 
1840 // key management legacy connections:
1841 // - potentially two different LTKs based on direction. each device stores LTK provided by peer
1842 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect)
1843 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder
1844 // - responder  reconnects: responder uses LTK receveived from master
1845 
1846 // key management secure connections:
1847 // - both devices store same LTK from ECDH key exchange.
1848 
1849 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL)
1850 static void sm_load_security_info(sm_connection_t * sm_connection){
1851     int encryption_key_size;
1852     int authenticated;
1853     int authorized;
1854 
1855     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
1856     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1857                                 &encryption_key_size, &authenticated, &authorized);
1858     log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
1859     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
1860     sm_connection->sm_connection_authenticated = authenticated;
1861     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
1862 }
1863 #endif
1864 
1865 #ifdef ENABLE_LE_PERIPHERAL
1866 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){
1867     memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
1868     setup->sm_local_ediv = sm_connection->sm_local_ediv;
1869     // re-establish used key encryption size
1870     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1871     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
1872     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
1873     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
1874     log_info("sm: received ltk request with key size %u, authenticated %u",
1875             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
1876     sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
1877 }
1878 #endif
1879 
1880 static void sm_run(void){
1881 
1882     btstack_linked_list_iterator_t it;
1883 
1884     // assert that we can send at least commands
1885     if (!hci_can_send_command_packet_now()) return;
1886 
1887     //
1888     // non-connection related behaviour
1889     //
1890 
1891     // distributed key generation
1892     switch (dkg_state){
1893         case DKG_CALC_IRK:
1894             // already busy?
1895             if (sm_aes128_state == SM_AES128_IDLE) {
1896                 // IRK = d1(IR, 1, 0)
1897                 sm_key_t d1_prime;
1898                 sm_d1_d_prime(1, 0, d1_prime);  // plaintext
1899                 dkg_next_state();
1900                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1901                 return;
1902             }
1903             break;
1904         case DKG_CALC_DHK:
1905             // already busy?
1906             if (sm_aes128_state == SM_AES128_IDLE) {
1907                 // DHK = d1(IR, 3, 0)
1908                 sm_key_t d1_prime;
1909                 sm_d1_d_prime(3, 0, d1_prime);  // plaintext
1910                 dkg_next_state();
1911                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1912                 return;
1913             }
1914             break;
1915         default:
1916             break;
1917     }
1918 
1919 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1920     if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){
1921 #ifndef HAVE_HCI_CONTROLLER_DHKEY_SUPPORT
1922         sm_random_start(NULL);
1923 #else
1924         ec_key_generation_state = EC_KEY_GENERATION_W4_KEY;
1925         hci_send_cmd(&hci_le_read_local_p256_public_key);
1926 #endif
1927         return;
1928     }
1929 #endif
1930 
1931     // random address updates
1932     switch (rau_state){
1933         case RAU_GET_RANDOM:
1934             rau_next_state();
1935             sm_random_start(NULL);
1936             return;
1937         case RAU_GET_ENC:
1938             // already busy?
1939             if (sm_aes128_state == SM_AES128_IDLE) {
1940                 sm_key_t r_prime;
1941                 sm_ah_r_prime(sm_random_address, r_prime);
1942                 rau_next_state();
1943                 sm_aes128_start(sm_persistent_irk, r_prime, NULL);
1944                 return;
1945             }
1946             break;
1947         case RAU_SET_ADDRESS:
1948             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
1949             rau_state = RAU_IDLE;
1950             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
1951             return;
1952         default:
1953             break;
1954     }
1955 
1956 #ifdef ENABLE_CMAC_ENGINE
1957     // CMAC
1958     switch (sm_cmac_state){
1959         case CMAC_CALC_SUBKEYS:
1960         case CMAC_CALC_MI:
1961         case CMAC_CALC_MLAST:
1962             // already busy?
1963             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1964             sm_cmac_handle_aes_engine_ready();
1965             return;
1966         default:
1967             break;
1968     }
1969 #endif
1970 
1971     // CSRK Lookup
1972     // -- if csrk lookup ready, find connection that require csrk lookup
1973     if (sm_address_resolution_idle()){
1974         hci_connections_get_iterator(&it);
1975         while(btstack_linked_list_iterator_has_next(&it)){
1976             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1977             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
1978             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
1979                 // and start lookup
1980                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
1981                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
1982                 break;
1983             }
1984         }
1985     }
1986 
1987     // -- if csrk lookup ready, resolved addresses for received addresses
1988     if (sm_address_resolution_idle()) {
1989         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
1990             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
1991             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
1992             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
1993             btstack_memory_sm_lookup_entry_free(entry);
1994         }
1995     }
1996 
1997     // -- Continue with CSRK device lookup by public or resolvable private address
1998     if (!sm_address_resolution_idle()){
1999         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
2000         while (sm_address_resolution_test < le_device_db_count()){
2001             int addr_type;
2002             bd_addr_t addr;
2003             sm_key_t irk;
2004             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
2005             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
2006 
2007             if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
2008                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
2009                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
2010                 break;
2011             }
2012 
2013             if (sm_address_resolution_addr_type == 0){
2014                 sm_address_resolution_test++;
2015                 continue;
2016             }
2017 
2018             if (sm_aes128_state == SM_AES128_ACTIVE) break;
2019 
2020             log_info("LE Device Lookup: calculate AH");
2021             log_info_key("IRK", irk);
2022 
2023             sm_key_t r_prime;
2024             sm_ah_r_prime(sm_address_resolution_address, r_prime);
2025             sm_address_resolution_ah_calculation_active = 1;
2026             sm_aes128_start(irk, r_prime, sm_address_resolution_context);   // keep context
2027             return;
2028         }
2029 
2030         if (sm_address_resolution_test >= le_device_db_count()){
2031             log_info("LE Device Lookup: not found");
2032             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
2033         }
2034     }
2035 
2036     // handle basic actions that don't requires the full context
2037     hci_connections_get_iterator(&it);
2038     while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
2039         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2040         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2041         switch(sm_connection->sm_engine_state){
2042             // responder side
2043             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
2044                 sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2045                 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2046                 return;
2047 
2048 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2049             case SM_SC_RECEIVED_LTK_REQUEST:
2050                 switch (sm_connection->sm_irk_lookup_state){
2051                     case IRK_LOOKUP_FAILED:
2052                         log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Failed)");
2053                         sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2054                         hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2055                         return;
2056                     default:
2057                         break;
2058                 }
2059                 break;
2060 #endif
2061             default:
2062                 break;
2063         }
2064     }
2065 
2066     //
2067     // active connection handling
2068     // -- use loop to handle next connection if lock on setup context is released
2069 
2070     while (1) {
2071 
2072         // Find connections that requires setup context and make active if no other is locked
2073         hci_connections_get_iterator(&it);
2074         while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
2075             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2076             sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2077             // - if no connection locked and we're ready/waiting for setup context, fetch it and start
2078             int done = 1;
2079             int err;
2080             UNUSED(err);
2081             switch (sm_connection->sm_engine_state) {
2082 #ifdef ENABLE_LE_PERIPHERAL
2083                 case SM_RESPONDER_SEND_SECURITY_REQUEST:
2084                     // send packet if possible,
2085                     if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){
2086                         const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING};
2087                         sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
2088                         l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2089                     } else {
2090                         l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
2091                     }
2092                     // don't lock sxetup context yet
2093                     done = 0;
2094                     break;
2095                 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2096                     sm_reset_setup();
2097                     sm_init_setup(sm_connection);
2098                     // recover pairing request
2099                     memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
2100                     err = sm_stk_generation_init(sm_connection);
2101                     if (err){
2102                         setup->sm_pairing_failed_reason = err;
2103                         sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2104                         break;
2105                     }
2106                     sm_timeout_start(sm_connection);
2107                     // generate random number first, if we need to show passkey
2108                     if (setup->sm_stk_generation_method == PK_INIT_INPUT){
2109                         sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
2110                         break;
2111                     }
2112                     sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
2113                     break;
2114                 case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
2115                     sm_reset_setup();
2116                     sm_start_calculating_ltk_from_ediv_and_rand(sm_connection);
2117                     break;
2118 #endif
2119 #ifdef ENABLE_LE_CENTRAL
2120                 case SM_INITIATOR_PH0_HAS_LTK:
2121                     sm_reset_setup();
2122                     sm_load_security_info(sm_connection);
2123                     sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
2124                     break;
2125                 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2126                     sm_reset_setup();
2127                     sm_init_setup(sm_connection);
2128                     sm_timeout_start(sm_connection);
2129                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
2130                     break;
2131 #endif
2132 
2133 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2134                 case SM_SC_RECEIVED_LTK_REQUEST:
2135                     switch (sm_connection->sm_irk_lookup_state){
2136                         case IRK_LOOKUP_SUCCEEDED:
2137                             // assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null
2138                             // start using context by loading security info
2139                             sm_reset_setup();
2140                             sm_load_security_info(sm_connection);
2141                             if (setup->sm_peer_ediv == 0 && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){
2142                                 memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16);
2143                                 sm_connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
2144                                 break;
2145                             }
2146                             log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)");
2147                             sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2148                             hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2149                             // don't lock setup context yet
2150                             return;
2151                         default:
2152                             // just wait until IRK lookup is completed
2153                             // don't lock setup context yet
2154                             done = 0;
2155                             break;
2156                     }
2157                     break;
