xref: /btstack/src/ble/sm.c (revision 308e35cf33f6937b53ef6c055adea9d10e215e1a)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
24  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "sm.c"
39 
40 #include <string.h>
41 #include <inttypes.h>
42 
43 #include "ble/le_device_db.h"
44 #include "ble/core.h"
45 #include "ble/sm.h"
46 #include "bluetooth_company_id.h"
47 #include "btstack_bool.h"
48 #include "btstack_crypto.h"
49 #include "btstack_debug.h"
50 #include "btstack_event.h"
51 #include "btstack_linked_list.h"
52 #include "btstack_memory.h"
53 #include "btstack_tlv.h"
54 #include "gap.h"
55 #include "hci.h"
56 #include "hci_dump.h"
57 #include "l2cap.h"
58 
59 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL)
60 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h."
61 #endif
62 
63 #if defined(ENABLE_CROSS_TRANSPORT_KEY_DERIVATION) && (!defined(ENABLE_CLASSIC) || !defined(ENABLE_LE_SECURE_CONNECTIONS))
64 #error "Cross Transport Key Derivation requires support for LE Secure Connections and BR/EDR (Classic)"
65 #endif
66 
67 // assert SM Public Key can be sent/received
68 #ifdef ENABLE_LE_SECURE_CONNECTIONS
69 #if HCI_ACL_PAYLOAD_SIZE < 69
70 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS"
71 #endif
72 #endif
73 
74 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL)
75 #define IS_RESPONDER(role) ((role) == HCI_ROLE_SLAVE)
76 #else
77 #ifdef ENABLE_LE_CENTRAL
78 // only central - never responder (avoid 'unused variable' warnings)
79 #define IS_RESPONDER(role) (0 && ((role) == HCI_ROLE_SLAVE))
80 #else
81 // only peripheral - always responder (avoid 'unused variable' warnings)
82 #define IS_RESPONDER(role) (1 || ((role) == HCI_ROLE_SLAVE))
83 #endif
84 #endif
85 
86 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS)
87 #define USE_CMAC_ENGINE
88 #endif
89 
90 
91 #define BTSTACK_TAG32(A,B,C,D) (((A) << 24) | ((B) << 16) | ((C) << 8) | (D))
92 
93 //
94 // SM internal types and globals
95 //
96 
97 typedef enum {
98     DKG_W4_WORKING,
99     DKG_CALC_IRK,
100     DKG_CALC_DHK,
101     DKG_READY
102 } derived_key_generation_t;
103 
104 typedef enum {
105     RAU_IDLE,
106     RAU_GET_RANDOM,
107     RAU_W4_RANDOM,
108     RAU_GET_ENC,
109     RAU_W4_ENC,
110 } random_address_update_t;
111 
112 typedef enum {
113     CMAC_IDLE,
114     CMAC_CALC_SUBKEYS,
115     CMAC_W4_SUBKEYS,
116     CMAC_CALC_MI,
117     CMAC_W4_MI,
118     CMAC_CALC_MLAST,
119     CMAC_W4_MLAST
120 } cmac_state_t;
121 
122 typedef enum {
123     JUST_WORKS,
124     PK_RESP_INPUT,       // Initiator displays PK, responder inputs PK
125     PK_INIT_INPUT,       // Responder displays PK, initiator inputs PK
126     PK_BOTH_INPUT,       // Only input on both, both input PK
127     NUMERIC_COMPARISON,  // Only numerical compparison (yes/no) on on both sides
128     OOB                  // OOB available on one (SC) or both sides (legacy)
129 } stk_generation_method_t;
130 
131 typedef enum {
132     SM_USER_RESPONSE_IDLE,
133     SM_USER_RESPONSE_PENDING,
134     SM_USER_RESPONSE_CONFIRM,
135     SM_USER_RESPONSE_PASSKEY,
136     SM_USER_RESPONSE_DECLINE
137 } sm_user_response_t;
138 
139 typedef enum {
140     SM_AES128_IDLE,
141     SM_AES128_ACTIVE
142 } sm_aes128_state_t;
143 
144 typedef enum {
145     ADDRESS_RESOLUTION_IDLE,
146     ADDRESS_RESOLUTION_GENERAL,
147     ADDRESS_RESOLUTION_FOR_CONNECTION,
148 } address_resolution_mode_t;
149 
150 typedef enum {
151     ADDRESS_RESOLUTION_SUCCEEDED,
152     ADDRESS_RESOLUTION_FAILED,
153 } address_resolution_event_t;
154 
155 typedef enum {
156     EC_KEY_GENERATION_IDLE,
157     EC_KEY_GENERATION_ACTIVE,
158     EC_KEY_GENERATION_DONE,
159 } ec_key_generation_state_t;
160 
161 typedef enum {
162     SM_STATE_VAR_DHKEY_NEEDED = 1 << 0,
163     SM_STATE_VAR_DHKEY_CALCULATED = 1 << 1,
164     SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 2,
165 } sm_state_var_t;
166 
167 typedef enum {
168     SM_SC_OOB_IDLE,
169     SM_SC_OOB_W4_RANDOM,
170     SM_SC_OOB_W2_CALC_CONFIRM,
171     SM_SC_OOB_W4_CONFIRM,
172 } sm_sc_oob_state_t;
173 
174 typedef uint8_t sm_key24_t[3];
175 typedef uint8_t sm_key56_t[7];
176 typedef uint8_t sm_key256_t[32];
177 
178 //
179 // GLOBAL DATA
180 //
181 
182 static bool sm_initialized;
183 
184 static bool test_use_fixed_local_csrk;
185 static bool test_use_fixed_local_irk;
186 
187 #ifdef ENABLE_TESTING_SUPPORT
188 static uint8_t test_pairing_failure;
189 #endif
190 
191 // configuration
192 static uint8_t sm_accepted_stk_generation_methods;
193 static uint8_t sm_max_encryption_key_size;
194 static uint8_t sm_min_encryption_key_size;
195 static uint8_t sm_auth_req = 0;
196 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
197 static uint32_t sm_fixed_passkey_in_display_role;
198 static bool sm_reconstruct_ltk_without_le_device_db_entry;
199 
200 #ifdef ENABLE_LE_PERIPHERAL
201 static bool sm_slave_request_security;
202 #endif
203 
204 #ifdef ENABLE_LE_SECURE_CONNECTIONS
205 static bool sm_sc_only_mode;
206 static uint8_t sm_sc_oob_random[16];
207 static void (*sm_sc_oob_callback)(const uint8_t * confirm_value, const uint8_t * random_value);
208 static sm_sc_oob_state_t sm_sc_oob_state;
209 #ifdef ENABLE_LE_SECURE_CONNECTIONS_DEBUG_KEY
210 static bool sm_sc_debug_keys_enabled;
211 #endif
212 #endif
213 
214 
215 static bool                  sm_persistent_keys_random_active;
216 static const btstack_tlv_t * sm_tlv_impl;
217 static void *                sm_tlv_context;
218 
219 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
220 static sm_key_t sm_persistent_er;
221 static sm_key_t sm_persistent_ir;
222 
223 // derived from sm_persistent_ir
224 static sm_key_t sm_persistent_dhk;
225 static sm_key_t sm_persistent_irk;
226 static derived_key_generation_t dkg_state;
227 
228 // derived from sm_persistent_er
229 // ..
230 
231 // random address update
232 static random_address_update_t rau_state;
233 static bd_addr_t sm_random_address;
234 
235 #ifdef USE_CMAC_ENGINE
236 // CMAC Calculation: General
237 static btstack_crypto_aes128_cmac_t sm_cmac_request;
238 static void (*sm_cmac_done_callback)(uint8_t hash[8]);
239 static uint8_t sm_cmac_active;
240 static uint8_t sm_cmac_hash[16];
241 #endif
242 
243 // CMAC for ATT Signed Writes
244 #ifdef ENABLE_LE_SIGNED_WRITE
245 static uint16_t        sm_cmac_signed_write_message_len;
246 static uint8_t         sm_cmac_signed_write_header[3];
247 static const uint8_t * sm_cmac_signed_write_message;
248 static uint8_t         sm_cmac_signed_write_sign_counter[4];
249 #endif
250 
251 // CMAC for Secure Connection functions
252 #ifdef ENABLE_LE_SECURE_CONNECTIONS
253 static sm_connection_t * sm_cmac_connection;
254 static uint8_t           sm_cmac_sc_buffer[80];
255 #endif
256 
257 // resolvable private address lookup / CSRK calculation
258 static int       sm_address_resolution_test;
259 static uint8_t   sm_address_resolution_addr_type;
260 static bd_addr_t sm_address_resolution_address;
261 static void *    sm_address_resolution_context;
262 static address_resolution_mode_t sm_address_resolution_mode;
263 static btstack_linked_list_t sm_address_resolution_general_queue;
264 
265 // aes128 crypto engine.
266 static sm_aes128_state_t  sm_aes128_state;
267 
268 // crypto
269 static btstack_crypto_random_t   sm_crypto_random_request;
270 static btstack_crypto_aes128_t   sm_crypto_aes128_request;
271 #ifdef ENABLE_LE_SECURE_CONNECTIONS
272 static btstack_crypto_ecc_p256_t sm_crypto_ecc_p256_request;
273 #endif
274 
275 // temp storage for random data
276 static uint8_t sm_random_data[8];
277 static uint8_t sm_aes128_key[16];
278 static uint8_t sm_aes128_plaintext[16];
279 static uint8_t sm_aes128_ciphertext[16];
280 
281 // to receive events
282 static btstack_packet_callback_registration_t hci_event_callback_registration;
283 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
284 static btstack_packet_callback_registration_t l2cap_event_callback_registration;
285 #endif
286 
287 /* to dispatch sm event */
288 static btstack_linked_list_t sm_event_handlers;
289 
290 /* to schedule calls to sm_run */
291 static btstack_timer_source_t sm_run_timer;
292 
293 // LE Secure Connections
294 #ifdef ENABLE_LE_SECURE_CONNECTIONS
295 static ec_key_generation_state_t ec_key_generation_state;
296 static uint8_t ec_q[64];
297 #endif
298 
299 //
300 // Volume 3, Part H, Chapter 24
301 // "Security shall be initiated by the Security Manager in the device in the master role.
302 // The device in the slave role shall be the responding device."
303 // -> master := initiator, slave := responder
304 //
305 
306 // data needed for security setup
307 typedef struct sm_setup_context {
308 
309     btstack_timer_source_t sm_timeout;
310 
311     // user response, (Phase 1 and/or 2)
312     uint8_t   sm_user_response;
313     uint8_t   sm_keypress_notification; // bitmap: passkey started, digit entered, digit erased, passkey cleared, passkey complete, 3 bit count
314 
315     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
316     uint8_t   sm_key_distribution_send_set;
317     uint8_t   sm_key_distribution_sent_set;
318     uint8_t   sm_key_distribution_expected_set;
319     uint8_t   sm_key_distribution_received_set;
320 
321     // Phase 2 (Pairing over SMP)
322     stk_generation_method_t sm_stk_generation_method;
323     sm_key_t  sm_tk;
324     uint8_t   sm_have_oob_data;
325     bool      sm_use_secure_connections;
326 
327     sm_key_t  sm_c1_t3_value;   // c1 calculation
328     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
329     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
330     sm_key_t  sm_local_random;
331     sm_key_t  sm_local_confirm;
332     sm_key_t  sm_peer_random;
333     sm_key_t  sm_peer_confirm;
334     uint8_t   sm_m_addr_type;   // address and type can be removed
335     uint8_t   sm_s_addr_type;   //  ''
336     bd_addr_t sm_m_address;     //  ''
337     bd_addr_t sm_s_address;     //  ''
338     sm_key_t  sm_ltk;
339 
340     uint8_t   sm_state_vars;
341 #ifdef ENABLE_LE_SECURE_CONNECTIONS
342     uint8_t   sm_peer_q[64];    // also stores random for EC key generation during init
343     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
344     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
345     uint8_t   sm_dhkey[32];
346     sm_key_t  sm_peer_dhkey_check;
347     sm_key_t  sm_local_dhkey_check;
348     sm_key_t  sm_ra;
349     sm_key_t  sm_rb;
350     sm_key_t  sm_t;             // used for f5 and h6
351     sm_key_t  sm_mackey;
352     uint8_t   sm_passkey_bit;   // also stores number of generated random bytes for EC key generation
353 #endif
354 
355     // Phase 3
356 
357     // key distribution, we generate
358     uint16_t  sm_local_y;
359     uint16_t  sm_local_div;
360     uint16_t  sm_local_ediv;
361     uint8_t   sm_local_rand[8];
362     sm_key_t  sm_local_ltk;
363     sm_key_t  sm_local_csrk;
364     sm_key_t  sm_local_irk;
365     // sm_local_address/addr_type not needed
366 
367     // key distribution, received from peer
368     uint16_t  sm_peer_y;
369     uint16_t  sm_peer_div;
370     uint16_t  sm_peer_ediv;
371     uint8_t   sm_peer_rand[8];
372     sm_key_t  sm_peer_ltk;
373     sm_key_t  sm_peer_irk;
374     sm_key_t  sm_peer_csrk;
375     uint8_t   sm_peer_addr_type;
376     bd_addr_t sm_peer_address;
377 #ifdef ENABLE_LE_SIGNED_WRITE
378     int       sm_le_device_index;
379 #endif
380 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
381     link_key_t sm_link_key;
382     link_key_type_t sm_link_key_type;
383 #endif
384 } sm_setup_context_t;
385 
386 //
387 static sm_setup_context_t the_setup;
388 static sm_setup_context_t * setup = &the_setup;
389 
390 // active connection - the one for which the_setup is used for
391 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
392 
393 // @return 1 if oob data is available
394 // stores oob data in provided 16 byte buffer if not null
395 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
396 static int (*sm_get_sc_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random);
397 static bool (*sm_get_ltk_callback)(hci_con_handle_t con_handle, uint8_t addres_type, bd_addr_t addr, uint8_t * ltk);
398 
399 static void sm_run(void);
400 static void sm_state_reset(void);
401 static void sm_done_for_handle(hci_con_handle_t con_handle);
402 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
403 static void sm_cache_ltk(sm_connection_t * connection, const sm_key_t ltk);
404 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
405 static sm_connection_t * sm_get_connection_for_bd_addr_and_type(bd_addr_t address, bd_addr_type_t addr_type);
406 #endif
407 static inline int sm_calc_actual_encryption_key_size(int other);
408 static int sm_validate_stk_generation_method(void);
409 static void sm_handle_encryption_result_address_resolution(void *arg);
410 static void sm_handle_encryption_result_dkg_dhk(void *arg);
411 static void sm_handle_encryption_result_dkg_irk(void *arg);
412 static void sm_handle_encryption_result_enc_a(void *arg);
413 static void sm_handle_encryption_result_enc_b(void *arg);
414 static void sm_handle_encryption_result_enc_c(void *arg);
415 static void sm_handle_encryption_result_enc_csrk(void *arg);
416 static void sm_handle_encryption_result_enc_d(void * arg);
417 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg);
418 static void sm_handle_encryption_result_enc_ph3_y(void *arg);
419 #ifdef ENABLE_LE_PERIPHERAL
420 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg);
421 static void sm_handle_encryption_result_enc_ph4_y(void *arg);
422 #endif
423 static void sm_handle_encryption_result_enc_stk(void *arg);
424 static void sm_handle_encryption_result_rau(void *arg);
425 static void sm_handle_random_result_ph2_tk(void * arg);
426 static void sm_handle_random_result_rau(void * arg);
427 #ifdef ENABLE_LE_SECURE_CONNECTIONS
428 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash));
429 static void sm_ec_generate_new_key(void);
430 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg);
431 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg);
432 static bool sm_passkey_entry(stk_generation_method_t method);
433 #endif
434 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason);
435 
436 static void log_info_hex16(const char * name, uint16_t value){
437     log_info("%-6s 0x%04x", name, value);
438 }
439 
440 // static inline uint8_t sm_pairing_packet_get_code(sm_pairing_packet_t packet){
441 //     return packet[0];
442 // }
443 static inline uint8_t sm_pairing_packet_get_io_capability(sm_pairing_packet_t packet){
444     return packet[1];
445 }
446 static inline uint8_t sm_pairing_packet_get_oob_data_flag(sm_pairing_packet_t packet){
447     return packet[2];
448 }
449 static inline uint8_t sm_pairing_packet_get_auth_req(sm_pairing_packet_t packet){
450     return packet[3];
451 }
452 static inline uint8_t sm_pairing_packet_get_max_encryption_key_size(sm_pairing_packet_t packet){
453     return packet[4];
454 }
455 static inline uint8_t sm_pairing_packet_get_initiator_key_distribution(sm_pairing_packet_t packet){
456     return packet[5];
457 }
458 static inline uint8_t sm_pairing_packet_get_responder_key_distribution(sm_pairing_packet_t packet){
459     return packet[6];
460 }
461 
462 static inline void sm_pairing_packet_set_code(sm_pairing_packet_t packet, uint8_t code){
463     packet[0] = code;
464 }
465 static inline void sm_pairing_packet_set_io_capability(sm_pairing_packet_t packet, uint8_t io_capability){
466     packet[1] = io_capability;
467 }
468 static inline void sm_pairing_packet_set_oob_data_flag(sm_pairing_packet_t packet, uint8_t oob_data_flag){
469     packet[2] = oob_data_flag;
470 }
471 static inline void sm_pairing_packet_set_auth_req(sm_pairing_packet_t packet, uint8_t auth_req){
472     packet[3] = auth_req;
473 }
474 static inline void sm_pairing_packet_set_max_encryption_key_size(sm_pairing_packet_t packet, uint8_t max_encryption_key_size){
475     packet[4] = max_encryption_key_size;
476 }
477 static inline void sm_pairing_packet_set_initiator_key_distribution(sm_pairing_packet_t packet, uint8_t initiator_key_distribution){
478     packet[5] = initiator_key_distribution;
479 }
480 static inline void sm_pairing_packet_set_responder_key_distribution(sm_pairing_packet_t packet, uint8_t responder_key_distribution){
481     packet[6] = responder_key_distribution;
482 }
483 
484 static bool sm_is_null_random(uint8_t random[8]){
485     return btstack_is_null(random, 8);
486 }
487 
488 static bool sm_is_null_key(uint8_t * key){
489     return btstack_is_null(key, 16);
490 }
491 
492 #ifdef ENABLE_LE_SECURE_CONNECTIONS
493 static bool sm_is_ff(const uint8_t * buffer, uint16_t size){
494     uint16_t i;
495     for (i=0; i < size ; i++){
496         if (buffer[i] != 0xff) {
497             return false;
498         }
499     }
500     return true;
501 }
502 #endif
503 
504 // sm_trigger_run allows to schedule callback from main run loop // reduces stack depth
505 static void sm_run_timer_handler(btstack_timer_source_t * ts){
506 	UNUSED(ts);
507 	sm_run();
508 }
509 static void sm_trigger_run(void){
510     if (!sm_initialized) return;
511 	(void)btstack_run_loop_remove_timer(&sm_run_timer);
512 	btstack_run_loop_set_timer(&sm_run_timer, 0);
513 	btstack_run_loop_add_timer(&sm_run_timer);
514 }
515 
516 // Key utils
517 static void sm_reset_tk(void){
518     int i;
519     for (i=0;i<16;i++){
520         setup->sm_tk[i] = 0;
521     }
522 }
523 
524 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
525 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
526 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
527     int i;
528     for (i = max_encryption_size ; i < 16 ; i++){
529         key[15-i] = 0;
530     }
531 }
532 
533 // ER / IR checks
534 static void sm_er_ir_set_default(void){
535     int i;
536     for (i=0;i<16;i++){
537         sm_persistent_er[i] = 0x30 + i;
538         sm_persistent_ir[i] = 0x90 + i;
539     }
540 }
541 
542 static bool sm_er_is_default(void){
543     int i;
544     for (i=0;i<16;i++){
545         if (sm_persistent_er[i] != (0x30+i)) return true;
546     }
547     return false;
548 }
549 
550 static bool sm_ir_is_default(void){
551     int i;
552     for (i=0;i<16;i++){
553         if (sm_persistent_ir[i] != (0x90+i)) return true;
554     }
555     return false;
556 }
557 
558 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
559     UNUSED(channel);
560 
561     // log event
562     hci_dump_packet(packet_type, 1, packet, size);
563     // dispatch to all event handlers
564     btstack_linked_list_iterator_t it;
565     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
566     while (btstack_linked_list_iterator_has_next(&it)){
567         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
568         entry->callback(packet_type, 0, packet, size);
569     }
570 }
571 
572 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
573     event[0] = type;
574     event[1] = event_size - 2;
575     little_endian_store_16(event, 2, con_handle);
576     event[4] = addr_type;
577     reverse_bd_addr(address, &event[5]);
578 }
579 
580 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
581     uint8_t event[11];
582     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
583     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
584 }
585 
586 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
587     // fetch addr and addr type from db, only called for valid entries
588     bd_addr_t identity_address;
589     int identity_address_type;
590     le_device_db_info(index, &identity_address_type, identity_address, NULL);
591 
592     uint8_t event[20];
593     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
594     event[11] = identity_address_type;
595     reverse_bd_addr(identity_address, &event[12]);
596     little_endian_store_16(event, 18, index);
597     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
598 }
599 
600 static void sm_notify_client_status(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t status){
601     uint8_t event[12];
602     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
603     event[11] = status;
604     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
605 }
606 
607 
608 static void sm_reencryption_started(sm_connection_t * sm_conn){
609 
610     if (sm_conn->sm_reencryption_active) return;
611 
612     sm_conn->sm_reencryption_active = true;
613 
614     int       identity_addr_type;
615     bd_addr_t identity_addr;
616     if (sm_conn->sm_le_db_index >= 0){
617         // fetch addr and addr type from db, only called for valid entries
618         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
619     } else {
620         // for legacy pairing with LTK re-construction, use current peer addr
621         identity_addr_type = sm_conn->sm_peer_addr_type;
622         // cppcheck-suppress uninitvar ; identity_addr is reported as uninitialized although it's the destination of the memcpy
623         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
624     }
625 
626     sm_notify_client_base(SM_EVENT_REENCRYPTION_STARTED, sm_conn->sm_handle, identity_addr_type, identity_addr);
627 }
628 
629 static void sm_reencryption_complete(sm_connection_t * sm_conn, uint8_t status){
630 
631     if (!sm_conn->sm_reencryption_active) return;
632 
633     sm_conn->sm_reencryption_active = false;
634 
635     int       identity_addr_type;
636     bd_addr_t identity_addr;
637     if (sm_conn->sm_le_db_index >= 0){
638         // fetch addr and addr type from db, only called for valid entries
639         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
640     } else {
641         // for legacy pairing with LTK re-construction, use current peer addr
642         identity_addr_type = sm_conn->sm_peer_addr_type;
643         // cppcheck-suppress uninitvar ; identity_addr is reported as uninitialized although it's the destination of the memcpy
644         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
645     }
646 
647     sm_notify_client_status(SM_EVENT_REENCRYPTION_COMPLETE, sm_conn->sm_handle, identity_addr_type, identity_addr, status);
648 }
649 
650 static void sm_pairing_started(sm_connection_t * sm_conn){
651 
652     if (sm_conn->sm_pairing_active) return;
653 
654     sm_conn->sm_pairing_active = true;
655 
656     uint8_t event[11];
657     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_STARTED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
658     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
659 }
660 
661 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason){
662 
663     if (!sm_conn->sm_pairing_active) return;
664 
665     sm_conn->sm_pairing_active = false;
666 
667     uint8_t event[13];
668     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_COMPLETE, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
669     event[11] = status;
670     event[12] = reason;
671     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
672 }
673 
674 // SMP Timeout implementation
675 
676 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
677 // the Security Manager Timer shall be reset and started.
678 //
679 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
680 //
681 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
682 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
683 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
684 // established.
