xref: /btstack/src/ble/sm.c (revision 29502c9b6278f5ef85634162beef9b6a43c78688)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
24  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "sm.c"
39 
40 #include <string.h>
41 #include <inttypes.h>
42 
43 #include "ble/le_device_db.h"
44 #include "ble/core.h"
45 #include "ble/sm.h"
46 #include "bluetooth_company_id.h"
47 #include "btstack_bool.h"
48 #include "btstack_crypto.h"
49 #include "btstack_debug.h"
50 #include "btstack_event.h"
51 #include "btstack_linked_list.h"
52 #include "btstack_memory.h"
53 #include "btstack_tlv.h"
54 #include "gap.h"
55 #include "hci.h"
56 #include "hci_dump.h"
57 #include "l2cap.h"
58 
59 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL)
60 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h."
61 #endif
62 
63 #if defined(ENABLE_CROSS_TRANSPORT_KEY_DERIVATION) && (!defined(ENABLE_CLASSIC) || !defined(ENABLE_LE_SECURE_CONNECTIONS))
64 #error "Cross Transport Key Derivation requires support for LE Secure Connections and BR/EDR (Classic)"
65 #endif
66 
67 // assert SM Public Key can be sent/received
68 #ifdef ENABLE_LE_SECURE_CONNECTIONS
69 #if HCI_ACL_PAYLOAD_SIZE < 69
70 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS"
71 #endif
72 #endif
73 
74 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL)
75 #define IS_RESPONDER(role) ((role) == HCI_ROLE_SLAVE)
76 #else
77 #ifdef ENABLE_LE_CENTRAL
78 // only central - never responder (avoid 'unused variable' warnings)
79 #define IS_RESPONDER(role) (0 && ((role) == HCI_ROLE_SLAVE))
80 #else
81 // only peripheral - always responder (avoid 'unused variable' warnings)
82 #define IS_RESPONDER(role) (1 || ((role) == HCI_ROLE_SLAVE))
83 #endif
84 #endif
85 
86 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS)
87 #define USE_CMAC_ENGINE
88 #endif
89 
90 
91 #define BTSTACK_TAG32(A,B,C,D) (((A) << 24) | ((B) << 16) | ((C) << 8) | (D))
92 
93 //
94 // SM internal types and globals
95 //
96 
97 typedef enum {
98     DKG_W4_WORKING,
99     DKG_CALC_IRK,
100     DKG_CALC_DHK,
101     DKG_READY
102 } derived_key_generation_t;
103 
104 typedef enum {
105     RAU_IDLE,
106     RAU_GET_RANDOM,
107     RAU_W4_RANDOM,
108     RAU_GET_ENC,
109     RAU_W4_ENC,
110 } random_address_update_t;
111 
112 typedef enum {
113     CMAC_IDLE,
114     CMAC_CALC_SUBKEYS,
115     CMAC_W4_SUBKEYS,
116     CMAC_CALC_MI,
117     CMAC_W4_MI,
118     CMAC_CALC_MLAST,
119     CMAC_W4_MLAST
120 } cmac_state_t;
121 
122 typedef enum {
123     JUST_WORKS,
124     PK_RESP_INPUT,       // Initiator displays PK, responder inputs PK
125     PK_INIT_INPUT,       // Responder displays PK, initiator inputs PK
126     PK_BOTH_INPUT,       // Only input on both, both input PK
127     NUMERIC_COMPARISON,  // Only numerical compparison (yes/no) on on both sides
128     OOB                  // OOB available on one (SC) or both sides (legacy)
129 } stk_generation_method_t;
130 
131 typedef enum {
132     SM_USER_RESPONSE_IDLE,
133     SM_USER_RESPONSE_PENDING,
134     SM_USER_RESPONSE_CONFIRM,
135     SM_USER_RESPONSE_PASSKEY,
136     SM_USER_RESPONSE_DECLINE
137 } sm_user_response_t;
138 
139 typedef enum {
140     SM_AES128_IDLE,
141     SM_AES128_ACTIVE
142 } sm_aes128_state_t;
143 
144 typedef enum {
145     ADDRESS_RESOLUTION_IDLE,
146     ADDRESS_RESOLUTION_GENERAL,
147     ADDRESS_RESOLUTION_FOR_CONNECTION,
148 } address_resolution_mode_t;
149 
150 typedef enum {
151     ADDRESS_RESOLUTION_SUCCEEDED,
152     ADDRESS_RESOLUTION_FAILED,
153 } address_resolution_event_t;
154 
155 typedef enum {
156     EC_KEY_GENERATION_IDLE,
157     EC_KEY_GENERATION_ACTIVE,
158     EC_KEY_GENERATION_DONE,
159 } ec_key_generation_state_t;
160 
161 typedef enum {
162     SM_STATE_VAR_DHKEY_NEEDED = 1 << 0,
163     SM_STATE_VAR_DHKEY_CALCULATED = 1 << 1,
164     SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 2,
165 } sm_state_var_t;
166 
167 typedef enum {
168     SM_SC_OOB_IDLE,
169     SM_SC_OOB_W4_RANDOM,
170     SM_SC_OOB_W2_CALC_CONFIRM,
171     SM_SC_OOB_W4_CONFIRM,
172 } sm_sc_oob_state_t;
173 
174 typedef uint8_t sm_key24_t[3];
175 typedef uint8_t sm_key56_t[7];
176 typedef uint8_t sm_key256_t[32];
177 
178 //
179 // GLOBAL DATA
180 //
181 
182 static bool sm_initialized;
183 
184 static bool test_use_fixed_local_csrk;
185 static bool test_use_fixed_local_irk;
186 
187 #ifdef ENABLE_TESTING_SUPPORT
188 static uint8_t test_pairing_failure;
189 #endif
190 
191 // configuration
192 static uint8_t sm_accepted_stk_generation_methods;
193 static uint8_t sm_max_encryption_key_size;
194 static uint8_t sm_min_encryption_key_size;
195 static uint8_t sm_auth_req = 0;
196 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
197 static uint32_t sm_fixed_passkey_in_display_role;
198 static bool sm_reconstruct_ltk_without_le_device_db_entry;
199 
200 #ifdef ENABLE_LE_PERIPHERAL
201 static bool sm_slave_request_security;
202 #endif
203 
204 #ifdef ENABLE_LE_SECURE_CONNECTIONS
205 static bool sm_sc_only_mode;
206 static uint8_t sm_sc_oob_random[16];
207 static void (*sm_sc_oob_callback)(const uint8_t * confirm_value, const uint8_t * random_value);
208 static sm_sc_oob_state_t sm_sc_oob_state;
209 #ifdef ENABLE_LE_SECURE_CONNECTIONS_DEBUG_KEY
210 static bool sm_sc_debug_keys_enabled;
211 #endif
212 #endif
213 
214 
215 static bool                  sm_persistent_keys_random_active;
216 static const btstack_tlv_t * sm_tlv_impl;
217 static void *                sm_tlv_context;
218 
219 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
220 static sm_key_t sm_persistent_er;
221 static sm_key_t sm_persistent_ir;
222 
223 // derived from sm_persistent_ir
224 static sm_key_t sm_persistent_dhk;
225 static sm_key_t sm_persistent_irk;
226 static derived_key_generation_t dkg_state;
227 
228 // derived from sm_persistent_er
229 // ..
230 
231 // random address update
232 static random_address_update_t rau_state;
233 static bd_addr_t sm_random_address;
234 
235 #ifdef USE_CMAC_ENGINE
236 // CMAC Calculation: General
237 static btstack_crypto_aes128_cmac_t sm_cmac_request;
238 static void (*sm_cmac_done_callback)(uint8_t hash[8]);
239 static uint8_t sm_cmac_active;
240 static uint8_t sm_cmac_hash[16];
241 #endif
242 
243 // CMAC for ATT Signed Writes
244 #ifdef ENABLE_LE_SIGNED_WRITE
245 static uint16_t        sm_cmac_signed_write_message_len;
246 static uint8_t         sm_cmac_signed_write_header[3];
247 static const uint8_t * sm_cmac_signed_write_message;
248 static uint8_t         sm_cmac_signed_write_sign_counter[4];
249 #endif
250 
251 // CMAC for Secure Connection functions
252 #ifdef ENABLE_LE_SECURE_CONNECTIONS
253 static sm_connection_t * sm_cmac_connection;
254 static uint8_t           sm_cmac_sc_buffer[80];
255 #endif
256 
257 // resolvable private address lookup / CSRK calculation
258 static int       sm_address_resolution_test;
259 static uint8_t   sm_address_resolution_addr_type;
260 static bd_addr_t sm_address_resolution_address;
261 static void *    sm_address_resolution_context;
262 static address_resolution_mode_t sm_address_resolution_mode;
263 static btstack_linked_list_t sm_address_resolution_general_queue;
264 
265 // aes128 crypto engine.