2158 #endif
2159                 default:
2160                     done = 0;
2161                     break;
2162             }
2163             if (done){
2164                 sm_active_connection_handle = sm_connection->sm_handle;
2165                 log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state);
2166             }
2167         }
2168 
2169         //
2170         // active connection handling
2171         //
2172 
2173         if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return;
2174 
2175         // assert that we could send a SM PDU - not needed for all of the following
2176         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
2177             log_info("cannot send now, requesting can send now event");
2178             l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
2179             return;
2180         }
2181 
2182         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle);
2183         if (!connection) {
2184             log_info("no connection for handle 0x%04x", sm_active_connection_handle);
2185             return;
2186         }
2187 
2188         // send keypress notifications
2189         if (setup->sm_keypress_notification != 0xff){
2190             uint8_t buffer[2];
2191             buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION;
2192             buffer[1] = setup->sm_keypress_notification;
2193             setup->sm_keypress_notification = 0xff;
2194             l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2195             return;
2196         }
2197 
2198         sm_key_t plaintext;
2199         int key_distribution_flags;
2200         UNUSED(key_distribution_flags);
2201 
2202         log_info("sm_run: state %u", connection->sm_engine_state);
2203 
2204         switch (connection->sm_engine_state){
2205 
2206             // general
2207             case SM_GENERAL_SEND_PAIRING_FAILED: {
2208                 uint8_t buffer[2];
2209                 buffer[0] = SM_CODE_PAIRING_FAILED;
2210                 buffer[1] = setup->sm_pairing_failed_reason;
2211                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2212                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2213                 sm_done_for_handle(connection->sm_handle);
2214                 break;
2215             }
2216 
2217             // responding state
2218 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2219             case SM_SC_W2_GET_RANDOM_A:
2220                 sm_random_start(connection);
2221                 connection->sm_engine_state = SM_SC_W4_GET_RANDOM_A;
2222                 break;
2223             case SM_SC_W2_GET_RANDOM_B:
2224                 sm_random_start(connection);
2225                 connection->sm_engine_state = SM_SC_W4_GET_RANDOM_B;
2226                 break;
2227             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
2228                 if (!sm_cmac_ready()) break;
2229                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
2230                 sm_sc_calculate_local_confirm(connection);
2231                 break;
2232             case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
2233                 if (!sm_cmac_ready()) break;
2234                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
2235                 sm_sc_calculate_remote_confirm(connection);
2236                 break;
2237             case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
2238                 if (!sm_cmac_ready()) break;
2239                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK;
2240                 sm_sc_calculate_f6_for_dhkey_check(connection);
2241                 break;
2242             case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
2243                 if (!sm_cmac_ready()) break;
2244                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
2245                 sm_sc_calculate_f6_to_verify_dhkey_check(connection);
2246                 break;
2247             case SM_SC_W2_CALCULATE_F5_SALT:
2248                 if (!sm_cmac_ready()) break;
2249                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT;
2250                 f5_calculate_salt(connection);
2251                 break;
2252             case SM_SC_W2_CALCULATE_F5_MACKEY:
2253                 if (!sm_cmac_ready()) break;
2254                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY;
2255                 f5_calculate_mackey(connection);
2256                 break;
2257             case SM_SC_W2_CALCULATE_F5_LTK:
2258                 if (!sm_cmac_ready()) break;
2259                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK;
2260                 f5_calculate_ltk(connection);
2261                 break;
2262             case SM_SC_W2_CALCULATE_G2:
2263                 if (!sm_cmac_ready()) break;
2264                 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2;
2265                 g2_calculate(connection);
2266                 break;
2267             case SM_SC_W2_CALCULATE_H6_ILK:
2268                 if (!sm_cmac_ready()) break;
2269                 connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_ILK;
2270                 h6_calculate_ilk(connection);
2271                 break;
2272             case SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY:
2273                 if (!sm_cmac_ready()) break;
2274                 connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY;
2275                 h6_calculate_br_edr_link_key(connection);
2276                 break;
2277 #endif
2278 
2279 #ifdef ENABLE_LE_CENTRAL
2280             // initiator side
2281             case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
2282                 sm_key_t peer_ltk_flipped;
2283                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
2284                 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
2285                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
2286                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
2287                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
2288                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
2289                 return;
2290             }
2291 
2292             case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
2293                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
2294                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
2295                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
2296                 sm_timeout_reset(connection);
2297                 break;
2298 #endif
2299 
2300 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2301 
2302             case SM_SC_SEND_PUBLIC_KEY_COMMAND: {
2303                 uint8_t buffer[65];
2304                 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
2305                 //
2306                 reverse_256(&ec_q[0],  &buffer[1]);
2307                 reverse_256(&ec_q[32], &buffer[33]);
2308 
2309                 // stk generation method
2310                 // passkey entry: notify app to show passkey or to request passkey
2311                 switch (setup->sm_stk_generation_method){
2312                     case JUST_WORKS:
2313                     case NK_BOTH_INPUT:
2314                         if (IS_RESPONDER(connection->sm_role)){
2315                             // responder
2316                             sm_sc_start_calculating_local_confirm(connection);
2317                         } else {
2318                             // initiator
2319                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2320                         }
2321                         break;
2322                     case PK_INIT_INPUT:
2323                     case PK_RESP_INPUT:
2324                     case OK_BOTH_INPUT:
2325                         // use random TK for display
2326                         memcpy(setup->sm_ra, setup->sm_tk, 16);
2327                         memcpy(setup->sm_rb, setup->sm_tk, 16);
2328                         setup->sm_passkey_bit = 0;
2329 
2330                         if (IS_RESPONDER(connection->sm_role)){
2331                             // responder
2332                             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2333                         } else {
2334                             // initiator
2335                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2336                         }
2337                         sm_trigger_user_response(connection);
2338                         break;
2339                     case OOB:
2340                         // TODO: implement SC OOB
2341                         break;
2342                 }
2343 
2344                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2345                 sm_timeout_reset(connection);
2346                 break;
2347             }
2348             case SM_SC_SEND_CONFIRMATION: {
2349                 uint8_t buffer[17];
2350                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
2351                 reverse_128(setup->sm_local_confirm, &buffer[1]);
2352                 if (IS_RESPONDER(connection->sm_role)){
2353                     connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2354                 } else {
2355                     connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2356                 }
2357                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2358                 sm_timeout_reset(connection);
2359                 break;
2360             }
2361             case SM_SC_SEND_PAIRING_RANDOM: {
2362                 uint8_t buffer[17];
2363                 buffer[0] = SM_CODE_PAIRING_RANDOM;
2364                 reverse_128(setup->sm_local_nonce, &buffer[1]);
2365                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){
2366                     if (IS_RESPONDER(connection->sm_role)){
2367                         // responder
2368                         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2369                     } else {
2370                         // initiator
2371                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2372                     }
2373                 } else {
2374                     if (IS_RESPONDER(connection->sm_role)){
2375                         // responder
2376                         if (setup->sm_stk_generation_method == NK_BOTH_INPUT){
2377                             connection->sm_engine_state = SM_SC_W2_CALCULATE_G2;
2378                         } else {
2379                             sm_sc_prepare_dhkey_check(connection);
2380                         }
2381                     } else {
2382                         // initiator
2383                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2384                     }
2385                 }
2386                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2387                 sm_timeout_reset(connection);
2388                 break;
2389             }
2390             case SM_SC_SEND_DHKEY_CHECK_COMMAND: {
2391                 uint8_t buffer[17];
2392                 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
2393                 reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
2394 
2395                 if (IS_RESPONDER(connection->sm_role)){
2396                     connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
2397                 } else {
2398                     connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
2399                 }
2400 
2401                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2402                 sm_timeout_reset(connection);
2403                 break;
2404             }
2405 
2406 #endif
2407 
2408 #ifdef ENABLE_LE_PERIPHERAL
2409             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
2410                 // echo initiator for now
2411                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
2412                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
2413 
2414                 if (setup->sm_use_secure_connections){
2415                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2416                     // skip LTK/EDIV for SC
2417                     log_info("sm: dropping encryption information flag");
2418                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
2419                 } else {
2420                     connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
2421                 }
2422 
2423                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
2424                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
2425                 // update key distribution after ENC was dropped
2426                 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
2427 
2428                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
2429                 sm_timeout_reset(connection);
2430                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
2431                 if (!setup->sm_use_secure_connections || setup->sm_stk_generation_method == JUST_WORKS){
2432                     sm_trigger_user_response(connection);
2433                 }
2434                 return;
2435 #endif
2436 
2437             case SM_PH2_SEND_PAIRING_RANDOM: {
2438                 uint8_t buffer[17];
2439                 buffer[0] = SM_CODE_PAIRING_RANDOM;
2440                 reverse_128(setup->sm_local_random, &buffer[1]);
2441                 if (IS_RESPONDER(connection->sm_role)){
2442                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
2443                 } else {
2444                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
2445                 }
2446                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2447                 sm_timeout_reset(connection);
2448                 break;
2449             }
2450 
2451             case SM_PH2_GET_RANDOM_TK:
2452             case SM_PH2_C1_GET_RANDOM_A:
2453             case SM_PH2_C1_GET_RANDOM_B:
2454             case SM_PH3_GET_RANDOM:
2455             case SM_PH3_GET_DIV:
2456                 sm_next_responding_state(connection);
2457                 sm_random_start(connection);
2458                 return;
2459 
2460             case SM_PH2_C1_GET_ENC_B:
2461             case SM_PH2_C1_GET_ENC_D:
2462                 // already busy?