685 
686 static void sm_timeout_handler(btstack_timer_source_t * timer){
687     log_info("SM timeout");
688     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
689     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
690     sm_reencryption_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT);
691     sm_pairing_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT, 0);
692     sm_done_for_handle(sm_conn->sm_handle);
693 
694     // trigger handling of next ready connection
695     sm_run();
696 }
697 static void sm_timeout_start(sm_connection_t * sm_conn){
698     btstack_run_loop_remove_timer(&setup->sm_timeout);
699     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
700     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
701     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
702     btstack_run_loop_add_timer(&setup->sm_timeout);
703 }
704 static void sm_timeout_stop(void){
705     btstack_run_loop_remove_timer(&setup->sm_timeout);
706 }
707 static void sm_timeout_reset(sm_connection_t * sm_conn){
708     sm_timeout_stop();
709     sm_timeout_start(sm_conn);
710 }
711 
712 // end of sm timeout
713 
714 // GAP Random Address updates
715 static gap_random_address_type_t gap_random_adress_type;
716 static btstack_timer_source_t gap_random_address_update_timer;
717 static uint32_t gap_random_adress_update_period;
718 
719 static void gap_random_address_trigger(void){
720     log_info("gap_random_address_trigger, state %u", rau_state);
721     if (rau_state != RAU_IDLE) return;
722     rau_state = RAU_GET_RANDOM;
723     sm_trigger_run();
724 }
725 
726 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
727     UNUSED(timer);
728 
729     log_info("GAP Random Address Update due");
730     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
731     btstack_run_loop_add_timer(&gap_random_address_update_timer);
732     gap_random_address_trigger();
733 }
734 
735 static void gap_random_address_update_start(void){
736     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
737     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
738     btstack_run_loop_add_timer(&gap_random_address_update_timer);
739 }
740 
741 static void gap_random_address_update_stop(void){
742     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
743 }
744 
745 // ah(k,r) helper
746 // r = padding || r
747 // r - 24 bit value
748 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){
749     // r'= padding || r
750     memset(r_prime, 0, 16);
751     (void)memcpy(&r_prime[13], r, 3);
752 }
753 
754 // d1 helper
755 // d' = padding || r || d
756 // d,r - 16 bit values
757 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){
758     // d'= padding || r || d
759     memset(d1_prime, 0, 16);
760     big_endian_store_16(d1_prime, 12, r);
761     big_endian_store_16(d1_prime, 14, d);
762 }
763 
764 // calculate arguments for first AES128 operation in C1 function
765 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){
766 
767     // p1 = pres || preq || rat’ || iat’
768     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
769     // cant octet of pres becomes the most significant octet of p1.
770     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
771     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
772     // p1 is 0x05000800000302070710000001010001."
773 
774     sm_key_t p1;
775     reverse_56(pres, &p1[0]);
776     reverse_56(preq, &p1[7]);
777     p1[14] = rat;
778     p1[15] = iat;
779     log_info_key("p1", p1);
780     log_info_key("r", r);
781 
782     // t1 = r xor p1
783     int i;
784     for (i=0;i<16;i++){
785         t1[i] = r[i] ^ p1[i];
786     }
787     log_info_key("t1", t1);
788 }
789 
790 // calculate arguments for second AES128 operation in C1 function
791 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){
792      // p2 = padding || ia || ra
793     // "The least significant octet of ra becomes the least significant octet of p2 and
794     // the most significant octet of padding becomes the most significant octet of p2.
795     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
796     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
797 
798     sm_key_t p2;
799     // cppcheck-suppress uninitvar ; p2 is reported as uninitialized
800     memset(p2, 0, 16);
801     (void)memcpy(&p2[4], ia, 6);
802     (void)memcpy(&p2[10], ra, 6);
803     log_info_key("p2", p2);
804 
805     // c1 = e(k, t2_xor_p2)
806     int i;
807     for (i=0;i<16;i++){
808         t3[i] = t2[i] ^ p2[i];
809     }
810     log_info_key("t3", t3);
811 }
812 
813 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){
814     log_info_key("r1", r1);
815     log_info_key("r2", r2);
816     (void)memcpy(&r_prime[8], &r2[8], 8);
817     (void)memcpy(&r_prime[0], &r1[8], 8);
818 }
819 
820 
821 // decide on stk generation based on
822 // - pairing request
823 // - io capabilities
824 // - OOB data availability
825 static void sm_setup_tk(void){
826 
827     // horizontal: initiator capabilities
828     // vertial:    responder capabilities
829     static const stk_generation_method_t stk_generation_method [5] [5] = {
830             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
831             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
832             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
833             { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
834             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
835     };
836 
837     // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
838 #ifdef ENABLE_LE_SECURE_CONNECTIONS
839     static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
840             { JUST_WORKS,      JUST_WORKS,         PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT      },
841             { JUST_WORKS,      NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
842             { PK_RESP_INPUT,   PK_RESP_INPUT,      PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT      },
843             { JUST_WORKS,      JUST_WORKS,         JUST_WORKS,      JUST_WORKS,    JUST_WORKS         },
844             { PK_RESP_INPUT,   NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
845     };
846 #endif
847 
848     // default: just works
849     setup->sm_stk_generation_method = JUST_WORKS;
850 
851 #ifdef ENABLE_LE_SECURE_CONNECTIONS
852     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
853                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
854                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0u;
855 #else
856     setup->sm_use_secure_connections = false;
857 #endif
858     log_info("Secure pairing: %u", setup->sm_use_secure_connections);
859 
860 
861     // decide if OOB will be used based on SC vs. Legacy and oob flags
862     bool use_oob;
863     if (setup->sm_use_secure_connections){
864         // In LE Secure Connections pairing, the out of band method is used if at least
865         // one device has the peer device's out of band authentication data available.
866         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) | sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
867     } else {
868         // In LE legacy pairing, the out of band method is used if both the devices have
869         // the other device's out of band authentication data available.
870         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) & sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
871     }
872     if (use_oob){
873         log_info("SM: have OOB data");
874         log_info_key("OOB", setup->sm_tk);
875         setup->sm_stk_generation_method = OOB;
876         return;
877     }
878 
879     // If both devices have not set the MITM option in the Authentication Requirements
880     // Flags, then the IO capabilities shall be ignored and the Just Works association
881     // model shall be used.
882     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0u)
883         &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0u)){
884         log_info("SM: MITM not required by both -> JUST WORKS");
885         return;
886     }
887 
888     // Reset TK as it has been setup in sm_init_setup
889     sm_reset_tk();
890 
891     // Also use just works if unknown io capabilites
892     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
893         return;
894     }
895 
896     // Otherwise the IO capabilities of the devices shall be used to determine the
897     // pairing method as defined in Table 2.4.
898     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
899     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
900 
901 #ifdef ENABLE_LE_SECURE_CONNECTIONS
902     // table not define by default
903     if (setup->sm_use_secure_connections){
904         generation_method = stk_generation_method_with_secure_connection;
905     }
906 #endif
907     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
908 
909     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
910         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
911 }
912 
913 static int sm_key_distribution_flags_for_set(uint8_t key_set){
914     int flags = 0;
915     if ((key_set & SM_KEYDIST_ENC_KEY) != 0u){
916         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
917         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
918     }
919     if ((key_set & SM_KEYDIST_ID_KEY) != 0u){
920         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
921         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
922     }
923     if ((key_set & SM_KEYDIST_SIGN) != 0u){
924         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
925     }
926     return flags;
927 }
928 
929 static void sm_setup_key_distribution(uint8_t keys_to_send, uint8_t keys_to_receive){
930     setup->sm_key_distribution_received_set = 0;
931     setup->sm_key_distribution_expected_set = sm_key_distribution_flags_for_set(keys_to_receive);
932     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(keys_to_send);
933     setup->sm_key_distribution_sent_set = 0;
934 #ifdef ENABLE_LE_SIGNED_WRITE
935     setup->sm_le_device_index = -1;
936 #endif
937 }
938 
939 // CSRK Key Lookup
940 
941 
942 static bool sm_address_resolution_idle(void){
943     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
944 }
945 
946 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
947     (void)memcpy(sm_address_resolution_address, addr, 6);
948     sm_address_resolution_addr_type = addr_type;
949     sm_address_resolution_test = 0;
950     sm_address_resolution_mode = mode;
951     sm_address_resolution_context = context;
952     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
953 }
954 
955 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
956     // check if already in list
957     btstack_linked_list_iterator_t it;
958     sm_lookup_entry_t * entry;
959     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
960     while(btstack_linked_list_iterator_has_next(&it)){
961         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
962         if (entry->address_type != address_type) continue;
963         if (memcmp(entry->address, address, 6) != 0)  continue;
964         // already in list
965         return BTSTACK_BUSY;
966     }
967     entry = btstack_memory_sm_lookup_entry_get();
968     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
969     entry->address_type = (bd_addr_type_t) address_type;
970     (void)memcpy(entry->address, address, 6);
971     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
972     sm_trigger_run();
973     return 0;
974 }
975 
976 // CMAC calculation using AES Engineq
977 #ifdef USE_CMAC_ENGINE
978 
979 static void sm_cmac_done_trampoline(void * arg){
980     UNUSED(arg);
981     sm_cmac_active = 0;
982     (*sm_cmac_done_callback)(sm_cmac_hash);
983     sm_trigger_run();
984 }
985 
986 int sm_cmac_ready(void){
987     return sm_cmac_active == 0u;
988 }
989 #endif
990 
991 #ifdef ENABLE_LE_SECURE_CONNECTIONS
992 // generic cmac calculation
993 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash)){
994     sm_cmac_active = 1;
995     sm_cmac_done_callback = done_callback;
996     btstack_crypto_aes128_cmac_message(&sm_cmac_request, key, message_len, message, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
997 }
998 #endif
999 
1000 // cmac for ATT Message signing
1001 #ifdef ENABLE_LE_SIGNED_WRITE
1002 
1003 static void sm_cmac_generator_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t * hash)){
1004     sm_cmac_active = 1;
1005     sm_cmac_done_callback = done_callback;
1006     btstack_crypto_aes128_cmac_generator(&sm_cmac_request, key, message_len, get_byte_callback, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
1007 }
1008 
1009 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){
1010     if (offset >= sm_cmac_signed_write_message_len) {
1011         log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_signed_write_message_len);
1012         return 0;
1013     }
1014 
1015     offset = sm_cmac_signed_write_message_len - 1 - offset;
1016 
1017     // sm_cmac_signed_write_header[3] | message[] | sm_cmac_signed_write_sign_counter[4]
1018     if (offset < 3){
1019         return sm_cmac_signed_write_header[offset];
1020     }
1021     int actual_message_len_incl_header = sm_cmac_signed_write_message_len - 4;
1022     if (offset <  actual_message_len_incl_header){
1023         return sm_cmac_signed_write_message[offset - 3];
1024     }
1025     return sm_cmac_signed_write_sign_counter[offset - actual_message_len_incl_header];
1026 }
1027 
1028 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
1029     // ATT Message Signing
1030     sm_cmac_signed_write_header[0] = opcode;
1031     little_endian_store_16(sm_cmac_signed_write_header, 1, con_handle);
1032     little_endian_store_32(sm_cmac_signed_write_sign_counter, 0, sign_counter);
1033     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
1034     sm_cmac_signed_write_message     = message;
1035     sm_cmac_signed_write_message_len = total_message_len;
1036     sm_cmac_generator_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler);
1037 }
1038 #endif
1039 
1040 static void sm_trigger_user_response_basic(sm_connection_t * sm_conn, uint8_t event_type){
1041     setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1042     uint8_t event[12];
1043     sm_setup_event_base(event, sizeof(event), event_type, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1044     event[11] = setup->sm_use_secure_connections ? 1 : 0;
1045     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
1046 }
1047 
1048 static void sm_trigger_user_response_passkey(sm_connection_t * sm_conn, uint8_t event_type){
1049     uint8_t event[16];
1050     uint32_t passkey = big_endian_read_32(setup->sm_tk, 12);
1051     sm_setup_event_base(event, sizeof(event), event_type, sm_conn->sm_handle,
1052                         sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1053     event[11] = setup->sm_use_secure_connections ? 1 : 0;
1054     little_endian_store_32(event, 12, passkey);
1055     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
1056 }
1057 
1058 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1059     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1060     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1061     sm_conn->sm_pairing_active = true;
1062     switch (setup->sm_stk_generation_method){
1063         case PK_RESP_INPUT:
1064             if (IS_RESPONDER(sm_conn->sm_role)){
1065                 sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1066             } else {
1067                 sm_trigger_user_response_passkey(sm_conn, SM_EVENT_PASSKEY_DISPLAY_NUMBER);
1068             }
1069             break;
1070         case PK_INIT_INPUT:
1071             if (IS_RESPONDER(sm_conn->sm_role)){
1072                 sm_trigger_user_response_passkey(sm_conn, SM_EVENT_PASSKEY_DISPLAY_NUMBER);
1073             } else {
1074                 sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1075             }
1076             break;
1077         case PK_BOTH_INPUT:
1078             sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1079             break;
1080         case NUMERIC_COMPARISON:
1081             sm_trigger_user_response_passkey(sm_conn, SM_EVENT_NUMERIC_COMPARISON_REQUEST);
1082             break;
1083         case JUST_WORKS:
1084             sm_trigger_user_response_basic(sm_conn, SM_EVENT_JUST_WORKS_REQUEST);
1085             break;
1086         case OOB:
1087             // client already provided OOB data, let's skip notification.
1088             break;
1089         default:
1090             btstack_assert(false);
1091             break;
1092     }
1093 }
1094 
1095 static bool sm_key_distribution_all_received(void) {
1096     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, setup->sm_key_distribution_expected_set);
1097     return (setup->sm_key_distribution_expected_set & setup->sm_key_distribution_received_set) == setup->sm_key_distribution_expected_set;
1098 }
1099 
1100 static void sm_done_for_handle(hci_con_handle_t con_handle){
1101     if (sm_active_connection_handle == con_handle){
1102         sm_timeout_stop();
1103         sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
1104         log_info("sm: connection 0x%x released setup context", con_handle);
1105 
1106 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1107         // generate new ec key after each pairing (that used it)
1108         if (setup->sm_use_secure_connections){
1109             sm_ec_generate_new_key();
1110         }
1111 #endif
1112     }
1113 }
1114 
1115 static void sm_master_pairing_success(sm_connection_t *connection) {// master -> all done
1116     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
1117     sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
1118     sm_done_for_handle(connection->sm_handle);
1119 }
1120 
1121 static int sm_key_distribution_flags_for_auth_req(void){
1122 
1123     int flags = SM_KEYDIST_ID_KEY;
1124     if ((sm_auth_req & SM_AUTHREQ_BONDING) != 0u){
1125         // encryption and signing information only if bonding requested
1126         flags |= SM_KEYDIST_ENC_KEY;
1127 #ifdef ENABLE_LE_SIGNED_WRITE
1128         flags |= SM_KEYDIST_SIGN;
1129 #endif
1130 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1131         // LinkKey for CTKD requires SC and BR/EDR Support
1132         if (hci_classic_supported() && ((sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION) != 0)){
1133         	flags |= SM_KEYDIST_LINK_KEY;
1134         }
1135 #endif
1136     }
1137     return flags;
1138 }
1139 
1140 static void sm_reset_setup(void){
1141     // fill in sm setup
1142     setup->sm_state_vars = 0;
1143     setup->sm_keypress_notification = 0;
1144     setup->sm_have_oob_data = 0;
1145     sm_reset_tk();
1146 }
1147 
1148 static void sm_init_setup(sm_connection_t * sm_conn){
1149     // fill in sm setup
1150     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1151     (void)memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1152 
1153     // query client for Legacy Pairing OOB data
1154     if (sm_get_oob_data != NULL) {
1155         setup->sm_have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1156     }
1157 
1158     // if available and SC supported, also ask for SC OOB Data
1159 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1160     memset(setup->sm_ra, 0, 16);
1161     memset(setup->sm_rb, 0, 16);
1162     if (setup->sm_have_oob_data && (sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION)){
1163         if (sm_get_sc_oob_data != NULL){
1164             if (IS_RESPONDER(sm_conn->sm_role)){
1165                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1166                     sm_conn->sm_peer_addr_type,
1167                     sm_conn->sm_peer_address,
1168                     setup->sm_peer_confirm,
1169                     setup->sm_ra);
1170             } else {
1171                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1172                     sm_conn->sm_peer_addr_type,
1173                     sm_conn->sm_peer_address,
1174                     setup->sm_peer_confirm,
1175                     setup->sm_rb);
1176             }
1177         } else {
1178             setup->sm_have_oob_data = 0;
1179         }
1180     }
1181 #endif
1182 
1183     sm_pairing_packet_t * local_packet;
1184     if (IS_RESPONDER(sm_conn->sm_role)){
1185         // slave
1186         local_packet = &setup->sm_s_pres;
1187         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1188         setup->sm_s_addr_type = sm_conn->sm_own_addr_type;
1189         (void)memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1190         (void)memcpy(setup->sm_s_address, sm_conn->sm_own_address, 6);
1191     } else {
1192         // master
1193         local_packet = &setup->sm_m_preq;
1194         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1195         setup->sm_m_addr_type = sm_conn->sm_own_addr_type;
1196         (void)memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1197         (void)memcpy(setup->sm_m_address, sm_conn->sm_own_address, 6);
1198 
1199         uint8_t key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1200         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1201         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1202     }
1203 
1204     log_info("our  address %s type %u", bd_addr_to_str(sm_conn->sm_own_address), sm_conn->sm_own_addr_type);
1205     log_info("peer address %s type %u", bd_addr_to_str(sm_conn->sm_peer_address), sm_conn->sm_peer_addr_type);
1206 
1207     uint8_t auth_req = sm_auth_req & ~SM_AUTHREQ_CT2;
1208     uint8_t max_encryption_key_size = sm_max_encryption_key_size;
1209 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1210     // enable SC for SC only mode
1211     if (sm_sc_only_mode){
1212         auth_req |= SM_AUTHREQ_SECURE_CONNECTION;
1213         max_encryption_key_size = 16;
1214     }
1215 #endif
1216 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1217 	// set CT2 if SC + Bonding + CTKD
1218 	const uint8_t auth_req_for_ct2 = SM_AUTHREQ_SECURE_CONNECTION | SM_AUTHREQ_BONDING;
1219 	if ((auth_req & auth_req_for_ct2) == auth_req_for_ct2){
1220 		auth_req |= SM_AUTHREQ_CT2;
1221 	}
1222 #endif
1223     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1224     sm_pairing_packet_set_oob_data_flag(*local_packet, setup->sm_have_oob_data);
1225     sm_pairing_packet_set_auth_req(*local_packet, auth_req);
1226     sm_pairing_packet_set_max_encryption_key_size(*local_packet, max_encryption_key_size);
1227 }
1228 
1229 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1230 
1231     sm_pairing_packet_t * remote_packet;
1232     uint8_t               keys_to_send;
1233     uint8_t               keys_to_receive;
1234     if (IS_RESPONDER(sm_conn->sm_role)){
1235         // slave / responder
1236         remote_packet   = &setup->sm_m_preq;
1237         keys_to_send    = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1238         keys_to_receive = sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq);
1239     } else {
1240         // master / initiator
1241         remote_packet   = &setup->sm_s_pres;
1242         keys_to_send    = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1243         keys_to_receive = sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres);
1244     }
1245 
1246     // check key size
1247 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1248     // SC Only mandates 128 bit key size
1249     if (sm_sc_only_mode && (sm_pairing_packet_get_max_encryption_key_size(*remote_packet) < 16)) {
1250         return SM_REASON_ENCRYPTION_KEY_SIZE;
1251     }
1252 #endif
1253     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1254     if (sm_conn->sm_actual_encryption_key_size == 0u) return SM_REASON_ENCRYPTION_KEY_SIZE;
1255 
1256     // decide on STK generation method / SC
1257     sm_setup_tk();
1258     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1259 
1260     // check if STK generation method is acceptable by client
1261     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1262 
1263 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1264     // Check LE SC Only mode
1265     if (sm_sc_only_mode && (setup->sm_use_secure_connections == false)){
1266         log_info("SC Only mode active but SC not possible");
1267         return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1268     }
1269 
1270     // LTK (= encryption information & master identification) only used exchanged for LE Legacy Connection
1271     if (setup->sm_use_secure_connections){
1272         keys_to_send &= ~SM_KEYDIST_ENC_KEY;
1273         keys_to_receive  &= ~SM_KEYDIST_ENC_KEY;
1274     }
1275 #endif
1276 
1277     // identical to responder
1278     sm_setup_key_distribution(keys_to_send, keys_to_receive);
1279 
1280     // JUST WORKS doens't provide authentication
1281     sm_conn->sm_connection_authenticated = (setup->sm_stk_generation_method == JUST_WORKS) ? 0 : 1;
1282 
1283     return 0;
1284 }
1285 
1286 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1287 
1288     // cache and reset context
1289     int matched_device_id = sm_address_resolution_test;
1290     address_resolution_mode_t mode = sm_address_resolution_mode;
1291     void * context = sm_address_resolution_context;
1292 
1293     // reset context
1294     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1295     sm_address_resolution_context = NULL;
1296     sm_address_resolution_test = -1;
1297 
1298     hci_con_handle_t con_handle = HCI_CON_HANDLE_INVALID;
1299     sm_connection_t * sm_connection;
1300     sm_key_t ltk;
1301     bool have_ltk;
1302     int authenticated;
1303 #ifdef ENABLE_LE_CENTRAL
1304     bool trigger_pairing;
1305 #endif
1306 
1307     switch (mode){
1308         case ADDRESS_RESOLUTION_GENERAL:
1309             break;
1310         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1311             sm_connection = (sm_connection_t *) context;
1312             con_handle = sm_connection->sm_handle;
1313 
1314             // have ltk -> start encryption / send security request
1315             // Core 5, Vol 3, Part C, 10.3.2 Initiating a Service Request
1316             // "When a bond has been created between two devices, any reconnection should result in the local device
1317             //  enabling or requesting encryption with the remote device before initiating any service request."
