xref: /btstack/src/ble/sm.c (revision 5611a760af48d1ce1beea59c7908be73bd2393f1)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #include <stdio.h>
39 #include <string.h>
40 #include <inttypes.h>
41 
42 #include "btstack_linked_list.h"
43 
44 #include "btstack_memory.h"
45 #include "btstack_debug.h"
46 #include "hci.h"
47 #include "l2cap.h"
48 #include "ble/le_device_db.h"
49 #include "ble/sm.h"
50 #include "gap.h"
51 
52 //
53 // SM internal types and globals
54 //
55 
56 typedef enum {
57     DKG_W4_WORKING,
58     DKG_CALC_IRK,
59     DKG_W4_IRK,
60     DKG_CALC_DHK,
61     DKG_W4_DHK,
62     DKG_READY
63 } derived_key_generation_t;
64 
65 typedef enum {
66     RAU_W4_WORKING,
67     RAU_IDLE,
68     RAU_GET_RANDOM,
69     RAU_W4_RANDOM,
70     RAU_GET_ENC,
71     RAU_W4_ENC,
72     RAU_SET_ADDRESS,
73 } random_address_update_t;
74 
75 typedef enum {
76     CMAC_IDLE,
77     CMAC_CALC_SUBKEYS,
78     CMAC_W4_SUBKEYS,
79     CMAC_CALC_MI,
80     CMAC_W4_MI,
81     CMAC_CALC_MLAST,
82     CMAC_W4_MLAST
83 } cmac_state_t;
84 
85 typedef enum {
86     JUST_WORKS,
87     PK_RESP_INPUT,  // Initiator displays PK, initiator inputs PK
88     PK_INIT_INPUT,  // Responder displays PK, responder inputs PK
89     OK_BOTH_INPUT,  // Only input on both, both input PK
90     OOB             // OOB available on both sides
91 } stk_generation_method_t;
92 
93 typedef enum {
94     SM_USER_RESPONSE_IDLE,
95     SM_USER_RESPONSE_PENDING,
96     SM_USER_RESPONSE_CONFIRM,
97     SM_USER_RESPONSE_PASSKEY,
98     SM_USER_RESPONSE_DECLINE
99 } sm_user_response_t;
100 
101 typedef enum {
102     SM_AES128_IDLE,
103     SM_AES128_ACTIVE
104 } sm_aes128_state_t;
105 
106 typedef enum {
107     ADDRESS_RESOLUTION_IDLE,
108     ADDRESS_RESOLUTION_GENERAL,
109     ADDRESS_RESOLUTION_FOR_CONNECTION,
110 } address_resolution_mode_t;
111 
112 typedef enum {
113     ADDRESS_RESOLUTION_SUCEEDED,
114     ADDRESS_RESOLUTION_FAILED,
115 } address_resolution_event_t;
116 //
117 // GLOBAL DATA
118 //
119 
120 static uint8_t test_use_fixed_local_csrk;
121 
122 // configuration
123 static uint8_t sm_accepted_stk_generation_methods;
124 static uint8_t sm_max_encryption_key_size;
125 static uint8_t sm_min_encryption_key_size;
126 static uint8_t sm_auth_req = 0;
127 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
128 static uint8_t sm_slave_request_security;
129 
130 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
131 static sm_key_t sm_persistent_er;
132 static sm_key_t sm_persistent_ir;
133 
134 // derived from sm_persistent_ir
135 static sm_key_t sm_persistent_dhk;
136 static sm_key_t sm_persistent_irk;
137 static uint8_t  sm_persistent_irk_ready = 0;    // used for testing
138 static derived_key_generation_t dkg_state;
139 
140 // derived from sm_persistent_er
141 // ..
142 
143 // random address update
144 static random_address_update_t rau_state;
145 static bd_addr_t sm_random_address;
146 
147 // CMAC calculation
148 static cmac_state_t sm_cmac_state;
149 static sm_key_t     sm_cmac_k;
150 static uint8_t      sm_cmac_header[3];
151 static uint16_t     sm_cmac_message_len;
152 static uint8_t *    sm_cmac_message;
153 static uint8_t      sm_cmac_sign_counter[4];
154 static sm_key_t     sm_cmac_m_last;
155 static sm_key_t     sm_cmac_x;
156 static uint8_t      sm_cmac_block_current;
157 static uint8_t      sm_cmac_block_count;
158 static void (*sm_cmac_done_handler)(uint8_t hash[8]);
159 
160 // resolvable private address lookup / CSRK calculation
161 static int       sm_address_resolution_test;
162 static int       sm_address_resolution_ah_calculation_active;
163 static uint8_t   sm_address_resolution_addr_type;
164 static bd_addr_t sm_address_resolution_address;
165 static void *    sm_address_resolution_context;
166 static address_resolution_mode_t sm_address_resolution_mode;
167 static btstack_linked_list_t sm_address_resolution_general_queue;
168 
169 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context
170 static sm_aes128_state_t  sm_aes128_state;
171 static void *             sm_aes128_context;
172 
173 // random engine. store context (ususally sm_connection_t)
174 static void * sm_random_context;
175 
176 //
177 // Volume 3, Part H, Chapter 24
178 // "Security shall be initiated by the Security Manager in the device in the master role.
179 // The device in the slave role shall be the responding device."
180 // -> master := initiator, slave := responder
181 //
182 
183 // data needed for security setup
184 typedef struct sm_setup_context {
185 
186     btstack_timer_source_t sm_timeout;
187 
188     // used in all phases
189     uint8_t   sm_pairing_failed_reason;
190 
191     // user response, (Phase 1 and/or 2)
192     uint8_t   sm_user_response;
193 
194     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
195     int       sm_key_distribution_send_set;
196     int       sm_key_distribution_received_set;
197 
198     // Phase 2 (Pairing over SMP)
199     stk_generation_method_t sm_stk_generation_method;
200     sm_key_t  sm_tk;
201 
202     sm_key_t  sm_c1_t3_value;   // c1 calculation
203     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
204     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
205     sm_key_t  sm_local_random;
206     sm_key_t  sm_local_confirm;
207     sm_key_t  sm_peer_random;
208     sm_key_t  sm_peer_confirm;
209     uint8_t   sm_m_addr_type;   // address and type can be removed
210     uint8_t   sm_s_addr_type;   //  ''
211     bd_addr_t sm_m_address;     //  ''
212     bd_addr_t sm_s_address;     //  ''
213     sm_key_t  sm_ltk;
214 
215     // Phase 3
216 
217     // key distribution, we generate
218     uint16_t  sm_local_y;
219     uint16_t  sm_local_div;
220     uint16_t  sm_local_ediv;
221     uint8_t   sm_local_rand[8];
222     sm_key_t  sm_local_ltk;
223     sm_key_t  sm_local_csrk;
224     sm_key_t  sm_local_irk;
225     // sm_local_address/addr_type not needed
226 
227     // key distribution, received from peer
228     uint16_t  sm_peer_y;
229     uint16_t  sm_peer_div;
230     uint16_t  sm_peer_ediv;
231     uint8_t   sm_peer_rand[8];
232     sm_key_t  sm_peer_ltk;
233     sm_key_t  sm_peer_irk;
234     sm_key_t  sm_peer_csrk;
235     uint8_t   sm_peer_addr_type;
236     bd_addr_t sm_peer_address;
237 
238 } sm_setup_context_t;
239 
240 //
241 static sm_setup_context_t the_setup;
242 static sm_setup_context_t * setup = &the_setup;
243 
244 // active connection - the one for which the_setup is used for
245 static uint16_t sm_active_connection = 0;
246 
247 // @returns 1 if oob data is available
248 // stores oob data in provided 16 byte buffer if not null
249 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
250 
251 // used to notify applicationss that user interaction is neccessary, see sm_notify_t below
252 static btstack_packet_handler_t sm_client_packet_handler = NULL;
253 
254 // horizontal: initiator capabilities
255 // vertial:    responder capabilities
256 static const stk_generation_method_t stk_generation_method[5][5] = {
257     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
258     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
259     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
260     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
261     { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
262 };
263 
264 static void sm_run(void);
265 static void sm_done_for_handle(uint16_t handle);
266 static sm_connection_t * sm_get_connection_for_handle(uint16_t handle);
267 static inline int sm_calc_actual_encryption_key_size(int other);
268 static int sm_validate_stk_generation_method(void);
269 
270 static void log_info_hex16(const char * name, uint16_t value){
271     log_info("%-6s 0x%04x", name, value);
272 }
273 
274 // @returns 1 if all bytes are 0
275 static int sm_is_null_random(uint8_t random[8]){
276     int i;
277     for (i=0; i < 8 ; i++){
278         if (random[i]) return 0;
279     }
280     return 1;
281 }
282 
283 // Key utils
284 static void sm_reset_tk(void){
285     int i;
286     for (i=0;i<16;i++){
287         setup->sm_tk[i] = 0;
288     }
289 }
290 
291 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
292 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
293 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
294     int i;
295     for (i = max_encryption_size ; i < 16 ; i++){
296         key[15-i] = 0;
297     }
298 }
299 
300 // SMP Timeout implementation
301 
302 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
303 // the Security Manager Timer shall be reset and started.
304 //
305 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
306 //
307 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
308 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
309 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
310 // established.