2463                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2464                 sm_next_responding_state(connection);
2465                 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
2466                 return;
2467 
2468             case SM_PH3_LTK_GET_ENC:
2469             case SM_RESPONDER_PH4_LTK_GET_ENC:
2470                 // already busy?
2471                 if (sm_aes128_state == SM_AES128_IDLE) {
2472                     sm_key_t d_prime;
2473                     sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
2474                     sm_next_responding_state(connection);
2475                     sm_aes128_start(sm_persistent_er, d_prime, connection);
2476                     return;
2477                 }
2478                 break;
2479 
2480             case SM_PH3_CSRK_GET_ENC:
2481                 // already busy?
2482                 if (sm_aes128_state == SM_AES128_IDLE) {
2483                     sm_key_t d_prime;
2484                     sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
2485                     sm_next_responding_state(connection);
2486                     sm_aes128_start(sm_persistent_er, d_prime, connection);
2487                     return;
2488                 }
2489                 break;
2490 
2491             case SM_PH2_C1_GET_ENC_C:
2492                 // already busy?
2493                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2494                 // calculate m_confirm using aes128 engine - step 1
2495                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
2496                 sm_next_responding_state(connection);
2497                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2498                 break;
2499             case SM_PH2_C1_GET_ENC_A:
2500                 // already busy?
2501                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2502                 // calculate confirm using aes128 engine - step 1
2503                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
2504                 sm_next_responding_state(connection);
2505                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2506                 break;
2507             case SM_PH2_CALC_STK:
2508                 // already busy?
2509                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2510                 // calculate STK
2511                 if (IS_RESPONDER(connection->sm_role)){
2512                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
2513                 } else {
2514                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
2515                 }
2516                 sm_next_responding_state(connection);
2517                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2518                 break;
2519             case SM_PH3_Y_GET_ENC:
2520                 // already busy?
2521                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2522                 // PH3B2 - calculate Y from      - enc
2523                 // Y = dm(DHK, Rand)
2524                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2525                 sm_next_responding_state(connection);
2526                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2527                 return;
2528             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
2529                 uint8_t buffer[17];
2530                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
2531                 reverse_128(setup->sm_local_confirm, &buffer[1]);
2532                 if (IS_RESPONDER(connection->sm_role)){
2533                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
2534                 } else {
2535                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
2536                 }
2537                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2538                 sm_timeout_reset(connection);
2539                 return;
2540             }
2541 #ifdef ENABLE_LE_PERIPHERAL
2542             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
2543                 sm_key_t stk_flipped;
2544                 reverse_128(setup->sm_ltk, stk_flipped);
2545                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2546                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
2547                 return;
2548             }
2549             case SM_RESPONDER_PH4_SEND_LTK_REPLY: {
2550                 sm_key_t ltk_flipped;
2551                 reverse_128(setup->sm_ltk, ltk_flipped);
2552                 connection->sm_engine_state = SM_RESPONDER_IDLE;
2553                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
2554                 return;
2555             }
2556             case SM_RESPONDER_PH4_Y_GET_ENC:
2557                 // already busy?
2558                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2559                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
2560                 // Y = dm(DHK, Rand)
2561                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2562                 sm_next_responding_state(connection);
2563                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2564                 return;
2565 #endif
2566 #ifdef ENABLE_LE_CENTRAL
2567             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
2568                 sm_key_t stk_flipped;
2569                 reverse_128(setup->sm_ltk, stk_flipped);
2570                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2571                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
2572                 return;
2573             }
2574 #endif
2575 
2576             case SM_PH3_DISTRIBUTE_KEYS:
2577                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
2578                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2579                     uint8_t buffer[17];
2580                     buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2581                     reverse_128(setup->sm_ltk, &buffer[1]);
2582                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2583                     sm_timeout_reset(connection);
2584                     return;
2585                 }
2586                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
2587                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2588                     uint8_t buffer[11];
2589                     buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2590                     little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2591                     reverse_64(setup->sm_local_rand, &buffer[3]);
2592                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2593                     sm_timeout_reset(connection);
2594                     return;
2595                 }
2596                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
2597                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2598                     uint8_t buffer[17];
2599                     buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2600                     reverse_128(sm_persistent_irk, &buffer[1]);
2601                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2602                     sm_timeout_reset(connection);
2603                     return;
2604                 }
2605                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
2606                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2607                     bd_addr_t local_address;
2608                     uint8_t buffer[8];
2609                     buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2610                     gap_le_get_own_address(&buffer[1], local_address);
2611                     reverse_bd_addr(local_address, &buffer[2]);
2612                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2613                     sm_timeout_reset(connection);
2614                     return;
2615                 }
2616                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
2617                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2618 
2619                     // hack to reproduce test runs
2620                     if (test_use_fixed_local_csrk){
2621                         memset(setup->sm_local_csrk, 0xcc, 16);
2622                     }
2623 
2624                     uint8_t buffer[17];
2625                     buffer[0] = SM_CODE_SIGNING_INFORMATION;
2626                     reverse_128(setup->sm_local_csrk, &buffer[1]);
2627                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2628                     sm_timeout_reset(connection);
2629                     return;
2630                 }
2631 
2632                 // keys are sent
2633                 if (IS_RESPONDER(connection->sm_role)){
2634                     // slave -> receive master keys if any
2635                     if (sm_key_distribution_all_received(connection)){
2636                         sm_key_distribution_handle_all_received(connection);
2637                         connection->sm_engine_state = SM_RESPONDER_IDLE;
2638                         sm_done_for_handle(connection->sm_handle);
2639                     } else {
2640                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2641                     }
2642                 } else {
2643                     // master -> all done
2644                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2645                     sm_done_for_handle(connection->sm_handle);
2646                 }
2647                 break;
2648 
2649             default:
2650                 break;
2651         }
2652 
2653         // check again if active connection was released
2654         if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break;
2655     }
2656 }
2657 
2658 // note: aes engine is ready as we just got the aes result
2659 static void sm_handle_encryption_result(uint8_t * data){
2660 
2661     sm_aes128_state = SM_AES128_IDLE;
2662 
2663     if (sm_address_resolution_ah_calculation_active){
2664         sm_address_resolution_ah_calculation_active = 0;
2665         // compare calulated address against connecting device
2666         uint8_t hash[3];
2667         reverse_24(data, hash);
2668         if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
2669             log_info("LE Device Lookup: matched resolvable private address");
2670             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
2671             return;
2672         }
2673         // no match, try next
2674         sm_address_resolution_test++;
2675         return;
2676     }
2677 
2678     switch (dkg_state){
2679         case DKG_W4_IRK:
2680             reverse_128(data, sm_persistent_irk);
2681             log_info_key("irk", sm_persistent_irk);
2682             dkg_next_state();
2683             return;
2684         case DKG_W4_DHK:
2685             reverse_128(data, sm_persistent_dhk);
2686             log_info_key("dhk", sm_persistent_dhk);
2687             dkg_next_state();
2688             // SM Init Finished
2689             return;
2690         default:
2691             break;
2692     }
2693 
2694     switch (rau_state){
2695         case RAU_W4_ENC:
2696             reverse_24(data, &sm_random_address[3]);
2697             rau_next_state();
2698             return;
2699         default:
2700             break;
2701     }
2702 
2703 #ifdef ENABLE_CMAC_ENGINE
2704     switch (sm_cmac_state){
2705         case CMAC_W4_SUBKEYS:
2706         case CMAC_W4_MI:
2707         case CMAC_W4_MLAST:
2708             {
2709             sm_key_t t;
2710             reverse_128(data, t);
2711             sm_cmac_handle_encryption_result(t);
2712             }
2713             return;
2714         default:
2715             break;
2716     }
2717 #endif
2718 
2719     // retrieve sm_connection provided to sm_aes128_start_encryption
2720     sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
2721     if (!connection) return;
2722     switch (connection->sm_engine_state){
2723         case SM_PH2_C1_W4_ENC_A:
2724         case SM_PH2_C1_W4_ENC_C:
2725             {
2726             sm_key_t t2;
2727             reverse_128(data, t2);
2728             sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
2729             }
2730             sm_next_responding_state(connection);
2731             return;
2732         case SM_PH2_C1_W4_ENC_B:
2733             reverse_128(data, setup->sm_local_confirm);
2734             log_info_key("c1!", setup->sm_local_confirm);
2735             connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
2736             return;
2737         case SM_PH2_C1_W4_ENC_D:
2738             {
2739             sm_key_t peer_confirm_test;
2740             reverse_128(data, peer_confirm_test);
2741             log_info_key("c1!", peer_confirm_test);
2742             if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
2743                 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
2744                 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2745                 return;