1318 
1319             switch (event){
1320                 case ADDRESS_RESOLUTION_SUCCEEDED:
1321                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1322                     sm_connection->sm_le_db_index = matched_device_id;
1323                     log_info("ADDRESS_RESOLUTION_SUCCEEDED, index %d", sm_connection->sm_le_db_index);
1324 
1325                     le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, &authenticated, NULL, NULL);
1326                     have_ltk = !sm_is_null_key(ltk);
1327 
1328                     if (IS_RESPONDER(sm_connection->sm_role)) {
1329 #ifdef ENABLE_LE_PERIPHERAL
1330                         // IRK required before, continue
1331                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1332                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
1333                             break;
1334                         }
1335                         // Pairing request before, continue
1336                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK){
1337                             sm_connection->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
1338                             break;
1339                         }
1340                         bool trigger_security_request = sm_connection->sm_pairing_requested || sm_slave_request_security;
1341                         sm_connection->sm_pairing_requested = false;
1342 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1343                         // trigger security request for Proactive Authentication if LTK available
1344                         trigger_security_request = trigger_security_request || have_ltk;
1345 #endif
1346 
1347                         log_info("peripheral: pairing request local %u, have_ltk %u => trigger_security_request %u",
1348                                  (int) sm_connection->sm_pairing_requested, (int) have_ltk, trigger_security_request);
1349 
1350                         if (trigger_security_request){
1351                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1352                             if (have_ltk){
1353                                 sm_reencryption_started(sm_connection);
1354                             } else {
1355                                 sm_pairing_started(sm_connection);
1356                             }
1357                             sm_trigger_run();
1358                         }
1359 #endif
1360                     } else {
1361 
1362 #ifdef ENABLE_LE_CENTRAL
1363                         // check if pairing already requested and reset requests
1364                         trigger_pairing = sm_connection->sm_pairing_requested || sm_connection->sm_security_request_received;
1365                         bool auth_required = sm_auth_req & SM_AUTHREQ_MITM_PROTECTION;
1366 
1367                         log_info("central: pairing request local %u, remote %u => trigger_pairing %u. have_ltk %u",
1368                                  (int) sm_connection->sm_pairing_requested, (int) sm_connection->sm_security_request_received, (int) trigger_pairing, (int) have_ltk);
1369                         sm_connection->sm_security_request_received = false;
1370                         sm_connection->sm_pairing_requested = false;
1371                         bool trigger_reencryption = false;
1372 
1373                         if (have_ltk){
1374                             if (trigger_pairing){
1375                                 // if pairing is requested, re-encryption is sufficient, if ltk is already authenticated or we don't require authentication
1376                                 trigger_reencryption = (authenticated != 0) || (auth_required == false);
1377                             } else {
1378 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1379                                 trigger_reencryption = true;
1380 #else
1381                                 log_info("central: defer enabling encryption for bonded device");
1382 #endif
1383                             }
1384                         }
1385 
1386                         if (trigger_reencryption){
1387                             log_info("central: enable encryption for bonded device");
1388                             sm_connection->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
1389                             break;
1390                         }
1391 
1392                         // pairing_request -> send pairing request
1393                         if (trigger_pairing){
1394                             sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1395                             break;
1396                         }
1397 #endif
1398                     }
1399                     break;
1400                 case ADDRESS_RESOLUTION_FAILED:
1401                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1402                     if (IS_RESPONDER(sm_connection->sm_role)) {
1403 #ifdef ENABLE_LE_PERIPHERAL
1404                         // LTK request received before, IRK required -> negative LTK reply
1405                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1406                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
1407                         }
1408                         // Pairing request before, continue
1409                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK){
1410                             sm_connection->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
1411                             break;
1412                         }
1413                         // send security request if requested
1414                         bool trigger_security_request = sm_connection->sm_pairing_requested || sm_slave_request_security;
1415                         sm_connection->sm_pairing_requested = false;
1416                         if (trigger_security_request){
1417                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1418                             sm_pairing_started(sm_connection);
1419                         }
1420                         break;
1421 #endif
1422                     }
1423 #ifdef ENABLE_LE_CENTRAL
1424                     if ((sm_connection->sm_pairing_requested == false) && (sm_connection->sm_security_request_received == false)) break;
1425                     sm_connection->sm_security_request_received = false;
1426                     sm_connection->sm_pairing_requested = false;
1427                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1428 #endif
1429                     break;
1430 
1431                 default:
1432                     btstack_assert(false);
1433                     break;
1434             }
1435             break;
1436         default:
1437             break;
1438     }
1439 
1440     switch (event){
1441         case ADDRESS_RESOLUTION_SUCCEEDED:
1442             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1443             break;
1444         case ADDRESS_RESOLUTION_FAILED:
1445             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1446             break;
1447         default:
1448             btstack_assert(false);
1449             break;
1450     }
1451 }
1452 
1453 static void sm_store_bonding_information(sm_connection_t * sm_conn){
1454     int le_db_index = -1;
1455 
1456     // lookup device based on IRK
1457     if ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
1458         int i;
1459         for (i=0; i < le_device_db_max_count(); i++){
1460             sm_key_t irk;
1461             bd_addr_t address;
1462             int address_type = BD_ADDR_TYPE_UNKNOWN;
1463             le_device_db_info(i, &address_type, address, irk);
1464             // skip unused entries
1465             if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1466             // compare Identity Address
1467             if (memcmp(address, setup->sm_peer_address, 6) != 0) continue;
1468             // compare Identity Resolving Key
1469             if (memcmp(irk, setup->sm_peer_irk, 16) != 0) continue;
1470 
1471             log_info("sm: device found for IRK, updating");
1472             le_db_index = i;
1473             break;
1474         }
1475     } else {
1476         // assert IRK is set to zero
1477         memset(setup->sm_peer_irk, 0, 16);
1478     }
1479 
1480     // if not found, lookup via public address if possible
1481     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1482     if ((le_db_index < 0) && (setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC)){
1483         int i;
1484         for (i=0; i < le_device_db_max_count(); i++){
1485             bd_addr_t address;
1486             int address_type = BD_ADDR_TYPE_UNKNOWN;
1487             le_device_db_info(i, &address_type, address, NULL);
1488             // skip unused entries
1489             if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1490             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1491             if ((address_type == BD_ADDR_TYPE_LE_PUBLIC) && (memcmp(address, setup->sm_peer_address, 6) == 0)){
1492                 log_info("sm: device found for public address, updating");
1493                 le_db_index = i;
1494                 break;
1495             }
1496         }
1497     }
1498 
1499     // if not found, add to db
1500     bool new_to_le_device_db = false;
1501     if (le_db_index < 0) {
1502         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1503         new_to_le_device_db = true;
1504     }
1505 
1506     if (le_db_index >= 0){
1507 
1508 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1509         if (!new_to_le_device_db){
1510             hci_remove_le_device_db_entry_from_resolving_list(le_db_index);
1511         }
1512         hci_load_le_device_db_entry_into_resolving_list(le_db_index);
1513 #else
1514         UNUSED(new_to_le_device_db);
1515 #endif
1516 
1517         sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index);
1518         sm_conn->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1519         sm_conn->sm_le_db_index = le_db_index;
1520 
1521 #ifdef ENABLE_LE_SIGNED_WRITE
1522         // store local CSRK
1523         setup->sm_le_device_index = le_db_index;
1524         if ((setup->sm_key_distribution_sent_set) & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1525             log_info("sm: store local CSRK");
1526             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1527             le_device_db_local_counter_set(le_db_index, 0);
1528         }
1529 
1530         // store remote CSRK
1531         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1532             log_info("sm: store remote CSRK");
1533             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1534             le_device_db_remote_counter_set(le_db_index, 0);
1535         }
1536 #endif
1537         // store encryption information for secure connections: LTK generated by ECDH
1538         if (setup->sm_use_secure_connections){
1539             log_info("sm: store SC LTK (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1540             uint8_t zero_rand[8];
1541             memset(zero_rand, 0, 8);
1542             le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size,
1543                                         sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 1);
1544         }
1545 
1546         // store encryption information for legacy pairing: peer LTK, EDIV, RAND
1547         else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION)
1548         && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){
1549             log_info("sm: set encryption information (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1550             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1551                                         sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 0);
1552 
1553         }
1554     }
1555 }
1556 
1557 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
1558     sm_conn->sm_pairing_failed_reason = reason;
1559     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1560 }
1561 
1562 static int sm_le_device_db_index_lookup(bd_addr_type_t address_type, bd_addr_t address){
1563     int i;
1564     for (i=0; i < le_device_db_max_count(); i++){
1565         bd_addr_t db_address;
1566         int db_address_type = BD_ADDR_TYPE_UNKNOWN;
1567         le_device_db_info(i, &db_address_type, db_address, NULL);
1568         // skip unused entries
1569         if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1570         if ((address_type == (unsigned int)db_address_type) && (memcmp(address, db_address, 6) == 0)){
1571             return i;
1572         }
1573     }
1574     return -1;
1575 }
1576 
1577 static void sm_remove_le_device_db_entry(uint16_t i) {
1578     le_device_db_remove(i);
1579 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1580     // to remove an entry from the resolving list requires its identity address, which was already deleted
1581     // fully reload resolving list instead
1582     gap_load_resolving_list_from_le_device_db();
1583 #endif
1584 }
1585 
1586 static uint8_t sm_key_distribution_validate_received(sm_connection_t * sm_conn){
1587     // if identity is provided, abort if we have bonding with same address but different irk
1588     if ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
1589         int index = sm_le_device_db_index_lookup(BD_ADDR_TYPE_LE_PUBLIC, setup->sm_peer_address);
1590         if (index >= 0){
1591             sm_key_t irk;
1592             le_device_db_info(index, NULL, NULL, irk);
1593             if (memcmp(irk, setup->sm_peer_irk, 16) != 0){
1594                 // IRK doesn't match, delete bonding information
1595                 log_info("New IRK for %s (type %u) does not match stored IRK -> delete bonding information", bd_addr_to_str(sm_conn->sm_peer_address), sm_conn->sm_peer_addr_type);
1596                 sm_remove_le_device_db_entry(index);
1597             }
1598         }
1599     }
1600     return 0;
1601 }
1602 
1603 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1604 
1605     // abort pairing if received keys are not valid
1606     uint8_t reason = sm_key_distribution_validate_received(sm_conn);
1607     if (reason != 0){
1608         sm_pairing_error(sm_conn, reason);
1609         return;
1610     }
1611 
1612     // only store pairing information if both sides are bondable, i.e., the bonadble flag is set
1613     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq)
1614                             & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
1615                             & SM_AUTHREQ_BONDING ) != 0u;
1616 
1617     if (bonding_enabled){
1618         sm_store_bonding_information(sm_conn);
1619     } else {
1620         log_info("Ignoring received keys, bonding not enabled");
1621     }
1622 }
1623 
1624 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
1625     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
1626 }
1627 
1628 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1629 
1630 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn);
1631 static bool sm_passkey_used(stk_generation_method_t method);
1632 static bool sm_just_works_or_numeric_comparison(stk_generation_method_t method);
1633 
1634 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){
1635     if (setup->sm_stk_generation_method == OOB){
1636         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1637     } else {
1638         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_w2_cmac_for_confirmation, (void *)(uintptr_t) sm_conn->sm_handle);
1639     }
1640 }
1641 
1642 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
1643     if (IS_RESPONDER(sm_conn->sm_role)){
1644         // Responder
1645         if (setup->sm_stk_generation_method == OOB){
1646             // generate Nb
1647             log_info("Generate Nb");
1648             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void *)(uintptr_t) sm_conn->sm_handle);
1649         } else {
1650             sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
1651         }
1652     } else {
1653         // Initiator role
1654         switch (setup->sm_stk_generation_method){
1655             case JUST_WORKS:
1656                 sm_sc_prepare_dhkey_check(sm_conn);
1657                 break;
1658 
1659             case NUMERIC_COMPARISON:
1660                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2;
1661                 break;
1662             case PK_INIT_INPUT:
1663             case PK_RESP_INPUT:
1664             case PK_BOTH_INPUT:
1665                 if (setup->sm_passkey_bit < 20u) {
1666                     sm_sc_start_calculating_local_confirm(sm_conn);
1667                 } else {
1668                     sm_sc_prepare_dhkey_check(sm_conn);
1669                 }
1670                 break;
1671             case OOB:
1672                 sm_sc_prepare_dhkey_check(sm_conn);
1673                 break;
1674             default:
1675                 btstack_assert(false);
1676                 break;
1677         }
1678     }
1679 }
1680 
1681 static void sm_sc_cmac_done(uint8_t * hash){
1682     log_info("sm_sc_cmac_done: ");
1683     log_info_hexdump(hash, 16);
1684 
1685     if (sm_sc_oob_state == SM_SC_OOB_W4_CONFIRM){
1686         sm_sc_oob_state = SM_SC_OOB_IDLE;
1687         (*sm_sc_oob_callback)(hash, sm_sc_oob_random);
1688         return;
1689     }
1690 
1691     sm_connection_t * sm_conn = sm_cmac_connection;
1692     sm_cmac_connection = NULL;
1693 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1694     link_key_type_t link_key_type;
1695 #endif
1696 
1697     switch (sm_conn->sm_engine_state){
1698         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1699             (void)memcpy(setup->sm_local_confirm, hash, 16);
1700             sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1701             break;
1702         case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
1703             // check
1704             if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
1705                 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
1706                 break;
1707             }
1708             sm_sc_state_after_receiving_random(sm_conn);
1709             break;
1710         case SM_SC_W4_CALCULATE_G2: {
1711             uint32_t vab = big_endian_read_32(hash, 12) % 1000000;
1712             big_endian_store_32(setup->sm_tk, 12, vab);
1713             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
1714             sm_trigger_user_response(sm_conn);
1715             break;
1716         }
1717         case SM_SC_W4_CALCULATE_F5_SALT:
1718             (void)memcpy(setup->sm_t, hash, 16);
1719             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY;
1720             break;
1721         case SM_SC_W4_CALCULATE_F5_MACKEY:
1722             (void)memcpy(setup->sm_mackey, hash, 16);
1723             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK;
1724             break;
1725         case SM_SC_W4_CALCULATE_F5_LTK:
1726             // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk
1727             // Errata Service Release to the Bluetooth Specification: ESR09
1728             //   E6405 – Cross transport key derivation from a key of size less than 128 bits
1729             //   Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
1730             (void)memcpy(setup->sm_ltk, hash, 16);
1731             (void)memcpy(setup->sm_local_ltk, hash, 16);
1732             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1733             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
1734             break;
1735         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
1736             (void)memcpy(setup->sm_local_dhkey_check, hash, 16);
1737             if (IS_RESPONDER(sm_conn->sm_role)){
1738                 // responder
1739                 if ((setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED) != 0u){
1740                     sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
1741                 } else {
1742                     sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1743                 }
1744             } else {
1745                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1746             }
1747             break;
1748         case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
1749             if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){
1750                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1751                 break;
1752             }
1753             if (IS_RESPONDER(sm_conn->sm_role)){
1754                 // responder
1755                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1756             } else {
1757                 // initiator
1758                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
1759             }
1760             break;
1761 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1762         case SM_SC_W4_CALCULATE_ILK:
1763             (void)memcpy(setup->sm_t, hash, 16);
1764             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY;
1765             break;
1766         case SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY:
1767             reverse_128(hash, setup->sm_t);
1768             link_key_type = sm_conn->sm_connection_authenticated ?
1769                 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1770             log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type);
1771 			gap_store_link_key_for_bd_addr(setup->sm_peer_address, setup->sm_t, link_key_type);
1772             if (IS_RESPONDER(sm_conn->sm_role)){
1773                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
1774             } else {
1775                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1776             }
1777             sm_pairing_complete(sm_conn, ERROR_CODE_SUCCESS, 0);
1778             sm_done_for_handle(sm_conn->sm_handle);
1779             break;
1780         case SM_BR_EDR_W4_CALCULATE_ILK:
1781             (void)memcpy(setup->sm_t, hash, 16);
1782             sm_conn->sm_engine_state = SM_BR_EDR_W2_CALCULATE_LE_LTK;
1783             break;
1784         case SM_BR_EDR_W4_CALCULATE_LE_LTK:
1785             log_info("Derived LE LTK from BR/EDR Link Key");
1786             log_info_key("Link Key", hash);
1787             (void)memcpy(setup->sm_ltk, hash, 16);
1788             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1789             sm_conn->sm_connection_authenticated = setup->sm_link_key_type == AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1790             sm_store_bonding_information(sm_conn);
1791             sm_done_for_handle(sm_conn->sm_handle);
1792             break;
1793 #endif
1794         default:
1795             log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state);
1796             break;
1797     }
1798     sm_trigger_run();
1799 }
1800 
1801 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1802     const uint16_t message_len = 65;
1803     sm_cmac_connection = sm_conn;
1804     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1805     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1806     sm_cmac_sc_buffer[64] = z;
1807     log_info("f4 key");
1808     log_info_hexdump(x, 16);
1809     log_info("f4 message");
1810     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1811     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1812 }
1813 
1814 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
1815 static const uint8_t f5_length[] = { 0x01, 0x00};
1816 
1817 static void f5_calculate_salt(sm_connection_t * sm_conn){
1818 
1819     static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
1820 
1821     log_info("f5_calculate_salt");
1822     // calculate salt for f5
1823     const uint16_t message_len = 32;
1824     sm_cmac_connection = sm_conn;
1825     (void)memcpy(sm_cmac_sc_buffer, setup->sm_dhkey, message_len);
1826     sm_cmac_message_start(f5_salt, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1827 }
1828 
1829 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
1830     const uint16_t message_len = 53;
1831     sm_cmac_connection = sm_conn;
1832 
1833     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
1834     sm_cmac_sc_buffer[0] = 0;
1835     (void)memcpy(sm_cmac_sc_buffer + 01, f5_key_id, 4);
1836     (void)memcpy(sm_cmac_sc_buffer + 05, n1, 16);
1837     (void)memcpy(sm_cmac_sc_buffer + 21, n2, 16);
1838     (void)memcpy(sm_cmac_sc_buffer + 37, a1, 7);
1839     (void)memcpy(sm_cmac_sc_buffer + 44, a2, 7);
1840     (void)memcpy(sm_cmac_sc_buffer + 51, f5_length, 2);
1841     log_info("f5 key");
1842     log_info_hexdump(t, 16);
1843     log_info("f5 message for MacKey");
1844     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1845     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1846 }
1847 
1848 static void f5_calculate_mackey(sm_connection_t * sm_conn){
1849     sm_key56_t bd_addr_master, bd_addr_slave;
1850     bd_addr_master[0] =  setup->sm_m_addr_type;
1851     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1852     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1853     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1854     if (IS_RESPONDER(sm_conn->sm_role)){
1855         // responder
1856         f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1857     } else {
1858         // initiator
1859         f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1860     }
1861 }
1862 
1863 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused
1864 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){
1865     const uint16_t message_len = 53;
1866     sm_cmac_connection = sm_conn;
1867     sm_cmac_sc_buffer[0] = 1;
1868     // 1..52 setup before
1869     log_info("f5 key");
1870     log_info_hexdump(t, 16);
1871     log_info("f5 message for LTK");
1872     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1873     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1874 }
1875 
1876 static void f5_calculate_ltk(sm_connection_t * sm_conn){
1877     f5_ltk(sm_conn, setup->sm_t);
1878 }
1879 
1880 static void f6_setup(const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
1881     (void)memcpy(sm_cmac_sc_buffer, n1, 16);
1882     (void)memcpy(sm_cmac_sc_buffer + 16, n2, 16);
1883     (void)memcpy(sm_cmac_sc_buffer + 32, r, 16);
1884     (void)memcpy(sm_cmac_sc_buffer + 48, io_cap, 3);
1885     (void)memcpy(sm_cmac_sc_buffer + 51, a1, 7);
1886     (void)memcpy(sm_cmac_sc_buffer + 58, a2, 7);
1887 }
1888 
1889 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w){
1890     const uint16_t message_len = 65;
1891     sm_cmac_connection = sm_conn;
1892     log_info("f6 key");
1893     log_info_hexdump(w, 16);
1894     log_info("f6 message");
1895     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1896     sm_cmac_message_start(w, 65, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1897 }
1898 
1899 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
1900 // - U is 256 bits
1901 // - V is 256 bits
1902 // - X is 128 bits
1903 // - Y is 128 bits
1904 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
1905     const uint16_t message_len = 80;
1906     sm_cmac_connection = sm_conn;
1907     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1908     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1909     (void)memcpy(sm_cmac_sc_buffer + 64, y, 16);
1910     log_info("g2 key");
1911     log_info_hexdump(x, 16);
1912     log_info("g2 message");
1913     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1914     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1915 }
1916 
1917 static void g2_calculate(sm_connection_t * sm_conn) {
1918     // calc Va if numeric comparison
1919     if (IS_RESPONDER(sm_conn->sm_role)){
1920         // responder
1921         g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);;
1922     } else {
1923         // initiator
1924         g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce);
1925     }
1926 }
1927 
1928 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1929     uint8_t z = 0;
1930     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1931         // some form of passkey
1932         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1933         z = 0x80u | ((pk >> setup->sm_passkey_bit) & 1u);
1934         setup->sm_passkey_bit++;
1935     }
1936     f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z);
1937 }
1938 
1939 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
1940     // OOB
1941     if (setup->sm_stk_generation_method == OOB){
1942         if (IS_RESPONDER(sm_conn->sm_role)){
1943             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_ra, 0);
1944         } else {
1945             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_rb, 0);
1946         }
1947         return;
1948     }
1949 
1950     uint8_t z = 0;
1951     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1952         // some form of passkey
1953         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1954         // sm_passkey_bit was increased before sending confirm value
1955         z = 0x80u | ((pk >> (setup->sm_passkey_bit-1u)) & 1u);
1956     }
1957     f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z);
1958 }
1959 
1960 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){
1961     log_info("sm_sc_prepare_dhkey_check, DHKEY calculated %u", (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) != 0 ? 1 : 0);
1962 
1963     if ((setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) != 0u){
1964         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1965     } else {
1966         sm_conn->sm_engine_state = SM_SC_W4_CALCULATE_DHKEY;
1967     }
1968 }
1969 
1970 static void sm_sc_dhkey_calculated(void * arg){
1971     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
1972     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
1973     if (sm_conn == NULL) return;
1974 
1975     // check for invalid public key detected by Controller
1976     if (sm_is_ff(setup->sm_dhkey, 32)){
1977         log_info("sm: peer public key invalid");
1978         sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1979         return;
1980     }
1981 
1982     log_info("dhkey");
1983     log_info_hexdump(&setup->sm_dhkey[0], 32);
1984     setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED;
1985     // trigger next step
1986     if (sm_conn->sm_engine_state == SM_SC_W4_CALCULATE_DHKEY){
1987         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1988     }
1989     sm_trigger_run();
1990 }
1991 
1992 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){
1993     // calculate DHKCheck
1994     sm_key56_t bd_addr_master, bd_addr_slave;
1995     bd_addr_master[0] =  setup->sm_m_addr_type;
1996     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1997     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1998     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1999     uint8_t iocap_a[3];
2000     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2001     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2002     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2003     uint8_t iocap_b[3];
2004     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2005     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2006     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2007     if (IS_RESPONDER(sm_conn->sm_role)){
2008         // responder
2009         f6_setup(setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2010         f6_engine(sm_conn, setup->sm_mackey);
2011     } else {
2012         // initiator
2013         f6_setup( setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2014         f6_engine(sm_conn, setup->sm_mackey);
2015     }
2016 }
2017 
2018 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){
2019     // validate E = f6()
2020     sm_key56_t bd_addr_master, bd_addr_slave;
2021     bd_addr_master[0] =  setup->sm_m_addr_type;
2022     bd_addr_slave[0]  =  setup->sm_s_addr_type;
2023     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
2024     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
2025 
2026     uint8_t iocap_a[3];
2027     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2028     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2029     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2030     uint8_t iocap_b[3];
2031     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2032     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2033     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2034     if (IS_RESPONDER(sm_conn->sm_role)){
2035         // responder
2036         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2037         f6_engine(sm_conn, setup->sm_mackey);
2038     } else {
2039         // initiator
2040         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2041         f6_engine(sm_conn, setup->sm_mackey);
2042     }
2043 }
2044 
2045 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2046 
2047 //
2048 // Link Key Conversion Function h6
2049 //
2050 // h6(W, keyID) = AES-CMAC_W(keyID)
2051 // - W is 128 bits
2052 // - keyID is 32 bits
2053 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){
2054     const uint16_t message_len = 4;
2055     sm_cmac_connection = sm_conn;
2056     big_endian_store_32(sm_cmac_sc_buffer, 0, key_id);
2057     log_info("h6 key");
2058     log_info_hexdump(w, 16);
2059     log_info("h6 message");
2060     log_info_hexdump(sm_cmac_sc_buffer, message_len);
2061     sm_cmac_message_start(w, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
2062 }
2063 //
2064 // Link Key Conversion Function h7
2065 //
2066 // h7(SALT, W) = AES-CMAC_SALT(W)
2067 // - SALT is 128 bits
2068 // - W    is 128 bits
2069 static void h7_engine(sm_connection_t * sm_conn, const sm_key_t salt, const sm_key_t w) {
2070 	const uint16_t message_len = 16;
2071 	sm_cmac_connection = sm_conn;
2072 	log_info("h7 key");
2073 	log_info_hexdump(salt, 16);
2074 	log_info("h7 message");
2075 	log_info_hexdump(w, 16);
2076 	sm_cmac_message_start(salt, message_len, w, &sm_sc_cmac_done);
2077 }
2078 
2079 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated)
2080 // Errata Service Release to the Bluetooth Specification: ESR09
2081 //   E6405 – Cross transport key derivation from a key of size less than 128 bits
2082 //   "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
2083 
2084 static void h6_calculate_ilk_from_le_ltk(sm_connection_t * sm_conn){
2085     h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031);    // "tmp1"
2086 }
2087 
2088 static void h6_calculate_ilk_from_br_edr(sm_connection_t * sm_conn){
2089     h6_engine(sm_conn, setup->sm_link_key, 0x746D7032);    // "tmp2"
2090 }
2091 
2092 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){
2093     h6_engine(sm_conn, setup->sm_t, 0x6c656272);    // "lebr"
2094 }
2095 
2096 static void h6_calculate_le_ltk(sm_connection_t * sm_conn){
2097     h6_engine(sm_conn, setup->sm_t, 0x62726C65);    // "brle"
2098 }
2099 
2100 static void h7_calculate_ilk_from_le_ltk(sm_connection_t * sm_conn){
2101 	const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x31};  // "tmp1"
2102 	h7_engine(sm_conn, salt, setup->sm_local_ltk);
2103 }
2104 
2105 static void h7_calculate_ilk_from_br_edr(sm_connection_t * sm_conn){
2106     const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x32};  // "tmp2"
2107     h7_engine(sm_conn, salt, setup->sm_link_key);
2108 }
2109 
2110 static void sm_ctkd_fetch_br_edr_link_key(sm_connection_t * sm_conn){
2111     hci_connection_t * hci_connection = hci_connection_for_handle(sm_conn->sm_handle);
2112     btstack_assert(hci_connection != NULL);
2113     reverse_128(hci_connection->link_key, setup->sm_link_key);
2114     setup->sm_link_key_type =  hci_connection->link_key_type;
2115 }
2116 
2117 static void sm_ctkd_start_from_br_edr(sm_connection_t * sm_conn){
2118     // only derive LTK if EncKey is set by both
2119     bool derive_ltk = (sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres) &
2120                               sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres) & SM_KEYDIST_ENC_KEY) != 0;
2121     if (derive_ltk){
2122         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2123         sm_conn->sm_engine_state = use_h7 ? SM_BR_EDR_W2_CALCULATE_ILK_USING_H7 : SM_BR_EDR_W2_CALCULATE_ILK_USING_H6;
2124     } else {
2125         sm_done_for_handle(sm_conn->sm_handle);
2126     }
2127 }
2128 
2129 #endif
2130 
2131 #endif
2132 
2133 // key management legacy connections:
2134 // - potentially two different LTKs based on direction. each device stores LTK provided by peer
2135 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect)
2136 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder
2137 // - responder  reconnects: responder uses LTK receveived from master
2138 
2139 // key management secure connections:
2140 // - both devices store same LTK from ECDH key exchange.