311 
312 static void sm_timeout_handler(btstack_timer_source_t * timer){
313     log_info("SM timeout");
314     sm_connection_t * sm_conn = (sm_connection_t *) btstack_linked_item_get_user((btstack_linked_item_t*) timer);
315     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
316     sm_done_for_handle(sm_conn->sm_handle);
317 
318     // trigger handling of next ready connection
319     sm_run();
320 }
321 static void sm_timeout_start(sm_connection_t * sm_conn){
322     btstack_run_loop_remove_timer(&setup->sm_timeout);
323     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
324     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
325     btstack_linked_item_set_user((btstack_linked_item_t*) &setup->sm_timeout, sm_conn);
326     btstack_run_loop_add_timer(&setup->sm_timeout);
327 }
328 static void sm_timeout_stop(void){
329     btstack_run_loop_remove_timer(&setup->sm_timeout);
330 }
331 static void sm_timeout_reset(sm_connection_t * sm_conn){
332     sm_timeout_stop();
333     sm_timeout_start(sm_conn);
334 }
335 
336 // end of sm timeout
337 
338 // GAP Random Address updates
339 static gap_random_address_type_t gap_random_adress_type;
340 static btstack_timer_source_t gap_random_address_update_timer;
341 static uint32_t gap_random_adress_update_period;
342 
343 static void gap_random_address_trigger(void){
344     if (rau_state != RAU_IDLE) return;
345     log_info("gap_random_address_trigger");
346     rau_state = RAU_GET_RANDOM;
347     sm_run();
348 }
349 
350 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
351     log_info("GAP Random Address Update due");
352     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
353     btstack_run_loop_add_timer(&gap_random_address_update_timer);
354     gap_random_address_trigger();
355 }
356 
357 static void gap_random_address_update_start(void){
358     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
359     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
360     btstack_run_loop_add_timer(&gap_random_address_update_timer);
361 }
362 
363 static void gap_random_address_update_stop(void){
364     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
365 }
366 
367 
368 static void sm_random_start(void * context){
369     sm_random_context = context;
370     hci_send_cmd(&hci_le_rand);
371 }
372 
373 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
374 // context is made availabe to aes128 result handler by this
375 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
376     sm_aes128_state = SM_AES128_ACTIVE;
377     sm_key_t key_flipped, plaintext_flipped;
378     swap128(key, key_flipped);
379     swap128(plaintext, plaintext_flipped);
380     sm_aes128_context = context;
381     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
382 }
383 
384 // ah(k,r) helper
385 // r = padding || r
386 // r - 24 bit value
387 static void sm_ah_r_prime(uint8_t r[3], sm_key_t r_prime){
388     // r'= padding || r
389     memset(r_prime, 0, 16);
390     memcpy(&r_prime[13], r, 3);
391 }
392 
393 // d1 helper
394 // d' = padding || r || d
395 // d,r - 16 bit values
396 static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
397     // d'= padding || r || d
398     memset(d1_prime, 0, 16);
399     net_store_16(d1_prime, 12, r);
400     net_store_16(d1_prime, 14, d);
401 }
402 
403 // dm helper
404 // r’ = padding || r
405 // r - 64 bit value
406 static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
407     memset(r_prime, 0, 16);
408     memcpy(&r_prime[8], r, 8);
409 }
410 
411 // calculate arguments for first AES128 operation in C1 function
412 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
413 
414     // p1 = pres || preq || rat’ || iat’
415     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
416     // cant octet of pres becomes the most significant octet of p1.
417     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
418     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
419     // p1 is 0x05000800000302070710000001010001."
420 
421     sm_key_t p1;
422     swap56(pres, &p1[0]);
423     swap56(preq, &p1[7]);
424     p1[14] = rat;
425     p1[15] = iat;
426     log_key("p1", p1);
427     log_key("r", r);
428 
429     // t1 = r xor p1
430     int i;
431     for (i=0;i<16;i++){
432         t1[i] = r[i] ^ p1[i];
433     }
434     log_key("t1", t1);
435 }
436 
437 // calculate arguments for second AES128 operation in C1 function
438 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
439      // p2 = padding || ia || ra
440     // "The least significant octet of ra becomes the least significant octet of p2 and
441     // the most significant octet of padding becomes the most significant octet of p2.
442     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
443     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
444 
445     sm_key_t p2;
446     memset(p2, 0, 16);
447     memcpy(&p2[4],  ia, 6);
448     memcpy(&p2[10], ra, 6);
449     log_key("p2", p2);
450 
451     // c1 = e(k, t2_xor_p2)
452     int i;
453     for (i=0;i<16;i++){
454         t3[i] = t2[i] ^ p2[i];
455     }
456     log_key("t3", t3);
457 }
458 
459 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
460     log_key("r1", r1);
461     log_key("r2", r2);
462     memcpy(&r_prime[8], &r2[8], 8);
463     memcpy(&r_prime[0], &r1[8], 8);
464 }
465 
466 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, uint16_t handle, uint8_t addr_type, bd_addr_t address){
467     event[0] = type;
468     event[1] = event_size - 2;
469     bt_store_16(event, 2, handle);
470     event[4] = addr_type;
471     bt_flip_addr(&event[5], address);
472 }
473 
474 static void sm_notify_client_base(uint8_t type, uint16_t handle, uint8_t addr_type, bd_addr_t address){
475     uint8_t event[11];
476     sm_setup_event_base(event, sizeof(event), type, handle, addr_type, address);
477 
478     if (!sm_client_packet_handler) return;
479     sm_client_packet_handler(HCI_EVENT_PACKET, 0, event, sizeof(event));
480 }
481 
482 static void sm_notify_client_passkey(uint8_t type, uint16_t handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
483     uint8_t event[15];
484     sm_setup_event_base(event, sizeof(event), type, handle, addr_type, address);
485     bt_store_32(event, 11, passkey);
486 
487     if (!sm_client_packet_handler) return;
488     sm_client_packet_handler(HCI_EVENT_PACKET, 0, event, sizeof(event));
489 }
490 
491 static void sm_notify_client_index(uint8_t type, uint16_t handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
492     uint8_t event[13];
493     sm_setup_event_base(event, sizeof(event), type, handle, addr_type, address);
494     bt_store_16(event, 11, index);
495 
496     if (!sm_client_packet_handler) return;
497     sm_client_packet_handler(HCI_EVENT_PACKET, 0, event, sizeof(event));
498 }
499 
500 static void sm_notify_client_authorization(uint8_t type, uint16_t handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
501 
502     uint8_t event[18];
503     sm_setup_event_base(event, sizeof(event), type, handle, addr_type, address);
504     event[11] = result;
505 
506     if (!sm_client_packet_handler) return;
507     sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
508 }
509 
510 // decide on stk generation based on
511 // - pairing request
512 // - io capabilities
513 // - OOB data availability
514 static void sm_setup_tk(void){
515 
516     // default: just works
517     setup->sm_stk_generation_method = JUST_WORKS;
518 
519     // If both devices have out of band authentication data, then the Authentication
520     // Requirements Flags shall be ignored when selecting the pairing method and the
521     // Out of Band pairing method shall be used.
522     if (setup->sm_m_preq.oob_data_flag && setup->sm_s_pres.oob_data_flag){
523         log_info("SM: have OOB data");
524         log_key("OOB", setup->sm_tk);
525         setup->sm_stk_generation_method = OOB;
526         return;
527     }
528 
529     // Reset TK as it has been setup in sm_init_setup
530     sm_reset_tk();
531 
532     // If both devices have not set the MITM option in the Authentication Requirements
533     // Flags, then the IO capabilities shall be ignored and the Just Works association
534     // model shall be used.
535     if ( ((setup->sm_m_preq.auth_req & SM_AUTHREQ_MITM_PROTECTION) == 0x00) && ((setup->sm_s_pres.auth_req & SM_AUTHREQ_MITM_PROTECTION) == 0)){
536         return;
537     }
538 
539     // Also use just works if unknown io capabilites
540     if ((setup->sm_m_preq.io_capability > IO_CAPABILITY_KEYBOARD_DISPLAY) || (setup->sm_m_preq.io_capability > IO_CAPABILITY_KEYBOARD_DISPLAY)){
541         return;
542     }
543 
544     // Otherwise the IO capabilities of the devices shall be used to determine the
545     // pairing method as defined in Table 2.4.