2746             }
2747             if (IS_RESPONDER(connection->sm_role)){
2748                 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2749             } else {
2750                 connection->sm_engine_state = SM_PH2_CALC_STK;
2751             }
2752             }
2753             return;
2754         case SM_PH2_W4_STK:
2755             reverse_128(data, setup->sm_ltk);
2756             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2757             log_info_key("stk", setup->sm_ltk);
2758             if (IS_RESPONDER(connection->sm_role)){
2759                 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2760             } else {
2761                 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2762             }
2763             return;
2764         case SM_PH3_Y_W4_ENC:{
2765             sm_key_t y128;
2766             reverse_128(data, y128);
2767             setup->sm_local_y = big_endian_read_16(y128, 14);
2768             log_info_hex16("y", setup->sm_local_y);
2769             // PH3B3 - calculate EDIV
2770             setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
2771             log_info_hex16("ediv", setup->sm_local_ediv);
2772             // PH3B4 - calculate LTK         - enc
2773             // LTK = d1(ER, DIV, 0))
2774             connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
2775             return;
2776         }
2777         case SM_RESPONDER_PH4_Y_W4_ENC:{
2778             sm_key_t y128;
2779             reverse_128(data, y128);
2780             setup->sm_local_y = big_endian_read_16(y128, 14);
2781             log_info_hex16("y", setup->sm_local_y);
2782 
2783             // PH3B3 - calculate DIV
2784             setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
2785             log_info_hex16("ediv", setup->sm_local_ediv);
2786             // PH3B4 - calculate LTK         - enc
2787             // LTK = d1(ER, DIV, 0))
2788             connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
2789             return;
2790         }
2791         case SM_PH3_LTK_W4_ENC:
2792             reverse_128(data, setup->sm_ltk);
2793             log_info_key("ltk", setup->sm_ltk);
2794             // calc CSRK next
2795             connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
2796             return;
2797         case SM_PH3_CSRK_W4_ENC:
2798             reverse_128(data, setup->sm_local_csrk);
2799             log_info_key("csrk", setup->sm_local_csrk);
2800             if (setup->sm_key_distribution_send_set){
2801                 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2802             } else {
2803                 // no keys to send, just continue
2804                 if (IS_RESPONDER(connection->sm_role)){
2805                     // slave -> receive master keys
2806                     connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2807                 } else {
2808                     if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){
2809                         connection->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK;
2810                     } else {
2811                         // master -> all done
2812                         connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2813                         sm_done_for_handle(connection->sm_handle);
2814                     }
2815                 }
2816             }
2817             return;
2818 #ifdef ENABLE_LE_PERIPHERAL
2819         case SM_RESPONDER_PH4_LTK_W4_ENC:
2820             reverse_128(data, setup->sm_ltk);
2821             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2822             log_info_key("ltk", setup->sm_ltk);
2823             connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
2824             return;
2825 #endif
2826         default:
2827             break;
2828     }
2829 }
2830 
2831 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2832 #ifndef HAVE_HCI_CONTROLLER_DHKEY_SUPPORT
2833 #if !defined(WICED_VERSION) || defined(USE_MBEDTLS_FOR_ECDH)
2834 // @return OK
2835 static int sm_generate_f_rng(unsigned char * buffer, unsigned size){
2836     if (ec_key_generation_state != EC_KEY_GENERATION_ACTIVE) return 0;
2837     int offset = setup->sm_passkey_bit;
2838     log_info("sm_generate_f_rng: size %u - offset %u", (int) size, offset);
2839     while (size) {
2840         *buffer++ = setup->sm_peer_q[offset++];
2841         size--;
2842     }
2843     setup->sm_passkey_bit = offset;
2844     return 1;
2845 }
2846 #endif
2847 #ifdef USE_MBEDTLS_FOR_ECDH
2848 // @return error
2849 static int sm_generate_f_rng_mbedtls(void * context, unsigned char * buffer, size_t size){
2850     UNUSED(context);
2851     return sm_generate_f_rng(buffer, size) == 1;
2852 }
2853 #endif
2854 #endif
2855 #endif
2856 
2857 // note: random generator is ready. this doesn NOT imply that aes engine is unused!
2858 static void sm_handle_random_result(uint8_t * data){
2859 
2860 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2861 #ifndef HAVE_HCI_CONTROLLER_DHKEY_SUPPORT
2862 
2863     if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){
2864         int num_bytes = setup->sm_passkey_bit;
2865         memcpy(&setup->sm_peer_q[num_bytes], data, 8);
2866         num_bytes += 8;
2867         setup->sm_passkey_bit = num_bytes;
2868 
2869         if (num_bytes >= 64){
2870 
2871             // init pre-generated random data from sm_peer_q
2872             setup->sm_passkey_bit = 0;
2873 
2874             // generate EC key
2875 #ifdef USE_MBEDTLS_FOR_ECDH
2876             mbedtls_mpi d;
2877             mbedtls_ecp_point P;
2878             mbedtls_mpi_init(&d);
2879             mbedtls_ecp_point_init(&P);
2880             int res = mbedtls_ecp_gen_keypair(&mbedtls_ec_group, &d, &P, &sm_generate_f_rng_mbedtls, NULL);
2881             log_info("gen keypair %x", res);
2882             mbedtls_mpi_write_binary(&P.X, &ec_q[0],  32);
2883             mbedtls_mpi_write_binary(&P.Y, &ec_q[32], 32);
2884             mbedtls_mpi_write_binary(&d, ec_d, 32);
2885             mbedtls_ecp_point_free(&P);
2886             mbedtls_mpi_free(&d);
2887 #endif
2888 
2889 #ifdef USE_MICROECC_FOR_ECDH
2890 
2891 #ifndef WICED_VERSION
2892             // micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it
2893             uECC_set_rng(&sm_generate_f_rng);
2894 #endif /* WICED_VERSION */
2895 
2896 #if uECC_SUPPORTS_secp256r1
2897             // standard version
2898             uECC_make_key(ec_q, ec_d, uECC_secp256r1());
2899 #else
2900             // static version
2901             uECC_make_key(ec_q, ec_d);
2902 #endif
2903 #endif /* USE_MICROECC_FOR_ECDH */
2904 
2905 #ifndef WICED_VERSION
2906             // disable rng generator as we don't have any random bits left
2907             // we can do this because we don't generate another key
2908             // we need to to this because shared key calculation fails if rng returns 0
2909             uECC_set_rng(NULL);
2910 #endif /* WICED_VERSION */
2911 
2912 #endif /* USE_MICROECC_FOR_ECDH */
2913 
2914             ec_key_generation_state = EC_KEY_GENERATION_DONE;
2915             log_info("Elliptic curve: d");
2916             log_info_hexdump(ec_d,32);
2917             sm_log_ec_keypair();
2918         }
2919     }
2920 #endif
2921 #endif
2922 
2923     switch (rau_state){
2924         case RAU_W4_RANDOM:
2925             // non-resolvable vs. resolvable
2926             switch (gap_random_adress_type){
2927                 case GAP_RANDOM_ADDRESS_RESOLVABLE:
2928                     // resolvable: use random as prand and calc address hash
2929                     // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
2930                     memcpy(sm_random_address, data, 3);
2931                     sm_random_address[0] &= 0x3f;
2932                     sm_random_address[0] |= 0x40;
2933                     rau_state = RAU_GET_ENC;
2934                     break;
2935                 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2936                 default:
2937                     // "The two most significant bits of the address shall be equal to ‘0’""
2938                     memcpy(sm_random_address, data, 6);
2939                     sm_random_address[0] &= 0x3f;
2940                     rau_state = RAU_SET_ADDRESS;
2941                     break;
2942             }
2943             return;
2944         default:
2945             break;
2946     }
2947 
2948     // retrieve sm_connection provided to sm_random_start
2949     sm_connection_t * connection = (sm_connection_t *) sm_random_context;
2950     if (!connection) return;
2951     switch (connection->sm_engine_state){
2952 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2953         case SM_SC_W4_GET_RANDOM_A:
2954             memcpy(&setup->sm_local_nonce[0], data, 8);
2955             connection->sm_engine_state = SM_SC_W2_GET_RANDOM_B;
2956             break;
2957         case SM_SC_W4_GET_RANDOM_B:
2958             memcpy(&setup->sm_local_nonce[8], data, 8);
2959             // initiator & jw/nc -> send pairing random
2960             if (connection->sm_role == 0 && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
2961                 connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
2962                 break;
2963             } else {
2964                 connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
2965             }
2966             break;
2967 #endif
2968 
2969         case SM_PH2_W4_RANDOM_TK:
2970         {
2971             // map random to 0-999999 without speding much cycles on a modulus operation
2972             uint32_t tk = little_endian_read_32(data,0);
2973             tk = tk & 0xfffff;  // 1048575
2974             if (tk >= 999999){
2975                 tk = tk - 999999;
2976             }
2977             sm_reset_tk();
2978             big_endian_store_32(setup->sm_tk, 12, tk);
2979             if (IS_RESPONDER(connection->sm_role)){
2980                 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
2981             } else {
2982                 if (setup->sm_use_secure_connections){
2983                     connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2984                 } else {
2985                     connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2986                     sm_trigger_user_response(connection);
2987                     // response_idle == nothing <--> sm_trigger_user_response() did not require response
2988                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2989                         connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2990                     }
2991                 }
2992             }
2993             return;
2994         }
2995         case SM_PH2_C1_W4_RANDOM_A:
2996             memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
2997             connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
2998             return;
2999         case SM_PH2_C1_W4_RANDOM_B:
3000             memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
3001             connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
3002             return;
3003         case SM_PH3_W4_RANDOM:
3004             reverse_64(data, setup->sm_local_rand);
3005             // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
3006             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
3007             // no db for authenticated flag hack: store flag in bit 4 of LSB
3008             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
3009             connection->sm_engine_state = SM_PH3_GET_DIV;
3010             return;
3011         case SM_PH3_W4_DIV:
3012             // use 16 bit from random value as div
3013             setup->sm_local_div = big_endian_read_16(data, 0);
3014             log_info_hex16("div", setup->sm_local_div);
3015             connection->sm_engine_state = SM_PH3_Y_GET_ENC;
3016             return;
3017         default:
3018             break;
3019     }
3020 }
3021 
3022 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
3023 
3024     UNUSED(channel);
3025     UNUSED(size);
3026 
3027     sm_connection_t  * sm_conn;
3028     hci_con_handle_t con_handle;
3029 
3030     switch (packet_type) {
3031 
3032 		case HCI_EVENT_PACKET:
3033 			switch (hci_event_packet_get_type(packet)) {
3034 
3035                 case BTSTACK_EVENT_STATE:
3036 					// bt stack activated, get started
3037 					if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
3038                         log_info("HCI Working!");
3039 
3040                         // set local addr for le device db
3041                         bd_addr_t local_bd_addr;
3042                         gap_local_bd_addr(local_bd_addr);
3043                         le_device_db_set_local_bd_addr(local_bd_addr);
3044 
3045                         dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
3046 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3047                         if (!sm_have_ec_keypair){
3048                             setup->sm_passkey_bit = 0;