2141 
2142 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL)
2143 static void sm_load_security_info(sm_connection_t * sm_connection){
2144     int encryption_key_size;
2145     int authenticated;
2146     int authorized;
2147     int secure_connection;
2148 
2149     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
2150     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
2151                                 &encryption_key_size, &authenticated, &authorized, &secure_connection);
2152     log_info("db index %u, key size %u, authenticated %u, authorized %u, secure connetion %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized, secure_connection);
2153     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
2154     sm_connection->sm_connection_authenticated = authenticated;
2155     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
2156     sm_connection->sm_connection_sc = secure_connection != 0;
2157 }
2158 #endif
2159 
2160 #ifdef ENABLE_LE_PERIPHERAL
2161 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){
2162     (void)memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
2163     setup->sm_local_ediv = sm_connection->sm_local_ediv;
2164     // re-establish used key encryption size
2165     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2166     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7u] & 0x0fu) + 1u;
2167     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
2168     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7u] & 0x10u) >> 4u;
2169     // Legacy paring -> not SC
2170     sm_connection->sm_connection_sc = false;
2171     log_info("sm: received ltk request with key size %u, authenticated %u",
2172             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
2173 }
2174 #endif
2175 
2176 // distributed key generation
2177 static bool sm_run_dpkg(void){
2178     switch (dkg_state){
2179         case DKG_CALC_IRK:
2180             // already busy?
2181             if (sm_aes128_state == SM_AES128_IDLE) {
2182                 log_info("DKG_CALC_IRK started");
2183                 // IRK = d1(IR, 1, 0)
2184                 sm_d1_d_prime(1, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2185                 sm_aes128_state = SM_AES128_ACTIVE;
2186                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_irk, sm_handle_encryption_result_dkg_irk, NULL);
2187                 return true;
2188             }
2189             break;
2190         case DKG_CALC_DHK:
2191             // already busy?
2192             if (sm_aes128_state == SM_AES128_IDLE) {
2193                 log_info("DKG_CALC_DHK started");
2194                 // DHK = d1(IR, 3, 0)
2195                 sm_d1_d_prime(3, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2196                 sm_aes128_state = SM_AES128_ACTIVE;
2197                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_dhk, sm_handle_encryption_result_dkg_dhk, NULL);
2198                 return true;
2199             }
2200             break;
2201         default:
2202             break;
2203     }
2204     return false;
2205 }
2206 
2207 // random address updates
2208 static bool sm_run_rau(void){
2209     switch (rau_state){
2210         case RAU_GET_RANDOM:
2211             rau_state = RAU_W4_RANDOM;
2212             btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_address, 6, &sm_handle_random_result_rau, NULL);
2213             return true;
2214         case RAU_GET_ENC:
2215             // already busy?
2216             if (sm_aes128_state == SM_AES128_IDLE) {
2217                 sm_ah_r_prime(sm_random_address, sm_aes128_plaintext);
2218                 sm_aes128_state = SM_AES128_ACTIVE;
2219                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_irk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_rau, NULL);
2220                 return true;
2221             }
2222             break;
2223         default:
2224             break;
2225     }
2226     return false;
2227 }
2228 
2229 // device lookup with IRK
2230 static bool sm_run_irk_lookup(void){
2231     btstack_linked_list_iterator_t it;
2232 
2233     // -- if IRK lookup ready, find connection that require csrk lookup
2234     if (sm_address_resolution_idle()){
2235         hci_connections_get_iterator(&it);
2236         while(btstack_linked_list_iterator_has_next(&it)){
2237             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2238             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
2239             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
2240                 // and start lookup
2241                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
2242                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
2243                 break;
2244             }
2245         }
2246     }
2247 
2248     // -- if csrk lookup ready, resolved addresses for received addresses
2249     if (sm_address_resolution_idle()) {
2250         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
2251             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
2252             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
2253             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
2254             btstack_memory_sm_lookup_entry_free(entry);
2255         }
2256     }
2257 
2258     // -- Continue with device lookup by public or resolvable private address
2259     if (!sm_address_resolution_idle()){
2260         while (sm_address_resolution_test < le_device_db_max_count()){
2261             int addr_type = BD_ADDR_TYPE_UNKNOWN;
2262             bd_addr_t addr;
2263             sm_key_t irk;
2264             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
2265 
2266             // skip unused entries
2267             if (addr_type == BD_ADDR_TYPE_UNKNOWN){
2268                 sm_address_resolution_test++;
2269                 continue;
2270             }
2271 
2272             log_info("LE Device Lookup: device %u of %u - type %u, %s", sm_address_resolution_test,
2273                      le_device_db_max_count(), addr_type, bd_addr_to_str(addr));
2274 
2275             // map resolved identity addresses to regular addresses
2276             int regular_addr_type = sm_address_resolution_addr_type & 1;
2277             if ((regular_addr_type == addr_type) && (memcmp(addr, sm_address_resolution_address, 6) == 0)){
2278                 log_info("LE Device Lookup: found by { addr_type, address} ");
2279                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
2280                 break;
2281             }
2282 
2283             // if connection type is not random (i.e. public or resolved identity), it must be a different entry
2284             if (sm_address_resolution_addr_type != BD_ADDR_TYPE_LE_RANDOM){
2285                 sm_address_resolution_test++;
2286                 continue;
2287             }
2288 
2289             // skip AH if no IRK
2290             if (sm_is_null_key(irk)){
2291                 sm_address_resolution_test++;
2292                 continue;
2293             }
2294 
2295             if (sm_aes128_state == SM_AES128_ACTIVE) break;
2296 
2297             log_info("LE Device Lookup: calculate AH");
2298             log_info_key("IRK", irk);
2299 
2300             (void)memcpy(sm_aes128_key, irk, 16);
2301             sm_ah_r_prime(sm_address_resolution_address, sm_aes128_plaintext);
2302             sm_aes128_state = SM_AES128_ACTIVE;
2303             btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_aes128_key, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_address_resolution, NULL);
2304             return true;
2305         }
2306 
2307         if (sm_address_resolution_test >= le_device_db_max_count()){
2308             log_info("LE Device Lookup: not found");
2309             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
2310         }
2311     }
2312     return false;
2313 }
2314 
2315 // SC OOB
2316 static bool sm_run_oob(void){
2317 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2318     switch (sm_sc_oob_state){
2319         case SM_SC_OOB_W2_CALC_CONFIRM:
2320             if (!sm_cmac_ready()) break;
2321             sm_sc_oob_state = SM_SC_OOB_W4_CONFIRM;
2322             f4_engine(NULL, ec_q, ec_q, sm_sc_oob_random, 0);
2323             return true;
2324         default:
2325             break;
2326     }
2327 #endif
2328     return false;
2329 }
2330 
2331 static void sm_send_connectionless(sm_connection_t * sm_connection, const uint8_t * buffer, uint16_t size){
2332     l2cap_send_connectionless(sm_connection->sm_handle, sm_connection->sm_cid, (uint8_t*) buffer, size);
2333 }
2334 
2335 // handle basic actions that don't requires the full context
2336 static bool sm_run_basic(void){
2337     btstack_linked_list_iterator_t it;
2338     hci_connections_get_iterator(&it);
2339     while(btstack_linked_list_iterator_has_next(&it)){
2340         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2341         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2342         switch(sm_connection->sm_engine_state){
2343 
2344             // general
2345             case SM_GENERAL_SEND_PAIRING_FAILED: {
2346                 uint8_t buffer[2];
2347                 buffer[0] = SM_CODE_PAIRING_FAILED;
2348                 buffer[1] = sm_connection->sm_pairing_failed_reason;
2349                 sm_connection->sm_engine_state = sm_connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2350                 sm_send_connectionless(sm_connection, (uint8_t*) buffer, sizeof(buffer));
2351                 sm_pairing_complete(sm_connection, ERROR_CODE_AUTHENTICATION_FAILURE, sm_connection->sm_pairing_failed_reason);
2352                 sm_done_for_handle(sm_connection->sm_handle);
2353                 break;
2354             }
2355 
2356             // responder side
2357             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
2358                 sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2359                 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2360                 return true;
2361 
2362 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2363             case SM_SC_RECEIVED_LTK_REQUEST:
2364                 switch (sm_connection->sm_irk_lookup_state){
2365                     case IRK_LOOKUP_FAILED:
2366                         log_info("LTK Request: IRK Lookup Failed)");
2367                         sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2368                         hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2369                         return true;
2370                     default:
2371                         break;
2372                 }
2373                 break;
2374 #endif
2375             default:
2376                 break;
2377         }
2378     }
2379     return false;
2380 }
2381 
2382 static void sm_run_activate_connection(void){
2383     // Find connections that requires setup context and make active if no other is locked
2384     btstack_linked_list_iterator_t it;
2385     hci_connections_get_iterator(&it);
2386     while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
2387         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2388         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2389         // - if no connection locked and we're ready/waiting for setup context, fetch it and start
2390         bool done = true;
2391         int err;
2392         UNUSED(err);
2393 
2394 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2395         // assert ec key is ready
2396         if (   (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED)
2397             || (sm_connection->sm_engine_state == SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST)
2398 			|| (sm_connection->sm_engine_state == SM_RESPONDER_SEND_SECURITY_REQUEST)){
2399             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
2400                 sm_ec_generate_new_key();
2401             }
2402             if (ec_key_generation_state != EC_KEY_GENERATION_DONE){
2403                 continue;
2404             }
2405         }
2406 #endif
2407 
2408         switch (sm_connection->sm_engine_state) {
2409 #ifdef ENABLE_LE_PERIPHERAL
2410             case SM_RESPONDER_SEND_SECURITY_REQUEST:
2411             case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2412             case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
2413 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2414             case SM_SC_RECEIVED_LTK_REQUEST:
2415 #endif
2416 #endif
2417 #ifdef ENABLE_LE_CENTRAL
2418             case SM_INITIATOR_PH4_HAS_LTK:
2419 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2420 #endif
2421 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2422             case SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED:
2423             case SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST:
2424 #endif
2425 				// just lock context
2426 				break;
2427             default:
2428                 done = false;
2429                 break;
2430         }
2431         if (done){
2432             sm_active_connection_handle = sm_connection->sm_handle;
2433             log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state);
2434         }
2435     }
2436 }
2437 
2438 static void sm_run_send_keypress_notification(sm_connection_t * connection){
2439     int i;
2440     uint8_t flags       = setup->sm_keypress_notification & 0x1fu;
2441     uint8_t num_actions = setup->sm_keypress_notification >> 5;
2442     uint8_t action = 0;
2443     for (i=SM_KEYPRESS_PASSKEY_ENTRY_STARTED;i<=SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED;i++){
2444         if ((flags & (1u<<i)) != 0u){
2445             bool clear_flag = true;
2446             switch (i){
2447                 case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
2448                 case SM_KEYPRESS_PASSKEY_CLEARED:
2449                 case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
2450                 default:
2451                     break;
2452                 case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
2453                 case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
2454                     num_actions--;
2455                     clear_flag = num_actions == 0u;
2456                     break;
2457             }
2458             if (clear_flag){
2459                 flags &= ~(1<<i);
2460             }
2461             action = i;
2462             break;
2463         }
2464     }
2465     setup->sm_keypress_notification = (num_actions << 5) | flags;
2466 
2467     // send keypress notification
2468     uint8_t buffer[2];
2469     buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION;
2470     buffer[1] = action;
2471     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2472 
2473     // try
2474     l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, connection->sm_cid);
2475 }
2476 
2477 static void sm_run_distribute_keys(sm_connection_t * connection){
2478     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION) != 0u){
2479         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2480         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2481         uint8_t buffer[17];
2482         buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2483         reverse_128(setup->sm_ltk, &buffer[1]);
2484         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2485         sm_timeout_reset(connection);
2486         return;
2487     }
2488     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION) != 0u){
2489         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2490         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2491         uint8_t buffer[11];
2492         buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2493         little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2494         reverse_64(setup->sm_local_rand, &buffer[3]);
2495         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2496         sm_timeout_reset(connection);
2497         return;
2498     }
2499     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
2500         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2501         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2502         uint8_t buffer[17];
2503         buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2504         reverse_128(sm_persistent_irk, &buffer[1]);
2505         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2506         sm_timeout_reset(connection);
2507         return;
2508     }
2509     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0u){
2510         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2511         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2512         bd_addr_t local_address;
2513         uint8_t buffer[8];
2514         buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2515         switch (gap_random_address_get_mode()){
2516             case GAP_RANDOM_ADDRESS_TYPE_OFF:
2517             case GAP_RANDOM_ADDRESS_TYPE_STATIC:
2518                 // public or static random
2519                 gap_le_get_own_address(&buffer[1], local_address);
2520                 break;
2521             case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2522             case GAP_RANDOM_ADDRESS_RESOLVABLE:
2523                 // fallback to public
2524                 gap_local_bd_addr(local_address);
2525                 buffer[1] = 0;
2526                 break;
2527             default:
2528                 btstack_assert(false);
2529                 break;
2530         }
2531         reverse_bd_addr(local_address, &buffer[2]);
2532         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2533         sm_timeout_reset(connection);
2534         return;
2535     }
2536     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION) != 0u){
2537         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2538         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2539 
2540 #ifdef ENABLE_LE_SIGNED_WRITE
2541         // hack to reproduce test runs
2542                     if (test_use_fixed_local_csrk){
2543                         memset(setup->sm_local_csrk, 0xcc, 16);
2544                     }
2545 
2546                     // store local CSRK
2547                     if (setup->sm_le_device_index >= 0){
2548                         log_info("sm: store local CSRK");
2549                         le_device_db_local_csrk_set(setup->sm_le_device_index, setup->sm_local_csrk);
2550                         le_device_db_local_counter_set(setup->sm_le_device_index, 0);
2551                     }
2552 #endif
2553 
2554         uint8_t buffer[17];
2555         buffer[0] = SM_CODE_SIGNING_INFORMATION;
2556         reverse_128(setup->sm_local_csrk, &buffer[1]);
2557         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2558         sm_timeout_reset(connection);
2559         return;
2560     }
2561     btstack_assert(false);
2562 }
2563 
2564 static bool sm_ctkd_from_le(sm_connection_t *sm_connection) {
2565 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2566     // requirements to derive link key from  LE:
2567     // - use secure connections
2568     if (setup->sm_use_secure_connections == 0) return false;
2569     // - bonding needs to be enabled:
2570     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_BONDING ) != 0u;
2571     if (!bonding_enabled) return false;
2572     // - need identity address / public addr
2573     bool have_identity_address_info = ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0) || (setup->sm_peer_addr_type == 0);
2574     if (!have_identity_address_info) return false;
2575     // - there is no stored BR/EDR link key or the derived key has at least the same level of authentication (bail if stored key has higher authentication)
2576     //   this requirement is motivated by BLURtooth paper. The paper recommends to not overwrite keys at all.
2577     //      If SC is authenticated, we consider it safe to overwrite a stored key.
2578     //      If stored link key is not authenticated, it could already be compromised by a MITM attack. Allowing overwrite by unauthenticated derived key does not make it worse.
2579     uint8_t link_key[16];
2580     link_key_type_t link_key_type;
2581     bool have_link_key             = gap_get_link_key_for_bd_addr(setup->sm_peer_address, link_key, &link_key_type);
2582     bool link_key_authenticated    = gap_authenticated_for_link_key_type(link_key_type);
2583     bool derived_key_authenticated = sm_connection->sm_connection_authenticated != 0;
2584     if (have_link_key && link_key_authenticated && !derived_key_authenticated) {
2585         return false;
2586     }
2587     // get started (all of the above are true)
2588     return true;
2589 #else
2590     UNUSED(sm_connection);
2591 	return false;
2592 #endif
2593 }
2594 
2595 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2596 static bool sm_ctkd_from_classic(sm_connection_t * sm_connection){
2597     hci_connection_t * hci_connection = hci_connection_for_handle(sm_connection->sm_handle);
2598     btstack_assert(hci_connection != NULL);
2599     // requirements to derive ltk from BR/EDR:
2600     // - BR/EDR uses secure connections
2601     if (gap_secure_connection_for_link_key_type(hci_connection->link_key_type) == false) return false;
2602     // - bonding needs to be enabled:
2603     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_BONDING ) != 0u;
2604     if (!bonding_enabled) return false;
2605     // - there is no stored LTK or the derived key has at least the same level of authentication (bail if LTK is authenticated but Link Key isn't)
2606     bool link_key_authenticated = gap_authenticated_for_link_key_type(hci_connection->link_key_type);
2607     if (link_key_authenticated) return true;
2608     int index = sm_le_device_db_index_lookup(BD_ADDR_TYPE_LE_PUBLIC, hci_connection->address);
2609     if (index >= 0){
2610         int ltk_authenticated;
2611         sm_key_t ltk;
2612         le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, &ltk_authenticated, NULL, NULL);
2613         bool have_ltk = !sm_is_null_key(ltk);
2614         if (have_ltk && ltk_authenticated) return false;
2615     }
2616     return true;
2617 }
2618 #endif
2619 
2620 static void sm_key_distribution_complete_responder(sm_connection_t * connection){
2621     if (sm_ctkd_from_le(connection)){
2622         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2623         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2624     } else {
2625         connection->sm_engine_state = SM_RESPONDER_IDLE;
2626         sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
2627         sm_done_for_handle(connection->sm_handle);
2628     }
2629 }
2630 
2631 static void sm_key_distribution_complete_initiator(sm_connection_t * connection){
2632     if (sm_ctkd_from_le(connection)){
2633         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2634         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2635     } else {
2636         sm_master_pairing_success(connection);
2637     }
2638 }
2639 
2640 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2641 static void sm_run_state_sc_send_confirmation(sm_connection_t *connection) {
2642     uint8_t buffer[17];
2643     buffer[0] = SM_CODE_PAIRING_CONFIRM;
2644     reverse_128(setup->sm_local_confirm, &buffer[1]);
2645     if (IS_RESPONDER(connection->sm_role)){
2646         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2647     } else {
2648         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2649     }
2650     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2651     sm_timeout_reset(connection);
2652 }
2653 
2654 static void sm_run_state_sc_send_pairing_random(sm_connection_t *connection) {
2655     uint8_t buffer[17];
2656     buffer[0] = SM_CODE_PAIRING_RANDOM;
2657     reverse_128(setup->sm_local_nonce, &buffer[1]);
2658     log_info("stk method %u, bit num: %u", setup->sm_stk_generation_method, setup->sm_passkey_bit);
2659     if (sm_passkey_entry(setup->sm_stk_generation_method) && (setup->sm_passkey_bit < 20u)){
2660         log_info("SM_SC_SEND_PAIRING_RANDOM A");
2661         if (IS_RESPONDER(connection->sm_role)){
2662             // responder
2663             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2664         } else {
2665             // initiator
2666             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2667         }
2668     } else {
2669         log_info("SM_SC_SEND_PAIRING_RANDOM B");
2670         if (IS_RESPONDER(connection->sm_role)){
2671             // responder
2672             if (setup->sm_stk_generation_method == NUMERIC_COMPARISON){
2673                 log_info("SM_SC_SEND_PAIRING_RANDOM B1");
2674                 connection->sm_engine_state = SM_SC_W2_CALCULATE_G2;
2675             } else {
2676                 log_info("SM_SC_SEND_PAIRING_RANDOM B2");
2677                 sm_sc_prepare_dhkey_check(connection);
2678             }
2679         } else {
2680             // initiator
2681             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2682         }
2683     }
2684     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2685     sm_timeout_reset(connection);
2686 }
2687 
2688 static void sm_run_state_sc_send_dhkey_check_command(sm_connection_t *connection) {
2689     uint8_t buffer[17];
2690     buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
2691     reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
2692 
2693     if (IS_RESPONDER(connection->sm_role)){
2694         connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
2695     } else {
2696         connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
2697     }
2698 
2699     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2700     sm_timeout_reset(connection);
2701 }
2702 
2703 static void sm_run_state_sc_send_public_key_command(sm_connection_t *connection) {
2704     bool trigger_user_response   = false;
2705     bool trigger_start_calculating_local_confirm = false;
2706     uint8_t buffer[65];
2707     buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
2708     //
2709     reverse_256(&ec_q[0],  &buffer[1]);
2710     reverse_256(&ec_q[32], &buffer[33]);
2711 
2712 #ifdef ENABLE_TESTING_SUPPORT
2713     if (test_pairing_failure == SM_REASON_DHKEY_CHECK_FAILED){
2714             log_info("testing_support: invalidating public key");
2715             // flip single bit of public key coordinate
2716             buffer[1] ^= 1;
2717         }
2718 #endif
2719 
2720     // stk generation method
2721 // passkey entry: notify app to show passkey or to request passkey
2722     switch (setup->sm_stk_generation_method){
2723         case JUST_WORKS:
2724         case NUMERIC_COMPARISON:
2725             if (IS_RESPONDER(connection->sm_role)){
2726                 // responder
2727                 trigger_start_calculating_local_confirm = true;
2728                 connection->sm_engine_state = SM_SC_W4_LOCAL_NONCE;
2729             } else {
2730                 // initiator
2731                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2732             }
2733             break;
2734         case PK_INIT_INPUT:
2735         case PK_RESP_INPUT:
2736         case PK_BOTH_INPUT:
2737             // use random TK for display
2738             (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
2739             (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
2740             setup->sm_passkey_bit = 0;
2741 
2742             if (IS_RESPONDER(connection->sm_role)){
2743                 // responder
2744                 connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2745             } else {
2746                 // initiator
2747                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2748             }
2749             trigger_user_response = true;
2750             break;
2751         case OOB:
2752             if (IS_RESPONDER(connection->sm_role)){
2753                 // responder
2754                 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2755             } else {
2756                 // initiator
2757                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2758             }
2759             break;
2760         default:
2761             btstack_assert(false);
2762             break;
2763     }
2764 
2765     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2766     sm_timeout_reset(connection);
2767 
2768     // trigger user response and calc confirm after sending pdu
2769     if (trigger_user_response){
2770         sm_trigger_user_response(connection);
2771     }
2772     if (trigger_start_calculating_local_confirm){
2773         sm_sc_start_calculating_local_confirm(connection);
2774     }
2775 }
2776 #endif
2777 
2778 static bool sm_run_non_connection_logic(void){
2779     bool done;;
2780 
2781     done = sm_run_dpkg();
2782     if (done) return true;
2783 
2784     done = sm_run_rau();
2785     if (done) return true;
2786 
2787     done = sm_run_irk_lookup();
2788     if (done) return true;
2789 
2790     done = sm_run_oob();
2791     return done;
2792 }
2793 
2794 static void sm_run(void){
2795 
2796     // assert that stack has already bootet
2797     if (hci_get_state() != HCI_STATE_WORKING) return;
2798 
2799     // assert that we can send at least commands
2800     if (!hci_can_send_command_packet_now()) return;
2801 
2802     // pause until IR/ER are ready
2803     if (sm_persistent_keys_random_active) return;
2804 
2805     // non-connection related behaviour
2806     bool done = sm_run_non_connection_logic();
2807     if (done) return;
2808 
2809     // assert that we can send at least commands - cmd might have been sent by crypto engine
2810     if (!hci_can_send_command_packet_now()) return;
2811 
2812     // handle basic actions that don't requires the full context
2813     done = sm_run_basic();
2814     if (done) return;
2815 
2816     //
2817     // active connection handling
2818     // -- use loop to handle next connection if lock on setup context is released
2819 
2820     while (true) {
2821 
2822         sm_run_activate_connection();
2823 
2824         if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return;
2825 
2826         //
2827         // active connection handling
2828         //
2829 
2830         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle);
2831         if (!connection) {
2832             log_info("no connection for handle 0x%04x", sm_active_connection_handle);
2833             return;
2834         }
2835 
2836         // assert that we could send a SM PDU - not needed for all of the following
2837         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, connection->sm_cid)) {
2838             log_info("cannot send now, requesting can send now event");
2839             l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, connection->sm_cid);
2840             return;
2841         }
2842 
2843         // send keypress notifications
2844         if (setup->sm_keypress_notification != 0u){
2845             sm_run_send_keypress_notification(connection);
2846             return;
2847         }
2848 
2849 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2850         // assert that sm cmac engine is ready
2851         if (sm_cmac_ready() == false){
2852             break;
2853         }
2854 #endif
2855 
2856         int key_distribution_flags;
2857         UNUSED(key_distribution_flags);
2858 #ifdef ENABLE_LE_PERIPHERAL
2859         int err;
2860         bool have_ltk;
2861         uint8_t ltk[16];
2862 #endif
2863 
2864         log_info("sm_run: state %u", connection->sm_engine_state);
2865         switch (connection->sm_engine_state){
2866 
2867             // secure connections, initiator + responding states
2868 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2869             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
2870                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
2871                 sm_sc_calculate_local_confirm(connection);
2872                 break;
2873             case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
2874                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
2875                 sm_sc_calculate_remote_confirm(connection);
2876                 break;
2877             case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
2878                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK;
2879                 sm_sc_calculate_f6_for_dhkey_check(connection);
2880                 break;
2881             case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
2882                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
2883                 sm_sc_calculate_f6_to_verify_dhkey_check(connection);
2884                 break;
2885             case SM_SC_W2_CALCULATE_F5_SALT:
2886                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT;
2887                 f5_calculate_salt(connection);
2888                 break;
2889             case SM_SC_W2_CALCULATE_F5_MACKEY:
2890                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY;
2891                 f5_calculate_mackey(connection);
2892                 break;
2893             case SM_SC_W2_CALCULATE_F5_LTK:
2894                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK;
2895                 f5_calculate_ltk(connection);
2896                 break;
2897             case SM_SC_W2_CALCULATE_G2:
2898                 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2;
2899                 g2_calculate(connection);
2900                 break;
2901 #endif
2902 
2903 #ifdef ENABLE_LE_CENTRAL
2904             // initiator side
2905 
2906             case SM_INITIATOR_PH4_HAS_LTK: {
2907 				sm_reset_setup();
2908 				sm_load_security_info(connection);