266 static sm_aes128_state_t  sm_aes128_state;
267 
268 // crypto
269 static btstack_crypto_random_t   sm_crypto_random_request;
270 static btstack_crypto_aes128_t   sm_crypto_aes128_request;
271 #ifdef ENABLE_LE_SECURE_CONNECTIONS
272 static btstack_crypto_ecc_p256_t sm_crypto_ecc_p256_request;
273 #endif
274 
275 // temp storage for random data
276 static uint8_t sm_random_data[8];
277 static uint8_t sm_aes128_key[16];
278 static uint8_t sm_aes128_plaintext[16];
279 static uint8_t sm_aes128_ciphertext[16];
280 
281 // to receive events
282 static btstack_packet_callback_registration_t hci_event_callback_registration;
283 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
284 static btstack_packet_callback_registration_t l2cap_event_callback_registration;
285 #endif
286 
287 /* to dispatch sm event */
288 static btstack_linked_list_t sm_event_handlers;
289 
290 /* to schedule calls to sm_run */
291 static btstack_timer_source_t sm_run_timer;
292 
293 // LE Secure Connections
294 #ifdef ENABLE_LE_SECURE_CONNECTIONS
295 static ec_key_generation_state_t ec_key_generation_state;
296 static uint8_t ec_q[64];
297 #endif
298 
299 //
300 // Volume 3, Part H, Chapter 24
301 // "Security shall be initiated by the Security Manager in the device in the master role.
302 // The device in the slave role shall be the responding device."
303 // -> master := initiator, slave := responder
304 //
305 
306 // data needed for security setup
307 typedef struct sm_setup_context {
308 
309     btstack_timer_source_t sm_timeout;
310 
311     // user response, (Phase 1 and/or 2)
312     uint8_t   sm_user_response;
313     uint8_t   sm_keypress_notification; // bitmap: passkey started, digit entered, digit erased, passkey cleared, passkey complete, 3 bit count
314 
315     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
316     uint8_t   sm_key_distribution_send_set;
317     uint8_t   sm_key_distribution_sent_set;
318     uint8_t   sm_key_distribution_expected_set;
319     uint8_t   sm_key_distribution_received_set;
320 
321     // Phase 2 (Pairing over SMP)
322     stk_generation_method_t sm_stk_generation_method;
323     sm_key_t  sm_tk;
324     uint8_t   sm_have_oob_data;
325     bool      sm_use_secure_connections;
326 
327     sm_key_t  sm_c1_t3_value;   // c1 calculation
328     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
329     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
330     sm_key_t  sm_local_random;
331     sm_key_t  sm_local_confirm;
332     sm_key_t  sm_peer_random;
333     sm_key_t  sm_peer_confirm;
334     uint8_t   sm_m_addr_type;   // address and type can be removed
335     uint8_t   sm_s_addr_type;   //  ''
336     bd_addr_t sm_m_address;     //  ''
337     bd_addr_t sm_s_address;     //  ''
338     sm_key_t  sm_ltk;
339 
340     uint8_t   sm_state_vars;
341 #ifdef ENABLE_LE_SECURE_CONNECTIONS
342     uint8_t   sm_peer_q[64];    // also stores random for EC key generation during init
343     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
344     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
345     uint8_t   sm_dhkey[32];
346     sm_key_t  sm_peer_dhkey_check;
347     sm_key_t  sm_local_dhkey_check;
348     sm_key_t  sm_ra;
349     sm_key_t  sm_rb;
350     sm_key_t  sm_t;             // used for f5 and h6
351     sm_key_t  sm_mackey;
352     uint8_t   sm_passkey_bit;   // also stores number of generated random bytes for EC key generation
353 #endif
354 
355     // Phase 3
356 
357     // key distribution, we generate
358     uint16_t  sm_local_y;
359     uint16_t  sm_local_div;
360     uint16_t  sm_local_ediv;
361     uint8_t   sm_local_rand[8];
362     sm_key_t  sm_local_ltk;
363     sm_key_t  sm_local_csrk;
364     sm_key_t  sm_local_irk;
365     // sm_local_address/addr_type not needed
366 
367     // key distribution, received from peer
368     uint16_t  sm_peer_y;
369     uint16_t  sm_peer_div;
370     uint16_t  sm_peer_ediv;
371     uint8_t   sm_peer_rand[8];
372     sm_key_t  sm_peer_ltk;
373     sm_key_t  sm_peer_irk;
374     sm_key_t  sm_peer_csrk;
375     uint8_t   sm_peer_addr_type;
376     bd_addr_t sm_peer_address;
377 #ifdef ENABLE_LE_SIGNED_WRITE
378     int       sm_le_device_index;
379 #endif
380 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
381     link_key_t sm_link_key;
382     link_key_type_t sm_link_key_type;
383 #endif
384 } sm_setup_context_t;
385 
386 //
387 static sm_setup_context_t the_setup;
388 static sm_setup_context_t * setup = &the_setup;
389 
390 // active connection - the one for which the_setup is used for
391 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
392 
393 // @return 1 if oob data is available
394 // stores oob data in provided 16 byte buffer if not null
395 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
396 static int (*sm_get_sc_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random);
397 static bool (*sm_get_ltk_callback)(hci_con_handle_t con_handle, uint8_t addres_type, bd_addr_t addr, uint8_t * ltk);
398 
399 static void sm_run(void);
400 static void sm_state_reset(void);
401 static void sm_done_for_handle(hci_con_handle_t con_handle);
402 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
403 static void sm_cache_ltk(sm_connection_t * connection, const sm_key_t ltk);
404 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
405 static sm_connection_t * sm_get_connection_for_bd_addr_and_type(bd_addr_t address, bd_addr_type_t addr_type);
406 #endif
407 static inline int sm_calc_actual_encryption_key_size(int other);
408 static int sm_validate_stk_generation_method(void);
409 static void sm_handle_encryption_result_address_resolution(void *arg);
410 static void sm_handle_encryption_result_dkg_dhk(void *arg);
411 static void sm_handle_encryption_result_dkg_irk(void *arg);
412 static void sm_handle_encryption_result_enc_a(void *arg);
413 static void sm_handle_encryption_result_enc_b(void *arg);
414 static void sm_handle_encryption_result_enc_c(void *arg);
415 static void sm_handle_encryption_result_enc_csrk(void *arg);
416 static void sm_handle_encryption_result_enc_d(void * arg);
417 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg);
418 static void sm_handle_encryption_result_enc_ph3_y(void *arg);
419 #ifdef ENABLE_LE_PERIPHERAL
420 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg);
421 static void sm_handle_encryption_result_enc_ph4_y(void *arg);
422 #endif
423 static void sm_handle_encryption_result_enc_stk(void *arg);
424 static void sm_handle_encryption_result_rau(void *arg);
425 static void sm_handle_random_result_ph2_tk(void * arg);
426 static void sm_handle_random_result_rau(void * arg);
427 #ifdef ENABLE_LE_SECURE_CONNECTIONS
428 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash));
429 static void sm_ec_generate_new_key(void);
430 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg);
431 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg);
432 static bool sm_passkey_entry(stk_generation_method_t method);
433 #endif
434 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason);
435 
436 static void log_info_hex16(const char * name, uint16_t value){
437     log_info("%-6s 0x%04x", name, value);
438 }
439 
440 // static inline uint8_t sm_pairing_packet_get_code(sm_pairing_packet_t packet){
441 //     return packet[0];
442 // }
443 static inline uint8_t sm_pairing_packet_get_io_capability(sm_pairing_packet_t packet){
444     return packet[1];
445 }
446 static inline uint8_t sm_pairing_packet_get_oob_data_flag(sm_pairing_packet_t packet){
447     return packet[2];
448 }
449 static inline uint8_t sm_pairing_packet_get_auth_req(sm_pairing_packet_t packet){
450     return packet[3];
451 }
452 static inline uint8_t sm_pairing_packet_get_max_encryption_key_size(sm_pairing_packet_t packet){
453     return packet[4];
454 }
455 static inline uint8_t sm_pairing_packet_get_initiator_key_distribution(sm_pairing_packet_t packet){
456     return packet[5];
457 }
458 static inline uint8_t sm_pairing_packet_get_responder_key_distribution(sm_pairing_packet_t packet){
459     return packet[6];
460 }
461 
462 static inline void sm_pairing_packet_set_code(sm_pairing_packet_t packet, uint8_t code){
463     packet[0] = code;
464 }
465 static inline void sm_pairing_packet_set_io_capability(sm_pairing_packet_t packet, uint8_t io_capability){
466     packet[1] = io_capability;
467 }
468 static inline void sm_pairing_packet_set_oob_data_flag(sm_pairing_packet_t packet, uint8_t oob_data_flag){
469     packet[2] = oob_data_flag;
470 }
471 static inline void sm_pairing_packet_set_auth_req(sm_pairing_packet_t packet, uint8_t auth_req){
472     packet[3] = auth_req;
473 }
474 static inline void sm_pairing_packet_set_max_encryption_key_size(sm_pairing_packet_t packet, uint8_t max_encryption_key_size){
475     packet[4] = max_encryption_key_size;
476 }
477 static inline void sm_pairing_packet_set_initiator_key_distribution(sm_pairing_packet_t packet, uint8_t initiator_key_distribution){
478     packet[5] = initiator_key_distribution;
479 }
480 static inline void sm_pairing_packet_set_responder_key_distribution(sm_pairing_packet_t packet, uint8_t responder_key_distribution){
481     packet[6] = responder_key_distribution;
482 }
483 
484 static bool sm_is_null_random(uint8_t random[8]){
485     return btstack_is_null(random, 8);
486 }
487 
488 static bool sm_is_null_key(uint8_t * key){
489     return btstack_is_null(key, 16);
490 }
491 
492 #ifdef ENABLE_LE_SECURE_CONNECTIONS
493 static bool sm_is_ff(const uint8_t * buffer, uint16_t size){
494     uint16_t i;
495     for (i=0; i < size ; i++){
496         if (buffer[i] != 0xff) {
497             return false;
498         }
499     }
500     return true;
501 }
502 #endif
503 
504 // sm_trigger_run allows to schedule callback from main run loop // reduces stack depth