546     setup->sm_stk_generation_method = stk_generation_method[setup->sm_s_pres.io_capability][setup->sm_m_preq.io_capability];
547     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
548         setup->sm_m_preq.io_capability, setup->sm_s_pres.io_capability, setup->sm_stk_generation_method);
549 }
550 
551 static int sm_key_distribution_flags_for_set(uint8_t key_set){
552     int flags = 0;
553     if (key_set & SM_KEYDIST_ENC_KEY){
554         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
555         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
556     }
557     if (key_set & SM_KEYDIST_ID_KEY){
558         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
559         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
560     }
561     if (key_set & SM_KEYDIST_SIGN){
562         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
563     }
564     return flags;
565 }
566 
567 static void sm_setup_key_distribution(uint8_t key_set){
568     setup->sm_key_distribution_received_set = 0;
569     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
570 }
571 
572 // CSRK Key Lookup
573 
574 
575 static int sm_address_resolution_idle(void){
576     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
577 }
578 
579 static void sm_address_resolution_start_lookup(uint8_t addr_type, uint16_t handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
580     memcpy(sm_address_resolution_address, addr, 6);
581     sm_address_resolution_addr_type = addr_type;
582     sm_address_resolution_test = 0;
583     sm_address_resolution_mode = mode;
584     sm_address_resolution_context = context;
585     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, handle, addr_type, addr);
586 }
587 
588 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
589     // check if already in list
590     btstack_linked_list_iterator_t it;
591     sm_lookup_entry_t * entry;
592     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
593     while(btstack_linked_list_iterator_has_next(&it)){
594         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
595         if (entry->address_type != address_type) continue;
596         if (memcmp(entry->address, address, 6))  continue;
597         // already in list
598         return BTSTACK_BUSY;
599     }
600     entry = btstack_memory_sm_lookup_entry_get();
601     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
602     entry->address_type = (bd_addr_type_t) address_type;
603     memcpy(entry->address, address, 6);
604     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
605     sm_run();
606     return 0;
607 }
608 
609 // CMAC Implementation using AES128 engine
610 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
611     int i;
612     int carry = 0;
613     for (i=len-1; i >= 0 ; i--){
614         int new_carry = data[i] >> 7;
615         data[i] = data[i] << 1 | carry;
616         carry = new_carry;
617     }
618 }
619 
620 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
621 static inline void sm_next_responding_state(sm_connection_t * sm_conn){
622     sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
623 }
624 static inline void dkg_next_state(void){
625     dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
626 }
627 static inline void rau_next_state(void){
628     rau_state = (random_address_update_t) (((int)rau_state) + 1);
629 }
630 static inline void sm_cmac_next_state(void){
631     sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
632 }
633 static int sm_cmac_last_block_complete(void){
634     if (sm_cmac_message_len == 0) return 0;
635     return (sm_cmac_message_len & 0x0f) == 0;
636 }
637 static inline uint8_t sm_cmac_message_get_byte(int offset){
638     if (offset >= sm_cmac_message_len) {
639         log_error("sm_cmac_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
640         return 0;
641     }
642 
643     offset = sm_cmac_message_len - 1 - offset;
644 
645     // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
646     if (offset < 3){
647         return sm_cmac_header[offset];
648     }
649     int actual_message_len_incl_header = sm_cmac_message_len - 4;
650     if (offset <  actual_message_len_incl_header){
651         return sm_cmac_message[offset - 3];
652     }
653     return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
654 }
655 
656 void sm_cmac_start(sm_key_t k, uint8_t opcode, uint16_t handle, uint16_t message_len, uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t hash[8])){
657     memcpy(sm_cmac_k, k, 16);
658     sm_cmac_header[0] = opcode;
659     bt_store_16(sm_cmac_header, 1, handle);
660     bt_store_32(sm_cmac_sign_counter, 0, sign_counter);
661     sm_cmac_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
662     sm_cmac_message = message;
663     sm_cmac_done_handler = done_handler;
664     sm_cmac_block_current = 0;
665     memset(sm_cmac_x, 0, 16);
666 
667     // step 2: n := ceil(len/const_Bsize);
668     sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
669 
670     // step 3: ..
671     if (sm_cmac_block_count==0){
672         sm_cmac_block_count = 1;
673     }
674 
675     log_info("sm_cmac_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
676 
677     // first, we need to compute l for k1, k2, and m_last
678     sm_cmac_state = CMAC_CALC_SUBKEYS;
679 
680     // let's go
681     sm_run();
682 }
683 
684 int sm_cmac_ready(void){
685     return sm_cmac_state == CMAC_IDLE;
686 }
687 
688 static void sm_cmac_handle_aes_engine_ready(void){
689     switch (sm_cmac_state){
690         case CMAC_CALC_SUBKEYS: {
691             sm_key_t const_zero;
692             memset(const_zero, 0, 16);
693             sm_cmac_next_state();
694             sm_aes128_start(sm_cmac_k, const_zero, NULL);
695             break;
696         }
697         case CMAC_CALC_MI: {
698             int j;
699             sm_key_t y;
700             for (j=0;j<16;j++){
701                 y[j] = sm_cmac_x[j] ^ sm_cmac_message_get_byte(sm_cmac_block_current*16 + j);
702             }
703             sm_cmac_block_current++;
704             sm_cmac_next_state();
705             sm_aes128_start(sm_cmac_k, y, NULL);
706             break;
707         }
708         case CMAC_CALC_MLAST: {
709             int i;
710             sm_key_t y;
711             for (i=0;i<16;i++){
712                 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
713             }
714             log_key("Y", y);
715             sm_cmac_block_current++;
716             sm_cmac_next_state();
717             sm_aes128_start(sm_cmac_k, y, NULL);
718             break;
719         }
720         default:
721             log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
722             break;
723     }
724 }
725 
726 static void sm_cmac_handle_encryption_result(sm_key_t data){
727     switch (sm_cmac_state){
728         case CMAC_W4_SUBKEYS: {
729             sm_key_t k1;
730             memcpy(k1, data, 16);
731             sm_shift_left_by_one_bit_inplace(16, k1);
732             if (data[0] & 0x80){
733                 k1[15] ^= 0x87;
734             }
735             sm_key_t k2;
736             memcpy(k2, k1, 16);
737             sm_shift_left_by_one_bit_inplace(16, k2);
738             if (k1[0] & 0x80){
739                 k2[15] ^= 0x87;
740             }
741 
742             log_key("k", sm_cmac_k);
743             log_key("k1", k1);
744             log_key("k2", k2);
745 
746             // step 4: set m_last
747             int i;
748             if (sm_cmac_last_block_complete()){
749                 for (i=0;i<16;i++){
750                     sm_cmac_m_last[i] = sm_cmac_message_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
751                 }
752             } else {
753                 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
754                 for (i=0;i<16;i++){
755                     if (i < valid_octets_in_last_block){
756                         sm_cmac_m_last[i] = sm_cmac_message_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
757                         continue;
758                     }
759                     if (i == valid_octets_in_last_block){
760                         sm_cmac_m_last[i] = 0x80 ^ k2[i];
761                         continue;
762                     }
763                     sm_cmac_m_last[i] = k2[i];
764                 }
765             }
766 
767             // next
768             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
769             break;
770         }
771         case CMAC_W4_MI:
772             memcpy(sm_cmac_x, data, 16);
773             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
774             break;
775         case CMAC_W4_MLAST:
776             // done
777             log_key("CMAC", data);
778             sm_cmac_done_handler(data);
779             sm_cmac_state = CMAC_IDLE;
780             break;
781         default:
782             log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
783             break;
784     }
785 }
786 
787 static void sm_trigger_user_response(sm_connection_t * sm_conn){
788     // notify client for: JUST WORKS confirm, PASSKEY display or input
789     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
790     switch (setup->sm_stk_generation_method){
791         case PK_RESP_INPUT:
792             if (sm_conn->sm_role){
793                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
794                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
795             } else {
796                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, READ_NET_32(setup->sm_tk, 12));
797             }
798             break;
799         case PK_INIT_INPUT:
800             if (sm_conn->sm_role){
801                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, READ_NET_32(setup->sm_tk, 12));
802             } else {
803                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
804                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
805             }
806             break;
807         case OK_BOTH_INPUT:
808             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
809             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
810             break;
811         case JUST_WORKS:
812             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
813             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
814             break;
815         case OOB:
816             // client already provided OOB data, let's skip notification.
817             break;
818     }
819 }
820 
821 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
822     int recv_flags;
823     if (sm_conn->sm_role){
824         // slave / responser
825         recv_flags = sm_key_distribution_flags_for_set(setup->sm_s_pres.initiator_key_distribution);
826     } else {
827         // master / initiator
828         recv_flags = sm_key_distribution_flags_for_set(setup->sm_s_pres.responder_key_distribution);
829     }
830     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
831     return recv_flags == setup->sm_key_distribution_received_set;
832 }
833 
834 static void sm_done_for_handle(uint16_t handle){
835     if (sm_active_connection == handle){
836         sm_timeout_stop();
837         sm_active_connection = 0;
838         log_info("sm: connection 0x%x released setup context", handle);
839     }
840 }
841 
842 static int sm_key_distribution_flags_for_auth_req(void){
843     int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
844     if (sm_auth_req & SM_AUTHREQ_BONDING){
845         // encryption information only if bonding requested
846         flags |= SM_KEYDIST_ENC_KEY;
847     }
848     return flags;
849 }
850 
851 static void sm_init_setup(sm_connection_t * sm_conn){
852 
853     // fill in sm setup
854     sm_reset_tk();
855     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
856     memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
857 
858     // query client for OOB data
859     int have_oob_data = 0;
860     if (sm_get_oob_data) {
861         have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
862     }
863 
864     sm_pairing_packet_t * local_packet;
865     if (sm_conn->sm_role){
866         // slave
867         local_packet = &setup->sm_s_pres;
868         hci_le_advertisement_address(&setup->sm_s_addr_type, setup->sm_s_address);
869         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
870         memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
871     } else {
872         // master
873         local_packet = &setup->sm_m_preq;
874         hci_le_advertisement_address(&setup->sm_m_addr_type, setup->sm_m_address);
875         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
876         memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
877 
878         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
879         setup->sm_m_preq.initiator_key_distribution = key_distribution_flags;
880         setup->sm_m_preq.responder_key_distribution = key_distribution_flags;
881     }
882 
883     local_packet->io_capability = sm_io_capabilities;
884     local_packet->oob_data_flag = have_oob_data;
885     local_packet->auth_req = sm_auth_req;
886     local_packet->max_encryption_key_size = sm_max_encryption_key_size;
887 }
888 
889 static int sm_stk_generation_init(sm_connection_t * sm_conn){
890 
891     sm_pairing_packet_t * remote_packet;
892     int                   remote_key_request;
893     if (sm_conn->sm_role){
894         // slave / responser
895         remote_packet      = &setup->sm_m_preq;
896         remote_key_request = setup->sm_m_preq.responder_key_distribution;
897     } else {
898         // master / initiator
899         remote_packet      = &setup->sm_s_pres;
900         remote_key_request = setup->sm_s_pres.initiator_key_distribution;
901     }
902 
903     // check key size
904     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(remote_packet->max_encryption_key_size);
905     if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
906 
907     // setup key distribution
908     sm_setup_key_distribution(remote_key_request);
909 
910     // identical to responder
911 
912     // decide on STK generation method
913     sm_setup_tk();
914     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
915 
916     // check if STK generation method is acceptable by client
917     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
918 
919     // JUST WORKS doens't provide authentication
920     sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
921 
922     return 0;
923 }
924 
925 static void sm_address_resolution_handle_event(address_resolution_event_t event){
926 
927     // cache and reset context
928     int matched_device_id = sm_address_resolution_test;
929     address_resolution_mode_t mode = sm_address_resolution_mode;
930     void * context = sm_address_resolution_context;
931 
932     // reset context
933     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