2909 
2910                 // cache key before using
2911                 sm_cache_ltk(connection, setup->sm_peer_ltk);
2912 
2913                 sm_key_t peer_ltk_flipped;
2914                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
2915                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
2916                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
2917                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
2918                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
2919                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
2920 
2921                 // notify after sending
2922                 sm_reencryption_started(connection);
2923                 return;
2924             }
2925 
2926 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2927 				sm_reset_setup();
2928 				sm_init_setup(connection);
2929 
2930                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
2931                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
2932                 sm_send_connectionless(connection, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
2933                 sm_timeout_reset(connection);
2934 
2935                 // notify after sending
2936                 sm_pairing_started(connection);
2937                 break;
2938 #endif
2939 
2940 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2941             case SM_SC_SEND_PUBLIC_KEY_COMMAND:
2942                 sm_run_state_sc_send_public_key_command(connection);
2943                 break;
2944             case SM_SC_SEND_CONFIRMATION:
2945                 sm_run_state_sc_send_confirmation(connection);
2946                 break;
2947             case SM_SC_SEND_PAIRING_RANDOM:
2948                 sm_run_state_sc_send_pairing_random(connection);
2949                 break;
2950             case SM_SC_SEND_DHKEY_CHECK_COMMAND:
2951                 sm_run_state_sc_send_dhkey_check_command(connection);
2952                 break;
2953 #endif
2954 
2955 #ifdef ENABLE_LE_PERIPHERAL
2956 
2957 			case SM_RESPONDER_SEND_SECURITY_REQUEST: {
2958 				const uint8_t buffer[2] = {SM_CODE_SECURITY_REQUEST, sm_auth_req};
2959 				connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
2960 				sm_send_connectionless(connection,  (uint8_t *) buffer, sizeof(buffer));
2961 				sm_timeout_start(connection);
2962 				break;
2963 			}
2964 
2965 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2966 			case SM_SC_RECEIVED_LTK_REQUEST:
2967 				switch (connection->sm_irk_lookup_state){
2968 					case IRK_LOOKUP_SUCCEEDED:
2969 						// assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null
2970 						// start using context by loading security info
2971 						sm_reset_setup();
2972 						sm_load_security_info(connection);
2973 						if ((setup->sm_peer_ediv == 0u) && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){
2974 							(void)memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16);
2975 							connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
2976                             sm_reencryption_started(connection);
2977                             sm_trigger_run();
2978 							break;
2979 						}
2980 						log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)");
2981 						connection->sm_engine_state = SM_RESPONDER_IDLE;
2982 						hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
2983 						return;
2984 					default:
2985 						// just wait until IRK lookup is completed
2986 						break;
2987 				}
2988 				break;
2989 #endif /* ENABLE_LE_SECURE_CONNECTIONS */
2990 
2991 			case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2992                 sm_reset_setup();
2993 
2994 			    // handle Pairing Request with LTK available
2995                 switch (connection->sm_irk_lookup_state) {
2996                     case IRK_LOOKUP_SUCCEEDED:
2997                         le_device_db_encryption_get(connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
2998                         have_ltk = !sm_is_null_key(ltk);
2999                         if (have_ltk){
3000                             log_info("pairing request but LTK available");
3001                             // emit re-encryption start/fail sequence
3002                             sm_reencryption_started(connection);
3003                             sm_reencryption_complete(connection, ERROR_CODE_PIN_OR_KEY_MISSING);
3004                         }
3005                         break;
3006                     default:
3007                         break;
3008                 }
3009 
3010 				sm_init_setup(connection);
3011 
3012 				// recover pairing request
3013 				(void)memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
3014 				err = sm_stk_generation_init(connection);
3015 
3016 #ifdef ENABLE_TESTING_SUPPORT
3017 				if ((0 < test_pairing_failure) && (test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED)){
3018                         log_info("testing_support: respond with pairing failure %u", test_pairing_failure);
3019                         err = test_pairing_failure;
3020                     }
3021 #endif
3022 				if (err != 0){
3023                     // emit pairing started/failed sequence
3024                     sm_pairing_started(connection);
3025                     sm_pairing_error(connection, err);
3026 					sm_trigger_run();
3027 					break;
3028 				}
3029 
3030 				sm_timeout_start(connection);
3031 
3032 				// generate random number first, if we need to show passkey, otherwise send response
3033 				if (setup->sm_stk_generation_method == PK_INIT_INPUT){
3034 					btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk, (void *)(uintptr_t) connection->sm_handle);
3035 					break;
3036 				}
3037 
3038 				/* fall through */
3039 
3040             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
3041                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
3042 
3043                 // start with initiator key dist flags
3044                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
3045 
3046 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3047                 // LTK (= encryption information & master identification) only exchanged for LE Legacy Connection
3048                 if (setup->sm_use_secure_connections){
3049                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
3050                 }
3051 #endif
3052                 // setup in response
3053                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
3054                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
3055 
3056                 // update key distribution after ENC was dropped
3057                 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres), sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
3058 
3059                 if (setup->sm_use_secure_connections){
3060                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
3061                 } else {
3062                     connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
3063                 }
3064 
3065                 sm_send_connectionless(connection, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
3066                 sm_timeout_reset(connection);
3067 
3068                 // notify after sending
3069                 sm_pairing_started(connection);
3070 
3071                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
3072                 if (!setup->sm_use_secure_connections || (setup->sm_stk_generation_method == JUST_WORKS)){
3073                     sm_trigger_user_response(connection);
3074                 }
3075                 return;
3076 #endif
3077 
3078             case SM_PH2_SEND_PAIRING_RANDOM: {
3079                 uint8_t buffer[17];
3080                 buffer[0] = SM_CODE_PAIRING_RANDOM;
3081                 reverse_128(setup->sm_local_random, &buffer[1]);
3082                 if (IS_RESPONDER(connection->sm_role)){
3083                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
3084                 } else {
3085                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
3086                 }
3087                 sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
3088                 sm_timeout_reset(connection);
3089                 break;
3090             }
3091 
3092             case SM_PH2_C1_GET_ENC_A:
3093                 // already busy?
3094                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3095                 // calculate confirm using aes128 engine - step 1
3096                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
3097                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_A;
3098                 sm_aes128_state = SM_AES128_ACTIVE;
3099                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_a, (void *)(uintptr_t) connection->sm_handle);
3100                 break;
3101 
3102             case SM_PH2_C1_GET_ENC_C:
3103                 // already busy?
3104                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3105                 // calculate m_confirm using aes128 engine - step 1
3106                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
3107                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_C;
3108                 sm_aes128_state = SM_AES128_ACTIVE;
3109                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_c, (void *)(uintptr_t) connection->sm_handle);
3110                 break;
3111 
3112             case SM_PH2_CALC_STK:
3113                 // already busy?
3114                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3115                 // calculate STK
3116                 if (IS_RESPONDER(connection->sm_role)){
3117                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, sm_aes128_plaintext);
3118                 } else {
3119                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3120                 }
3121                 connection->sm_engine_state = SM_PH2_W4_STK;
3122                 sm_aes128_state = SM_AES128_ACTIVE;
3123                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3124                 break;
3125 
3126             case SM_PH3_Y_GET_ENC:
3127                 // already busy?
3128                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3129                 // PH3B2 - calculate Y from      - enc
3130 
3131                 // dm helper (was sm_dm_r_prime)
3132                 // r' = padding || r
3133                 // r - 64 bit value
3134                 memset(&sm_aes128_plaintext[0], 0, 8);
3135                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
3136 
3137                 // Y = dm(DHK, Rand)
3138                 connection->sm_engine_state = SM_PH3_Y_W4_ENC;
3139                 sm_aes128_state = SM_AES128_ACTIVE;
3140                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph3_y, (void *)(uintptr_t) connection->sm_handle);
3141                 break;
3142 
3143             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
3144                 uint8_t buffer[17];
3145                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
3146                 reverse_128(setup->sm_local_confirm, &buffer[1]);
3147                 if (IS_RESPONDER(connection->sm_role)){
3148                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
3149                 } else {
3150                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
3151                 }
3152                 sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
3153                 sm_timeout_reset(connection);
3154                 return;
3155             }
3156 #ifdef ENABLE_LE_PERIPHERAL
3157             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
3158                 // cache key before using
3159                 sm_cache_ltk(connection, setup->sm_ltk);
3160                 sm_key_t stk_flipped;
3161                 reverse_128(setup->sm_ltk, stk_flipped);
3162                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3163                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
3164                 return;
3165             }
3166             case SM_RESPONDER_PH4_SEND_LTK_REPLY: {
3167                 // allow to override LTK
3168                 if (sm_get_ltk_callback != NULL){
3169                     (void)(*sm_get_ltk_callback)(connection->sm_handle, connection->sm_peer_addr_type, connection->sm_peer_address, setup->sm_ltk);
3170                 }
3171                 // cache key before using
3172                 sm_cache_ltk(connection, setup->sm_ltk);
3173                 sm_key_t ltk_flipped;
3174                 reverse_128(setup->sm_ltk, ltk_flipped);
3175                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
3176                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
3177                 return;
3178             }
3179 
3180 			case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
3181                 // already busy?
3182                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3183                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
3184 
3185 				sm_reset_setup();
3186 				sm_start_calculating_ltk_from_ediv_and_rand(connection);
3187 
3188 				sm_reencryption_started(connection);
3189 
3190                 // dm helper (was sm_dm_r_prime)
3191                 // r' = padding || r
3192                 // r - 64 bit value
3193                 memset(&sm_aes128_plaintext[0], 0, 8);
3194                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
3195 
3196                 // Y = dm(DHK, Rand)
3197                 connection->sm_engine_state = SM_RESPONDER_PH4_Y_W4_ENC;
3198                 sm_aes128_state = SM_AES128_ACTIVE;
3199                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph4_y, (void *)(uintptr_t) connection->sm_handle);
3200                 return;
3201 #endif
3202 #ifdef ENABLE_LE_CENTRAL
3203             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
3204                 // cache key before using
3205                 sm_cache_ltk(connection, setup->sm_ltk);
3206 
3207                 sm_key_t stk_flipped;
3208                 reverse_128(setup->sm_ltk, stk_flipped);
3209                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3210                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
3211                 return;
3212             }
3213 #endif
3214 
3215             case SM_PH3_DISTRIBUTE_KEYS:
3216                 // send next key
3217                 if (setup->sm_key_distribution_send_set != 0){
3218                     sm_run_distribute_keys(connection);
3219                 }
3220 
3221                 // more to send?
3222                 if (setup->sm_key_distribution_send_set != 0){
3223                     return;
3224                 }
3225 
3226                 // keys are sent
3227                 if (IS_RESPONDER(connection->sm_role)){
3228                     // slave -> receive master keys if any
3229                     if (sm_key_distribution_all_received()){
3230                         sm_key_distribution_handle_all_received(connection);
3231                         sm_key_distribution_complete_responder(connection);
3232                         // start CTKD right away
3233                         continue;
3234                     } else {
3235                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3236                     }
3237                 } else {
3238                     sm_master_pairing_success(connection);
3239                 }
3240                 break;
3241 
3242 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3243             case SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST:
3244                 // fill in sm setup (lite version of sm_init_setup)
3245                 sm_reset_setup();
3246                 setup->sm_peer_addr_type = connection->sm_peer_addr_type;
3247                 setup->sm_m_addr_type = connection->sm_peer_addr_type;
3248                 setup->sm_s_addr_type = connection->sm_own_addr_type;
3249                 (void) memcpy(setup->sm_peer_address, connection->sm_peer_address, 6);
3250                 (void) memcpy(setup->sm_m_address, connection->sm_peer_address, 6);
3251                 (void) memcpy(setup->sm_s_address, connection->sm_own_address, 6);
3252                 setup->sm_use_secure_connections = true;
3253                 sm_ctkd_fetch_br_edr_link_key(connection);
3254 
3255                 // Enc Key and IRK if requested
3256                 key_distribution_flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_ENC_KEY;
3257 #ifdef ENABLE_LE_SIGNED_WRITE
3258                 // Plus signing key if supported
3259                 key_distribution_flags |= SM_KEYDIST_ID_KEY;
3260 #endif
3261                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
3262                 sm_pairing_packet_set_io_capability(setup->sm_m_preq, 0);
3263                 sm_pairing_packet_set_oob_data_flag(setup->sm_m_preq, 0);
3264                 sm_pairing_packet_set_auth_req(setup->sm_m_preq, SM_AUTHREQ_CT2);
3265                 sm_pairing_packet_set_max_encryption_key_size(setup->sm_m_preq, sm_max_encryption_key_size);
3266                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
3267                 sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
3268 
3269                 // set state and send pairing response
3270                 sm_timeout_start(connection);
3271                 connection->sm_engine_state = SM_BR_EDR_INITIATOR_W4_PAIRING_RESPONSE;
3272                 sm_send_connectionless(connection, (uint8_t *) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
3273                 break;
3274 
3275             case SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED:
3276                 // fill in sm setup (lite version of sm_init_setup)
3277                 sm_reset_setup();
3278                 setup->sm_peer_addr_type = connection->sm_peer_addr_type;
3279                 setup->sm_m_addr_type = connection->sm_peer_addr_type;
3280                 setup->sm_s_addr_type = connection->sm_own_addr_type;
3281                 (void) memcpy(setup->sm_peer_address, connection->sm_peer_address, 6);
3282                 (void) memcpy(setup->sm_m_address, connection->sm_peer_address, 6);
3283                 (void) memcpy(setup->sm_s_address, connection->sm_own_address, 6);
3284                 setup->sm_use_secure_connections = true;
3285                 sm_ctkd_fetch_br_edr_link_key(connection);
3286                 (void) memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
3287 
3288                 // Enc Key and IRK if requested
3289                 key_distribution_flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_ENC_KEY;
3290 #ifdef ENABLE_LE_SIGNED_WRITE
3291                 // Plus signing key if supported
3292                 key_distribution_flags |= SM_KEYDIST_ID_KEY;
3293 #endif
3294                 // drop flags not requested by initiator
3295                 key_distribution_flags &= sm_pairing_packet_get_initiator_key_distribution(connection->sm_m_preq);
3296 
3297                 // If Secure Connections pairing has been initiated over BR/EDR, the following fields of the SM Pairing Request PDU are reserved for future use:
3298                 // - the IO Capability field,
3299                 // - the OOB data flag field, and
3300                 // - all bits in the Auth Req field except the CT2 bit.
3301                 sm_pairing_packet_set_code(setup->sm_s_pres, SM_CODE_PAIRING_RESPONSE);
3302                 sm_pairing_packet_set_io_capability(setup->sm_s_pres, 0);
3303                 sm_pairing_packet_set_oob_data_flag(setup->sm_s_pres, 0);
3304                 sm_pairing_packet_set_auth_req(setup->sm_s_pres, SM_AUTHREQ_CT2);
3305                 sm_pairing_packet_set_max_encryption_key_size(setup->sm_s_pres, connection->sm_actual_encryption_key_size);
3306                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, key_distribution_flags);
3307                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, key_distribution_flags);
3308 
3309                 // configure key distribution, LTK is derived locally
3310                 key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
3311                 sm_setup_key_distribution(key_distribution_flags, key_distribution_flags);
3312 
3313                 // set state and send pairing response
3314                 sm_timeout_start(connection);
3315                 connection->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
3316                 sm_send_connectionless(connection, (uint8_t *) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
3317                 break;
3318             case SM_BR_EDR_DISTRIBUTE_KEYS:
3319                 if (setup->sm_key_distribution_send_set != 0) {
3320                     sm_run_distribute_keys(connection);
3321                     return;
3322                 }
3323                 // keys are sent
3324                 if (IS_RESPONDER(connection->sm_role)) {
3325                     // responder -> receive master keys if there are any
3326                     if (!sm_key_distribution_all_received()){
3327                         connection->sm_engine_state = SM_BR_EDR_RECEIVE_KEYS;
3328                         break;
3329                     }
3330                 }
3331                 // otherwise start CTKD right away (responder and no keys to receive / initiator)
3332                 sm_ctkd_start_from_br_edr(connection);
3333                 continue;
3334             case SM_SC_W2_CALCULATE_ILK_USING_H6:
3335                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
3336                 h6_calculate_ilk_from_le_ltk(connection);
3337                 break;
3338             case SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY:
3339                 connection->sm_engine_state = SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY;
3340                 h6_calculate_br_edr_link_key(connection);
3341                 break;
3342             case SM_SC_W2_CALCULATE_ILK_USING_H7:
3343                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
3344                 h7_calculate_ilk_from_le_ltk(connection);
3345                 break;
3346             case SM_BR_EDR_W2_CALCULATE_ILK_USING_H6:
3347                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_ILK;
3348                 h6_calculate_ilk_from_br_edr(connection);
3349                 break;
3350             case SM_BR_EDR_W2_CALCULATE_LE_LTK:
3351                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_LE_LTK;
3352                 h6_calculate_le_ltk(connection);
3353                 break;
3354             case SM_BR_EDR_W2_CALCULATE_ILK_USING_H7:
3355                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_ILK;
3356                 h7_calculate_ilk_from_br_edr(connection);
3357                 break;
3358 #endif
3359 
3360             default:
3361                 break;
3362         }
3363 
3364         // check again if active connection was released
3365         if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break;
3366     }
3367 }
3368 
3369 // sm_aes128_state stays active
3370 static void sm_handle_encryption_result_enc_a(void *arg){
3371     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3372     sm_aes128_state = SM_AES128_IDLE;
3373 
3374     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3375     if (connection == NULL) return;
3376 
3377     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3378     sm_aes128_state = SM_AES128_ACTIVE;
3379     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, setup->sm_local_confirm, sm_handle_encryption_result_enc_b, (void *)(uintptr_t) connection->sm_handle);
3380 }
3381 
3382 static void sm_handle_encryption_result_enc_b(void *arg){
3383     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3384     sm_aes128_state = SM_AES128_IDLE;
3385 
3386     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3387     if (connection == NULL) return;
3388 
3389     log_info_key("c1!", setup->sm_local_confirm);
3390     connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
3391     sm_trigger_run();
3392 }
3393 
3394 // sm_aes128_state stays active
3395 static void sm_handle_encryption_result_enc_c(void *arg){
3396     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3397     sm_aes128_state = SM_AES128_IDLE;
3398 
3399     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3400     if (connection == NULL) return;
3401 
3402     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3403     sm_aes128_state = SM_AES128_ACTIVE;
3404     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, sm_aes128_ciphertext, sm_handle_encryption_result_enc_d, (void *)(uintptr_t) connection->sm_handle);
3405 }
3406 
3407 static void sm_handle_encryption_result_enc_d(void * arg){
3408     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3409     sm_aes128_state = SM_AES128_IDLE;
3410 
3411     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3412     if (connection == NULL) return;
3413 
3414     log_info_key("c1!", sm_aes128_ciphertext);
3415     if (memcmp(setup->sm_peer_confirm, sm_aes128_ciphertext, 16) != 0){
3416         sm_pairing_error(connection, SM_REASON_CONFIRM_VALUE_FAILED);
3417         sm_trigger_run();
3418         return;
3419     }
3420     if (IS_RESPONDER(connection->sm_role)){
3421         connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
3422         sm_trigger_run();
3423     } else {
3424         sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3425         sm_aes128_state = SM_AES128_ACTIVE;
3426         btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3427     }
3428 }
3429 
3430 static void sm_handle_encryption_result_enc_stk(void *arg){
3431     sm_aes128_state = SM_AES128_IDLE;
3432     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3433 
3434     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3435     if (connection == NULL) return;
3436 
3437     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3438     log_info_key("stk", setup->sm_ltk);
3439     if (IS_RESPONDER(connection->sm_role)){
3440         connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
3441     } else {
3442         connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
3443     }
3444     sm_trigger_run();
3445 }
3446 
3447 // sm_aes128_state stays active
3448 static void sm_handle_encryption_result_enc_ph3_y(void *arg){
3449     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3450     sm_aes128_state = SM_AES128_IDLE;
3451 
3452     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3453     if (connection == NULL) return;
3454 
3455     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3456     log_info_hex16("y", setup->sm_local_y);
3457     // PH3B3 - calculate EDIV
3458     setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
3459     log_info_hex16("ediv", setup->sm_local_ediv);
3460     // PH3B4 - calculate LTK         - enc
3461     // LTK = d1(ER, DIV, 0))
3462     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3463     sm_aes128_state = SM_AES128_ACTIVE;
3464     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph3_ltk, (void *)(uintptr_t) connection->sm_handle);
3465 }
3466 
3467 #ifdef ENABLE_LE_PERIPHERAL
3468 // sm_aes128_state stays active
3469 static void sm_handle_encryption_result_enc_ph4_y(void *arg){
3470     sm_aes128_state = SM_AES128_IDLE;
3471     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3472 
3473     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3474     if (connection == NULL) return;
3475 
3476     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3477     log_info_hex16("y", setup->sm_local_y);
3478 
3479     // PH3B3 - calculate DIV
3480     setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
3481     log_info_hex16("ediv", setup->sm_local_ediv);
3482     // PH3B4 - calculate LTK         - enc
3483     // LTK = d1(ER, DIV, 0))
3484     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3485     sm_aes128_state = SM_AES128_ACTIVE;
3486     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph4_ltk, (void *)(uintptr_t) connection->sm_handle);
3487 }
3488 #endif
3489 
3490 // sm_aes128_state stays active
3491 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg){
3492     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3493     sm_aes128_state = SM_AES128_IDLE;
3494 
3495     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3496     if (connection == NULL) return;
3497 
3498     log_info_key("ltk", setup->sm_ltk);
3499     // calc CSRK next
3500     sm_d1_d_prime(setup->sm_local_div, 1, sm_aes128_plaintext);
3501     sm_aes128_state = SM_AES128_ACTIVE;
3502     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_local_csrk, sm_handle_encryption_result_enc_csrk, (void *)(uintptr_t) connection->sm_handle);
3503 }
3504 
3505 static void sm_handle_encryption_result_enc_csrk(void *arg){
3506     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3507     sm_aes128_state = SM_AES128_IDLE;
3508 
3509     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3510     if (connection == NULL) return;
3511 
3512     sm_aes128_state = SM_AES128_IDLE;
3513     log_info_key("csrk", setup->sm_local_csrk);
3514     if (setup->sm_key_distribution_send_set != 0u){
3515         connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3516     } else {
3517         // no keys to send, just continue
3518         if (IS_RESPONDER(connection->sm_role)){
3519             if (sm_key_distribution_all_received()){
3520                 sm_key_distribution_handle_all_received(connection);
3521                 sm_key_distribution_complete_responder(connection);
3522             } else {
3523                 // slave -> receive master keys
3524                 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3525             }
3526         } else {
3527             sm_key_distribution_complete_initiator(connection);
3528         }
3529     }
3530     sm_trigger_run();
3531 }
3532 
3533 #ifdef ENABLE_LE_PERIPHERAL
3534 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg){
3535     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3536     sm_aes128_state = SM_AES128_IDLE;
3537 
3538     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3539     if (connection == NULL) return;
3540 
3541     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3542     log_info_key("ltk", setup->sm_ltk);
3543     connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
3544     sm_trigger_run();
3545 }
3546 #endif
3547 
3548 static void sm_handle_encryption_result_address_resolution(void *arg){
3549     UNUSED(arg);
3550     sm_aes128_state = SM_AES128_IDLE;
3551 
3552     // compare calulated address against connecting device
3553     uint8_t * hash = &sm_aes128_ciphertext[13];
3554     if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
3555         log_info("LE Device Lookup: matched resolvable private address");
3556         sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
3557         sm_trigger_run();
3558         return;
3559     }
3560     // no match, try next
3561     sm_address_resolution_test++;
3562     sm_trigger_run();
3563 }
3564 
3565 static void sm_handle_encryption_result_dkg_irk(void *arg){
3566     UNUSED(arg);
3567     sm_aes128_state = SM_AES128_IDLE;
3568 
3569     log_info_key("irk", sm_persistent_irk);
3570     dkg_state = DKG_CALC_DHK;
3571     sm_trigger_run();
3572 }
3573 
3574 static void sm_handle_encryption_result_dkg_dhk(void *arg){
3575     UNUSED(arg);
3576     sm_aes128_state = SM_AES128_IDLE;
3577 
3578     log_info_key("dhk", sm_persistent_dhk);
3579     dkg_state = DKG_READY;
3580     sm_trigger_run();
3581 }
3582 
3583 static void sm_handle_encryption_result_rau(void *arg){
3584     UNUSED(arg);
3585     sm_aes128_state = SM_AES128_IDLE;
3586 
3587     (void)memcpy(&sm_random_address[3], &sm_aes128_ciphertext[13], 3);
3588     rau_state = RAU_IDLE;
3589     hci_le_random_address_set(sm_random_address);
3590 
3591     sm_trigger_run();
3592 }
3593 
3594 static void sm_handle_random_result_rau(void * arg){
3595     UNUSED(arg);
3596     // non-resolvable vs. resolvable
3597     switch (gap_random_adress_type){
3598         case GAP_RANDOM_ADDRESS_RESOLVABLE:
3599             // resolvable: use random as prand and calc address hash
3600             // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
3601             sm_random_address[0u] &= 0x3fu;
3602             sm_random_address[0u] |= 0x40u;
3603             rau_state = RAU_GET_ENC;
3604             break;
3605         case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
3606         default:
3607             // "The two most significant bits of the address shall be equal to ‘0’""
3608             sm_random_address[0u] &= 0x3fu;
3609             rau_state = RAU_IDLE;
3610             hci_le_random_address_set(sm_random_address);
3611             break;
3612     }
3613     sm_trigger_run();
3614 }
3615 
3616 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3617 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg){
3618     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3619     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3620     if (connection == NULL) return;
3621 
3622     connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
3623     sm_trigger_run();
3624 }
3625 
3626 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg){
3627     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3628     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3629     if (connection == NULL) return;
3630 
3631     connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