3049                             ec_key_generation_state = EC_KEY_GENERATION_ACTIVE;
3050                         }
3051 #endif
3052                         // trigger Random Address generation if requested before
3053                         switch (gap_random_adress_type){
3054                             case GAP_RANDOM_ADDRESS_TYPE_OFF:
3055                                 rau_state = RAU_IDLE;
3056                                 break;
3057                             case GAP_RANDOM_ADDRESS_TYPE_STATIC:
3058                                 rau_state = RAU_SET_ADDRESS;
3059                                 break;
3060                             default:
3061                                 rau_state = RAU_GET_RANDOM;
3062                                 break;
3063                         }
3064                         sm_run();
3065 					}
3066 					break;
3067 
3068                 case HCI_EVENT_LE_META:
3069                     switch (packet[2]) {
3070                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
3071 
3072                             log_info("sm: connected");
3073 
3074                             if (packet[3]) return; // connection failed
3075 
3076                             con_handle = little_endian_read_16(packet, 4);
3077                             sm_conn = sm_get_connection_for_handle(con_handle);
3078                             if (!sm_conn) break;
3079 
3080                             sm_conn->sm_handle = con_handle;
3081                             sm_conn->sm_role = packet[6];
3082                             sm_conn->sm_peer_addr_type = packet[7];
3083                             reverse_bd_addr(&packet[8], sm_conn->sm_peer_address);
3084 
3085                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
3086 
3087                             // reset security properties
3088                             sm_conn->sm_connection_encrypted = 0;
3089                             sm_conn->sm_connection_authenticated = 0;
3090                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
3091                             sm_conn->sm_le_db_index = -1;
3092 
3093                             // prepare CSRK lookup (does not involve setup)
3094                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
3095 
3096                             // just connected -> everything else happens in sm_run()
3097                             if (IS_RESPONDER(sm_conn->sm_role)){
3098                                 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
3099                                 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
3100                                     if (sm_slave_request_security) {
3101                                         // request security if requested by app
3102                                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
3103                                     } else {
3104                                         // otherwise, wait for pairing request
3105                                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3106                                     }
3107                                 }
3108                                 break;
3109                             } else {
3110                                 // master
3111                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3112                             }
3113                             break;
3114 
3115                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
3116                             con_handle = little_endian_read_16(packet, 3);
3117                             sm_conn = sm_get_connection_for_handle(con_handle);
3118                             if (!sm_conn) break;
3119 
3120                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
3121                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
3122                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
3123                                 break;
3124                             }
3125                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
3126                                 // PH2 SEND LTK as we need to exchange keys in PH3
3127                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
3128                                 break;
3129                             }
3130 
3131                             // store rand and ediv
3132                             reverse_64(&packet[5], sm_conn->sm_local_rand);
3133                             sm_conn->sm_local_ediv = little_endian_read_16(packet, 13);
3134 
3135                             // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a
3136                             // potentially stored LTK is from the master
3137                             if (sm_conn->sm_local_ediv != 0 || !sm_is_null_random(sm_conn->sm_local_rand)){
3138                                 sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
3139                                 break;
3140                             }
3141 
3142 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3143                             sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST;
3144 #else
3145                             log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported");
3146                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
3147 #endif
3148                             break;
3149 
3150 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3151                         case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE:
3152                             if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){
3153                                 log_error("Read Local P256 Public Key failed");
3154                                 break;
3155                             }
3156                             hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &ec_q[0]);
3157                             hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &ec_q[32]);
3158                             ec_key_generation_state = EC_KEY_GENERATION_DONE;
3159                             sm_log_ec_keypair();
3160                             break;
3161 #endif
3162                         default:
3163                             break;
3164                     }
3165                     break;
3166 
3167                 case HCI_EVENT_ENCRYPTION_CHANGE:
3168                     con_handle = little_endian_read_16(packet, 3);
3169                     sm_conn = sm_get_connection_for_handle(con_handle);
3170                     if (!sm_conn) break;
3171 
3172                     sm_conn->sm_connection_encrypted = packet[5];
3173                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
3174                         sm_conn->sm_actual_encryption_key_size);
3175                     log_info("event handler, state %u", sm_conn->sm_engine_state);
3176                     if (!sm_conn->sm_connection_encrypted) break;
3177                     // continue if part of initial pairing
3178                     switch (sm_conn->sm_engine_state){
3179                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
3180                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3181                             sm_done_for_handle(sm_conn->sm_handle);
3182                             break;
3183                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
3184                             if (IS_RESPONDER(sm_conn->sm_role)){
3185                                 // slave
3186                                 if (setup->sm_use_secure_connections){
3187                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3188                                 } else {
3189                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
3190                                 }
3191                             } else {
3192                                 // master
3193                                 if (sm_key_distribution_all_received(sm_conn)){
3194                                     // skip receiving keys as there are none
3195                                     sm_key_distribution_handle_all_received(sm_conn);
3196                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
3197                                 } else {
3198                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3199                                 }
3200                             }
3201                             break;
3202                         default:
3203                             break;
3204                     }
3205                     break;
3206 
3207                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
3208                     con_handle = little_endian_read_16(packet, 3);
3209                     sm_conn = sm_get_connection_for_handle(con_handle);
3210                     if (!sm_conn) break;
3211 
3212                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
3213                     log_info("event handler, state %u", sm_conn->sm_engine_state);
3214                     // continue if part of initial pairing
3215                     switch (sm_conn->sm_engine_state){
3216                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
3217                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3218                             sm_done_for_handle(sm_conn->sm_handle);
3219                             break;
3220                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
3221                             if (IS_RESPONDER(sm_conn->sm_role)){
3222                                 // slave
3223                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
3224                             } else {
3225                                 // master
3226                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3227                             }
3228                             break;
3229                         default:
3230                             break;
3231                     }
3232                     break;
3233 
3234 
3235                 case HCI_EVENT_DISCONNECTION_COMPLETE:
3236                     con_handle = little_endian_read_16(packet, 3);
3237                     sm_done_for_handle(con_handle);
3238                     sm_conn = sm_get_connection_for_handle(con_handle);
3239                     if (!sm_conn) break;
3240 
3241                     // delete stored bonding on disconnect with authentication failure in ph0
3242                     if (sm_conn->sm_role == 0
3243                         && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
3244                         && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
3245                         le_device_db_remove(sm_conn->sm_le_db_index);
3246                     }
3247 
3248                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
3249                     sm_conn->sm_handle = 0;
3250                     break;
3251 
3252 				case HCI_EVENT_COMMAND_COMPLETE:
3253                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
3254                         sm_handle_encryption_result(&packet[6]);
3255                         break;
3256                     }
3257                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
3258                         sm_handle_random_result(&packet[6]);
3259                         break;
3260                     }
3261                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)){
3262                         // Hack for Nordic nRF5 series that doesn't have public address:
3263                         // - with patches from port/nrf5-zephyr, hci_read_bd_addr returns random static address
3264                         // - we use this as default for advertisements/connections
3265                         if (hci_get_manufacturer() == BLUETOOTH_COMPANY_ID_NORDIC_SEMICONDUCTOR_ASA){
3266                             log_info("nRF5: using (fake) public address as random static address");
3267                             bd_addr_t addr;
3268                             reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr);
3269                             gap_random_address_set(addr);
3270                         }
3271                     }
3272                     break;
3273                 default:
3274                     break;
3275 			}
3276             break;
3277         default:
3278             break;
3279 	}
3280 
3281     sm_run();
3282 }
3283 
3284 static inline int sm_calc_actual_encryption_key_size(int other){
3285     if (other < sm_min_encryption_key_size) return 0;
3286     if (other < sm_max_encryption_key_size) return other;
3287     return sm_max_encryption_key_size;
3288 }
3289 
3290 
3291 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3292 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method){
3293     switch (method){
3294         case JUST_WORKS:
3295         case NK_BOTH_INPUT:
3296             return 1;
3297         default:
3298             return 0;