505 static void sm_run_timer_handler(btstack_timer_source_t * ts){
506 	UNUSED(ts);
507 	sm_run();
508 }
509 static void sm_trigger_run(void){
510     if (!sm_initialized) return;
511 	(void)btstack_run_loop_remove_timer(&sm_run_timer);
512 	btstack_run_loop_set_timer(&sm_run_timer, 0);
513 	btstack_run_loop_add_timer(&sm_run_timer);
514 }
515 
516 // Key utils
517 static void sm_reset_tk(void){
518     int i;
519     for (i=0;i<16;i++){
520         setup->sm_tk[i] = 0;
521     }
522 }
523 
524 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
525 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
526 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
527     int i;
528     for (i = max_encryption_size ; i < 16 ; i++){
529         key[15-i] = 0;
530     }
531 }
532 
533 // ER / IR checks
534 static void sm_er_ir_set_default(void){
535     int i;
536     for (i=0;i<16;i++){
537         sm_persistent_er[i] = 0x30 + i;
538         sm_persistent_ir[i] = 0x90 + i;
539     }
540 }
541 
542 static bool sm_er_is_default(void){
543     int i;
544     for (i=0;i<16;i++){
545         if (sm_persistent_er[i] != (0x30+i)) return true;
546     }
547     return false;
548 }
549 
550 static bool sm_ir_is_default(void){
551     int i;
552     for (i=0;i<16;i++){
553         if (sm_persistent_ir[i] != (0x90+i)) return true;
554     }
555     return false;
556 }
557 
558 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
559     UNUSED(channel);
560 
561     // log event
562     hci_dump_btstack_event(packet, size);
563     // dispatch to all event handlers
564     btstack_linked_list_iterator_t it;
565     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
566     while (btstack_linked_list_iterator_has_next(&it)){
567         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
568         entry->callback(packet_type, 0, packet, size);
569     }
570 }
571 
572 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
573     event[0] = type;
574     event[1] = event_size - 2;
575     little_endian_store_16(event, 2, con_handle);
576     event[4] = addr_type;
577     reverse_bd_addr(address, &event[5]);
578 }
579 
580 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
581     uint8_t event[11];
582     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
583     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
584 }
585 
586 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
587     // fetch addr and addr type from db, only called for valid entries
588     bd_addr_t identity_address;
589     int identity_address_type;
590     le_device_db_info(index, &identity_address_type, identity_address, NULL);
591 
592     uint8_t event[20];
593     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
594     event[11] = identity_address_type;
595     reverse_bd_addr(identity_address, &event[12]);
596     little_endian_store_16(event, 18, index);
597     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
598 }
599 
600 static void sm_notify_client_status(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t status){
601     uint8_t event[12];
602     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
603     event[11] = status;
604     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
605 }
606 
607 
608 static void sm_reencryption_started(sm_connection_t * sm_conn){
609 
610     if (sm_conn->sm_reencryption_active) return;
611 
612     sm_conn->sm_reencryption_active = true;
613 
614     int       identity_addr_type;
615     bd_addr_t identity_addr;
616     if (sm_conn->sm_le_db_index >= 0){
617         // fetch addr and addr type from db, only called for valid entries
618         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
619     } else {
620         // for legacy pairing with LTK re-construction, use current peer addr
621         identity_addr_type = sm_conn->sm_peer_addr_type;
622         // cppcheck-suppress uninitvar ; identity_addr is reported as uninitialized although it's the destination of the memcpy
623         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
624     }
625 
626     sm_notify_client_base(SM_EVENT_REENCRYPTION_STARTED, sm_conn->sm_handle, identity_addr_type, identity_addr);
627 }
628 
629 static void sm_reencryption_complete(sm_connection_t * sm_conn, uint8_t status){
630 
631     if (!sm_conn->sm_reencryption_active) return;
632 
633     sm_conn->sm_reencryption_active = false;
634 
635     int       identity_addr_type;
636     bd_addr_t identity_addr;
637     if (sm_conn->sm_le_db_index >= 0){
638         // fetch addr and addr type from db, only called for valid entries
639         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
640     } else {
641         // for legacy pairing with LTK re-construction, use current peer addr
642         identity_addr_type = sm_conn->sm_peer_addr_type;
643         // cppcheck-suppress uninitvar ; identity_addr is reported as uninitialized although it's the destination of the memcpy
644         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
645     }
646 
647     sm_notify_client_status(SM_EVENT_REENCRYPTION_COMPLETE, sm_conn->sm_handle, identity_addr_type, identity_addr, status);
648 }
649 
650 static void sm_pairing_started(sm_connection_t * sm_conn){
651 
652     if (sm_conn->sm_pairing_active) return;
653 
654     sm_conn->sm_pairing_active = true;
655 
656     uint8_t event[11];
657     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_STARTED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
658     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
659 }
660 
661 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason){
662 
663     if (!sm_conn->sm_pairing_active) return;
664 
665     sm_conn->sm_pairing_active = false;
666 
667     uint8_t event[13];
668     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_COMPLETE, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
669     event[11] = status;
670     event[12] = reason;
671     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
672 }
673 
674 // SMP Timeout implementation
675 
676 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
677 // the Security Manager Timer shall be reset and started.
678 //
679 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
680 //
681 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
682 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
683 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
684 // established.
685 
686 static void sm_timeout_handler(btstack_timer_source_t * timer){
687     log_info("SM timeout");
688     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
689     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
690     sm_reencryption_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT);
691     sm_pairing_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT, 0);
692     sm_done_for_handle(sm_conn->sm_handle);
693 
694     // trigger handling of next ready connection
695     sm_run();
696 }
697 static void sm_timeout_start(sm_connection_t * sm_conn){
698     btstack_run_loop_remove_timer(&setup->sm_timeout);
699     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
700     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
701     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
702     btstack_run_loop_add_timer(&setup->sm_timeout);
703 }
704 static void sm_timeout_stop(void){
705     btstack_run_loop_remove_timer(&setup->sm_timeout);
706 }
707 static void sm_timeout_reset(sm_connection_t * sm_conn){
708     sm_timeout_stop();
709     sm_timeout_start(sm_conn);
710 }
711 
712 // end of sm timeout
713 
714 // GAP Random Address updates
715 static gap_random_address_type_t gap_random_adress_type;
716 static btstack_timer_source_t gap_random_address_update_timer;
717 static uint32_t gap_random_adress_update_period;
718 
719 static void gap_random_address_trigger(void){
720     log_info("gap_random_address_trigger, state %u", rau_state);
721     if (rau_state != RAU_IDLE) return;
722     rau_state = RAU_GET_RANDOM;
723     sm_trigger_run();
724 }
725 
726 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
727     UNUSED(timer);
728 
729     log_info("GAP Random Address Update due");
730     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
731     btstack_run_loop_add_timer(&gap_random_address_update_timer);
732     gap_random_address_trigger();
733 }
734 
735 static void gap_random_address_update_start(void){
736     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
737     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
738     btstack_run_loop_add_timer(&gap_random_address_update_timer);
739 }
740 
741 static void gap_random_address_update_stop(void){
742     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
743 }
744 
745 // ah(k,r) helper
746 // r = padding || r
747 // r - 24 bit value
748 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){
749     // r'= padding || r
750     memset(r_prime, 0, 16);
751     (void)memcpy(&r_prime[13], r, 3);
752 }
753 
754 // d1 helper
755 // d' = padding || r || d
756 // d,r - 16 bit values
757 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){
758     // d'= padding || r || d
759     memset(d1_prime, 0, 16);
760     big_endian_store_16(d1_prime, 12, r);
761     big_endian_store_16(d1_prime, 14, d);
762 }
763 
764 // calculate arguments for first AES128 operation in C1 function
765 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){
766 
767     // p1 = pres || preq || rat’ || iat’
768     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
769     // cant octet of pres becomes the most significant octet of p1.
770     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
771     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
772     // p1 is 0x05000800000302070710000001010001."