934     sm_address_resolution_context = NULL;
935     sm_address_resolution_test = -1;
936     uint16_t handle = 0;
937 
938     sm_connection_t * sm_connection;
939     uint16_t ediv;
940     switch (mode){
941         case ADDRESS_RESOLUTION_GENERAL:
942             break;
943         case ADDRESS_RESOLUTION_FOR_CONNECTION:
944             sm_connection = (sm_connection_t *) context;
945             handle = sm_connection->sm_handle;
946             switch (event){
947                 case ADDRESS_RESOLUTION_SUCEEDED:
948                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
949                     sm_connection->sm_le_db_index = matched_device_id;
950                     log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
951                     if (sm_connection->sm_role) break;
952                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
953                     sm_connection->sm_security_request_received = 0;
954                     sm_connection->sm_bonding_requested = 0;
955                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
956                     if (ediv){
957                         sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
958                     } else {
959                         sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
960                     }
961                     break;
962                 case ADDRESS_RESOLUTION_FAILED:
963                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
964                     if (sm_connection->sm_role) break;
965                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
966                     sm_connection->sm_security_request_received = 0;
967                     sm_connection->sm_bonding_requested = 0;
968                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
969                     break;
970             }
971             break;
972         default:
973             break;
974     }
975 
976     switch (event){
977         case ADDRESS_RESOLUTION_SUCEEDED:
978             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
979             break;
980         case ADDRESS_RESOLUTION_FAILED:
981             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, handle, sm_address_resolution_addr_type, sm_address_resolution_address);
982             break;
983     }
984 }
985 
986 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
987 
988     int le_db_index = -1;
989 
990     // lookup device based on IRK
991     if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
992         int i;
993         for (i=0; i < le_device_db_count(); i++){
994             sm_key_t irk;
995             bd_addr_t address;
996             int address_type;
997             le_device_db_info(i, &address_type, address, irk);
998             if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
999                 log_info("sm: device found for IRK, updating");
1000                 le_db_index = i;
1001                 break;
1002             }
1003         }
1004     }
1005 
1006     // if not found, lookup via public address if possible
1007     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1008     if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
1009         int i;
1010         for (i=0; i < le_device_db_count(); i++){
1011             bd_addr_t address;
1012             int address_type;
1013             le_device_db_info(i, &address_type, address, NULL);
1014             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1015             if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
1016                 log_info("sm: device found for public address, updating");
1017                 le_db_index = i;
1018                 break;
1019             }
1020         }
1021     }
1022 
1023     // if not found, add to db
1024     if (le_db_index < 0) {
1025         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1026     }
1027 
1028     if (le_db_index >= 0){
1029         le_device_db_local_counter_set(le_db_index, 0);
1030 
1031         // store local CSRK
1032         if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1033             log_info("sm: store local CSRK");
1034             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1035             le_device_db_local_counter_set(le_db_index, 0);
1036         }
1037 
1038         // store remote CSRK
1039         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1040             log_info("sm: store remote CSRK");
1041             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1042             le_device_db_remote_counter_set(le_db_index, 0);
1043         }
1044 
1045         // store encryption information
1046         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION
1047             && setup->sm_key_distribution_received_set &  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1048             log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1049             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1050                 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1051         }
1052     }
1053 
1054     // keep le_db_index
1055     sm_conn->sm_le_db_index = le_db_index;
1056 }
1057 
1058 static void sm_run(void){
1059 
1060     btstack_linked_list_iterator_t it;
1061 
1062     // assert that we can send at least commands
1063     if (!hci_can_send_command_packet_now()) return;
1064 
1065     //
1066     // non-connection related behaviour
1067     //
1068 
1069     // distributed key generation
1070     switch (dkg_state){
1071         case DKG_CALC_IRK:
1072             // already busy?
1073             if (sm_aes128_state == SM_AES128_IDLE) {
1074                 // IRK = d1(IR, 1, 0)
1075                 sm_key_t d1_prime;
1076                 sm_d1_d_prime(1, 0, d1_prime);  // plaintext
1077                 dkg_next_state();
1078                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1079                 return;
1080             }
1081             break;
1082         case DKG_CALC_DHK:
1083             // already busy?
1084             if (sm_aes128_state == SM_AES128_IDLE) {
1085                 // DHK = d1(IR, 3, 0)
1086                 sm_key_t d1_prime;
1087                 sm_d1_d_prime(3, 0, d1_prime);  // plaintext
1088                 dkg_next_state();
1089                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1090                 return;
1091             }
1092             break;
1093         default:
1094             break;
1095     }
1096 
1097     // random address updates
1098     switch (rau_state){
1099         case RAU_GET_RANDOM:
1100             rau_next_state();
1101             sm_random_start(NULL);
1102             return;
1103         case RAU_GET_ENC:
1104             // already busy?
1105             if (sm_aes128_state == SM_AES128_IDLE) {
1106                 sm_key_t r_prime;
1107                 sm_ah_r_prime(sm_random_address, r_prime);
1108                 rau_next_state();
1109                 sm_aes128_start(sm_persistent_irk, r_prime, NULL);
1110                 return;
1111             }
1112             break;
1113         case RAU_SET_ADDRESS:
1114             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
1115             rau_state = RAU_IDLE;
1116             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
1117             return;
1118         default:
1119             break;
1120     }
1121 
1122     // CMAC
1123     switch (sm_cmac_state){
1124         case CMAC_CALC_SUBKEYS:
1125         case CMAC_CALC_MI:
1126         case CMAC_CALC_MLAST:
1127             // already busy?
1128             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1129             sm_cmac_handle_aes_engine_ready();
1130             return;
1131         default:
1132             break;
1133     }
1134 
1135     // CSRK Lookup
1136     // -- if csrk lookup ready, find connection that require csrk lookup
1137     if (sm_address_resolution_idle()){
1138         hci_connections_get_iterator(&it);
1139         while(btstack_linked_list_iterator_has_next(&it)){
1140             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1141             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
1142             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
1143                 // and start lookup
1144                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
1145                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
1146                 break;
1147             }
1148         }
1149     }
1150 
1151     // -- if csrk lookup ready, resolved addresses for received addresses
1152     if (sm_address_resolution_idle()) {
1153         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
1154             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
1155             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
1156             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
1157             btstack_memory_sm_lookup_entry_free(entry);
1158         }
1159     }
1160 
1161     // -- Continue with CSRK device lookup by public or resolvable private address
1162     if (!sm_address_resolution_idle()){
1163         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
1164         while (sm_address_resolution_test < le_device_db_count()){
1165             int addr_type;
1166             bd_addr_t addr;
1167             sm_key_t irk;
1168             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
1169             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
1170 
1171             if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
1172                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
1173                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
1174                 break;
1175             }
1176 
1177             if (sm_address_resolution_addr_type == 0){
1178                 sm_address_resolution_test++;
1179                 continue;
1180             }
1181 
1182             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1183 
1184             log_info("LE Device Lookup: calculate AH");
1185             log_key("IRK", irk);
1186 
1187             sm_key_t r_prime;
1188             sm_ah_r_prime(sm_address_resolution_address, r_prime);
1189             sm_address_resolution_ah_calculation_active = 1;
1190             sm_aes128_start(irk, r_prime, sm_address_resolution_context);   // keep context
1191             return;
1192         }
1193 
1194         if (sm_address_resolution_test >= le_device_db_count()){
1195             log_info("LE Device Lookup: not found");
1196             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
1197         }
1198     }
1199 
1200 
1201     //
1202     // active connection handling
1203     // -- use loop to handle next connection if lock on setup context is released
1204 
1205     while (1) {
1206 
1207         // Find connections that requires setup context and make active if no other is locked
1208         hci_connections_get_iterator(&it);
1209         while(!sm_active_connection && btstack_linked_list_iterator_has_next(&it)){
1210             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1211             sm_connection_t  * sm_connection = &hci_connection->sm_connection;
1212             // - if no connection locked and we're ready/waiting for setup context, fetch it and start
1213             int done = 1;
1214             int err;
1215             int encryption_key_size;
1216             int authenticated;
1217             int authorized;
1218             switch (sm_connection->sm_engine_state) {
1219                 case SM_RESPONDER_SEND_SECURITY_REQUEST:
1220                     // send packet if possible,
1221                     if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle)){
1222                         uint8_t buffer[2];
1223                         buffer[0] = SM_CODE_SECURITY_REQUEST;
1224                         buffer[1] = SM_AUTHREQ_BONDING;
1225                         sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
1226                         l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1227                     }
1228                     // don't lock setup context yet
1229                     done = 0;
1230                     break;
1231                 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
1232                     sm_init_setup(sm_connection);
1233                     // recover pairing request
1234                     memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
1235                     err = sm_stk_generation_init(sm_connection);
1236                     if (err){
1237                         setup->sm_pairing_failed_reason = err;
1238                         sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1239                         break;
1240                     }
1241                     sm_timeout_start(sm_connection);
1242                     // generate random number first, if we need to show passkey
1243                     if (setup->sm_stk_generation_method == PK_INIT_INPUT){
1244                         sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
1245                         break;
1246                     }
1247                     sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
1248                     break;
1249                 case SM_INITIATOR_PH0_HAS_LTK:
1250                     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
1251                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1252                                                 &encryption_key_size, &authenticated, &authorized);
1253                     log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
1254                     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
1255                     sm_connection->sm_connection_authenticated = authenticated;
1256                     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
1257                     sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
1258                     break;
1259                 case SM_RESPONDER_PH0_RECEIVED_LTK:
1260                     // re-establish previously used LTK using Rand and EDIV
1261                     memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
1262                     setup->sm_local_ediv = sm_connection->sm_local_ediv;
1263                     // re-establish used key encryption size
1264                     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1265                     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
1266                     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
1267                     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
1268                     log_info("sm: received ltk request with key size %u, authenticated %u",
1269                             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