3299     }
3300 }
3301 // responder
3302 
3303 static int sm_passkey_used(stk_generation_method_t method){
3304     switch (method){
3305         case PK_RESP_INPUT:
3306             return 1;
3307         default:
3308             return 0;
3309     }
3310 }
3311 #endif
3312 
3313 /**
3314  * @return ok
3315  */
3316 static int sm_validate_stk_generation_method(void){
3317     // check if STK generation method is acceptable by client
3318     switch (setup->sm_stk_generation_method){
3319         case JUST_WORKS:
3320             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
3321         case PK_RESP_INPUT:
3322         case PK_INIT_INPUT:
3323         case OK_BOTH_INPUT:
3324             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
3325         case OOB:
3326             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
3327         case NK_BOTH_INPUT:
3328             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0;
3329             return 1;
3330         default:
3331             return 0;
3332     }
3333 }
3334 
3335 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
3336 
3337     UNUSED(size);
3338 
3339     if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){
3340         sm_run();
3341     }
3342 
3343     if (packet_type != SM_DATA_PACKET) return;
3344 
3345     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3346     if (!sm_conn) return;
3347 
3348     if (packet[0] == SM_CODE_PAIRING_FAILED){
3349         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
3350         return;
3351     }
3352 
3353     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
3354 
3355     int err;
3356     UNUSED(err);
3357 
3358     if (packet[0] == SM_CODE_KEYPRESS_NOTIFICATION){
3359         uint8_t buffer[5];
3360         buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION;
3361         buffer[1] = 3;
3362         little_endian_store_16(buffer, 2, con_handle);
3363         buffer[4] = packet[1];
3364         sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer));
3365         return;
3366     }
3367 
3368     switch (sm_conn->sm_engine_state){
3369 
3370         // a sm timeout requries a new physical connection
3371         case SM_GENERAL_TIMEOUT:
3372             return;
3373 
3374 #ifdef ENABLE_LE_CENTRAL
3375 
3376         // Initiator
3377         case SM_INITIATOR_CONNECTED:
3378             if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
3379                 sm_pdu_received_in_wrong_state(sm_conn);
3380                 break;
3381             }
3382             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
3383                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3384                 break;
3385             }
3386             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
3387                 sm_key_t ltk;
3388                 le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL);
3389                 if (!sm_is_null_key(ltk)){
3390                     log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
3391                     sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
3392                 } else {
3393                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3394                 }
3395                 break;
3396             }
3397             // otherwise, store security request
3398             sm_conn->sm_security_request_received = 1;
3399             break;
3400 
3401         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
3402             if (packet[0] != SM_CODE_PAIRING_RESPONSE){
3403                 sm_pdu_received_in_wrong_state(sm_conn);
3404                 break;
3405             }
3406             // store pairing request
3407             memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
3408             err = sm_stk_generation_init(sm_conn);
3409             if (err){
3410                 setup->sm_pairing_failed_reason = err;
3411                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
3412                 break;
3413             }
3414 
3415             // generate random number first, if we need to show passkey
3416             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
3417                 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
3418                 break;
3419             }
3420 
3421 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3422             if (setup->sm_use_secure_connections){
3423                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
3424                 if (setup->sm_stk_generation_method == JUST_WORKS){
3425                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3426                     sm_trigger_user_response(sm_conn);
3427                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3428                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3429                     }
3430                 } else {
3431                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3432                 }
3433                 break;
3434             }
3435 #endif
3436             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3437             sm_trigger_user_response(sm_conn);
3438             // response_idle == nothing <--> sm_trigger_user_response() did not require response
3439             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3440                 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3441             }
3442             break;
3443 
3444         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
3445             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
3446                 sm_pdu_received_in_wrong_state(sm_conn);
3447                 break;
3448             }
3449 
3450             // store s_confirm
3451             reverse_128(&packet[1], setup->sm_peer_confirm);
3452             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
3453             break;
3454 
3455         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
3456             if (packet[0] != SM_CODE_PAIRING_RANDOM){
3457                 sm_pdu_received_in_wrong_state(sm_conn);
3458                 break;;
3459             }
3460 
3461             // received random value
3462             reverse_128(&packet[1], setup->sm_peer_random);
3463             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
3464             break;
3465 #endif
3466 
3467 #ifdef ENABLE_LE_PERIPHERAL
3468         // Responder
3469         case SM_RESPONDER_IDLE:
3470         case SM_RESPONDER_SEND_SECURITY_REQUEST:
3471         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
3472             if (packet[0] != SM_CODE_PAIRING_REQUEST){
3473                 sm_pdu_received_in_wrong_state(sm_conn);
3474                 break;;
3475             }
3476 
3477             // store pairing request
3478             memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
3479             sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
3480             break;
3481 #endif
3482 
3483 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3484         case SM_SC_W4_PUBLIC_KEY_COMMAND:
3485             if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){
3486                 sm_pdu_received_in_wrong_state(sm_conn);
3487                 break;
3488             }
3489 
3490             // store public key for DH Key calculation
3491             reverse_256(&packet[01], &setup->sm_peer_q[0]);
3492             reverse_256(&packet[33], &setup->sm_peer_q[32]);
3493 
3494             // validate public key
3495             err = 0;
3496 
3497 #ifdef USE_MBEDTLS_FOR_ECDH
3498             mbedtls_ecp_point Q;
3499             mbedtls_ecp_point_init( &Q );
3500             mbedtls_mpi_read_binary(&Q.X, &setup->sm_peer_q[0], 32);
3501             mbedtls_mpi_read_binary(&Q.Y, &setup->sm_peer_q[32], 32);
3502             mbedtls_mpi_lset(&Q.Z, 1);
3503             err = mbedtls_ecp_check_pubkey(&mbedtls_ec_group, &Q);
3504             mbedtls_ecp_point_free( & Q);
3505 #endif
3506 #ifdef USE_MICROECC_FOR_ECDH
3507 #if uECC_SUPPORTS_secp256r1
3508             // standard version
3509             err = uECC_valid_public_key(setup->sm_peer_q, uECC_secp256r1()) == 0;
3510 #else
3511             // static version
3512             err = uECC_valid_public_key(setup->sm_peer_q) == 0;
3513 #endif
3514 #endif
3515 
3516             if (err){
3517                 log_error("sm: peer public key invalid %x", err);
3518                 // uses "unspecified reason", there is no "public key invalid" error code
3519                 sm_pdu_received_in_wrong_state(sm_conn);
3520                 break;
3521             }
3522 
3523             if (IS_RESPONDER(sm_conn->sm_role)){
3524                 // responder
3525                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3526             } else {
3527                 // initiator
3528                 // stk generation method
3529                 // passkey entry: notify app to show passkey or to request passkey
3530                 switch (setup->sm_stk_generation_method){
3531                     case JUST_WORKS:
3532                     case NK_BOTH_INPUT:
3533                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
3534                         break;
3535                     case PK_RESP_INPUT:
3536                         sm_sc_start_calculating_local_confirm(sm_conn);
3537                         break;
3538                     case PK_INIT_INPUT:
3539                     case OK_BOTH_INPUT:
3540                         if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
3541                             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
3542                             break;
3543                         }
3544                         sm_sc_start_calculating_local_confirm(sm_conn);
3545                         break;
3546                     case OOB:
3547                         // TODO: implement SC OOB
3548                         break;
3549                 }
3550             }
3551             break;
3552 
3553         case SM_SC_W4_CONFIRMATION:
3554             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
3555                 sm_pdu_received_in_wrong_state(sm_conn);
3556                 break;
3557             }
3558             // received confirm value
3559             reverse_128(&packet[1], setup->sm_peer_confirm);
3560 
3561             if (IS_RESPONDER(sm_conn->sm_role)){
3562                 // responder
3563                 if (sm_passkey_used(setup->sm_stk_generation_method)){
3564                     if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
3565                         // still waiting for passkey
3566                         sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
3567                         break;
3568                     }
3569                 }
3570                 sm_sc_start_calculating_local_confirm(sm_conn);
3571             } else {
3572                 // initiator
3573                 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
3574                     sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A;
3575                 } else {
3576                     sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
3577                 }
3578             }
3579             break;
3580 
3581         case SM_SC_W4_PAIRING_RANDOM:
3582             if (packet[0] != SM_CODE_PAIRING_RANDOM){
3583                 sm_pdu_received_in_wrong_state(sm_conn);
3584                 break;
3585             }
3586 
3587             // received random value
3588             reverse_128(&packet[1], setup->sm_peer_nonce);
3589 
3590             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
3591             // only check for JUST WORK/NC in initiator role AND passkey entry
3592             if (sm_conn->sm_role || sm_passkey_used(setup->sm_stk_generation_method)) {
3593                  sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
3594             }
3595 
3596             sm_sc_state_after_receiving_random(sm_conn);
3597             break;
3598 
3599         case SM_SC_W2_CALCULATE_G2:
3600         case SM_SC_W4_CALCULATE_G2:
3601         case SM_SC_W2_CALCULATE_F5_SALT:
3602         case SM_SC_W4_CALCULATE_F5_SALT:
3603         case SM_SC_W2_CALCULATE_F5_MACKEY:
3604         case SM_SC_W4_CALCULATE_F5_MACKEY:
3605         case SM_SC_W2_CALCULATE_F5_LTK:
3606         case SM_SC_W4_CALCULATE_F5_LTK:
3607         case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
3608         case SM_SC_W4_DHKEY_CHECK_COMMAND:
3609         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
3610             if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){
3611                 sm_pdu_received_in_wrong_state(sm_conn);
3612                 break;
3613             }
3614             // store DHKey Check
3615             setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED;
3616             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
3617 
3618             // have we been only waiting for dhkey check command?