773 
774     sm_key_t p1;
775     reverse_56(pres, &p1[0]);
776     reverse_56(preq, &p1[7]);
777     p1[14] = rat;
778     p1[15] = iat;
779     log_info_key("p1", p1);
780     log_info_key("r", r);
781 
782     // t1 = r xor p1
783     int i;
784     for (i=0;i<16;i++){
785         t1[i] = r[i] ^ p1[i];
786     }
787     log_info_key("t1", t1);
788 }
789 
790 // calculate arguments for second AES128 operation in C1 function
791 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){
792      // p2 = padding || ia || ra
793     // "The least significant octet of ra becomes the least significant octet of p2 and
794     // the most significant octet of padding becomes the most significant octet of p2.
795     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
796     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
797 
798     sm_key_t p2;
799     // cppcheck-suppress uninitvar ; p2 is reported as uninitialized
800     memset(p2, 0, 16);
801     (void)memcpy(&p2[4], ia, 6);
802     (void)memcpy(&p2[10], ra, 6);
803     log_info_key("p2", p2);
804 
805     // c1 = e(k, t2_xor_p2)
806     int i;
807     for (i=0;i<16;i++){
808         t3[i] = t2[i] ^ p2[i];
809     }
810     log_info_key("t3", t3);
811 }
812 
813 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){
814     log_info_key("r1", r1);
815     log_info_key("r2", r2);
816     (void)memcpy(&r_prime[8], &r2[8], 8);
817     (void)memcpy(&r_prime[0], &r1[8], 8);
818 }
819 
820 
821 // decide on stk generation based on
822 // - pairing request
823 // - io capabilities
824 // - OOB data availability
825 static void sm_setup_tk(void){
826 
827     // horizontal: initiator capabilities
828     // vertial:    responder capabilities
829     static const stk_generation_method_t stk_generation_method [5] [5] = {
830             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
831             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
832             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
833             { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
834             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
835     };
836 
837     // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
838 #ifdef ENABLE_LE_SECURE_CONNECTIONS
839     static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
840             { JUST_WORKS,      JUST_WORKS,         PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT      },
841             { JUST_WORKS,      NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
842             { PK_RESP_INPUT,   PK_RESP_INPUT,      PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT      },
843             { JUST_WORKS,      JUST_WORKS,         JUST_WORKS,      JUST_WORKS,    JUST_WORKS         },
844             { PK_RESP_INPUT,   NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
845     };
846 #endif
847 
848     // default: just works
849     setup->sm_stk_generation_method = JUST_WORKS;
850 
851 #ifdef ENABLE_LE_SECURE_CONNECTIONS
852     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
853                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
854                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0u;
855 #else
856     setup->sm_use_secure_connections = false;
857 #endif
858     log_info("Secure pairing: %u", setup->sm_use_secure_connections);
859 
860 
861     // decide if OOB will be used based on SC vs. Legacy and oob flags
862     bool use_oob;
863     if (setup->sm_use_secure_connections){
864         // In LE Secure Connections pairing, the out of band method is used if at least
865         // one device has the peer device's out of band authentication data available.
866         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) | sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
867     } else {
868         // In LE legacy pairing, the out of band method is used if both the devices have
869         // the other device's out of band authentication data available.
870         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) & sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
871     }
872     if (use_oob){
873         log_info("SM: have OOB data");
874         log_info_key("OOB", setup->sm_tk);
875         setup->sm_stk_generation_method = OOB;
876         return;
877     }
878 
879     // If both devices have not set the MITM option in the Authentication Requirements
880     // Flags, then the IO capabilities shall be ignored and the Just Works association
881     // model shall be used.
882     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0u)
883         &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0u)){
884         log_info("SM: MITM not required by both -> JUST WORKS");
885         return;
886     }
887 
888     // Reset TK as it has been setup in sm_init_setup
889     sm_reset_tk();
890 
891     // Also use just works if unknown io capabilites
892     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
893         return;
894     }
895 
896     // Otherwise the IO capabilities of the devices shall be used to determine the
897     // pairing method as defined in Table 2.4.
898     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
899     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
900 
901 #ifdef ENABLE_LE_SECURE_CONNECTIONS
902     // table not define by default
903     if (setup->sm_use_secure_connections){
904         generation_method = stk_generation_method_with_secure_connection;
905     }
906 #endif
907     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
908 
909     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
910         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
911 }
912 
913 static int sm_key_distribution_flags_for_set(uint8_t key_set){
914     int flags = 0;
915     if ((key_set & SM_KEYDIST_ENC_KEY) != 0u){
916         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
917         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
918     }
919     if ((key_set & SM_KEYDIST_ID_KEY) != 0u){
920         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
921         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
922     }
923     if ((key_set & SM_KEYDIST_SIGN) != 0u){
924         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
925     }
926     return flags;
927 }
928 
929 static void sm_setup_key_distribution(uint8_t keys_to_send, uint8_t keys_to_receive){
930     setup->sm_key_distribution_received_set = 0;
931     setup->sm_key_distribution_expected_set = sm_key_distribution_flags_for_set(keys_to_receive);
932     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(keys_to_send);
933     setup->sm_key_distribution_sent_set = 0;
934 #ifdef ENABLE_LE_SIGNED_WRITE
935     setup->sm_le_device_index = -1;
936 #endif
937 }
938 
939 // CSRK Key Lookup
940 
941 
942 static bool sm_address_resolution_idle(void){
943     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
944 }
945 
946 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
947     (void)memcpy(sm_address_resolution_address, addr, 6);
948     sm_address_resolution_addr_type = addr_type;
949     sm_address_resolution_test = 0;
950     sm_address_resolution_mode = mode;
951     sm_address_resolution_context = context;
952     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
953 }
954 
955 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
956     // check if already in list
957     btstack_linked_list_iterator_t it;
958     sm_lookup_entry_t * entry;
959     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
960     while(btstack_linked_list_iterator_has_next(&it)){
961         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
962         if (entry->address_type != address_type) continue;
963         if (memcmp(entry->address, address, 6) != 0)  continue;
964         // already in list
965         return BTSTACK_BUSY;
966     }
967     entry = btstack_memory_sm_lookup_entry_get();
968     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
969     entry->address_type = (bd_addr_type_t) address_type;
970     (void)memcpy(entry->address, address, 6);
971     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
972     sm_trigger_run();
973     return 0;
974 }
975 
976 // CMAC calculation using AES Engineq
977 #ifdef USE_CMAC_ENGINE
978 
979 static void sm_cmac_done_trampoline(void * arg){
980     UNUSED(arg);
981     sm_cmac_active = 0;
982     (*sm_cmac_done_callback)(sm_cmac_hash);
983     sm_trigger_run();
984 }
985 
986 int sm_cmac_ready(void){
987     return sm_cmac_active == 0u;
988 }
989 #endif
990 
991 #ifdef ENABLE_LE_SECURE_CONNECTIONS
992 // generic cmac calculation
993 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash)){
994     sm_cmac_active = 1;
995     sm_cmac_done_callback = done_callback;
996     btstack_crypto_aes128_cmac_message(&sm_cmac_request, key, message_len, message, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
997 }
998 #endif
999 
1000 // cmac for ATT Message signing
1001 #ifdef ENABLE_LE_SIGNED_WRITE
1002 
1003 static void sm_cmac_generator_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t * hash)){
1004     sm_cmac_active = 1;
1005     sm_cmac_done_callback = done_callback;
1006     btstack_crypto_aes128_cmac_generator(&sm_cmac_request, key, message_len, get_byte_callback, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
1007 }
1008 
1009 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){
1010     if (offset >= sm_cmac_signed_write_message_len) {
1011         log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_signed_write_message_len);
1012         return 0;
1013     }
1014 
1015     offset = sm_cmac_signed_write_message_len - 1 - offset;
1016 
1017     // sm_cmac_signed_write_header[3] | message[] | sm_cmac_signed_write_sign_counter[4]
1018     if (offset < 3){
1019         return sm_cmac_signed_write_header[offset];
1020     }
1021     int actual_message_len_incl_header = sm_cmac_signed_write_message_len - 4;
1022     if (offset <  actual_message_len_incl_header){
1023         return sm_cmac_signed_write_message[offset - 3];
1024     }
1025     return sm_cmac_signed_write_sign_counter[offset - actual_message_len_incl_header];
1026 }
1027 
1028 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
1029     // ATT Message Signing
1030     sm_cmac_signed_write_header[0] = opcode;
1031     little_endian_store_16(sm_cmac_signed_write_header, 1, con_handle);
1032     little_endian_store_32(sm_cmac_signed_write_sign_counter, 0, sign_counter);
1033     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
1034     sm_cmac_signed_write_message     = message;
1035     sm_cmac_signed_write_message_len = total_message_len;
1036     sm_cmac_generator_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler);
1037 }
1038 #endif
1039 
1040 static void sm_trigger_user_response_basic(sm_connection_t * sm_conn, uint8_t event_type){
1041     setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1042     uint8_t event[12];
1043     sm_setup_event_base(event, sizeof(event), event_type, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1044     event[11] = setup->sm_use_secure_connections ? 1 : 0;
1045     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
1046 }
1047 
1048 static void sm_trigger_user_response_passkey(sm_connection_t * sm_conn, uint8_t event_type){
1049     uint8_t event[16];
1050     uint32_t passkey = big_endian_read_32(setup->sm_tk, 12);
1051     sm_setup_event_base(event, sizeof(event), event_type, sm_conn->sm_handle,
1052                         sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1053     event[11] = setup->sm_use_secure_connections ? 1 : 0;
1054     little_endian_store_32(event, 12, passkey);
1055     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
1056 }
1057 
1058 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1059     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1060     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1061     sm_conn->sm_pairing_active = true;
1062     switch (setup->sm_stk_generation_method){
1063         case PK_RESP_INPUT:
1064             if (IS_RESPONDER(sm_conn->sm_role)){
1065                 sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1066             } else {
1067                 sm_trigger_user_response_passkey(sm_conn, SM_EVENT_PASSKEY_DISPLAY_NUMBER);
1068             }
1069             break;
1070         case PK_INIT_INPUT:
1071             if (IS_RESPONDER(sm_conn->sm_role)){
1072                 sm_trigger_user_response_passkey(sm_conn, SM_EVENT_PASSKEY_DISPLAY_NUMBER);
1073             } else {
1074                 sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1075             }
1076             break;
1077         case PK_BOTH_INPUT:
1078             sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1079             break;
1080         case NUMERIC_COMPARISON:
1081             sm_trigger_user_response_passkey(sm_conn, SM_EVENT_NUMERIC_COMPARISON_REQUEST);
1082             break;
1083         case JUST_WORKS:
1084             sm_trigger_user_response_basic(sm_conn, SM_EVENT_JUST_WORKS_REQUEST);
1085             break;
1086         case OOB:
1087             // client already provided OOB data, let's skip notification.