3632     sm_trigger_run();
3633 }
3634 #endif
3635 
3636 static void sm_handle_random_result_ph2_random(void * arg){
3637     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3638     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3639     if (connection == NULL) return;
3640 
3641     connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
3642     sm_trigger_run();
3643 }
3644 
3645 static void sm_handle_random_result_ph2_tk(void * arg){
3646     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3647     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3648     if (connection == NULL) return;
3649 
3650     sm_reset_tk();
3651     uint32_t tk;
3652     if (sm_fixed_passkey_in_display_role == 0xffffffffU){
3653         // map random to 0-999999 without speding much cycles on a modulus operation
3654         tk = little_endian_read_32(sm_random_data,0);
3655         tk = tk & 0xfffff;  // 1048575
3656         if (tk >= 999999u){
3657             tk = tk - 999999u;
3658         }
3659     } else {
3660         // override with pre-defined passkey
3661         tk = sm_fixed_passkey_in_display_role;
3662     }
3663     big_endian_store_32(setup->sm_tk, 12, tk);
3664     if (IS_RESPONDER(connection->sm_role)){
3665         connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
3666     } else {
3667         if (setup->sm_use_secure_connections){
3668             connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3669         } else {
3670             connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3671             sm_trigger_user_response(connection);
3672             // response_idle == nothing <--> sm_trigger_user_response() did not require response
3673             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3674                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) connection->sm_handle);
3675             }
3676         }
3677     }
3678     sm_trigger_run();
3679 }
3680 
3681 static void sm_handle_random_result_ph3_div(void * arg){
3682     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3683     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3684     if (connection == NULL) return;
3685 
3686     // use 16 bit from random value as div
3687     setup->sm_local_div = big_endian_read_16(sm_random_data, 0);
3688     log_info_hex16("div", setup->sm_local_div);
3689     connection->sm_engine_state = SM_PH3_Y_GET_ENC;
3690     sm_trigger_run();
3691 }
3692 
3693 static void sm_handle_random_result_ph3_random(void * arg){
3694     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3695     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3696     if (connection == NULL) return;
3697 
3698     reverse_64(sm_random_data, setup->sm_local_rand);
3699     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
3700     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xf0u) + (connection->sm_actual_encryption_key_size - 1u);
3701     // no db for authenticated flag hack: store flag in bit 4 of LSB
3702     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xefu) + (connection->sm_connection_authenticated << 4u);
3703     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 2, &sm_handle_random_result_ph3_div, (void *)(uintptr_t) connection->sm_handle);
3704 }
3705 static void sm_validate_er_ir(void){
3706     // warn about default ER/IR
3707     bool warning = false;
3708     if (sm_ir_is_default()){
3709         warning = true;
3710         log_error("Persistent IR not set with sm_set_ir. Use of private addresses will cause pairing issues");
3711     }
3712     if (sm_er_is_default()){
3713         warning = true;
3714         log_error("Persistent ER not set with sm_set_er. Legacy Pairing LTK is not secure");
3715     }
3716     if (warning) {
3717         log_error("Please configure btstack_tlv to let BTstack setup ER and IR keys");
3718     }
3719 }
3720 
3721 static void sm_handle_random_result_ir(void *arg){
3722     sm_persistent_keys_random_active = false;
3723     if (arg != NULL){
3724         // key generated, store in tlv
3725         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3726         log_info("Generated IR key. Store in TLV status: %d", status);
3727         UNUSED(status);
3728     }
3729     log_info_key("IR", sm_persistent_ir);
3730     dkg_state = DKG_CALC_IRK;
3731 
3732     if (test_use_fixed_local_irk){
3733         log_info_key("IRK", sm_persistent_irk);
3734         dkg_state = DKG_CALC_DHK;
3735     }
3736 
3737     sm_trigger_run();
3738 }
3739 
3740 static void sm_handle_random_result_er(void *arg){
3741     sm_persistent_keys_random_active = false;
3742     if (arg != 0){
3743         // key generated, store in tlv
3744         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3745         log_info("Generated ER key. Store in TLV status: %d", status);
3746         UNUSED(status);
3747     }
3748     log_info_key("ER", sm_persistent_er);
3749 
3750     // try load ir
3751     int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3752     if (key_size == 16){
3753         // ok, let's continue
3754         log_info("IR from TLV");
3755         sm_handle_random_result_ir( NULL );
3756     } else {
3757         // invalid, generate new random one
3758         sm_persistent_keys_random_active = true;
3759         btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_ir, 16, &sm_handle_random_result_ir, &sm_persistent_ir);
3760     }
3761 }
3762 
3763 static void sm_connection_init(sm_connection_t * sm_conn, hci_con_handle_t con_handle, uint8_t role, uint8_t peer_addr_type, bd_addr_t peer_address){
3764 
3765     // connection info
3766     sm_conn->sm_handle = con_handle;
3767     sm_conn->sm_role = role;
3768     sm_conn->sm_peer_addr_type = peer_addr_type;
3769     memcpy(sm_conn->sm_peer_address, peer_address, 6);
3770 
3771     // security properties
3772     sm_conn->sm_connection_encrypted = 0;
3773     sm_conn->sm_connection_authenticated = 0;
3774     sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
3775     sm_conn->sm_le_db_index = -1;
3776     sm_conn->sm_reencryption_active = false;
3777 
3778     // prepare CSRK lookup (does not involve setup)
3779     sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
3780 
3781     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
3782 }
3783 
3784 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3785 static void sm_event_handle_classic_encryption_event(sm_connection_t * sm_conn, hci_con_handle_t con_handle){
3786     // CTKD requires BR/EDR Secure Connection
3787     if (sm_conn->sm_connection_encrypted != 2) return;
3788     // prepare for pairing request
3789     if (IS_RESPONDER(sm_conn->sm_role)){
3790         sm_conn->sm_engine_state = SM_BR_EDR_RESPONDER_W4_PAIRING_REQUEST;
3791     } else if (sm_conn->sm_pairing_requested){
3792         // check if remote supports fixed channels
3793         bool defer = true;
3794         const hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
3795         if (hci_connection->l2cap_state.information_state == L2CAP_INFORMATION_STATE_DONE){
3796             // check if remote supports SMP over BR/EDR
3797             if ((hci_connection->l2cap_state.fixed_channels_supported & (1 << L2CAP_CID_BR_EDR_SECURITY_MANAGER)) != 0){
3798                 log_info("CTKD: SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST");
3799                 sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST;
3800             } else {
3801                 defer = false;
3802             }
3803         } else {
3804             // wait for fixed channel info
3805             log_info("CTKD: SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK");
3806             sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK;
3807         }
3808         if (defer){
3809             hci_dedicated_bonding_defer_disconnect(con_handle, true);
3810         }
3811     }
3812 }
3813 #endif
3814 
3815 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
3816 
3817     UNUSED(channel);    // ok: there is no channel
3818     UNUSED(size);       // ok: fixed format HCI events
3819 
3820     sm_connection_t * sm_conn;
3821     hci_con_handle_t  con_handle;
3822     uint8_t           status;
3823     bd_addr_t         addr;
3824     bd_addr_type_t    addr_type;
3825 
3826     switch (packet_type) {
3827 
3828 		case HCI_EVENT_PACKET:
3829 			switch (hci_event_packet_get_type(packet)) {
3830 
3831                 case BTSTACK_EVENT_STATE:
3832                     switch (btstack_event_state_get_state(packet)){
3833                         case HCI_STATE_WORKING:
3834                             log_info("HCI Working!");
3835                             // setup IR/ER with TLV
3836                             btstack_tlv_get_instance(&sm_tlv_impl, &sm_tlv_context);
3837                             if (sm_tlv_impl != NULL){
3838                                 int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3839                                 if (key_size == 16){
3840                                     // ok, let's continue
3841                                     log_info("ER from TLV");
3842                                     sm_handle_random_result_er( NULL );
3843                                 } else {
3844                                     // invalid, generate random one
3845                                     sm_persistent_keys_random_active = true;
3846                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_er, 16, &sm_handle_random_result_er, &sm_persistent_er);
3847                                 }
3848                             } else {
3849                                 sm_validate_er_ir();
3850                                 dkg_state = DKG_CALC_IRK;
3851 
3852                                 if (test_use_fixed_local_irk){
3853                                     log_info_key("IRK", sm_persistent_irk);
3854                                     dkg_state = DKG_CALC_DHK;
3855                                 }
3856                             }
3857 
3858 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3859                             // trigger ECC key generation
3860                             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
3861                                 sm_ec_generate_new_key();
3862                             }
3863 #endif
3864 
3865                             // restart random address updates after power cycle
3866                             if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_STATIC){
3867                                 gap_random_address_set(sm_random_address);
3868                             } else {
3869                                 gap_random_address_set_mode(gap_random_adress_type);
3870                             }
3871                             break;
3872 
3873                         case HCI_STATE_OFF:
3874                         case HCI_STATE_HALTING:
3875                             log_info("SM: reset state");
3876                             // stop random address update
3877                             gap_random_address_update_stop();
3878                             // reset state
3879                             sm_state_reset();
3880                             break;
3881 
3882                         default:
3883                             break;
3884                     }
3885 					break;
3886 
3887 #ifdef ENABLE_CLASSIC
3888 			    case HCI_EVENT_CONNECTION_COMPLETE:
3889 			        // ignore if connection failed
3890 			        if (hci_event_connection_complete_get_status(packet)) return;
3891 
3892 			        con_handle = hci_event_connection_complete_get_connection_handle(packet);
3893 			        sm_conn = sm_get_connection_for_handle(con_handle);
3894 			        if (!sm_conn) break;
3895 
3896                     hci_event_connection_complete_get_bd_addr(packet, addr);
3897 			        sm_connection_init(sm_conn,
3898                                        con_handle,
3899                                        (uint8_t) gap_get_role(con_handle),
3900                                        BD_ADDR_TYPE_LE_PUBLIC,
3901                                        addr);
3902 			        // classic connection corresponds to public le address
3903 			        sm_conn->sm_own_addr_type = BD_ADDR_TYPE_LE_PUBLIC;
3904                     gap_local_bd_addr(sm_conn->sm_own_address);
3905                     sm_conn->sm_cid = L2CAP_CID_BR_EDR_SECURITY_MANAGER;
3906                     sm_conn->sm_engine_state = SM_BR_EDR_W4_ENCRYPTION_COMPLETE;
3907 			        break;
3908 #endif
3909 
3910 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3911 			    case HCI_EVENT_SIMPLE_PAIRING_COMPLETE:
3912 			        if (hci_event_simple_pairing_complete_get_status(packet) != ERROR_CODE_SUCCESS) break;
3913                     hci_event_simple_pairing_complete_get_bd_addr(packet, addr);
3914                     sm_conn = sm_get_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
3915                     if (sm_conn == NULL) break;
3916                     sm_conn->sm_pairing_requested = true;
3917 			        break;
3918 #endif
3919 
3920 			    case HCI_EVENT_META_GAP:
3921 			        switch (hci_event_gap_meta_get_subevent_code(packet)) {
3922 			            case GAP_SUBEVENT_LE_CONNECTION_COMPLETE:
3923 			                // ignore if connection failed
3924 			                if (gap_subevent_le_connection_complete_get_status(packet) != ERROR_CODE_SUCCESS) break;
3925 
3926 			                con_handle = gap_subevent_le_connection_complete_get_connection_handle(packet);
3927 			                sm_conn = sm_get_connection_for_handle(con_handle);
3928 			                if (!sm_conn) break;
3929 
3930                             // Get current peer address
3931                             addr_type = gap_subevent_le_connection_complete_get_peer_address_type(packet);
3932                             if (hci_is_le_identity_address_type(addr_type)){
3933                                 addr_type = BD_ADDR_TYPE_LE_RANDOM;
3934                                 gap_subevent_le_connection_complete_get_peer_resolvable_private_address(packet, addr);
3935                             } else {
3936                                 gap_subevent_le_connection_complete_get_peer_address(packet, addr);
3937                             }
3938 			                sm_connection_init(sm_conn,
3939                                                con_handle,
3940                                                gap_subevent_le_connection_complete_get_role(packet),
3941                                                addr_type,
3942                                                addr);
3943 			                sm_conn->sm_cid = L2CAP_CID_SECURITY_MANAGER_PROTOCOL;
3944 
3945 			                // track our addr used for this connection and set state
3946 #ifdef ENABLE_LE_PERIPHERAL
3947 			                if (gap_subevent_le_connection_complete_get_role(packet) != 0){
3948 			                    // responder - use own address from advertisements
3949 #ifdef ENABLE_LE_EXTENDED_ADVERTISING
3950                                 if (hci_le_extended_advertising_supported()){
3951                                     // cache local resolvable address
3952                                     // note: will be overwritten if random or private address was used in adv set by HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED
3953                                     sm_conn->sm_own_addr_type = BD_ADDR_TYPE_LE_RANDOM;
3954                                     gap_subevent_le_connection_complete_get_local_resolvable_private_address(packet,sm_conn->sm_own_address);
3955                                 } else
3956 #endif
3957                                 {
3958                                     gap_le_get_own_advertisements_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address);
3959                                 }
3960 			                    sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3961 			                }
3962 #endif
3963 #ifdef ENABLE_LE_CENTRAL
3964 			                if (gap_subevent_le_connection_complete_get_role(packet) == 0){
3965 			                    // initiator - use own address from create connection
3966 			                    gap_le_get_own_connection_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address);
3967 			                    sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3968 			                }
3969 #endif
3970 			                break;
3971 			            default:
3972 			                break;
3973 			        }
3974 			        break;
3975                 case HCI_EVENT_LE_META:
3976                     switch (hci_event_le_meta_get_subevent_code(packet)) {
3977 #ifdef ENABLE_LE_PERIPHERAL
3978 #ifdef ENABLE_LE_EXTENDED_ADVERTISING
3979                         case HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED:
3980                             if (hci_subevent_le_advertising_set_terminated_get_status(packet) == ERROR_CODE_SUCCESS){
3981                                 uint8_t advertising_handle = hci_subevent_le_advertising_set_terminated_get_advertising_handle(packet);
3982                                 con_handle = hci_subevent_le_advertising_set_terminated_get_connection_handle(packet);
3983                                 sm_conn = sm_get_connection_for_handle(con_handle);
3984                                 gap_le_get_own_advertising_set_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address, advertising_handle);
3985                                 log_info("Adv set %u terminated -> use addr type %u, addr %s for con handle 0x%04x", advertising_handle, sm_conn->sm_own_addr_type,
3986                                          bd_addr_to_str(sm_conn->sm_own_address), con_handle);
3987                             }
3988                             break;
3989 #endif
3990 #endif
3991                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
3992                             con_handle = hci_subevent_le_long_term_key_request_get_connection_handle(packet);
3993                             sm_conn = sm_get_connection_for_handle(con_handle);
3994                             if (!sm_conn) break;
3995 
3996                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
3997                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
3998                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
3999                                 break;
4000                             }
4001                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
4002                                 // PH2 SEND LTK as we need to exchange keys in PH3
4003                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
4004                                 break;
4005                             }
4006 
4007                             // store rand and ediv
4008                             reverse_64(&packet[5], sm_conn->sm_local_rand);
4009                             sm_conn->sm_local_ediv = hci_subevent_le_long_term_key_request_get_encryption_diversifier(packet);
4010 
4011                             // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a
4012                             // potentially stored LTK is from the master
4013                             if ((sm_conn->sm_local_ediv != 0u) || !sm_is_null_random(sm_conn->sm_local_rand)){
4014                                 if (sm_reconstruct_ltk_without_le_device_db_entry){
4015                                     sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
4016                                     break;
4017                                 }
4018                                 // additionally check if remote is in LE Device DB if requested
4019                                 switch(sm_conn->sm_irk_lookup_state){
4020                                     case IRK_LOOKUP_FAILED:
4021                                         log_info("LTK Request: device not in device db");
4022                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
4023                                         break;
4024                                     case IRK_LOOKUP_SUCCEEDED:
4025                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
4026                                         break;
4027                                     default:
4028                                         // wait for irk look doen
4029                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK;
4030                                         break;
4031                                 }
4032                                 break;
4033                             }
4034 
4035 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4036                             sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST;
4037 #else
4038                             log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported");
4039                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
4040 #endif
4041                             break;
4042 
4043                         default:
4044                             break;
4045                     }
4046                     break;
4047 
4048                 case HCI_EVENT_ENCRYPTION_CHANGE:
4049                 case HCI_EVENT_ENCRYPTION_CHANGE_V2:
4050                 	con_handle = hci_event_encryption_change_get_connection_handle(packet);
4051                     sm_conn = sm_get_connection_for_handle(con_handle);
4052                     if (!sm_conn) break;
4053 
4054                     sm_conn->sm_connection_encrypted = hci_event_encryption_change_get_encryption_enabled(packet);
4055                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
4056                         sm_conn->sm_actual_encryption_key_size);
4057                     log_info("event handler, state %u", sm_conn->sm_engine_state);
4058 
4059                     switch (sm_conn->sm_engine_state){
4060 
4061                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4062                             // encryption change event concludes re-encryption for bonded devices (even if it fails)
4063                             if (sm_conn->sm_connection_encrypted != 0u) {
4064                                 status = ERROR_CODE_SUCCESS;
4065                                 if (IS_RESPONDER(sm_conn->sm_role)){
4066                                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
4067                                 } else {
4068                                     sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4069                                 }
4070                             } else {
4071                                 status = hci_event_encryption_change_get_status(packet);
4072                                 // set state to 'RE-ENCRYPTION FAILED' to allow pairing but prevent other interactions
4073                                 // also, gap_reconnect_security_setup_active will return true
4074                                 sm_conn->sm_engine_state = SM_GENERAL_REENCRYPTION_FAILED;
4075                             }
4076 
4077                             // emit re-encryption complete
4078                             sm_reencryption_complete(sm_conn, status);
4079 
4080                             // notify client, if pairing was requested before
4081                             if (sm_conn->sm_pairing_requested){
4082                                 sm_conn->sm_pairing_requested = false;
4083                                 sm_pairing_complete(sm_conn, status, 0);
4084                             }
4085 
4086                             sm_done_for_handle(sm_conn->sm_handle);
4087                             break;
4088 
4089                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4090                             if (!sm_conn->sm_connection_encrypted) break;
4091                             // handler for HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE
4092                             // contains the same code for this state
4093                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
4094                             if (IS_RESPONDER(sm_conn->sm_role)){
4095                                 // slave
4096                                 if (sm_conn->sm_connection_sc){
4097                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4098                                 } else {
4099                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4100                                 }
4101                             } else {
4102                                 // master
4103                                 if (sm_key_distribution_all_received()){
4104                                     // skip receiving keys as there are none
4105                                     sm_key_distribution_handle_all_received(sm_conn);
4106                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4107                                 } else {
4108                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
4109                                 }
4110                             }
4111                             break;
4112 
4113 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4114                         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4115                             sm_event_handle_classic_encryption_event(sm_conn, con_handle);
4116                             break;
4117 #endif
4118                         default:
4119                             break;
4120                     }
4121                     break;
4122 
4123                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
4124                     con_handle = little_endian_read_16(packet, 3);
4125                     sm_conn = sm_get_connection_for_handle(con_handle);
4126                     if (!sm_conn) break;
4127 
4128                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
4129                     log_info("event handler, state %u", sm_conn->sm_engine_state);
4130                     // continue if part of initial pairing
4131                     switch (sm_conn->sm_engine_state){
4132                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4133                             if (IS_RESPONDER(sm_conn->sm_role)){
4134                                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
4135                             } else {
4136                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4137                             }
4138                             sm_done_for_handle(sm_conn->sm_handle);
4139                             break;
4140                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4141                             // handler for HCI_EVENT_ENCRYPTION_CHANGE
4142                             // contains the same code for this state
4143                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
4144                             if (IS_RESPONDER(sm_conn->sm_role)){
4145                                 // slave
4146                                 if (sm_conn->sm_connection_sc){
4147                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4148                                 } else {
4149                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4150                                 }
4151                             } else {
4152                                 // master
4153                                 if (sm_key_distribution_all_received()){
4154                                     // skip receiving keys as there are none
4155                                     sm_key_distribution_handle_all_received(sm_conn);
4156                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4157                                 } else {
4158                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
4159                                 }
4160                             }
4161                             break;
4162 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4163                         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4164                             sm_event_handle_classic_encryption_event(sm_conn, con_handle);
4165                             break;
4166 #endif
4167                         default:
4168                             break;
4169                     }
4170                     break;
4171 
4172 
4173                 case HCI_EVENT_DISCONNECTION_COMPLETE:
4174                     con_handle = little_endian_read_16(packet, 3);
4175                     sm_done_for_handle(con_handle);
4176                     sm_conn = sm_get_connection_for_handle(con_handle);
4177                     if (!sm_conn) break;
4178 
4179                     // pairing failed, if it was ongoing
4180                     switch (sm_conn->sm_engine_state){
4181                         case SM_GENERAL_IDLE:
4182                         case SM_INITIATOR_CONNECTED:
4183                         case SM_RESPONDER_IDLE:
4184                             break;
4185                         default:
4186                             sm_reencryption_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
4187                             sm_pairing_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION, 0);
4188                             break;
4189                     }
4190 
4191                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
4192                     sm_conn->sm_handle = 0;
4193                     break;
4194 
4195                 case HCI_EVENT_COMMAND_COMPLETE:
4196                     if (hci_event_command_complete_get_command_opcode(packet) == HCI_OPCODE_HCI_READ_BD_ADDR) {
4197                         // set local addr for le device db
4198                         reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr);
4199                         le_device_db_set_local_bd_addr(addr);
4200                     }
4201                     break;
4202 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4203                 case L2CAP_EVENT_INFORMATION_RESPONSE:
4204                     con_handle = l2cap_event_information_response_get_con_handle(packet);
4205                     sm_conn = sm_get_connection_for_handle(con_handle);
4206                     if (!sm_conn) break;
4207                     if (sm_conn->sm_engine_state == SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK){
4208                         // check if remote supports SMP over BR/EDR
4209                         const hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
4210                         if ((hci_connection->l2cap_state.fixed_channels_supported & (1 << L2CAP_CID_BR_EDR_SECURITY_MANAGER)) != 0){
4211                             sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST;
4212                         } else {
4213                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4214                             hci_dedicated_bonding_defer_disconnect(con_handle, false);
4215                         }
4216                     }
4217                     break;
4218 #endif
4219                 default:
4220                     break;
4221 			}
4222             break;
4223         default:
4224             break;
4225 	}
4226 
4227     sm_run();
4228 }
4229 
4230 static inline int sm_calc_actual_encryption_key_size(int other){
4231     if (other < sm_min_encryption_key_size) return 0;
4232     if (other < sm_max_encryption_key_size) return other;
4233     return sm_max_encryption_key_size;
4234 }
4235 
4236 
4237 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4238 static bool sm_just_works_or_numeric_comparison(stk_generation_method_t method){
4239     switch (method){
4240         case JUST_WORKS:
4241         case NUMERIC_COMPARISON:
4242             return true;
4243         default:
4244             return false;
4245     }
4246 }
4247 // responder
4248 
4249 static bool sm_passkey_used(stk_generation_method_t method){
4250     switch (method){
4251         case PK_RESP_INPUT:
4252             return true;
4253         default:
4254             return 0;
4255     }
4256 }
4257 
4258 static bool sm_passkey_entry(stk_generation_method_t method){
4259     switch (method){
4260         case PK_RESP_INPUT:
4261         case PK_INIT_INPUT:
4262         case PK_BOTH_INPUT:
4263             return true;
4264         default:
4265             return false;
4266     }
4267 }
4268 
4269 #endif
4270 
4271 /**
4272  * @return ok
4273  */
4274 static int sm_validate_stk_generation_method(void){
4275     // check if STK generation method is acceptable by client
4276     switch (setup->sm_stk_generation_method){
4277         case JUST_WORKS:
4278             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0u;
4279         case PK_RESP_INPUT:
4280         case PK_INIT_INPUT:
4281         case PK_BOTH_INPUT:
4282             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0u;
4283         case OOB:
4284             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0u;
4285         case NUMERIC_COMPARISON:
4286             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0u;
4287         default:
4288             return 0;
4289     }
4290 }
4291 
4292 #ifdef ENABLE_LE_CENTRAL
4293 static void sm_initiator_connected_handle_security_request(sm_connection_t * sm_conn, const uint8_t *packet){
4294 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4295     if (sm_sc_only_mode){
4296         uint8_t auth_req = packet[1];
4297         if ((auth_req & SM_AUTHREQ_SECURE_CONNECTION) == 0){
4298             sm_pairing_error(sm_conn, SM_REASON_AUTHENTHICATION_REQUIREMENTS);
4299             return;
4300         }
4301     }
4302 #else
4303     UNUSED(packet);
4304 #endif
4305 
4306     int have_ltk;
4307     uint8_t ltk[16];
4308 
4309     // IRK complete?