3619             if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){
3620                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
3621             }
3622             break;
3623 #endif
3624 
3625 #ifdef ENABLE_LE_PERIPHERAL
3626         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
3627             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
3628                 sm_pdu_received_in_wrong_state(sm_conn);
3629                 break;
3630             }
3631 
3632             // received confirm value
3633             reverse_128(&packet[1], setup->sm_peer_confirm);
3634 
3635             // notify client to hide shown passkey
3636             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
3637                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
3638             }
3639 
3640             // handle user cancel pairing?
3641             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
3642                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
3643                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
3644                 break;
3645             }
3646 
3647             // wait for user action?
3648             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
3649                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3650                 break;
3651             }
3652 
3653             // calculate and send local_confirm
3654             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3655             break;
3656 
3657         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
3658             if (packet[0] != SM_CODE_PAIRING_RANDOM){
3659                 sm_pdu_received_in_wrong_state(sm_conn);
3660                 break;;
3661             }
3662 
3663             // received random value
3664             reverse_128(&packet[1], setup->sm_peer_random);
3665             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
3666             break;
3667 #endif
3668 
3669         case SM_PH3_RECEIVE_KEYS:
3670             switch(packet[0]){
3671                 case SM_CODE_ENCRYPTION_INFORMATION:
3672                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
3673                     reverse_128(&packet[1], setup->sm_peer_ltk);
3674                     break;
3675 
3676                 case SM_CODE_MASTER_IDENTIFICATION:
3677                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
3678                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
3679                     reverse_64(&packet[3], setup->sm_peer_rand);
3680                     break;
3681 
3682                 case SM_CODE_IDENTITY_INFORMATION:
3683                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
3684                     reverse_128(&packet[1], setup->sm_peer_irk);
3685                     break;
3686 
3687                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
3688                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
3689                     setup->sm_peer_addr_type = packet[1];
3690                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
3691                     break;
3692 
3693                 case SM_CODE_SIGNING_INFORMATION:
3694                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
3695                     reverse_128(&packet[1], setup->sm_peer_csrk);
3696                     break;
3697                 default:
3698                     // Unexpected PDU
3699                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
3700                     break;
3701             }
3702             // done with key distribution?
3703             if (sm_key_distribution_all_received(sm_conn)){
3704 
3705                 sm_key_distribution_handle_all_received(sm_conn);
3706 
3707                 if (IS_RESPONDER(sm_conn->sm_role)){
3708                     if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){
3709                         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK;
3710                     } else {
3711                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3712                         sm_done_for_handle(sm_conn->sm_handle);
3713                     }
3714                 } else {
3715                     if (setup->sm_use_secure_connections){
3716                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3717                     } else {
3718                         sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
3719                     }
3720                 }
3721             }
3722             break;
3723         default:
3724             // Unexpected PDU
3725             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
3726             break;
3727     }
3728 
3729     // try to send preparared packet
3730     sm_run();
3731 }
3732 
3733 // Security Manager Client API
3734 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
3735     sm_get_oob_data = get_oob_data_callback;
3736 }
3737 
3738 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
3739     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
3740 }
3741 
3742 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
3743     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
3744 }
3745 
3746 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
3747 	sm_min_encryption_key_size = min_size;
3748 	sm_max_encryption_key_size = max_size;
3749 }
3750 
3751 void sm_set_authentication_requirements(uint8_t auth_req){
3752     sm_auth_req = auth_req;
3753 }
3754 
3755 void sm_set_io_capabilities(io_capability_t io_capability){
3756     sm_io_capabilities = io_capability;
3757 }
3758 
3759 #ifdef ENABLE_LE_PERIPHERAL
3760 void sm_set_request_security(int enable){
3761     sm_slave_request_security = enable;
3762 }
3763 #endif
3764 
3765 void sm_set_er(sm_key_t er){
3766     memcpy(sm_persistent_er, er, 16);
3767 }
3768 
3769 void sm_set_ir(sm_key_t ir){
3770     memcpy(sm_persistent_ir, ir, 16);
3771 }
3772 
3773 // Testing support only
3774 void sm_test_set_irk(sm_key_t irk){
3775     memcpy(sm_persistent_irk, irk, 16);
3776     sm_persistent_irk_ready = 1;
3777 }
3778 
3779 void sm_test_use_fixed_local_csrk(void){
3780     test_use_fixed_local_csrk = 1;
3781 }
3782 
3783 void sm_init(void){
3784     // set some (BTstack default) ER and IR
3785     int i;
3786     sm_key_t er;
3787     sm_key_t ir;
3788     for (i=0;i<16;i++){
3789         er[i] = 0x30 + i;
3790         ir[i] = 0x90 + i;
3791     }
3792     sm_set_er(er);
3793     sm_set_ir(ir);
3794     // defaults
3795     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
3796                                        | SM_STK_GENERATION_METHOD_OOB
3797                                        | SM_STK_GENERATION_METHOD_PASSKEY
3798                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
3799 
3800     sm_max_encryption_key_size = 16;
3801     sm_min_encryption_key_size = 7;
3802 
3803 #ifdef ENABLE_CMAC_ENGINE
3804     sm_cmac_state  = CMAC_IDLE;
3805 #endif
3806     dkg_state = DKG_W4_WORKING;
3807     rau_state = RAU_W4_WORKING;
3808     sm_aes128_state = SM_AES128_IDLE;
3809     sm_address_resolution_test = -1;    // no private address to resolve yet
3810     sm_address_resolution_ah_calculation_active = 0;
3811     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
3812     sm_address_resolution_general_queue = NULL;
3813 
3814     gap_random_adress_update_period = 15 * 60 * 1000L;
3815     sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
3816 
3817     test_use_fixed_local_csrk = 0;
3818 
3819     // register for HCI Events from HCI
3820     hci_event_callback_registration.callback = &sm_event_packet_handler;
3821     hci_add_event_handler(&hci_event_callback_registration);
3822 
3823     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
3824     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
3825 
3826 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3827     ec_key_generation_state = EC_KEY_GENERATION_IDLE;
3828 #endif
3829 
3830 #ifdef USE_MBEDTLS_FOR_ECDH
3831 #ifndef HAVE_MALLOC
3832     sm_mbedtls_allocator_init(mbedtls_memory_buffer, sizeof(mbedtls_memory_buffer));
3833 #endif
3834     mbedtls_ecp_group_init(&mbedtls_ec_group);
3835     mbedtls_ecp_group_load(&mbedtls_ec_group, MBEDTLS_ECP_DP_SECP256R1);
3836 #endif
3837 }
3838 
3839 void sm_use_fixed_ec_keypair(uint8_t * qx, uint8_t * qy, uint8_t * d){
3840 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3841     memcpy(&ec_q[0],  qx, 32);
3842     memcpy(&ec_q[32], qy, 32);
3843     memcpy(ec_d, d, 32);
3844     sm_have_ec_keypair = 1;
3845     ec_key_generation_state = EC_KEY_GENERATION_DONE;
3846 #else
3847     UNUSED(qx);
3848     UNUSED(qy);
3849     UNUSED(d);
3850 #endif
3851 }
3852 
3853 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3854 #ifndef USE_MBEDTLS_FOR_ECDH
3855 static void parse_hex(uint8_t * buffer, const char * hex_string){
3856     while (*hex_string){
3857         int high_nibble = nibble_for_char(*hex_string++);
3858         int low_nibble  = nibble_for_char(*hex_string++);
3859         *buffer++       = (high_nibble << 4) | low_nibble;
3860     }
3861 }
3862 #endif
3863 #endif
3864 
3865 void sm_test_use_fixed_ec_keypair(void){
3866 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3867     const char * ec_d_string =  "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd";
3868     const char * ec_qx_string = "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6";
3869     const char * ec_qy_string = "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b";
3870 #ifdef USE_MBEDTLS_FOR_ECDH
3871     // use test keypair from spec
3872     mbedtls_mpi x;
3873     mbedtls_mpi_init(&x);
3874     mbedtls_mpi_read_string( &x, 16, ec_d_string);
3875     mbedtls_mpi_write_binary(&x, ec_d, 32);
3876     mbedtls_mpi_read_string( &x, 16, ec_qx_string);
3877     mbedtls_mpi_write_binary(&x, &ec_q[0], 32);
3878     mbedtls_mpi_read_string( &x, 16, ec_qy_string);
3879     mbedtls_mpi_write_binary(&x, &ec_q[32], 32);
3880     mbedtls_mpi_free(&x);
3881 #else
3882     parse_hex(ec_d, ec_d_string);
3883     parse_hex(&ec_q[0],  ec_qx_string);
3884     parse_hex(&ec_q[32], ec_qy_string);