1088             break;
1089         default:
1090             btstack_assert(false);
1091             break;
1092     }
1093 }
1094 
1095 static bool sm_key_distribution_all_received(void) {
1096     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, setup->sm_key_distribution_expected_set);
1097     return (setup->sm_key_distribution_expected_set & setup->sm_key_distribution_received_set) == setup->sm_key_distribution_expected_set;
1098 }
1099 
1100 static void sm_done_for_handle(hci_con_handle_t con_handle){
1101     if (sm_active_connection_handle == con_handle){
1102         sm_timeout_stop();
1103         sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
1104         log_info("sm: connection 0x%x released setup context", con_handle);
1105 
1106 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1107         // generate new ec key after each pairing (that used it)
1108         if (setup->sm_use_secure_connections){
1109             sm_ec_generate_new_key();
1110         }
1111 #endif
1112     }
1113 }
1114 
1115 static void sm_master_pairing_success(sm_connection_t *connection) {// master -> all done
1116     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
1117     sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
1118     sm_done_for_handle(connection->sm_handle);
1119 }
1120 
1121 static int sm_key_distribution_flags_for_auth_req(void){
1122 
1123     int flags = SM_KEYDIST_ID_KEY;
1124     if ((sm_auth_req & SM_AUTHREQ_BONDING) != 0u){
1125         // encryption and signing information only if bonding requested
1126         flags |= SM_KEYDIST_ENC_KEY;
1127 #ifdef ENABLE_LE_SIGNED_WRITE
1128         flags |= SM_KEYDIST_SIGN;
1129 #endif
1130 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1131         // LinkKey for CTKD requires SC and BR/EDR Support
1132         if (hci_classic_supported() && ((sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION) != 0)){
1133         	flags |= SM_KEYDIST_LINK_KEY;
1134         }
1135 #endif
1136     }
1137     return flags;
1138 }
1139 
1140 static void sm_reset_setup(void){
1141     // fill in sm setup
1142     setup->sm_state_vars = 0;
1143     setup->sm_keypress_notification = 0;
1144     setup->sm_have_oob_data = 0;
1145     sm_reset_tk();
1146 }
1147 
1148 static void sm_init_setup(sm_connection_t * sm_conn){
1149     // fill in sm setup
1150     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1151     (void)memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1152 
1153     // query client for Legacy Pairing OOB data
1154     if (sm_get_oob_data != NULL) {
1155         setup->sm_have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1156     }
1157 
1158     // if available and SC supported, also ask for SC OOB Data
1159 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1160     memset(setup->sm_ra, 0, 16);
1161     memset(setup->sm_rb, 0, 16);
1162     if (setup->sm_have_oob_data && (sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION)){
1163         if (sm_get_sc_oob_data != NULL){
1164             if (IS_RESPONDER(sm_conn->sm_role)){
1165                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1166                     sm_conn->sm_peer_addr_type,
1167                     sm_conn->sm_peer_address,
1168                     setup->sm_peer_confirm,
1169                     setup->sm_ra);
1170             } else {
1171                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1172                     sm_conn->sm_peer_addr_type,
1173                     sm_conn->sm_peer_address,
1174                     setup->sm_peer_confirm,
1175                     setup->sm_rb);
1176             }
1177         } else {
1178             setup->sm_have_oob_data = 0;
1179         }
1180     }
1181 #endif
1182 
1183     sm_pairing_packet_t * local_packet;
1184     if (IS_RESPONDER(sm_conn->sm_role)){
1185         // slave
1186         local_packet = &setup->sm_s_pres;
1187         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1188         setup->sm_s_addr_type = sm_conn->sm_own_addr_type;
1189         (void)memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1190         (void)memcpy(setup->sm_s_address, sm_conn->sm_own_address, 6);
1191     } else {
1192         // master
1193         local_packet = &setup->sm_m_preq;
1194         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1195         setup->sm_m_addr_type = sm_conn->sm_own_addr_type;
1196         (void)memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1197         (void)memcpy(setup->sm_m_address, sm_conn->sm_own_address, 6);
1198 
1199         uint8_t key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1200         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1201         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1202     }
1203 
1204     log_info("our  address %s type %u", bd_addr_to_str(sm_conn->sm_own_address), sm_conn->sm_own_addr_type);
1205     log_info("peer address %s type %u", bd_addr_to_str(sm_conn->sm_peer_address), sm_conn->sm_peer_addr_type);
1206 
1207     uint8_t auth_req = sm_auth_req & ~SM_AUTHREQ_CT2;
1208     uint8_t max_encryption_key_size = sm_max_encryption_key_size;
1209 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1210     // enable SC for SC only mode
1211     if (sm_sc_only_mode){
1212         auth_req |= SM_AUTHREQ_SECURE_CONNECTION;
1213         max_encryption_key_size = 16;
1214     }
1215 #endif
1216 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1217 	// set CT2 if SC + Bonding + CTKD
1218 	const uint8_t auth_req_for_ct2 = SM_AUTHREQ_SECURE_CONNECTION | SM_AUTHREQ_BONDING;
1219 	if ((auth_req & auth_req_for_ct2) == auth_req_for_ct2){
1220 		auth_req |= SM_AUTHREQ_CT2;
1221 	}
1222 #endif
1223     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1224     sm_pairing_packet_set_oob_data_flag(*local_packet, setup->sm_have_oob_data);
1225     sm_pairing_packet_set_auth_req(*local_packet, auth_req);
1226     sm_pairing_packet_set_max_encryption_key_size(*local_packet, max_encryption_key_size);
1227 }
1228 
1229 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1230 
1231     sm_pairing_packet_t * remote_packet;
1232     uint8_t               keys_to_send;
1233     uint8_t               keys_to_receive;
1234     if (IS_RESPONDER(sm_conn->sm_role)){
1235         // slave / responder
1236         remote_packet   = &setup->sm_m_preq;
1237         keys_to_send    = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1238         keys_to_receive = sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq);
1239     } else {
1240         // master / initiator
1241         remote_packet   = &setup->sm_s_pres;
1242         keys_to_send    = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1243         keys_to_receive = sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres);
1244     }
1245 
1246     // check key size
1247 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1248     // SC Only mandates 128 bit key size
1249     if (sm_sc_only_mode && (sm_pairing_packet_get_max_encryption_key_size(*remote_packet) < 16)) {
1250         return SM_REASON_ENCRYPTION_KEY_SIZE;
1251     }
1252 #endif
1253     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1254     if (sm_conn->sm_actual_encryption_key_size == 0u) return SM_REASON_ENCRYPTION_KEY_SIZE;
1255 
1256     // decide on STK generation method / SC
1257     sm_setup_tk();
1258     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1259 
1260     // check if STK generation method is acceptable by client
1261     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1262 
1263 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1264     // Check LE SC Only mode
1265     if (sm_sc_only_mode && (setup->sm_use_secure_connections == false)){
1266         log_info("SC Only mode active but SC not possible");
1267         return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1268     }
1269 
1270     // LTK (= encryption information & master identification) only used exchanged for LE Legacy Connection
1271     if (setup->sm_use_secure_connections){
1272         keys_to_send &= ~SM_KEYDIST_ENC_KEY;
1273         keys_to_receive  &= ~SM_KEYDIST_ENC_KEY;
1274     }
1275 #endif
1276 
1277     // identical to responder
1278     sm_setup_key_distribution(keys_to_send, keys_to_receive);
1279 
1280     // JUST WORKS doens't provide authentication
1281     sm_conn->sm_connection_authenticated = (setup->sm_stk_generation_method == JUST_WORKS) ? 0 : 1;
1282 
1283     return 0;
1284 }
1285 
1286 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1287 
1288     // cache and reset context
1289     int matched_device_id = sm_address_resolution_test;
1290     address_resolution_mode_t mode = sm_address_resolution_mode;
1291     void * context = sm_address_resolution_context;
1292 
1293     // reset context
1294     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1295     sm_address_resolution_context = NULL;
1296     sm_address_resolution_test = -1;
1297 
1298     hci_con_handle_t con_handle = HCI_CON_HANDLE_INVALID;
1299     sm_connection_t * sm_connection;
1300     sm_key_t ltk;
1301     bool have_ltk;
1302     int authenticated;
1303 #ifdef ENABLE_LE_CENTRAL
1304     bool trigger_pairing;
1305 #endif
1306 
1307     switch (mode){
1308         case ADDRESS_RESOLUTION_GENERAL:
1309             break;
1310         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1311             sm_connection = (sm_connection_t *) context;
1312             con_handle = sm_connection->sm_handle;
1313 
1314             // have ltk -> start encryption / send security request
1315             // Core 5, Vol 3, Part C, 10.3.2 Initiating a Service Request
1316             // "When a bond has been created between two devices, any reconnection should result in the local device
1317             //  enabling or requesting encryption with the remote device before initiating any service request."