1270                     sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
1271                     break;
1272                 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
1273                     sm_init_setup(sm_connection);
1274                     sm_timeout_start(sm_connection);
1275                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
1276                     break;
1277                 default:
1278                     done = 0;
1279                     break;
1280             }
1281             if (done){
1282                 sm_active_connection = sm_connection->sm_handle;
1283                 log_info("sm: connection 0x%04x locked setup context as %s", sm_active_connection, sm_connection->sm_role ? "responder" : "initiator");
1284             }
1285         }
1286 
1287         //
1288         // active connection handling
1289         //
1290 
1291         if (sm_active_connection == 0) return;
1292 
1293         // assert that we could send a SM PDU - not needed for all of the following
1294         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection)) return;
1295 
1296         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection);
1297         if (!connection) return;
1298 
1299         sm_key_t plaintext;
1300         int key_distribution_flags;
1301 
1302         log_info("sm_run: state %u", connection->sm_engine_state);
1303 
1304         // responding state
1305         switch (connection->sm_engine_state){
1306 
1307             // general
1308             case SM_GENERAL_SEND_PAIRING_FAILED: {
1309                 uint8_t buffer[2];
1310                 buffer[0] = SM_CODE_PAIRING_FAILED;
1311                 buffer[1] = setup->sm_pairing_failed_reason;
1312                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
1313                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1314                 sm_done_for_handle(connection->sm_handle);
1315                 break;
1316             }
1317 
1318             // initiator side
1319             case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
1320                 sm_key_t peer_ltk_flipped;
1321                 swap128(setup->sm_peer_ltk, peer_ltk_flipped);
1322                 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
1323                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
1324                 uint32_t rand_high = READ_NET_32(setup->sm_peer_rand, 0);
1325                 uint32_t rand_low  = READ_NET_32(setup->sm_peer_rand, 4);
1326                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
1327                 return;
1328             }
1329 
1330             case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
1331                 setup->sm_m_preq.code = SM_CODE_PAIRING_REQUEST;
1332                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
1333                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
1334                 sm_timeout_reset(connection);
1335                 break;
1336 
1337             // responder side
1338             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
1339                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1340                 hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
1341                 return;
1342 
1343             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
1344                 // echo initiator for now
1345                 setup->sm_s_pres.code = SM_CODE_PAIRING_RESPONSE;
1346                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1347                 setup->sm_s_pres.initiator_key_distribution = setup->sm_m_preq.initiator_key_distribution & key_distribution_flags;
1348                 setup->sm_s_pres.responder_key_distribution = setup->sm_m_preq.responder_key_distribution & key_distribution_flags;
1349                 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
1350                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
1351                 sm_timeout_reset(connection);
1352                 sm_trigger_user_response(connection);
1353                 return;
1354 
1355             case SM_PH2_SEND_PAIRING_RANDOM: {
1356                 uint8_t buffer[17];
1357                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1358                 swap128(setup->sm_local_random, &buffer[1]);
1359                 if (connection->sm_role){
1360                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
1361                 } else {
1362                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
1363                 }
1364                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1365                 sm_timeout_reset(connection);
1366                 break;
1367             }
1368 
1369             case SM_PH2_GET_RANDOM_TK:
1370             case SM_PH2_C1_GET_RANDOM_A:
1371             case SM_PH2_C1_GET_RANDOM_B:
1372             case SM_PH3_GET_RANDOM:
1373             case SM_PH3_GET_DIV:
1374                 sm_next_responding_state(connection);
1375                 sm_random_start(connection);
1376                 return;
1377 
1378             case SM_PH2_C1_GET_ENC_B:
1379             case SM_PH2_C1_GET_ENC_D:
1380                 // already busy?
1381                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1382                 sm_next_responding_state(connection);
1383                 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
1384                 return;
1385 
1386             case SM_PH3_LTK_GET_ENC:
1387             case SM_RESPONDER_PH4_LTK_GET_ENC:
1388                 // already busy?
1389                 if (sm_aes128_state == SM_AES128_IDLE) {
1390                     sm_key_t d_prime;
1391                     sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
1392                     sm_next_responding_state(connection);
1393                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1394                     return;
1395                 }
1396                 break;
1397 
1398             case SM_PH3_CSRK_GET_ENC:
1399                 // already busy?
1400                 if (sm_aes128_state == SM_AES128_IDLE) {
1401                     sm_key_t d_prime;
1402                     sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
1403                     sm_next_responding_state(connection);
1404                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1405                     return;
1406                 }
1407                 break;
1408 
1409             case SM_PH2_C1_GET_ENC_C:
1410                 // already busy?
1411                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1412                 // calculate m_confirm using aes128 engine - step 1
1413                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1414                 sm_next_responding_state(connection);
1415                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1416                 break;
1417             case SM_PH2_C1_GET_ENC_A:
1418                 // already busy?
1419                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1420                 // calculate confirm using aes128 engine - step 1
1421                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1422                 sm_next_responding_state(connection);
1423                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1424                 break;
1425             case SM_PH2_CALC_STK:
1426                 // already busy?
1427                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1428                 // calculate STK
1429                 if (connection->sm_role){
1430                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
1431                 } else {
1432                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
1433                 }
1434                 sm_next_responding_state(connection);
1435                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1436                 break;
1437             case SM_PH3_Y_GET_ENC:
1438                 // already busy?
1439                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1440                 // PH3B2 - calculate Y from      - enc
1441                 // Y = dm(DHK, Rand)
1442                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
1443                 sm_next_responding_state(connection);
1444                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
1445                 return;
1446             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
1447                 uint8_t buffer[17];
1448                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1449                 swap128(setup->sm_local_confirm, &buffer[1]);
1450                 if (connection->sm_role){
1451                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
1452                 } else {
1453                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
1454                 }
1455                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1456                 sm_timeout_reset(connection);
1457                 return;
1458             }
1459             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
1460                 sm_key_t stk_flipped;
1461                 swap128(setup->sm_ltk, stk_flipped);
1462                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
1463                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
1464                 return;
1465             }
1466             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
1467                 sm_key_t stk_flipped;
1468                 swap128(setup->sm_ltk, stk_flipped);
1469                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
1470                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
1471                 return;
1472             }
1473             case SM_RESPONDER_PH4_SEND_LTK: {
1474                 sm_key_t ltk_flipped;
1475                 swap128(setup->sm_ltk, ltk_flipped);
1476                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1477                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
1478                 return;
1479             }
1480             case SM_RESPONDER_PH4_Y_GET_ENC:
1481                 // already busy?
1482                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1483                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
1484                 // Y = dm(DHK, Rand)
1485                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
1486                 sm_next_responding_state(connection);
1487                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
1488                 return;
1489 
1490             case SM_PH3_DISTRIBUTE_KEYS:
1491                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
1492                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
1493                     uint8_t buffer[17];
1494                     buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
1495                     swap128(setup->sm_ltk, &buffer[1]);
1496                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1497                     sm_timeout_reset(connection);
1498                     return;
1499                 }
1500                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1501                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
1502                     uint8_t buffer[11];
1503                     buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
1504                     bt_store_16(buffer, 1, setup->sm_local_ediv);
1505                     swap64(setup->sm_local_rand, &buffer[3]);
1506                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1507                     sm_timeout_reset(connection);
1508                     return;
1509                 }
1510                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1511                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
1512                     uint8_t buffer[17];
1513                     buffer[0] = SM_CODE_IDENTITY_INFORMATION;
1514                     swap128(sm_persistent_irk, &buffer[1]);
1515                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1516                     sm_timeout_reset(connection);
1517                     return;
1518                 }
1519                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
1520                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
1521                     bd_addr_t local_address;
1522                     uint8_t buffer[8];
1523                     buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
1524                     hci_le_advertisement_address(&buffer[1], local_address);
1525                     bt_flip_addr(&buffer[2], local_address);
1526                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1527                     sm_timeout_reset(connection);
1528                     return;
1529                 }
1530                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1531                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
1532 
1533                     // hack to reproduce test runs
1534                     if (test_use_fixed_local_csrk){
1535                         memset(setup->sm_local_csrk, 0xcc, 16);
1536                     }
1537 
1538                     uint8_t buffer[17];
1539                     buffer[0] = SM_CODE_SIGNING_INFORMATION;
1540                     swap128(setup->sm_local_csrk, &buffer[1]);
1541                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1542                     sm_timeout_reset(connection);
1543                     return;
1544                 }
1545 
1546                 // keys are sent
1547                 if (connection->sm_role){
1548                     // slave -> receive master keys if any
1549                     if (sm_key_distribution_all_received(connection)){
1550                         sm_key_distribution_handle_all_received(connection);
1551                         connection->sm_engine_state = SM_RESPONDER_IDLE;
1552                         sm_done_for_handle(connection->sm_handle);
1553                     } else {
1554                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
1555                     }
1556                 } else {
1557                     // master -> all done
1558                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
1559                     sm_done_for_handle(connection->sm_handle);
1560                 }
1561                 break;
1562 
1563             default:
1564                 break;
1565         }
1566 
1567         // check again if active connection was released
1568         if (sm_active_connection) break;
1569     }
1570 }
1571 
1572 // note: aes engine is ready as we just got the aes result