3885 #endif
3886     sm_have_ec_keypair = 1;
3887     ec_key_generation_state = EC_KEY_GENERATION_DONE;
3888 #endif
3889 }
3890 
3891 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
3892     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
3893     if (!hci_con) return NULL;
3894     return &hci_con->sm_connection;
3895 }
3896 
3897 // @returns 0 if not encrypted, 7-16 otherwise
3898 int sm_encryption_key_size(hci_con_handle_t con_handle){
3899     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3900     if (!sm_conn) return 0;     // wrong connection
3901     if (!sm_conn->sm_connection_encrypted) return 0;
3902     return sm_conn->sm_actual_encryption_key_size;
3903 }
3904 
3905 int sm_authenticated(hci_con_handle_t con_handle){
3906     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3907     if (!sm_conn) return 0;     // wrong connection
3908     if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
3909     return sm_conn->sm_connection_authenticated;
3910 }
3911 
3912 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){
3913     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3914     if (!sm_conn) return AUTHORIZATION_UNKNOWN;     // wrong connection
3915     if (!sm_conn->sm_connection_encrypted)               return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
3916     if (!sm_conn->sm_connection_authenticated)           return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
3917     return sm_conn->sm_connection_authorization_state;
3918 }
3919 
3920 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
3921     switch (sm_conn->sm_engine_state){
3922         case SM_GENERAL_IDLE:
3923         case SM_RESPONDER_IDLE:
3924             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
3925             sm_run();
3926             break;
3927         default:
3928             break;
3929     }
3930 }
3931 
3932 /**
3933  * @brief Trigger Security Request
3934  */
3935 void sm_send_security_request(hci_con_handle_t con_handle){
3936     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3937     if (!sm_conn) return;
3938     sm_send_security_request_for_connection(sm_conn);
3939 }
3940 
3941 // request pairing
3942 void sm_request_pairing(hci_con_handle_t con_handle){
3943     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3944     if (!sm_conn) return;     // wrong connection
3945 
3946     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
3947     if (IS_RESPONDER(sm_conn->sm_role)){
3948         sm_send_security_request_for_connection(sm_conn);
3949     } else {
3950         // used as a trigger to start central/master/initiator security procedures
3951         uint16_t ediv;
3952         sm_key_t ltk;
3953         if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
3954             switch (sm_conn->sm_irk_lookup_state){
3955                 case IRK_LOOKUP_FAILED:
3956                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3957                     break;
3958                 case IRK_LOOKUP_SUCCEEDED:
3959                         le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, ltk, NULL, NULL, NULL);
3960                         if (!sm_is_null_key(ltk) || ediv){
3961                             log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
3962                             sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
3963                         } else {
3964                             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3965                         }
3966                         break;
3967                 default:
3968                     sm_conn->sm_bonding_requested = 1;
3969                     break;
3970             }
3971         } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
3972             sm_conn->sm_bonding_requested = 1;
3973         }
3974     }
3975     sm_run();
3976 }
3977 
3978 // called by client app on authorization request
3979 void sm_authorization_decline(hci_con_handle_t con_handle){
3980     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3981     if (!sm_conn) return;     // wrong connection
3982     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
3983     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
3984 }
3985 
3986 void sm_authorization_grant(hci_con_handle_t con_handle){
3987     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3988     if (!sm_conn) return;     // wrong connection
3989     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
3990     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
3991 }
3992 
3993 // GAP Bonding API
3994 
3995 void sm_bonding_decline(hci_con_handle_t con_handle){
3996     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3997     if (!sm_conn) return;     // wrong connection
3998     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
3999 
4000     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
4001         switch (setup->sm_stk_generation_method){
4002             case PK_RESP_INPUT:
4003             case PK_INIT_INPUT:
4004             case OK_BOTH_INPUT:
4005                 sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED);
4006                 break;
4007             case NK_BOTH_INPUT:
4008                 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
4009                 break;
4010             case JUST_WORKS:
4011             case OOB:
4012                 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
4013                 break;
4014         }
4015     }
4016     sm_run();
4017 }
4018 
4019 void sm_just_works_confirm(hci_con_handle_t con_handle){
4020     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4021     if (!sm_conn) return;     // wrong connection
4022     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
4023     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
4024         if (setup->sm_use_secure_connections){
4025             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4026         } else {
4027             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
4028         }
4029     }
4030 
4031 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4032     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
4033         sm_sc_prepare_dhkey_check(sm_conn);
4034     }
4035 #endif
4036 
4037     sm_run();
4038 }
4039 
4040 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
4041     // for now, it's the same
4042     sm_just_works_confirm(con_handle);
4043 }
4044 
4045 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
4046     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4047     if (!sm_conn) return;     // wrong connection
4048     sm_reset_tk();
4049     big_endian_store_32(setup->sm_tk, 12, passkey);
4050     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
4051     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
4052         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
4053     }
4054 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4055     memcpy(setup->sm_ra, setup->sm_tk, 16);
4056     memcpy(setup->sm_rb, setup->sm_tk, 16);
4057     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
4058         sm_sc_start_calculating_local_confirm(sm_conn);
4059     }
4060 #endif
4061     sm_run();
4062 }
4063 
4064 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){
4065     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4066     if (!sm_conn) return;     // wrong connection
4067     if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return;
4068     setup->sm_keypress_notification = action;
4069     sm_run();
4070 }
4071 
4072 /**
4073  * @brief Identify device in LE Device DB
4074  * @param handle
4075  * @returns index from le_device_db or -1 if not found/identified
4076  */
4077 int sm_le_device_index(hci_con_handle_t con_handle ){
4078     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4079     if (!sm_conn) return -1;
4080     return sm_conn->sm_le_db_index;
4081 }
4082 
4083 static int gap_random_address_type_requires_updates(void){
4084     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0;
4085     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0;
4086     return 1;
4087 }
4088 
4089 static uint8_t own_address_type(void){
4090     switch (gap_random_adress_type){
4091         case GAP_RANDOM_ADDRESS_TYPE_OFF:
4092             return BD_ADDR_TYPE_LE_PUBLIC;
4093         default:
4094             return BD_ADDR_TYPE_LE_RANDOM;
4095     }
4096 }
4097 
4098 // GAP LE API
4099 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
4100     gap_random_address_update_stop();
4101     gap_random_adress_type = random_address_type;
4102     hci_le_set_own_address_type(own_address_type());
4103     if (!gap_random_address_type_requires_updates()) return;
4104     gap_random_address_update_start();
4105     gap_random_address_trigger();
4106 }
4107 
4108 gap_random_address_type_t gap_random_address_get_mode(void){
4109     return gap_random_adress_type;
4110 }
4111 
4112 void gap_random_address_set_update_period(int period_ms){
4113     gap_random_adress_update_period = period_ms;
4114     if (!gap_random_address_type_requires_updates()) return;
4115     gap_random_address_update_stop();
4116     gap_random_address_update_start();
4117 }
4118 
4119 void gap_random_address_set(bd_addr_t addr){
4120     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC);
4121     memcpy(sm_random_address, addr, 6);
4122     if (rau_state == RAU_W4_WORKING) return;
4123     rau_state = RAU_SET_ADDRESS;
4124     sm_run();
4125 }
4126 
4127 #ifdef ENABLE_LE_PERIPHERAL
4128 /*
4129  * @brief Set Advertisement Paramters
4130  * @param adv_int_min
4131  * @param adv_int_max
4132  * @param adv_type
4133  * @param direct_address_type
4134  * @param direct_address
4135  * @param channel_map
4136  * @param filter_policy
4137  *
4138  * @note own_address_type is used from gap_random_address_set_mode
4139  */
4140 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
4141     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
4142     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type,
4143         direct_address_typ, direct_address, channel_map, filter_policy);
4144 }
4145 #endif
4146 
4147