1318 
1319             switch (event){
1320                 case ADDRESS_RESOLUTION_SUCCEEDED:
1321                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1322                     sm_connection->sm_le_db_index = matched_device_id;
1323                     log_info("ADDRESS_RESOLUTION_SUCCEEDED, index %d", sm_connection->sm_le_db_index);
1324 
1325                     le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, &authenticated, NULL, NULL);
1326                     have_ltk = !sm_is_null_key(ltk);
1327 
1328                     if (IS_RESPONDER(sm_connection->sm_role)) {
1329 #ifdef ENABLE_LE_PERIPHERAL
1330                         // IRK required before, continue
1331                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1332                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
1333                             break;
1334                         }
1335                         // Pairing request before, continue
1336                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK){
1337                             sm_connection->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
1338                             break;
1339                         }
1340                         bool trigger_security_request = sm_connection->sm_pairing_requested || sm_slave_request_security;
1341                         sm_connection->sm_pairing_requested = false;
1342 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1343                         // trigger security request for Proactive Authentication if LTK available
1344                         trigger_security_request = trigger_security_request || have_ltk;
1345 #endif
1346 
1347                         log_info("peripheral: pairing request local %u, have_ltk %u => trigger_security_request %u",
1348                                  (int) sm_connection->sm_pairing_requested, (int) have_ltk, trigger_security_request);
1349 
1350                         if (trigger_security_request){
1351                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1352                             if (have_ltk){
1353                                 sm_reencryption_started(sm_connection);
1354                             } else {
1355                                 sm_pairing_started(sm_connection);
1356                             }
1357                             sm_trigger_run();
1358                         }
1359 #endif
1360                     } else {
1361 
1362 #ifdef ENABLE_LE_CENTRAL
1363                         // check if pairing already requested and reset requests
1364                         trigger_pairing = sm_connection->sm_pairing_requested || sm_connection->sm_security_request_received;
1365                         bool auth_required = sm_auth_req & SM_AUTHREQ_MITM_PROTECTION;
1366 
1367                         log_info("central: pairing request local %u, remote %u => trigger_pairing %u. have_ltk %u",
1368                                  (int) sm_connection->sm_pairing_requested, (int) sm_connection->sm_security_request_received, (int) trigger_pairing, (int) have_ltk);
1369                         sm_connection->sm_security_request_received = false;
1370                         sm_connection->sm_pairing_requested = false;
1371                         bool trigger_reencryption = false;
1372 
1373                         if (have_ltk){
1374                             if (trigger_pairing){
1375                                 // if pairing is requested, re-encryption is sufficient, if ltk is already authenticated or we don't require authentication
1376                                 trigger_reencryption = (authenticated != 0) || (auth_required == false);
1377                             } else {
1378 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1379                                 trigger_reencryption = true;
1380 #else
1381                                 log_info("central: defer enabling encryption for bonded device");
1382 #endif
1383                             }
1384                         }
1385 
1386                         if (trigger_reencryption){
1387                             log_info("central: enable encryption for bonded device");
1388                             sm_connection->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
1389                             break;
1390                         }
1391 
1392                         // pairing_request -> send pairing request
1393                         if (trigger_pairing){
1394                             sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1395                             break;
1396                         }
1397 #endif
1398                     }
1399                     break;
1400                 case ADDRESS_RESOLUTION_FAILED:
1401                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1402                     if (IS_RESPONDER(sm_connection->sm_role)) {
1403 #ifdef ENABLE_LE_PERIPHERAL
1404                         // LTK request received before, IRK required -> negative LTK reply
1405                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1406                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
1407                         }
1408                         // Pairing request before, continue
1409                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK){
1410                             sm_connection->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
1411                             break;
1412                         }
1413                         // send security request if requested
1414                         bool trigger_security_request = sm_connection->sm_pairing_requested || sm_slave_request_security;
1415                         sm_connection->sm_pairing_requested = false;
1416                         if (trigger_security_request){
1417                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1418                             sm_pairing_started(sm_connection);
1419                         }
1420                         break;
1421 #endif
1422                     }
1423 #ifdef ENABLE_LE_CENTRAL
1424                     if ((sm_connection->sm_pairing_requested == false) && (sm_connection->sm_security_request_received == false)) break;
1425                     sm_connection->sm_security_request_received = false;
1426                     sm_connection->sm_pairing_requested = false;
1427                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1428 #endif
1429                     break;
1430 
1431                 default:
1432                     btstack_assert(false);
1433                     break;
1434             }
1435             break;
1436         default:
1437             break;
1438     }
1439 
1440     switch (event){
1441         case ADDRESS_RESOLUTION_SUCCEEDED:
1442             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1443             break;
1444         case ADDRESS_RESOLUTION_FAILED:
1445             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1446             break;
1447         default:
1448             btstack_assert(false);
1449             break;
1450     }
1451 }
1452 
1453 static void sm_store_bonding_information(sm_connection_t * sm_conn){
1454     int le_db_index = -1;
1455 
1456     // lookup device based on IRK
1457     if ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
1458         int i;
1459         for (i=0; i < le_device_db_max_count(); i++){
1460             sm_key_t irk;
1461             bd_addr_t address;
1462             int address_type = BD_ADDR_TYPE_UNKNOWN;
1463             le_device_db_info(i, &address_type, address, irk);
1464             // skip unused entries
1465             if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1466             // compare Identity Address
1467             if (memcmp(address, setup->sm_peer_address, 6) != 0) continue;
1468             // compare Identity Resolving Key
1469             if (memcmp(irk, setup->sm_peer_irk, 16) != 0) continue;
1470 
1471             log_info("sm: device found for IRK, updating");
1472             le_db_index = i;
1473             break;
1474         }
1475     } else {
1476         // assert IRK is set to zero
1477         memset(setup->sm_peer_irk, 0, 16);
1478     }
1479 
1480     // if not found, lookup via public address if possible
1481     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1482     if ((le_db_index < 0) && (setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC)){
1483         int i;
1484         for (i=0; i < le_device_db_max_count(); i++){
1485             bd_addr_t address;
1486             int address_type = BD_ADDR_TYPE_UNKNOWN;
1487             le_device_db_info(i, &address_type, address, NULL);
1488             // skip unused entries
1489             if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1490             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1491             if ((address_type == BD_ADDR_TYPE_LE_PUBLIC) && (memcmp(address, setup->sm_peer_address, 6) == 0)){
1492                 log_info("sm: device found for public address, updating");
1493                 le_db_index = i;
1494                 break;
1495             }
1496         }
1497     }
1498 
1499     // if not found, add to db
1500     bool new_to_le_device_db = false;
1501     if (le_db_index < 0) {
1502         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1503         new_to_le_device_db = true;
1504     }
1505 
1506     if (le_db_index >= 0){
1507 
1508 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1509         if (!new_to_le_device_db){
1510             hci_remove_le_device_db_entry_from_resolving_list(le_db_index);
1511         }
1512         hci_load_le_device_db_entry_into_resolving_list(le_db_index);
1513 #else
1514         UNUSED(new_to_le_device_db);
1515 #endif
1516 
1517         sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index);
1518         sm_conn->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1519         sm_conn->sm_le_db_index = le_db_index;
1520 
1521 #ifdef ENABLE_LE_SIGNED_WRITE
1522         // store local CSRK
1523         setup->sm_le_device_index = le_db_index;
1524         if ((setup->sm_key_distribution_sent_set) & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1525             log_info("sm: store local CSRK");
1526             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1527             le_device_db_local_counter_set(le_db_index, 0);
1528         }
1529 
1530         // store remote CSRK
1531         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1532             log_info("sm: store remote CSRK");