1573 static void sm_handle_encryption_result(uint8_t * data){
1574 
1575     sm_aes128_state = SM_AES128_IDLE;
1576 
1577     if (sm_address_resolution_ah_calculation_active){
1578         sm_address_resolution_ah_calculation_active = 0;
1579         // compare calulated address against connecting device
1580         uint8_t hash[3];
1581         swap24(data, hash);
1582         if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
1583             log_info("LE Device Lookup: matched resolvable private address");
1584             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
1585             return;
1586         }
1587         // no match, try next
1588         sm_address_resolution_test++;
1589         return;
1590     }
1591 
1592     switch (dkg_state){
1593         case DKG_W4_IRK:
1594             swap128(data, sm_persistent_irk);
1595             log_key("irk", sm_persistent_irk);
1596             dkg_next_state();
1597             return;
1598         case DKG_W4_DHK:
1599             swap128(data, sm_persistent_dhk);
1600             log_key("dhk", sm_persistent_dhk);
1601             dkg_next_state();
1602 
1603             // SM INIT FINISHED, start application code - TODO untangle that
1604             if (sm_client_packet_handler)
1605             {
1606                 uint8_t event[] = { BTSTACK_EVENT_STATE, 1, HCI_STATE_WORKING };
1607                 sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) event, sizeof(event));
1608             }
1609             return;
1610         default:
1611             break;
1612     }
1613 
1614     switch (rau_state){
1615         case RAU_W4_ENC:
1616             swap24(data, &sm_random_address[3]);
1617             rau_next_state();
1618             return;
1619         default:
1620             break;
1621     }
1622 
1623     switch (sm_cmac_state){
1624         case CMAC_W4_SUBKEYS:
1625         case CMAC_W4_MI:
1626         case CMAC_W4_MLAST:
1627             {
1628             sm_key_t t;
1629             swap128(data, t);
1630             sm_cmac_handle_encryption_result(t);
1631             }
1632             return;
1633         default:
1634             break;
1635     }
1636 
1637     // retrieve sm_connection provided to sm_aes128_start_encryption
1638     sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
1639     if (!connection) return;
1640     switch (connection->sm_engine_state){
1641         case SM_PH2_C1_W4_ENC_A:
1642         case SM_PH2_C1_W4_ENC_C:
1643             {
1644             sm_key_t t2;
1645             swap128(data, t2);
1646             sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
1647             }
1648             sm_next_responding_state(connection);
1649             return;
1650         case SM_PH2_C1_W4_ENC_B:
1651             swap128(data, setup->sm_local_confirm);
1652             log_key("c1!", setup->sm_local_confirm);
1653             connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
1654             return;
1655         case SM_PH2_C1_W4_ENC_D:
1656             {
1657             sm_key_t peer_confirm_test;
1658             swap128(data, peer_confirm_test);
1659             log_key("c1!", peer_confirm_test);
1660             if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
1661                 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
1662                 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1663                 return;
1664             }
1665             if (connection->sm_role){
1666                 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
1667             } else {
1668                 connection->sm_engine_state = SM_PH2_CALC_STK;
1669             }
1670             }
1671             return;
1672         case SM_PH2_W4_STK:
1673             swap128(data, setup->sm_ltk);
1674             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
1675             log_key("stk", setup->sm_ltk);
1676             if (connection->sm_role){
1677                 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
1678             } else {
1679                 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
1680             }
1681             return;
1682         case SM_PH3_Y_W4_ENC:{
1683             sm_key_t y128;
1684             swap128(data, y128);
1685             setup->sm_local_y = READ_NET_16(y128, 14);
1686             log_info_hex16("y", setup->sm_local_y);
1687             // PH3B3 - calculate EDIV
1688             setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
1689             log_info_hex16("ediv", setup->sm_local_ediv);
1690             // PH3B4 - calculate LTK         - enc
1691             // LTK = d1(ER, DIV, 0))
1692             connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
1693             return;
1694         }
1695         case SM_RESPONDER_PH4_Y_W4_ENC:{
1696             sm_key_t y128;
1697             swap128(data, y128);
1698             setup->sm_local_y = READ_NET_16(y128, 14);
1699             log_info_hex16("y", setup->sm_local_y);
1700 
1701             // PH3B3 - calculate DIV
1702             setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
1703             log_info_hex16("ediv", setup->sm_local_ediv);
1704             // PH3B4 - calculate LTK         - enc
1705             // LTK = d1(ER, DIV, 0))
1706             connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
1707             return;
1708         }
1709         case SM_PH3_LTK_W4_ENC:
1710             swap128(data, setup->sm_ltk);
1711             log_key("ltk", setup->sm_ltk);
1712             // calc CSRK next
1713             connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
1714             return;
1715         case SM_PH3_CSRK_W4_ENC:
1716             swap128(data, setup->sm_local_csrk);
1717             log_key("csrk", setup->sm_local_csrk);
1718             if (setup->sm_key_distribution_send_set){
1719                 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
1720             } else {
1721                 // no keys to send, just continue
1722                 if (connection->sm_role){
1723                     // slave -> receive master keys
1724                     connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
1725                 } else {
1726                     // master -> all done
1727                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
1728                     sm_done_for_handle(connection->sm_handle);
1729                 }
1730             }
1731             return;
1732         case SM_RESPONDER_PH4_LTK_W4_ENC:
1733             swap128(data, setup->sm_ltk);
1734             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
1735             log_key("ltk", setup->sm_ltk);
1736             connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK;
1737             return;
1738         default:
1739             break;
1740     }
1741 }
1742 
1743 // note: random generator is ready. this doesn NOT imply that aes engine is unused!
1744 static void sm_handle_random_result(uint8_t * data){
1745 
1746     switch (rau_state){
1747         case RAU_W4_RANDOM:
1748             // non-resolvable vs. resolvable
1749             switch (gap_random_adress_type){
1750                 case GAP_RANDOM_ADDRESS_RESOLVABLE:
1751                     // resolvable: use random as prand and calc address hash
1752                     // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
1753                     memcpy(sm_random_address, data, 3);
1754                     sm_random_address[0] &= 0x3f;
1755                     sm_random_address[0] |= 0x40;
1756                     rau_state = RAU_GET_ENC;
1757                     break;
1758                 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
1759                 default:
1760                     // "The two most significant bits of the address shall be equal to ‘0’""
1761                     memcpy(sm_random_address, data, 6);
1762                     sm_random_address[0] &= 0x3f;
1763                     rau_state = RAU_SET_ADDRESS;
1764                     break;
1765             }
1766             return;
1767         default:
1768             break;
1769     }
1770 
1771     // retrieve sm_connection provided to sm_random_start
1772     sm_connection_t * connection = (sm_connection_t *) sm_random_context;
1773     if (!connection) return;
1774     switch (connection->sm_engine_state){
1775         case SM_PH2_W4_RANDOM_TK:
1776         {
1777             // map random to 0-999999 without speding much cycles on a modulus operation
1778             uint32_t tk = READ_BT_32(data,0);
1779             tk = tk & 0xfffff;  // 1048575
1780             if (tk >= 999999){
1781                 tk = tk - 999999;
1782             }
1783             sm_reset_tk();
1784             net_store_32(setup->sm_tk, 12, tk);
1785             if (connection->sm_role){
1786                 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
1787             } else {
1788                 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
1789                 sm_trigger_user_response(connection);
1790                 // response_idle == nothing <--> sm_trigger_user_response() did not require response
1791                 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
1792                     connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
1793                 }
1794             }
1795             return;
1796         }
1797         case SM_PH2_C1_W4_RANDOM_A:
1798             memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
1799             connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
1800             return;
1801         case SM_PH2_C1_W4_RANDOM_B:
1802             memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
1803             connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
1804             return;
1805         case SM_PH3_W4_RANDOM:
1806             swap64(data, setup->sm_local_rand);
1807             // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1808             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
1809             // no db for authenticated flag hack: store flag in bit 4 of LSB
1810             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
1811             connection->sm_engine_state = SM_PH3_GET_DIV;
1812             return;
1813         case SM_PH3_W4_DIV:
1814             // use 16 bit from random value as div
1815             setup->sm_local_div = READ_NET_16(data, 0);
1816             log_info_hex16("div", setup->sm_local_div);
1817             connection->sm_engine_state = SM_PH3_Y_GET_ENC;
1818             return;
1819         default:
1820             break;
1821     }
1822 }
1823 
1824 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
1825 
1826     sm_connection_t  * sm_conn;
1827     uint16_t handle;
1828 
1829     switch (packet_type) {
1830 
1831 		case HCI_EVENT_PACKET:
1832 			switch (packet[0]) {
1833 
1834                 case BTSTACK_EVENT_STATE:
1835 					// bt stack activated, get started
1836 					if (packet[2] == HCI_STATE_WORKING) {
1837                         log_info("HCI Working!");
1838                         dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
1839                         rau_state = RAU_IDLE;
1840 
1841                         sm_run();
1842                         return; // don't notify app packet handler just yet
1843 					}
1844 					break;
1845 
1846                 case HCI_EVENT_LE_META:
1847                     switch (packet[2]) {
1848                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
1849 
1850                             log_info("sm: connected");
1851 
1852                             if (packet[3]) return; // connection failed
1853 
1854                             handle = READ_BT_16(packet, 4);
1855                             sm_conn = sm_get_connection_for_handle(handle);
1856                             if (!sm_conn) break;
1857 
1858                             sm_conn->sm_handle = handle;
1859                             sm_conn->sm_role = packet[6];
1860                             sm_conn->sm_peer_addr_type = packet[7];
1861                             bt_flip_addr(sm_conn->sm_peer_address, &packet[8]);
1862 
1863                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
1864 
1865                             // reset security properties
1866                             sm_conn->sm_connection_encrypted = 0;
1867                             sm_conn->sm_connection_authenticated = 0;
1868                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
1869                             sm_conn->sm_le_db_index = -1;
1870 
1871                             // prepare CSRK lookup (does not involve setup)
1872                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
1873 
1874                             // just connected -> everything else happens in sm_run()
1875                             if (sm_conn->sm_role){
1876                                 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
1877                                 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
1878                                     if (sm_slave_request_security) {
1879                                         // request security if requested by app
1880                                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1881                                     } else {
1882                                         // otherwise, wait for pairing request
1883                                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
1884                                     }
1885                                 }
1886                                 break;
1887                             } else {
1888                                 // master
1889                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1890                             }
1891                             break;
1892 
1893                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
1894                             handle = READ_BT_16(packet, 3);
1895                             sm_conn = sm_get_connection_for_handle(handle);
1896                             if (!sm_conn) break;
1897 
1898                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
1899                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
1900                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
1901                                 break;
1902                             }
1903 
1904                             // assume that we don't have a LTK for ediv == 0 and random == null
1905                             if (READ_BT_16(packet, 13) == 0 && sm_is_null_random(&packet[5])){
1906                                 log_info("LTK Request: ediv & random are empty");
1907                                 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