4310     switch (sm_conn->sm_irk_lookup_state){
4311         case IRK_LOOKUP_FAILED:
4312             // start pairing
4313             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4314             break;
4315         case IRK_LOOKUP_SUCCEEDED:
4316             le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
4317             have_ltk = !sm_is_null_key(ltk);
4318             log_info("central: security request - have_ltk %u, encryption %u", have_ltk, sm_conn->sm_connection_encrypted);
4319             if (have_ltk && (sm_conn->sm_connection_encrypted == 0)){
4320                 // start re-encrypt if we have LTK and the connection is not already encrypted
4321                 sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
4322             } else {
4323                 // start pairing
4324                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4325             }
4326             break;
4327         default:
4328             // otherwise, store security request
4329             sm_conn->sm_security_request_received = true;
4330             break;
4331     }
4332 }
4333 #endif
4334 
4335 static uint8_t sm_pdu_validate_and_get_opcode(uint8_t packet_type, const uint8_t *packet, uint16_t size){
4336 
4337     // size of complete sm_pdu used to validate input
4338     static const uint8_t sm_pdu_size[] = {
4339             0,  // 0x00 invalid opcode
4340             7,  // 0x01 pairing request
4341             7,  // 0x02 pairing response
4342             17, // 0x03 pairing confirm
4343             17, // 0x04 pairing random
4344             2,  // 0x05 pairing failed
4345             17, // 0x06 encryption information
4346             11, // 0x07 master identification
4347             17, // 0x08 identification information
4348             8,  // 0x09 identify address information
4349             17, // 0x0a signing information
4350             2,  // 0x0b security request
4351             65, // 0x0c pairing public key
4352             17, // 0x0d pairing dhk check
4353             2,  // 0x0e keypress notification
4354     };
4355 
4356     if (packet_type != SM_DATA_PACKET) return 0;
4357     if (size == 0u) return 0;
4358 
4359     uint8_t sm_pdu_code = packet[0];
4360 
4361     // validate pdu size
4362     if (sm_pdu_code >= sizeof(sm_pdu_size)) return 0;
4363     if (sm_pdu_size[sm_pdu_code] != size)   return 0;
4364 
4365     return sm_pdu_code;
4366 }
4367 
4368 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
4369 
4370     if ((packet_type == HCI_EVENT_PACKET) && (packet[0] == L2CAP_EVENT_CAN_SEND_NOW)){
4371         sm_run();
4372     }
4373 
4374     uint8_t sm_pdu_code = sm_pdu_validate_and_get_opcode(packet_type, packet, size);
4375     if (sm_pdu_code == 0) return;
4376 
4377     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4378     if (!sm_conn) return;
4379 
4380     if (sm_pdu_code == SM_CODE_PAIRING_FAILED){
4381         sm_reencryption_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE);
4382         sm_pairing_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE, packet[1]);
4383         sm_done_for_handle(con_handle);
4384         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
4385         return;
4386     }
4387 
4388     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, sm_pdu_code);
4389 
4390     int err;
4391     uint8_t max_encryption_key_size;
4392     UNUSED(err);
4393 
4394     if (sm_pdu_code == SM_CODE_KEYPRESS_NOTIFICATION){
4395         uint8_t buffer[5];
4396         buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION;
4397         buffer[1] = 3;
4398         little_endian_store_16(buffer, 2, con_handle);
4399         buffer[4] = packet[1];
4400         sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer));
4401         return;
4402     }
4403 
4404     switch (sm_conn->sm_engine_state){
4405 
4406         // a sm timeout requires a new physical connection
4407         case SM_GENERAL_TIMEOUT:
4408             return;
4409 
4410 #ifdef ENABLE_LE_CENTRAL
4411 
4412         // Initiator
4413         case SM_INITIATOR_CONNECTED:
4414             if ((sm_pdu_code != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
4415                 sm_pdu_received_in_wrong_state(sm_conn);
4416                 break;
4417             }
4418             sm_initiator_connected_handle_security_request(sm_conn, packet);
4419             break;
4420 
4421         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
4422             // Core 5, Vol 3, Part H, 2.4.6:
4423             // "The master shall ignore the slave’s Security Request if the master has sent a Pairing Request
4424             //  without receiving a Pairing Response from the slave or if the master has initiated encryption mode setup."
4425             if (sm_pdu_code == SM_CODE_SECURITY_REQUEST){
4426                 log_info("Ignoring Security Request");
4427                 break;
4428             }
4429 
4430             // all other pdus are incorrect
4431             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
4432                 sm_pdu_received_in_wrong_state(sm_conn);
4433                 break;
4434             }
4435 
4436             // store pairing request
4437             (void)memcpy(&setup->sm_s_pres, packet,
4438                          sizeof(sm_pairing_packet_t));
4439 
4440             // validate encryption key size
4441             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_s_pres);
4442             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4443                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4444                 break;
4445             }
4446 
4447             err = sm_stk_generation_init(sm_conn);
4448 
4449 #ifdef ENABLE_TESTING_SUPPORT
4450             if (0 < test_pairing_failure && test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED){
4451                 log_info("testing_support: abort with pairing failure %u", test_pairing_failure);
4452                 err = test_pairing_failure;
4453             }
4454 #endif
4455 
4456             if (err != 0){
4457                 sm_pairing_error(sm_conn, err);
4458                 break;
4459             }
4460 
4461             // generate random number first, if we need to show passkey
4462             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
4463                 btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk,  (void *)(uintptr_t) sm_conn->sm_handle);
4464                 break;
4465             }
4466 
4467 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4468             if (setup->sm_use_secure_connections){
4469                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
4470                 if (setup->sm_stk_generation_method == JUST_WORKS){
4471                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4472                     sm_trigger_user_response(sm_conn);
4473                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
4474                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4475                     }
4476                 } else {
4477                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4478                 }
4479                 break;
4480             }
4481 #endif
4482             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4483             sm_trigger_user_response(sm_conn);
4484             // response_idle == nothing <--> sm_trigger_user_response() did not require response
4485             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
4486                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4487             }
4488             break;
4489 
4490         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
4491             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4492                 sm_pdu_received_in_wrong_state(sm_conn);
4493                 break;
4494             }
4495 
4496             // store s_confirm
4497             reverse_128(&packet[1], setup->sm_peer_confirm);
4498 
4499             // abort if s_confirm matches m_confirm
4500             if (memcmp(setup->sm_local_confirm, setup->sm_peer_confirm, 16) == 0){
4501                 sm_pdu_received_in_wrong_state(sm_conn);
4502                 break;
4503             }
4504 
4505 #ifdef ENABLE_TESTING_SUPPORT
4506             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4507                 log_info("testing_support: reset confirm value");
4508                 memset(setup->sm_peer_confirm, 0, 16);
4509             }
4510 #endif
4511             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
4512             break;
4513 
4514         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
4515             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4516                 sm_pdu_received_in_wrong_state(sm_conn);
4517                 break;;
4518             }
4519 
4520             // received random value
4521             reverse_128(&packet[1], setup->sm_peer_random);
4522             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4523             break;
4524 
4525         case SM_INITIATOR_PH4_HAS_LTK:
4526         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4527             // ignore Security Request, see SM_INITIATOR_PH1_W4_PAIRING_RESPONSE above
4528             if (sm_pdu_code != SM_CODE_SECURITY_REQUEST){
4529                 sm_pdu_received_in_wrong_state(sm_conn);
4530             }
4531             break;
4532 #endif
4533 
4534 #ifdef ENABLE_LE_PERIPHERAL
4535         // Responder
4536         case SM_RESPONDER_IDLE:
4537         case SM_RESPONDER_SEND_SECURITY_REQUEST:
4538         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
4539             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
4540                 sm_pdu_received_in_wrong_state(sm_conn);
4541                 break;;
4542             }
4543 
4544             // store pairing request
4545             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
4546 
4547             // validation encryption key size
4548             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(sm_conn->sm_m_preq);
4549             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4550                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4551                 break;
4552             }
4553 
4554             // check if IRK completed
4555             switch (sm_conn->sm_irk_lookup_state){
4556                 case IRK_LOOKUP_SUCCEEDED:
4557                 case IRK_LOOKUP_FAILED:
4558                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
4559                     break;
4560                 default:
4561                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK;
4562                     break;
4563             }
4564             break;
4565 #endif
4566 
4567 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4568         case SM_SC_W4_PUBLIC_KEY_COMMAND:
4569             if (sm_pdu_code != SM_CODE_PAIRING_PUBLIC_KEY){
4570                 sm_pdu_received_in_wrong_state(sm_conn);
4571                 break;
4572             }
4573 
4574             // store public key for DH Key calculation
4575             reverse_256(&packet[01], &setup->sm_peer_q[0]);
4576             reverse_256(&packet[33], &setup->sm_peer_q[32]);
4577 
4578             // CVE-2020-26558: abort pairing if remote uses the same public key
4579             if (memcmp(&setup->sm_peer_q, ec_q, 64) == 0){
4580                 log_info("Remote PK matches ours");
4581                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4582                 break;
4583             }
4584 
4585             // validate public key
4586             err = btstack_crypto_ecc_p256_validate_public_key(setup->sm_peer_q);
4587             if (err != 0){
4588                 log_info("sm: peer public key invalid %x", err);
4589                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4590                 break;
4591             }
4592 
4593             // start calculating dhkey
4594             btstack_crypto_ecc_p256_calculate_dhkey(&sm_crypto_ecc_p256_request, setup->sm_peer_q, setup->sm_dhkey, sm_sc_dhkey_calculated, (void*)(uintptr_t) sm_conn->sm_handle);
4595 
4596 
4597             log_info("public key received, generation method %u", setup->sm_stk_generation_method);
4598             if (IS_RESPONDER(sm_conn->sm_role)){
4599                 // responder
4600                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4601             } else {
4602                 // initiator
4603                 // stk generation method
4604                 // passkey entry: notify app to show passkey or to request passkey
4605                 switch (setup->sm_stk_generation_method){
4606                     case JUST_WORKS:
4607                     case NUMERIC_COMPARISON:
4608                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
4609                         break;
4610                     case PK_RESP_INPUT:
4611                         sm_sc_start_calculating_local_confirm(sm_conn);
4612                         break;
4613                     case PK_INIT_INPUT:
4614                     case PK_BOTH_INPUT:
4615                         if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4616                             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4617                             break;
4618                         }
4619                         sm_sc_start_calculating_local_confirm(sm_conn);
4620                         break;
4621                     case OOB:
4622                         // generate Nx
4623                         log_info("Generate Na");
4624                         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4625                         break;
4626                     default:
4627                         btstack_assert(false);
4628                         break;
4629                 }
4630             }
4631             break;
4632 
4633         case SM_SC_W4_CONFIRMATION:
4634             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4635                 sm_pdu_received_in_wrong_state(sm_conn);
4636                 break;
4637             }
4638             // received confirm value
4639             reverse_128(&packet[1], setup->sm_peer_confirm);
4640 
4641 #ifdef ENABLE_TESTING_SUPPORT
4642             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4643                 log_info("testing_support: reset confirm value");
4644                 memset(setup->sm_peer_confirm, 0, 16);
4645             }
4646 #endif
4647             if (IS_RESPONDER(sm_conn->sm_role)){
4648                 // responder
4649                 if (sm_passkey_used(setup->sm_stk_generation_method)){
4650                     if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4651                         // still waiting for passkey
4652                         sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4653                         break;
4654                     }
4655                 }
4656                 sm_sc_start_calculating_local_confirm(sm_conn);
4657             } else {
4658                 // initiator
4659                 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
4660                     btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4661                 } else {
4662                     sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
4663                 }
4664             }
4665             break;
4666 
4667         case SM_SC_W4_PAIRING_RANDOM:
4668             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4669                 sm_pdu_received_in_wrong_state(sm_conn);
4670                 break;
4671             }
4672 
4673             // received random value
4674             reverse_128(&packet[1], setup->sm_peer_nonce);
4675 
4676             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
4677             // only check for JUST WORK/NC in initiator role OR passkey entry
4678             log_info("SM_SC_W4_PAIRING_RANDOM, responder: %u, just works: %u, passkey used %u, passkey entry %u",
4679                      IS_RESPONDER(sm_conn->sm_role), sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method),
4680                      sm_passkey_used(setup->sm_stk_generation_method), sm_passkey_entry(setup->sm_stk_generation_method));
4681             if ( (!IS_RESPONDER(sm_conn->sm_role) && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method))
4682             ||   (sm_passkey_entry(setup->sm_stk_generation_method)) ) {
4683                  sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4684                  break;
4685             }
4686 
4687             // OOB
4688             if (setup->sm_stk_generation_method == OOB){
4689 
4690                 // setup local random, set to zero if remote did not receive our data
4691                 log_info("Received nonce, setup local random ra/rb for dhkey check");
4692                 if (IS_RESPONDER(sm_conn->sm_role)){
4693                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) == 0u){
4694                         log_info("Reset rb as A does not have OOB data");
4695                         memset(setup->sm_rb, 0, 16);
4696                     } else {
4697                         (void)memcpy(setup->sm_rb, sm_sc_oob_random, 16);
4698                         log_info("Use stored rb");
4699                         log_info_hexdump(setup->sm_rb, 16);
4700                     }
4701                 }  else {
4702                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres) == 0u){
4703                         log_info("Reset ra as B does not have OOB data");
4704                         memset(setup->sm_ra, 0, 16);
4705                     } else {
4706                         (void)memcpy(setup->sm_ra, sm_sc_oob_random, 16);
4707                         log_info("Use stored ra");
4708                         log_info_hexdump(setup->sm_ra, 16);
4709                     }
4710                 }
4711 
4712                 // validate confirm value if Cb = f4(PKb, Pkb, rb, 0) for OOB if data received
4713                 if (setup->sm_have_oob_data){
4714                      sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4715                      break;
4716                 }
4717             }
4718 
4719             // TODO: we only get here for Responder role with JW/NC
4720             sm_sc_state_after_receiving_random(sm_conn);
4721             break;
4722 
4723         case SM_SC_W2_CALCULATE_G2:
4724         case SM_SC_W4_CALCULATE_G2:
4725         case SM_SC_W4_CALCULATE_DHKEY:
4726         case SM_SC_W2_CALCULATE_F5_SALT:
4727         case SM_SC_W4_CALCULATE_F5_SALT:
4728         case SM_SC_W2_CALCULATE_F5_MACKEY:
4729         case SM_SC_W4_CALCULATE_F5_MACKEY:
4730         case SM_SC_W2_CALCULATE_F5_LTK:
4731         case SM_SC_W4_CALCULATE_F5_LTK:
4732         case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
4733         case SM_SC_W4_DHKEY_CHECK_COMMAND:
4734         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
4735         case SM_SC_W4_USER_RESPONSE:
4736             if (sm_pdu_code != SM_CODE_PAIRING_DHKEY_CHECK){
4737                 sm_pdu_received_in_wrong_state(sm_conn);
4738                 break;
4739             }
4740             // store DHKey Check
4741             setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED;
4742             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
4743 
4744             // have we been only waiting for dhkey check command?
4745             if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){
4746                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
4747             }
4748             break;
4749 #endif
4750 
4751 #ifdef ENABLE_LE_PERIPHERAL
4752         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
4753             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4754                 sm_pdu_received_in_wrong_state(sm_conn);
4755                 break;
4756             }
4757 
4758             // received confirm value
4759             reverse_128(&packet[1], setup->sm_peer_confirm);
4760 
4761 #ifdef ENABLE_TESTING_SUPPORT
4762             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4763                 log_info("testing_support: reset confirm value");
4764                 memset(setup->sm_peer_confirm, 0, 16);
4765             }
4766 #endif
4767             // notify client to hide shown passkey
4768             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
4769                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
4770             }
4771 
4772             // handle user cancel pairing?
4773             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
4774                 sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
4775                 break;
4776             }
4777 
4778             // wait for user action?
4779             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
4780                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4781                 break;
4782             }
4783 
4784             // calculate and send local_confirm
4785             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4786             break;
4787 
4788         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
4789             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4790                 sm_pdu_received_in_wrong_state(sm_conn);
4791                 break;;
4792             }
4793 
4794             // received random value
4795             reverse_128(&packet[1], setup->sm_peer_random);
4796             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4797             break;
4798 #endif
4799 
4800         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4801         case SM_PH3_RECEIVE_KEYS:
4802             switch(sm_pdu_code){
4803                 case SM_CODE_ENCRYPTION_INFORMATION:
4804                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
4805                     reverse_128(&packet[1], setup->sm_peer_ltk);
4806                     break;
4807 
4808                 case SM_CODE_MASTER_IDENTIFICATION:
4809                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
4810                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
4811                     reverse_64(&packet[3], setup->sm_peer_rand);
4812                     break;
4813 
4814                 case SM_CODE_IDENTITY_INFORMATION:
4815                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4816                     reverse_128(&packet[1], setup->sm_peer_irk);
4817                     break;
4818 
4819                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4820                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4821                     setup->sm_peer_addr_type = packet[1];
4822                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4823                     break;
4824 
4825                 case SM_CODE_SIGNING_INFORMATION:
4826                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4827                     reverse_128(&packet[1], setup->sm_peer_csrk);
4828                     break;
4829                 default:
4830                     // Unexpected PDU
4831                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4832                     break;
4833             }
4834             // done with key distribution?