1533             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1534             le_device_db_remote_counter_set(le_db_index, 0);
1535         }
1536 #endif
1537         // store encryption information for secure connections: LTK generated by ECDH
1538         if (setup->sm_use_secure_connections){
1539             log_info("sm: store SC LTK (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1540             uint8_t zero_rand[8];
1541             memset(zero_rand, 0, 8);
1542             le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size,
1543                                         sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 1);
1544         }
1545 
1546         // store encryption information for legacy pairing: peer LTK, EDIV, RAND
1547         else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION)
1548         && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){
1549             log_info("sm: set encryption information (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1550             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1551                                         sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 0);
1552 
1553         }
1554     }
1555 }
1556 
1557 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
1558     sm_conn->sm_pairing_failed_reason = reason;
1559     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1560 }
1561 
1562 static int sm_le_device_db_index_lookup(bd_addr_type_t address_type, bd_addr_t address){
1563     int i;
1564     for (i=0; i < le_device_db_max_count(); i++){
1565         bd_addr_t db_address;
1566         int db_address_type = BD_ADDR_TYPE_UNKNOWN;
1567         le_device_db_info(i, &db_address_type, db_address, NULL);
1568         // skip unused entries
1569         if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1570         if ((address_type == (unsigned int)db_address_type) && (memcmp(address, db_address, 6) == 0)){
1571             return i;
1572         }
1573     }
1574     return -1;
1575 }
1576 
1577 static void sm_remove_le_device_db_entry(uint16_t i) {
1578     le_device_db_remove(i);
1579 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1580     // to remove an entry from the resolving list requires its identity address, which was already deleted
1581     // fully reload resolving list instead
1582     gap_load_resolving_list_from_le_device_db();
1583 #endif
1584 }
1585 
1586 static uint8_t sm_key_distribution_validate_received(sm_connection_t * sm_conn){
1587     // if identity is provided, abort if we have bonding with same address but different irk
1588     if ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
1589         int index = sm_le_device_db_index_lookup(BD_ADDR_TYPE_LE_PUBLIC, setup->sm_peer_address);
1590         if (index >= 0){
1591             sm_key_t irk;
1592             le_device_db_info(index, NULL, NULL, irk);
1593             if (memcmp(irk, setup->sm_peer_irk, 16) != 0){
1594                 // IRK doesn't match, delete bonding information
1595                 log_info("New IRK for %s (type %u) does not match stored IRK -> delete bonding information", bd_addr_to_str(sm_conn->sm_peer_address), sm_conn->sm_peer_addr_type);
1596                 sm_remove_le_device_db_entry(index);
1597             }
1598         }
1599     }
1600     return 0;
1601 }
1602 
1603 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1604 
1605     // abort pairing if received keys are not valid
1606     uint8_t reason = sm_key_distribution_validate_received(sm_conn);
1607     if (reason != 0){
1608         sm_pairing_error(sm_conn, reason);
1609         return;
1610     }
1611 
1612     // only store pairing information if both sides are bondable, i.e., the bonadble flag is set
1613     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq)
1614                             & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
1615                             & SM_AUTHREQ_BONDING ) != 0u;
1616 
1617     if (bonding_enabled){
1618         sm_store_bonding_information(sm_conn);
1619     } else {
1620         log_info("Ignoring received keys, bonding not enabled");
1621     }
1622 }
1623 
1624 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
1625     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
1626 }
1627 
1628 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1629 
1630 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn);
1631 static bool sm_passkey_used(stk_generation_method_t method);
1632 static bool sm_just_works_or_numeric_comparison(stk_generation_method_t method);
1633 
1634 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){
1635     if (setup->sm_stk_generation_method == OOB){
1636         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1637     } else {
1638         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_w2_cmac_for_confirmation, (void *)(uintptr_t) sm_conn->sm_handle);
1639     }
1640 }
1641 
1642 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
1643     if (IS_RESPONDER(sm_conn->sm_role)){
1644         // Responder
1645         if (setup->sm_stk_generation_method == OOB){
1646             // generate Nb
1647             log_info("Generate Nb");
1648             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void *)(uintptr_t) sm_conn->sm_handle);
1649         } else {
1650             sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
1651         }
1652     } else {
1653         // Initiator role
1654         switch (setup->sm_stk_generation_method){
1655             case JUST_WORKS:
1656                 sm_sc_prepare_dhkey_check(sm_conn);
1657                 break;
1658 
1659             case NUMERIC_COMPARISON:
1660                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2;
1661                 break;
1662             case PK_INIT_INPUT:
1663             case PK_RESP_INPUT:
1664             case PK_BOTH_INPUT:
1665                 if (setup->sm_passkey_bit < 20u) {
1666                     sm_sc_start_calculating_local_confirm(sm_conn);
1667                 } else {
1668                     sm_sc_prepare_dhkey_check(sm_conn);
1669                 }
1670                 break;
1671             case OOB:
1672                 sm_sc_prepare_dhkey_check(sm_conn);
1673                 break;
1674             default:
1675                 btstack_assert(false);
1676                 break;
1677         }
1678     }
1679 }
1680 
1681 static void sm_sc_cmac_done(uint8_t * hash){
1682     log_info("sm_sc_cmac_done: ");
1683     log_info_hexdump(hash, 16);
1684 
1685     if (sm_sc_oob_state == SM_SC_OOB_W4_CONFIRM){
1686         sm_sc_oob_state = SM_SC_OOB_IDLE;
1687         (*sm_sc_oob_callback)(hash, sm_sc_oob_random);
1688         return;
1689     }
1690 
1691     sm_connection_t * sm_conn = sm_cmac_connection;
1692     sm_cmac_connection = NULL;
1693 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1694     link_key_type_t link_key_type;
1695 #endif
1696 
1697     switch (sm_conn->sm_engine_state){
1698         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1699             (void)memcpy(setup->sm_local_confirm, hash, 16);
1700             sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1701             break;
1702         case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
1703             // check
1704             if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
1705                 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
1706                 break;
1707             }
1708             sm_sc_state_after_receiving_random(sm_conn);
1709             break;
1710         case SM_SC_W4_CALCULATE_G2: {
1711             uint32_t vab = big_endian_read_32(hash, 12) % 1000000;
1712             big_endian_store_32(setup->sm_tk, 12, vab);
1713             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
1714             sm_trigger_user_response(sm_conn);
1715             break;
1716         }
1717         case SM_SC_W4_CALCULATE_F5_SALT:
1718             (void)memcpy(setup->sm_t, hash, 16);
1719             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY;
1720             break;
1721         case SM_SC_W4_CALCULATE_F5_MACKEY:
1722             (void)memcpy(setup->sm_mackey, hash, 16);
1723             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK;
1724             break;
1725         case SM_SC_W4_CALCULATE_F5_LTK:
1726             // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk
1727             // Errata Service Release to the Bluetooth Specification: ESR09
1728             //   E6405 – Cross transport key derivation from a key of size less than 128 bits
1729             //   Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
1730             (void)memcpy(setup->sm_ltk, hash, 16);
1731             (void)memcpy(setup->sm_local_ltk, hash, 16);
1732             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1733             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
1734             break;
1735         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
1736             (void)memcpy(setup->sm_local_dhkey_check, hash, 16);
1737             if (IS_RESPONDER(sm_conn->sm_role)){
1738                 // responder
1739                 if ((setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED) != 0u){
1740                     sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
1741                 } else {
1742                     sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1743                 }
1744             } else {
1745                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1746             }
1747             break;
1748         case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
1749             if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){
1750                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1751                 break;
1752             }
1753             if (IS_RESPONDER(sm_conn->sm_role)){
1754                 // responder
1755                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1756             } else {
1757                 // initiator
1758                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
1759             }
1760             break;
1761 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1762         case SM_SC_W4_CALCULATE_ILK:
1763             (void)memcpy(setup->sm_t, hash, 16);
1764             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY;
1765             break;
1766         case SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY:
1767             reverse_128(hash, setup->sm_t);
1768             link_key_type = sm_conn->sm_connection_authenticated ?