1908                                 break;
1909                             }
1910 
1911                             // store rand and ediv
1912                             swap64(&packet[5], sm_conn->sm_local_rand);
1913                             sm_conn->sm_local_ediv   = READ_BT_16(packet, 13);
1914                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK;
1915                             break;
1916 
1917                         default:
1918                             break;
1919                     }
1920                     break;
1921 
1922                 case HCI_EVENT_ENCRYPTION_CHANGE:
1923                     handle = READ_BT_16(packet, 3);
1924                     sm_conn = sm_get_connection_for_handle(handle);
1925                     if (!sm_conn) break;
1926 
1927                     sm_conn->sm_connection_encrypted = packet[5];
1928                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
1929                         sm_conn->sm_actual_encryption_key_size);
1930                     log_info("event handler, state %u", sm_conn->sm_engine_state);
1931                     if (!sm_conn->sm_connection_encrypted) break;
1932                     // continue if part of initial pairing
1933                     switch (sm_conn->sm_engine_state){
1934                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
1935                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1936                             sm_done_for_handle(sm_conn->sm_handle);
1937                             break;
1938                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
1939                             if (sm_conn->sm_role){
1940                                 // slave
1941                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
1942                             } else {
1943                                 // master
1944                                 if (sm_key_distribution_all_received(sm_conn)){
1945                                     // skip receiving keys as there are none
1946                                     sm_key_distribution_handle_all_received(sm_conn);
1947                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
1948                                 } else {
1949                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
1950                                 }
1951                             }
1952                             break;
1953                         default:
1954                             break;
1955                     }
1956                     break;
1957 
1958                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
1959                     handle = READ_BT_16(packet, 3);
1960                     sm_conn = sm_get_connection_for_handle(handle);
1961                     if (!sm_conn) break;
1962 
1963                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
1964                     log_info("event handler, state %u", sm_conn->sm_engine_state);
1965                     // continue if part of initial pairing
1966                     switch (sm_conn->sm_engine_state){
1967                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
1968                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1969                             sm_done_for_handle(sm_conn->sm_handle);
1970                             break;
1971                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
1972                             if (sm_conn->sm_role){
1973                                 // slave
1974                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
1975                             } else {
1976                                 // master
1977                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
1978                             }
1979                             break;
1980                         default:
1981                             break;
1982                     }
1983                     break;
1984 
1985 
1986                 case HCI_EVENT_DISCONNECTION_COMPLETE:
1987                     handle = READ_BT_16(packet, 3);
1988                     sm_done_for_handle(handle);
1989                     sm_conn = sm_get_connection_for_handle(handle);
1990                     if (!sm_conn) break;
1991 
1992                     // delete stored bonding on disconnect with authentication failure in ph0
1993                     if (sm_conn->sm_role == 0
1994                         && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
1995                         && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
1996                         le_device_db_remove(sm_conn->sm_le_db_index);
1997                     }
1998 
1999                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
2000                     sm_conn->sm_handle = 0;
2001                     break;
2002 
2003 				case HCI_EVENT_COMMAND_COMPLETE:
2004                     if (COMMAND_COMPLETE_EVENT(packet, hci_le_encrypt)){
2005                         sm_handle_encryption_result(&packet[6]);
2006                         break;
2007                     }
2008                     if (COMMAND_COMPLETE_EVENT(packet, hci_le_rand)){
2009                         sm_handle_random_result(&packet[6]);
2010                         break;
2011                     }
2012 			}
2013 
2014             // forward packet to higher layer
2015             if (sm_client_packet_handler){
2016                 sm_client_packet_handler(packet_type, 0, packet, size);
2017             }
2018 	}
2019 
2020     sm_run();
2021 }
2022 
2023 static inline int sm_calc_actual_encryption_key_size(int other){
2024     if (other < sm_min_encryption_key_size) return 0;
2025     if (other < sm_max_encryption_key_size) return other;
2026     return sm_max_encryption_key_size;
2027 }
2028 
2029 /**
2030  * @return ok
2031  */
2032 static int sm_validate_stk_generation_method(void){
2033     // check if STK generation method is acceptable by client
2034     switch (setup->sm_stk_generation_method){
2035         case JUST_WORKS:
2036             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
2037         case PK_RESP_INPUT:
2038         case PK_INIT_INPUT:
2039         case OK_BOTH_INPUT:
2040             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
2041         case OOB:
2042             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
2043         default:
2044             return 0;
2045     }
2046 }
2047 
2048 // helper for sm_packet_handler, calls sm_run on exit
2049 static void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
2050     setup->sm_pairing_failed_reason = SM_REASON_UNSPECIFIED_REASON;
2051     sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2052     sm_done_for_handle(sm_conn->sm_handle);
2053 }
2054 
2055 static void sm_packet_handler(uint8_t packet_type, uint16_t handle, uint8_t *packet, uint16_t size){
2056 
2057     if (packet_type == HCI_EVENT_PACKET) {
2058         sm_event_packet_handler(packet_type, handle, packet, size);
2059         return;
2060     }
2061 
2062     if (packet_type != SM_DATA_PACKET) return;
2063 
2064     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2065     if (!sm_conn) return;
2066 
2067     if (packet[0] == SM_CODE_PAIRING_FAILED){
2068         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2069         return;
2070     }
2071 
2072     log_debug("sm_packet_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
2073 
2074     int err;
2075 
2076     switch (sm_conn->sm_engine_state){
2077 
2078         // a sm timeout requries a new physical connection
2079         case SM_GENERAL_TIMEOUT:
2080             return;
2081 
2082         // Initiator
2083         case SM_INITIATOR_CONNECTED:
2084             if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
2085                 sm_pdu_received_in_wrong_state(sm_conn);
2086                 break;
2087             }
2088             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
2089                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2090                 break;
2091             }
2092             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
2093                 uint16_t ediv;
2094                 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
2095                 if (ediv){
2096                     log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
2097                     sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
2098                 } else {
2099                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2100                 }
2101                 break;
2102             }
2103             // otherwise, store security request
2104             sm_conn->sm_security_request_received = 1;
2105             break;
2106 
2107         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
2108             if (packet[0] != SM_CODE_PAIRING_RESPONSE){
2109                 sm_pdu_received_in_wrong_state(sm_conn);
2110                 break;
2111             }
2112             // store pairing request
2113             memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
2114             err = sm_stk_generation_init(sm_conn);
2115             if (err){
2116                 setup->sm_pairing_failed_reason = err;
2117                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2118                 break;
2119             }
2120             // generate random number first, if we need to show passkey
2121             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
2122                 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
2123                 break;
2124             }
2125             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2126             sm_trigger_user_response(sm_conn);
2127             // response_idle == nothing <--> sm_trigger_user_response() did not require response
2128             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2129                 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2130             }
2131             break;
2132 
2133         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
2134             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2135                 sm_pdu_received_in_wrong_state(sm_conn);
2136                 break;
2137             }
2138 
2139             // store s_confirm
2140             swap128(&packet[1], setup->sm_peer_confirm);
2141             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2142             break;
2143 
2144         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
2145             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2146                 sm_pdu_received_in_wrong_state(sm_conn);
2147                 break;;
2148             }
2149 
2150             // received random value
2151             swap128(&packet[1], setup->sm_peer_random);
2152             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2153             break;
2154 
2155         // Responder
2156         case SM_RESPONDER_IDLE:
2157         case SM_RESPONDER_SEND_SECURITY_REQUEST:
2158         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
2159             if (packet[0] != SM_CODE_PAIRING_REQUEST){
2160                 sm_pdu_received_in_wrong_state(sm_conn);
2161                 break;;
2162             }
2163 
2164             // store pairing request
2165             memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
2166             sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
2167             break;
2168 
2169         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
2170             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2171                 sm_pdu_received_in_wrong_state(sm_conn);
2172                 break;;
2173             }
2174 
2175             // received confirm value
2176             swap128(&packet[1], setup->sm_peer_confirm);
2177 
2178             // notify client to hide shown passkey
2179             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
2180                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
2181             }
2182 
2183             // handle user cancel pairing?
2184             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
2185                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
2186                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2187                 break;
2188             }
2189 
2190             // wait for user action?
2191             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
2192                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2193                 break;
2194             }
2195 
2196             // calculate and send local_confirm
2197             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2198             break;
2199 
2200         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
2201             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2202                 sm_pdu_received_in_wrong_state(sm_conn);
2203                 break;;
2204             }
2205 
2206             // received random value
2207             swap128(&packet[1], setup->sm_peer_random);
2208             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2209             break;
2210 
2211         case SM_PH3_RECEIVE_KEYS:
2212             switch(packet[0]){
2213                 case SM_CODE_ENCRYPTION_INFORMATION:
2214                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2215                     swap128(&packet[1], setup->sm_peer_ltk);
2216                     break;
2217 
2218                 case SM_CODE_MASTER_IDENTIFICATION:
2219                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2220                     setup->sm_peer_ediv = READ_BT_16(packet, 1);
2221                     swap64(&packet[3], setup->sm_peer_rand);
2222                     break;
2223 
2224                 case SM_CODE_IDENTITY_INFORMATION:
2225                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2226                     swap128(&packet[1], setup->sm_peer_irk);
2227                     break;
2228 
2229                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
2230                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2231                     setup->sm_peer_addr_type = packet[1];
2232                     bt_flip_addr(setup->sm_peer_address, &packet[2]);
2233                     break;
2234 
2235                 case SM_CODE_SIGNING_INFORMATION:
2236                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2237                     swap128(&packet[1], setup->sm_peer_csrk);
2238                     break;
2239                 default:
2240                     // Unexpected PDU
2241                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
2242                     break;
2243             }
2244             // done with key distribution?