4835             if (sm_key_distribution_all_received()){
4836 
4837                 sm_key_distribution_handle_all_received(sm_conn);
4838 
4839                 if (IS_RESPONDER(sm_conn->sm_role)){
4840                     sm_key_distribution_complete_responder(sm_conn);
4841                 } else {
4842                     if (setup->sm_use_secure_connections){
4843                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4844                     } else {
4845                         btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4846                     }
4847                 }
4848             }
4849             break;
4850 
4851 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4852 
4853         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4854             // GAP/DM/LEP/BI-02-C - reject CTKD if P-192 encryption is used
4855             if (sm_pdu_code == SM_CODE_PAIRING_REQUEST){
4856                 sm_pairing_error(sm_conn, SM_REASON_CROSS_TRANSPORT_KEY_DERIVATION_NOT_ALLOWED);
4857             }
4858             break;
4859 
4860         case SM_BR_EDR_INITIATOR_W4_PAIRING_RESPONSE:
4861 
4862             // dedicated bonding complete
4863             hci_dedicated_bonding_defer_disconnect(sm_conn->sm_handle, false);
4864 
4865             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
4866                 sm_pdu_received_in_wrong_state(sm_conn);
4867                 break;
4868             }
4869             // store pairing response
4870             (void)memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
4871 
4872             // validate encryption key size
4873             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_s_pres);
4874             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4875                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4876                 break;
4877             }
4878             sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(max_encryption_key_size);
4879             // SC Only mandates 128 bit key size
4880             if (sm_sc_only_mode && (sm_conn->sm_actual_encryption_key_size < 16)) {
4881                 sm_conn->sm_actual_encryption_key_size  = 0;
4882             }
4883             if (sm_conn->sm_actual_encryption_key_size == 0){
4884                 sm_pairing_error(sm_conn, SM_REASON_ENCRYPTION_KEY_SIZE);
4885                 break;
4886             }
4887 
4888             // prepare key exchange, LTK is derived locally
4889             sm_setup_key_distribution(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres) & ~SM_KEYDIST_ENC_KEY,
4890                                       sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres) & ~SM_KEYDIST_ENC_KEY);
4891 
4892             // skip receive if there are none
4893             if (sm_key_distribution_all_received()){
4894                 // distribute keys in run handles 'no keys to send'
4895                 sm_conn->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
4896             } else {
4897                 sm_conn->sm_engine_state = SM_BR_EDR_RECEIVE_KEYS;
4898             }
4899             break;
4900 
4901         case SM_BR_EDR_RESPONDER_W4_PAIRING_REQUEST:
4902             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
4903                 sm_pdu_received_in_wrong_state(sm_conn);
4904                 break;
4905             }
4906 
4907             // store pairing request
4908             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
4909 
4910             // validate encryption key size
4911             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_m_preq);
4912             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4913                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4914                 break;
4915             }
4916             sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(max_encryption_key_size);
4917             // SC Only mandates 128 bit key size
4918             if (sm_sc_only_mode && (sm_conn->sm_actual_encryption_key_size < 16)) {
4919                 sm_conn->sm_actual_encryption_key_size  = 0;
4920             }
4921             if (sm_conn->sm_actual_encryption_key_size == 0){
4922                 sm_pairing_error(sm_conn, SM_REASON_ENCRYPTION_KEY_SIZE);
4923                 break;
4924             }
4925             // trigger response
4926             if (sm_ctkd_from_classic(sm_conn)){
4927                 sm_conn->sm_engine_state = SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED;
4928             } else {
4929                 sm_pairing_error(sm_conn, SM_REASON_CROSS_TRANSPORT_KEY_DERIVATION_NOT_ALLOWED);
4930             }
4931             break;
4932 
4933         case SM_BR_EDR_RECEIVE_KEYS:
4934             switch(sm_pdu_code){
4935                 case SM_CODE_IDENTITY_INFORMATION:
4936                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4937                     reverse_128(&packet[1], setup->sm_peer_irk);
4938                     break;
4939                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4940                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4941                     setup->sm_peer_addr_type = packet[1];
4942                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4943                     break;
4944                 case SM_CODE_SIGNING_INFORMATION:
4945                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4946                     reverse_128(&packet[1], setup->sm_peer_csrk);
4947                     break;
4948                 default:
4949                     // Unexpected PDU
4950                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4951                     break;
4952             }
4953 
4954             // all keys received
4955             if (sm_key_distribution_all_received()){
4956                 if (IS_RESPONDER(sm_conn->sm_role)){
4957                     // responder -> keys exchanged, derive LE LTK
4958                     sm_ctkd_start_from_br_edr(sm_conn);
4959                 } else {
4960                     // initiator -> send our keys if any
4961                     sm_conn->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
4962                 }
4963             }
4964             break;
4965 #endif
4966 
4967         default:
4968             // Unexpected PDU
4969             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
4970             sm_pdu_received_in_wrong_state(sm_conn);
4971             break;
4972     }
4973 
4974     // try to send next pdu
4975     sm_trigger_run();
4976 }
4977 
4978 // Security Manager Client API
4979 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_data)){
4980     sm_get_oob_data = get_oob_data_callback;
4981 }
4982 
4983 void sm_register_sc_oob_data_callback( int (*get_sc_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random)){
4984     sm_get_sc_oob_data = get_sc_oob_data_callback;
4985 }
4986 
4987 void sm_register_ltk_callback( bool (*get_ltk_callback)(hci_con_handle_t con_handle, uint8_t address_type, bd_addr_t addr, uint8_t * ltk)){
4988     sm_get_ltk_callback = get_ltk_callback;
4989 }
4990 
4991 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
4992     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
4993 }
4994 
4995 void sm_remove_event_handler(btstack_packet_callback_registration_t * callback_handler){
4996     btstack_linked_list_remove(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
4997 }
4998 
4999 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
5000     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
5001 }
5002 
5003 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
5004 	sm_min_encryption_key_size = min_size;
5005 	sm_max_encryption_key_size = max_size;
5006 }
5007 
5008 void sm_set_authentication_requirements(uint8_t auth_req){
5009 #ifndef ENABLE_LE_SECURE_CONNECTIONS
5010     if (auth_req & SM_AUTHREQ_SECURE_CONNECTION){
5011         log_error("ENABLE_LE_SECURE_CONNECTIONS not defined, but requested by app. Dropping SC flag");
5012         auth_req &= ~SM_AUTHREQ_SECURE_CONNECTION;
5013     }
5014 #endif
5015     sm_auth_req = auth_req;
5016 }
5017 
5018 void sm_set_io_capabilities(io_capability_t io_capability){
5019     sm_io_capabilities = io_capability;
5020 }
5021 
5022 #ifdef ENABLE_LE_PERIPHERAL
5023 void sm_set_request_security(bool enable){
5024     sm_slave_request_security = enable;
5025 }
5026 #endif
5027 
5028 void sm_set_er(sm_key_t er){
5029     (void)memcpy(sm_persistent_er, er, 16);
5030 }
5031 
5032 void sm_set_ir(sm_key_t ir){
5033     (void)memcpy(sm_persistent_ir, ir, 16);
5034 }
5035 
5036 // Testing support only
5037 void sm_test_set_irk(sm_key_t irk){
5038     (void)memcpy(sm_persistent_irk, irk, 16);
5039     dkg_state = DKG_CALC_DHK;
5040     test_use_fixed_local_irk = true;
5041 }
5042 
5043 void sm_test_use_fixed_local_csrk(void){
5044     test_use_fixed_local_csrk = true;
5045 }
5046 
5047 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5048 static void sm_ec_generated(void * arg){
5049     UNUSED(arg);
5050     ec_key_generation_state = EC_KEY_GENERATION_DONE;
5051     // trigger pairing if pending for ec key
5052     sm_trigger_run();
5053 }
5054 static void sm_ec_generate_new_key(void) {
5055     log_info("sm: generate new ec key");
5056 #ifdef ENABLE_LE_SECURE_CONNECTIONS_DEBUG_KEY
5057     // LE Secure Connections Debug Key
5058     const uint8_t debug_key_public[64] = {
5059         0x20, 0xb0, 0x03, 0xd2, 0xf2, 0x97, 0xbe, 0x2c, 0x5e, 0x2c, 0x83, 0xa7, 0xe9, 0xf9, 0xa5, 0xb9,
5060         0xef, 0xf4, 0x91, 0x11, 0xac, 0xf4, 0xfd, 0xdb, 0xcc, 0x03, 0x01, 0x48, 0x0e, 0x35, 0x9d, 0xe6,
5061         0xdc, 0x80, 0x9c, 0x49, 0x65, 0x2a, 0xeb, 0x6d, 0x63, 0x32, 0x9a, 0xbf, 0x5a, 0x52, 0x15, 0x5c,
5062         0x76, 0x63, 0x45, 0xc2, 0x8f, 0xed, 0x30, 0x24, 0x74, 0x1c, 0x8e, 0xd0, 0x15, 0x89, 0xd2, 0x8b
5063     };
5064     const uint8_t debug_key_private[32] = {
5065         0x3f, 0x49, 0xf6, 0xd4, 0xa3, 0xc5, 0x5f, 0x38, 0x74, 0xc9, 0xb3, 0xe3, 0xd2, 0x10, 0x3f, 0x50,
5066         0x4a, 0xff, 0x60, 0x7b, 0xeb, 0x40, 0xb7, 0x99, 0x58, 0x99, 0xb8, 0xa6, 0xcd, 0x3c, 0x1a, 0xbd
5067     };
5068     if (sm_sc_debug_keys_enabled) {
5069         memcpy(ec_q, debug_key_public, 64);
5070         btstack_crypto_ecc_p256_set_key(debug_key_public, debug_key_private);
5071         ec_key_generation_state = EC_KEY_GENERATION_DONE;
5072     } else
5073 #endif
5074     {
5075         ec_key_generation_state = EC_KEY_GENERATION_ACTIVE;
5076         btstack_crypto_ecc_p256_generate_key(&sm_crypto_ecc_p256_request, ec_q, &sm_ec_generated, NULL);
5077     }
5078 }
5079 #endif
5080 
5081 #ifdef ENABLE_TESTING_SUPPORT
5082 void sm_test_set_pairing_failure(int reason){
5083     test_pairing_failure = reason;
5084 }
5085 #endif
5086 
5087 static void sm_state_reset(void) {
5088 #ifdef USE_CMAC_ENGINE
5089     sm_cmac_active  = 0;
5090 #endif
5091     dkg_state = DKG_W4_WORKING;
5092     rau_state = RAU_IDLE;
5093     sm_aes128_state = SM_AES128_IDLE;
5094     sm_address_resolution_test = -1;    // no private address to resolve yet
5095     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
5096     sm_address_resolution_general_queue = NULL;
5097     sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
5098     sm_persistent_keys_random_active = false;
5099 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5100     ec_key_generation_state = EC_KEY_GENERATION_IDLE;
5101 #endif
5102 }
5103 
5104 void sm_init(void){
5105 
5106     if (sm_initialized) return;
5107 
5108     // set default ER and IR values (should be unique - set by app or sm later using TLV)
5109     sm_er_ir_set_default();
5110 
5111     // defaults
5112     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
5113                                        | SM_STK_GENERATION_METHOD_OOB
5114                                        | SM_STK_GENERATION_METHOD_PASSKEY
5115                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
5116 
5117     sm_max_encryption_key_size = 16;
5118     sm_min_encryption_key_size = 7;
5119 
5120     sm_fixed_passkey_in_display_role = 0xffffffffU;
5121     sm_reconstruct_ltk_without_le_device_db_entry = true;
5122 
5123     gap_random_adress_update_period = 15 * 60 * 1000L;
5124 
5125     test_use_fixed_local_csrk = false;
5126 
5127     // other
5128     btstack_run_loop_set_timer_handler(&sm_run_timer, &sm_run_timer_handler);
5129 
5130     // register for HCI Events
5131     hci_event_callback_registration.callback = &sm_event_packet_handler;
5132     hci_add_event_handler(&hci_event_callback_registration);
5133 
5134 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
5135     // register for L2CAP events
5136     l2cap_event_callback_registration.callback = &sm_event_packet_handler;
5137     l2cap_add_event_handler(&l2cap_event_callback_registration);
5138 #endif
5139 
5140     //
5141     btstack_crypto_init();
5142 
5143     // init le_device_db
5144     le_device_db_init();
5145 
5146     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
5147     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
5148 #ifdef ENABLE_CLASSIC
5149     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_BR_EDR_SECURITY_MANAGER);
5150 #endif
5151 
5152     // state
5153     sm_state_reset();
5154 
5155     sm_initialized = true;
5156 }
5157 
5158 void sm_deinit(void){
5159     sm_initialized = false;
5160     btstack_run_loop_remove_timer(&sm_run_timer);
5161 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined (ENABLE_LE_SECURE_CONNECTION_DEBUG_KEY)
5162     sm_sc_debug_keys_enabled = false;
5163 #endif
5164 }
5165 
5166 void sm_use_fixed_passkey_in_display_role(uint32_t passkey){
5167     sm_fixed_passkey_in_display_role = passkey;
5168 }
5169 
5170 void sm_allow_ltk_reconstruction_without_le_device_db_entry(int allow){
5171     sm_reconstruct_ltk_without_le_device_db_entry = allow != 0;
5172 }
5173 
5174 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
5175     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
5176     if (!hci_con) return NULL;
5177     return &hci_con->sm_connection;
5178 }
5179 
5180 static void sm_cache_ltk(sm_connection_t * connection, const sm_key_t ltk){
5181     hci_connection_t * hci_con = hci_connection_for_handle(connection->sm_handle);
5182     btstack_assert(hci_con != NULL);
5183     memcpy(hci_con->link_key, ltk, 16);
5184     hci_con->link_key_type = COMBINATION_KEY;
5185 }
5186 
5187 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
5188 static sm_connection_t * sm_get_connection_for_bd_addr_and_type(bd_addr_t address, bd_addr_type_t addr_type){
5189     hci_connection_t * hci_con = hci_connection_for_bd_addr_and_type(address, addr_type);
5190     if (!hci_con) return NULL;
5191     return &hci_con->sm_connection;
5192 }
5193 #endif
5194 
5195 // @deprecated: map onto sm_request_pairing
5196 void sm_send_security_request(hci_con_handle_t con_handle){
5197     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5198     if (!sm_conn) return;
5199     if (!IS_RESPONDER(sm_conn->sm_role)) return;
5200     sm_request_pairing(con_handle);
5201 }
5202 
5203 // request pairing
5204 void sm_request_pairing(hci_con_handle_t con_handle){
5205     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5206     if (!sm_conn) return;     // wrong connection
5207 
5208     bool have_ltk;
5209     uint8_t ltk[16];
5210     bool auth_required;
5211     int authenticated;
5212     bool trigger_reencryption;
5213     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
5214     if (IS_RESPONDER(sm_conn->sm_role)){
5215         switch (sm_conn->sm_engine_state){
5216             case SM_GENERAL_IDLE:
5217             case SM_RESPONDER_IDLE:
5218                 switch (sm_conn->sm_irk_lookup_state){
5219                     case IRK_LOOKUP_SUCCEEDED:
5220                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
5221                         have_ltk = !sm_is_null_key(ltk);
5222                         log_info("have ltk %u", have_ltk);
5223                         if (have_ltk){
5224                             sm_conn->sm_pairing_requested = true;
5225                             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
5226                             sm_reencryption_started(sm_conn);
5227                             break;
5228                         }
5229                         /* fall through */
5230 
5231                     case IRK_LOOKUP_FAILED:
5232                         sm_conn->sm_pairing_requested = true;
5233                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
5234                         sm_pairing_started(sm_conn);
5235                         break;
5236                     default:
5237                         log_info("irk lookup pending");
5238                         sm_conn->sm_pairing_requested = true;
5239                         break;
5240                 }
5241                 break;
5242             default:
5243                 break;
5244         }
5245     } else {
5246         // used as a trigger to start central/master/initiator security procedures
5247         switch (sm_conn->sm_engine_state){
5248             case SM_INITIATOR_CONNECTED:
5249                 switch (sm_conn->sm_irk_lookup_state){
5250                     case IRK_LOOKUP_SUCCEEDED:
5251                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, &authenticated, NULL, NULL);
5252                         have_ltk = !sm_is_null_key(ltk);
5253                         auth_required = sm_auth_req & SM_AUTHREQ_MITM_PROTECTION;
5254                         // re-encrypt is sufficient if we have ltk and that is either already authenticated or we don't require authentication
5255                         trigger_reencryption = have_ltk && ((authenticated != 0) || (auth_required == false));
5256                         log_info("have ltk %u, authenticated %u, auth required %u => reencrypt %u", have_ltk, authenticated, auth_required, trigger_reencryption);
5257                         if (trigger_reencryption){
5258                             sm_conn->sm_pairing_requested = true;
5259                             sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
5260                             break;
5261                         }
5262                         /* fall through */
5263 
5264                     case IRK_LOOKUP_FAILED:
5265                         sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
5266                         break;
5267                     default:
5268                         log_info("irk lookup pending");
5269                         sm_conn->sm_pairing_requested = true;
5270                         break;
5271                 }
5272                 break;
5273             case SM_GENERAL_REENCRYPTION_FAILED:
5274                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
5275                 break;
5276             case SM_GENERAL_IDLE:
5277                 sm_conn->sm_pairing_requested = true;
5278                 break;
5279             default:
5280                 break;
5281         }
5282     }
5283     sm_trigger_run();
5284 }
5285 
5286 // called by client app on authorization request
5287 void sm_authorization_decline(hci_con_handle_t con_handle){
5288     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5289     if (!sm_conn) return;     // wrong connection
5290     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
5291     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
5292 }
5293 
5294 void sm_authorization_grant(hci_con_handle_t con_handle){
5295     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5296     if (!sm_conn) return;     // wrong connection
5297     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
5298     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
5299 }
5300 
5301 // GAP Bonding API
5302 
5303 void sm_bonding_decline(hci_con_handle_t con_handle){
5304     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5305     if (!sm_conn) return;     // wrong connection
5306     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
5307     log_info("decline, state %u", sm_conn->sm_engine_state);
5308     switch(sm_conn->sm_engine_state){
5309 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5310         case SM_SC_W4_USER_RESPONSE:
5311         case SM_SC_W4_CONFIRMATION:
5312         case SM_SC_W4_PUBLIC_KEY_COMMAND:
5313 #endif
5314         case SM_PH1_W4_USER_RESPONSE:
5315             switch (setup->sm_stk_generation_method){
5316                 case PK_RESP_INPUT:
5317                 case PK_INIT_INPUT:
5318                 case PK_BOTH_INPUT:
5319                     sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
5320                     break;
5321                 case NUMERIC_COMPARISON:
5322                     sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
5323                     break;
5324                 case JUST_WORKS:
5325                 case OOB:
5326                     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
5327                     break;
5328                 default:
5329                     btstack_assert(false);
5330                     break;
5331             }
5332             break;
5333         default:
5334             break;
5335     }
5336     sm_trigger_run();
5337 }
5338 
5339 void sm_just_works_confirm(hci_con_handle_t con_handle){
5340     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5341     if (!sm_conn) return;     // wrong connection
5342     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
5343     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
5344         if (setup->sm_use_secure_connections){
5345             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
5346         } else {
5347             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
5348         }
5349     }
5350 
5351 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5352     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
5353         sm_sc_prepare_dhkey_check(sm_conn);
5354     }
5355 #endif
5356 
5357     sm_trigger_run();
5358 }
5359 
5360 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
5361     // for now, it's the same
5362     sm_just_works_confirm(con_handle);
5363 }
5364 
5365 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
5366     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5367     if (!sm_conn) return;     // wrong connection
5368     sm_reset_tk();
5369     big_endian_store_32(setup->sm_tk, 12, passkey);
5370     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
5371     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
5372         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
5373     }
5374 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5375     (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
5376     (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
5377     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
5378         sm_sc_start_calculating_local_confirm(sm_conn);
5379     }
5380 #endif
5381     sm_trigger_run();
5382 }
5383 
5384 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){
5385     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5386     if (!sm_conn) return;     // wrong connection
5387     if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return;
5388     uint8_t num_actions = setup->sm_keypress_notification >> 5;
5389     uint8_t flags = setup->sm_keypress_notification & 0x1fu;
5390     switch (action){
5391         case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
5392         case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
5393             flags |= (1u << action);
5394             break;
5395         case SM_KEYPRESS_PASSKEY_CLEARED:
5396             // clear counter, keypress & erased flags + set passkey cleared
5397             flags = (flags & 0x19u) | (1u << SM_KEYPRESS_PASSKEY_CLEARED);
5398             break;
5399         case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
5400             if ((flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED)) != 0u){
5401                 // erase actions queued
5402                 num_actions--;
5403                 if (num_actions == 0u){
5404                     // clear counter, keypress & erased flags
5405                     flags &= 0x19u;
5406                 }
5407                 break;
5408             }
5409             num_actions++;
5410             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED);
5411             break;
5412         case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
5413             if ((flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED)) != 0u){
5414                 // enter actions queued
5415                 num_actions--;
5416                 if (num_actions == 0u){
5417                     // clear counter, keypress & erased flags
5418                     flags &= 0x19u;
5419                 }
5420                 break;
5421             }
5422             num_actions++;
5423             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED);
5424             break;
5425         default:
5426             break;
5427     }
5428     setup->sm_keypress_notification = (num_actions << 5) | flags;
5429     sm_trigger_run();
5430 }
5431 
5432 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5433 static void sm_handle_random_result_oob(void * arg){
5434     UNUSED(arg);
5435     sm_sc_oob_state = SM_SC_OOB_W2_CALC_CONFIRM;
5436     sm_trigger_run();
5437 }
5438 uint8_t sm_generate_sc_oob_data(void (*callback)(const uint8_t * confirm_value, const uint8_t * random_value)){
5439 
5440     static btstack_crypto_random_t   sm_crypto_random_oob_request;
5441 
5442     if (sm_sc_oob_state != SM_SC_OOB_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
5443     sm_sc_oob_callback = callback;
5444     sm_sc_oob_state = SM_SC_OOB_W4_RANDOM;
5445     btstack_crypto_random_generate(&sm_crypto_random_oob_request, sm_sc_oob_random, 16, &sm_handle_random_result_oob, NULL);
5446     return 0;
5447 }
5448 #endif
5449 
5450 /**
5451  * @brief Get Identity Resolving state
5452  * @param con_handle
5453  * @return irk_lookup_state_t
5454  */
5455 irk_lookup_state_t sm_identity_resolving_state(hci_con_handle_t con_handle){
5456     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5457     if (!sm_conn) return IRK_LOOKUP_IDLE;
5458     return sm_conn->sm_irk_lookup_state;
5459 }
5460 
5461 /**
5462  * @brief Identify device in LE Device DB
5463  * @param handle
5464  * @return index from le_device_db or -1 if not found/identified
5465  */
5466 int sm_le_device_index(hci_con_handle_t con_handle ){
5467     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5468     if (!sm_conn) return -1;
5469     return sm_conn->sm_le_db_index;
5470 }
5471 
5472 uint8_t sm_get_ltk(hci_con_handle_t con_handle, sm_key_t ltk){
5473     hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
5474     if (hci_connection == NULL){
5475         return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
5476     }
5477     if (hci_connection->link_key_type == INVALID_LINK_KEY){
5478         return ERROR_CODE_PIN_OR_KEY_MISSING;
5479     }
5480     memcpy(ltk, hci_connection->link_key, 16);
5481     return ERROR_CODE_SUCCESS;
5482 }
5483 
5484 static int gap_random_address_type_requires_updates(void){
5485     switch (gap_random_adress_type){
5486         case GAP_RANDOM_ADDRESS_TYPE_OFF:
5487         case GAP_RANDOM_ADDRESS_TYPE_STATIC:
5488             return 0;
5489         default:
5490             return 1;
5491     }
5492 }
5493 
5494 static uint8_t own_address_type(void){
5495     switch (gap_random_adress_type){
5496         case GAP_RANDOM_ADDRESS_TYPE_OFF:
5497             return BD_ADDR_TYPE_LE_PUBLIC;
5498         default:
5499             return BD_ADDR_TYPE_LE_RANDOM;
5500     }
5501 }
5502 
5503 // GAP LE API
5504 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
5505     gap_random_address_update_stop();
5506     gap_random_adress_type = random_address_type;
5507     hci_le_set_own_address_type(own_address_type());
5508     if (!gap_random_address_type_requires_updates()) return;
5509     gap_random_address_update_start();
5510     gap_random_address_trigger();
5511 }
5512 
5513 gap_random_address_type_t gap_random_address_get_mode(void){
5514     return gap_random_adress_type;
5515 }
5516 
5517 void gap_random_address_set_update_period(int period_ms){
5518     gap_random_adress_update_period = period_ms;
5519     if (!gap_random_address_type_requires_updates()) return;
5520     gap_random_address_update_stop();
5521     gap_random_address_update_start();
5522 }
5523 
5524 void gap_random_address_set(const bd_addr_t addr){
5525     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC);
5526     (void)memcpy(sm_random_address, addr, 6);
5527     // assert msb bits are set to '11'
5528     sm_random_address[0] |= 0xc0;
5529     hci_le_random_address_set(sm_random_address);
5530 }
5531 
5532 #ifdef ENABLE_LE_PERIPHERAL
5533 /*
5534  * @brief Set Advertisement Paramters
5535  * @param adv_int_min
5536  * @param adv_int_max
5537  * @param adv_type
5538  * @param direct_address_type
5539  * @param direct_address
5540  * @param channel_map
5541  * @param filter_policy
5542  *
5543  * @note own_address_type is used from gap_random_address_set_mode
5544  */
5545 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
5546     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
5547     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type,
5548         direct_address_typ, direct_address, channel_map, filter_policy);
5549 }
5550 #endif
5551 
5552 bool gap_reconnect_security_setup_active(hci_con_handle_t con_handle){
5553     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5554      // wrong connection
5555     if (!sm_conn) return false;
5556     // already encrypted
5557     if (sm_conn->sm_connection_encrypted) return false;
5558     // irk status?
5559     switch(sm_conn->sm_irk_lookup_state){
5560         case IRK_LOOKUP_FAILED:
5561             // done, cannot setup encryption
5562             return false;
5563         case IRK_LOOKUP_SUCCEEDED:
5564             break;
5565         default:
5566             // IR Lookup pending
5567             return true;
5568     }
5569     // IRK Lookup Succeeded, re-encryption should be initiated. When done, state gets reset or indicates failure
5570     if (sm_conn->sm_engine_state == SM_GENERAL_REENCRYPTION_FAILED) return false;
5571     if (sm_conn->sm_role != 0){
5572         return sm_conn->sm_engine_state != SM_RESPONDER_IDLE;
5573     } else {
5574         return sm_conn->sm_engine_state != SM_INITIATOR_CONNECTED;
5575     }
5576 }
5577 
5578 void sm_set_secure_connections_only_mode(bool enable){
5579 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5580     sm_sc_only_mode = enable;
5581 #else
5582     // SC Only mode not possible without support for SC
5583     btstack_assert(enable == false);
5584 #endif
5585 }
5586 
5587 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined (ENABLE_LE_SECURE_CONNECTION_DEBUG_KEY)
5588 void sm_test_enable_secure_connections_debug_keys(void) {
5589     log_info("Enable LE Secure Connection Debug Keys for testing");
5590     sm_sc_debug_keys_enabled = true;
5591     // set debug key
5592     sm_ec_generate_new_key();
5593 }
5594 #endif
5595 
5596 const uint8_t * gap_get_persistent_irk(void){
5597     return sm_persistent_irk;
5598 }
5599 
5600 void gap_delete_bonding(bd_addr_type_t address_type, bd_addr_t address){
5601     int index = sm_le_device_db_index_lookup(address_type, address);
5602     if (index >= 0){
5603         sm_remove_le_device_db_entry(index);
5604     }
5605 }
5606