2245             if (sm_key_distribution_all_received(sm_conn)){
2246 
2247                 sm_key_distribution_handle_all_received(sm_conn);
2248 
2249                 if (sm_conn->sm_role){
2250                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2251                     sm_done_for_handle(sm_conn->sm_handle);
2252                 } else {
2253                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2254                 }
2255             }
2256             break;
2257         default:
2258             // Unexpected PDU
2259             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
2260             break;
2261     }
2262 
2263     // try to send preparared packet
2264     sm_run();
2265 }
2266 
2267 // Security Manager Client API
2268 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
2269     sm_get_oob_data = get_oob_data_callback;
2270 }
2271 
2272 void sm_register_packet_handler(btstack_packet_handler_t handler){
2273     sm_client_packet_handler = handler;
2274 }
2275 
2276 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
2277     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
2278 }
2279 
2280 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
2281 	sm_min_encryption_key_size = min_size;
2282 	sm_max_encryption_key_size = max_size;
2283 }
2284 
2285 void sm_set_authentication_requirements(uint8_t auth_req){
2286     sm_auth_req = auth_req;
2287 }
2288 
2289 void sm_set_io_capabilities(io_capability_t io_capability){
2290     sm_io_capabilities = io_capability;
2291 }
2292 
2293 void sm_set_request_security(int enable){
2294     sm_slave_request_security = enable;
2295 }
2296 
2297 void sm_set_er(sm_key_t er){
2298     memcpy(sm_persistent_er, er, 16);
2299 }
2300 
2301 void sm_set_ir(sm_key_t ir){
2302     memcpy(sm_persistent_ir, ir, 16);
2303 }
2304 
2305 // Testing support only
2306 void sm_test_set_irk(sm_key_t irk){
2307     memcpy(sm_persistent_irk, irk, 16);
2308     sm_persistent_irk_ready = 1;
2309 }
2310 
2311 void sm_test_use_fixed_local_csrk(void){
2312     test_use_fixed_local_csrk = 1;
2313 }
2314 
2315 void sm_init(void){
2316     // set some (BTstack default) ER and IR
2317     int i;
2318     sm_key_t er;
2319     sm_key_t ir;
2320     for (i=0;i<16;i++){
2321         er[i] = 0x30 + i;
2322         ir[i] = 0x90 + i;
2323     }
2324     sm_set_er(er);
2325     sm_set_ir(ir);
2326     // defaults
2327     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
2328                                        | SM_STK_GENERATION_METHOD_OOB
2329                                        | SM_STK_GENERATION_METHOD_PASSKEY;
2330     sm_max_encryption_key_size = 16;
2331     sm_min_encryption_key_size = 7;
2332 
2333     sm_cmac_state  = CMAC_IDLE;
2334     dkg_state = DKG_W4_WORKING;
2335     rau_state = RAU_W4_WORKING;
2336     sm_aes128_state = SM_AES128_IDLE;
2337     sm_address_resolution_test = -1;    // no private address to resolve yet
2338     sm_address_resolution_ah_calculation_active = 0;
2339     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
2340     sm_address_resolution_general_queue = NULL;
2341 
2342     gap_random_adress_update_period = 15 * 60 * 1000L;
2343 
2344     sm_active_connection = 0;
2345 
2346     test_use_fixed_local_csrk = 0;
2347 
2348     // attach to lower layers
2349     l2cap_register_fixed_channel(sm_packet_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
2350 }
2351 
2352 static sm_connection_t * sm_get_connection_for_handle(uint16_t con_handle){
2353     hci_connection_t * hci_con = hci_connection_for_handle((hci_con_handle_t) con_handle);
2354     if (!hci_con) return NULL;
2355     return &hci_con->sm_connection;
2356 }
2357 
2358 // @returns 0 if not encrypted, 7-16 otherwise
2359 int sm_encryption_key_size(uint16_t handle){
2360     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2361     if (!sm_conn) return 0;     // wrong connection
2362     if (!sm_conn->sm_connection_encrypted) return 0;
2363     return sm_conn->sm_actual_encryption_key_size;
2364 }
2365 
2366 int sm_authenticated(uint16_t handle){
2367     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2368     if (!sm_conn) return 0;     // wrong connection
2369     if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
2370     return sm_conn->sm_connection_authenticated;
2371 }
2372 
2373 authorization_state_t sm_authorization_state(uint16_t handle){
2374     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2375     if (!sm_conn) return AUTHORIZATION_UNKNOWN;     // wrong connection
2376     if (!sm_conn->sm_connection_encrypted)               return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
2377     if (!sm_conn->sm_connection_authenticated)           return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
2378     return sm_conn->sm_connection_authorization_state;
2379 }
2380 
2381 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
2382     switch (sm_conn->sm_engine_state){
2383         case SM_GENERAL_IDLE:
2384         case SM_RESPONDER_IDLE:
2385             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
2386             sm_run();
2387             break;
2388         default:
2389             break;
2390     }
2391 }
2392 
2393 /**
2394  * @brief Trigger Security Request
2395  */
2396 void sm_send_security_request(uint16_t handle){
2397     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2398     if (!sm_conn) return;
2399     sm_send_security_request_for_connection(sm_conn);
2400 }
2401 
2402 // request pairing
2403 void sm_request_pairing(uint16_t handle){
2404     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2405     if (!sm_conn) return;     // wrong connection
2406 
2407     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
2408     if (sm_conn->sm_role){
2409         sm_send_security_request_for_connection(sm_conn);
2410     } else {
2411         // used as a trigger to start central/master/initiator security procedures
2412             uint16_t ediv;
2413             if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
2414             switch (sm_conn->sm_irk_lookup_state){
2415                 case IRK_LOOKUP_FAILED:
2416                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2417                     break;
2418                 case IRK_LOOKUP_SUCCEEDED:
2419                         le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
2420                         if (ediv){
2421                             log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
2422                             sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
2423                         } else {
2424                             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2425                         }
2426                         break;
2427                 default:
2428                     sm_conn->sm_bonding_requested = 1;
2429                     break;
2430             }
2431         }
2432     }
2433     sm_run();
2434 }
2435 
2436 // called by client app on authorization request
2437 void sm_authorization_decline(uint16_t handle){
2438     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2439     if (!sm_conn) return;     // wrong connection
2440     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
2441     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
2442 }
2443 
2444 void sm_authorization_grant(uint16_t handle){
2445     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2446     if (!sm_conn) return;     // wrong connection
2447     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
2448     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
2449 }
2450 
2451 // GAP Bonding API
2452 
2453 void sm_bonding_decline(uint16_t handle){
2454     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2455     if (!sm_conn) return;     // wrong connection
2456     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
2457 
2458     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
2459         sm_done_for_handle(sm_conn->sm_handle);
2460         setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
2461         sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2462     }
2463     sm_run();
2464 }
2465 
2466 void sm_just_works_confirm(uint16_t handle){
2467     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2468     if (!sm_conn) return;     // wrong connection
2469     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
2470     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
2471         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2472     }
2473     sm_run();
2474 }
2475 
2476 void sm_passkey_input(uint16_t handle, uint32_t passkey){
2477     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2478     if (!sm_conn) return;     // wrong connection
2479     sm_reset_tk();
2480     net_store_32(setup->sm_tk, 12, passkey);
2481     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
2482     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
2483         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2484     }
2485     sm_run();
2486 }
2487 
2488 /**
2489  * @brief Identify device in LE Device DB
2490  * @param handle
2491  * @returns index from le_device_db or -1 if not found/identified
2492  */
2493 int sm_le_device_index(uint16_t handle ){
2494     sm_connection_t * sm_conn = sm_get_connection_for_handle(handle);
2495     if (!sm_conn) return -1;
2496     return sm_conn->sm_le_db_index;
2497 }
2498 
2499 // GAP LE API
2500 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
2501     gap_random_address_update_stop();
2502     gap_random_adress_type = random_address_type;
2503     if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
2504     gap_random_address_update_start();
2505     gap_random_address_trigger();
2506 }
2507 
2508 gap_random_address_type_t gap_random_address_get_mode(void){
2509     return gap_random_adress_type;
2510 }
2511 
2512 void gap_random_address_set_update_period(int period_ms){
2513     gap_random_adress_update_period = period_ms;
2514     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
2515     gap_random_address_update_stop();
2516     gap_random_address_update_start();
2517 }
2518 
2519 void gap_random_address_set(bd_addr_t addr){
2520     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_OFF);
2521     memcpy(sm_random_address, addr, 6);
2522     rau_state = RAU_SET_ADDRESS;
2523     sm_run();
2524 }
2525 
2526 /*
2527  * @brief Set Advertisement Paramters
2528  * @param adv_int_min
2529  * @param adv_int_max
2530  * @param adv_type
2531  * @param direct_address_type
2532  * @param direct_address
2533  * @param channel_map
2534  * @param filter_policy
2535  *
2536  * @note own_address_type is used from gap_random_address_set_mode
2537  */
2538 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
2539     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
2540     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, gap_random_adress_type,
2541         direct_address_typ, direct_address, channel_map, filter_policy);
2542 }
2543 
2544