1769                 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1770             log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type);
1771 			gap_store_link_key_for_bd_addr(setup->sm_peer_address, setup->sm_t, link_key_type);
1772             if (IS_RESPONDER(sm_conn->sm_role)){
1773                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
1774             } else {
1775                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1776             }
1777             sm_pairing_complete(sm_conn, ERROR_CODE_SUCCESS, 0);
1778             sm_done_for_handle(sm_conn->sm_handle);
1779             break;
1780         case SM_BR_EDR_W4_CALCULATE_ILK:
1781             (void)memcpy(setup->sm_t, hash, 16);
1782             sm_conn->sm_engine_state = SM_BR_EDR_W2_CALCULATE_LE_LTK;
1783             break;
1784         case SM_BR_EDR_W4_CALCULATE_LE_LTK:
1785             log_info("Derived LE LTK from BR/EDR Link Key");
1786             log_info_key("Link Key", hash);
1787             (void)memcpy(setup->sm_ltk, hash, 16);
1788             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1789             sm_conn->sm_connection_authenticated = setup->sm_link_key_type == AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1790             sm_store_bonding_information(sm_conn);
1791             sm_done_for_handle(sm_conn->sm_handle);
1792             break;
1793 #endif
1794         default:
1795             log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state);
1796             break;
1797     }
1798     sm_trigger_run();
1799 }
1800 
1801 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1802     const uint16_t message_len = 65;
1803     sm_cmac_connection = sm_conn;
1804     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1805     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1806     sm_cmac_sc_buffer[64] = z;
1807     log_info("f4 key");
1808     log_info_hexdump(x, 16);
1809     log_info("f4 message");
1810     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1811     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1812 }
1813 
1814 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
1815 static const uint8_t f5_length[] = { 0x01, 0x00};
1816 
1817 static void f5_calculate_salt(sm_connection_t * sm_conn){
1818 
1819     static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
1820 
1821     log_info("f5_calculate_salt");
1822     // calculate salt for f5
1823     const uint16_t message_len = 32;
1824     sm_cmac_connection = sm_conn;
1825     (void)memcpy(sm_cmac_sc_buffer, setup->sm_dhkey, message_len);
1826     sm_cmac_message_start(f5_salt, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1827 }
1828 
1829 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
1830     const uint16_t message_len = 53;
1831     sm_cmac_connection = sm_conn;
1832 
1833     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
1834     sm_cmac_sc_buffer[0] = 0;
1835     (void)memcpy(sm_cmac_sc_buffer + 01, f5_key_id, 4);
1836     (void)memcpy(sm_cmac_sc_buffer + 05, n1, 16);
1837     (void)memcpy(sm_cmac_sc_buffer + 21, n2, 16);
1838     (void)memcpy(sm_cmac_sc_buffer + 37, a1, 7);
1839     (void)memcpy(sm_cmac_sc_buffer + 44, a2, 7);
1840     (void)memcpy(sm_cmac_sc_buffer + 51, f5_length, 2);
1841     log_info("f5 key");
1842     log_info_hexdump(t, 16);
1843     log_info("f5 message for MacKey");
1844     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1845     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1846 }
1847 
1848 static void f5_calculate_mackey(sm_connection_t * sm_conn){
1849     sm_key56_t bd_addr_master, bd_addr_slave;
1850     bd_addr_master[0] =  setup->sm_m_addr_type;
1851     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1852     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1853     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1854     if (IS_RESPONDER(sm_conn->sm_role)){
1855         // responder
1856         f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1857     } else {
1858         // initiator
1859         f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1860     }
1861 }
1862 
1863 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused
1864 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){
1865     const uint16_t message_len = 53;
1866     sm_cmac_connection = sm_conn;
1867     sm_cmac_sc_buffer[0] = 1;
1868     // 1..52 setup before
1869     log_info("f5 key");
1870     log_info_hexdump(t, 16);
1871     log_info("f5 message for LTK");
1872     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1873     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1874 }
1875 
1876 static void f5_calculate_ltk(sm_connection_t * sm_conn){
1877     f5_ltk(sm_conn, setup->sm_t);
1878 }
1879 
1880 static void f6_setup(const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
1881     (void)memcpy(sm_cmac_sc_buffer, n1, 16);
1882     (void)memcpy(sm_cmac_sc_buffer + 16, n2, 16);
1883     (void)memcpy(sm_cmac_sc_buffer + 32, r, 16);
1884     (void)memcpy(sm_cmac_sc_buffer + 48, io_cap, 3);
1885     (void)memcpy(sm_cmac_sc_buffer + 51, a1, 7);
1886     (void)memcpy(sm_cmac_sc_buffer + 58, a2, 7);
1887 }
1888 
1889 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w){
1890     const uint16_t message_len = 65;
1891     sm_cmac_connection = sm_conn;
1892     log_info("f6 key");
1893     log_info_hexdump(w, 16);
1894     log_info("f6 message");
1895     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1896     sm_cmac_message_start(w, 65, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1897 }
1898 
1899 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
1900 // - U is 256 bits
1901 // - V is 256 bits
1902 // - X is 128 bits
1903 // - Y is 128 bits
1904 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
1905     const uint16_t message_len = 80;
1906     sm_cmac_connection = sm_conn;
1907     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1908     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1909     (void)memcpy(sm_cmac_sc_buffer + 64, y, 16);
1910     log_info("g2 key");
1911     log_info_hexdump(x, 16);
1912     log_info("g2 message");
1913     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1914     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1915 }
1916 
1917 static void g2_calculate(sm_connection_t * sm_conn) {
1918     // calc Va if numeric comparison
1919     if (IS_RESPONDER(sm_conn->sm_role)){
1920         // responder
1921         g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);;
1922     } else {
1923         // initiator
1924         g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce);
1925     }
1926 }
1927 
1928 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1929     uint8_t z = 0;
1930     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1931         // some form of passkey
1932         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1933         z = 0x80u | ((pk >> setup->sm_passkey_bit) & 1u);
1934         setup->sm_passkey_bit++;
1935     }
1936     f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z);
1937 }
1938 
1939 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
1940     // OOB
1941     if (setup->sm_stk_generation_method == OOB){
1942         if (IS_RESPONDER(sm_conn->sm_role)){
1943             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_ra, 0);
1944         } else {
1945             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_rb, 0);
1946         }
1947         return;
1948     }
1949 
1950     uint8_t z = 0;
1951     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1952         // some form of passkey
1953         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1954         // sm_passkey_bit was increased before sending confirm value
1955         z = 0x80u | ((pk >> (setup->sm_passkey_bit-1u)) & 1u);
1956     }
1957     f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z);
1958 }
1959 
1960 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){
1961     log_info("sm_sc_prepare_dhkey_check, DHKEY calculated %u", (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) != 0 ? 1 : 0);
1962 
1963     if ((setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) != 0u){
1964         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1965     } else {
1966         sm_conn->sm_engine_state = SM_SC_W4_CALCULATE_DHKEY;
1967     }
1968 }
1969 
1970 static void sm_sc_dhkey_calculated(void * arg){
1971     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
1972     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
1973     if (sm_conn == NULL) return;
1974 
1975     // check for invalid public key detected by Controller
1976     if (sm_is_ff(setup->sm_dhkey, 32)){
1977         log_info("sm: peer public key invalid");
1978         sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1979         return;
1980     }
1981 
1982     log_info("dhkey");
1983     log_info_hexdump(&setup->sm_dhkey[0], 32);
1984     setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED;
1985     // trigger next step
1986     if (sm_conn->sm_engine_state == SM_SC_W4_CALCULATE_DHKEY){
1987         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1988     }
1989     sm_trigger_run();
1990 }
1991 
1992 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){
1993     // calculate DHKCheck
1994     sm_key56_t bd_addr_master, bd_addr_slave;
1995     bd_addr_master[0] =  setup->sm_m_addr_type;
1996     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1997     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1998     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1999     uint8_t iocap_a[3];
2000     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2001     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2002     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2003     uint8_t iocap_b[3];
2004     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2005     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2006     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2007     if (IS_RESPONDER(sm_conn->sm_role)){
2008         // responder
2009         f6_setup(setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2010         f6_engine(sm_conn, setup->sm_mackey);
2011     } else {
2012         // initiator
2013         f6_setup( setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2014         f6_engine(sm_conn, setup->sm_mackey);
2015     }
2016 }
2017 
2018 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){
2019     // validate E = f6()
2020     sm_key56_t bd_addr_master, bd_addr_slave;
2021     bd_addr_master[0] =  setup->sm_m_addr_type;
2022     bd_addr_slave[0]  =  setup->sm_s_addr_type;
2023     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
2024     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
2025 
2026     uint8_t iocap_a[3];
2027     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2028     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2029     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2030     uint8_t iocap_b[3];
2031     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2032     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2033     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2034     if (IS_RESPONDER(sm_conn->sm_role)){
2035         // responder
2036         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2037         f6_engine(sm_conn, setup->sm_mackey);
2038     } else {
2039         // initiator
2040         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2041         f6_engine(sm_conn, setup->sm_mackey);
2042     }
2043 }
2044 
2045 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2046 
2047 //
2048 // Link Key Conversion Function h6
2049 //
2050 // h6(W, keyID) = AES-CMAC_W(keyID)
2051 // - W is 128 bits
2052 // - keyID is 32 bits
2053 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){
2054     const uint16_t message_len = 4;
2055     sm_cmac_connection = sm_conn;
2056     big_endian_store_32(sm_cmac_sc_buffer, 0, key_id);
2057     log_info("h6 key");
2058     log_info_hexdump(w, 16);
2059     log_info("h6 message");
2060     log_info_hexdump(sm_cmac_sc_buffer, message_len);
2061     sm_cmac_message_start(w, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
2062 }
2063 //
2064 // Link Key Conversion Function h7
2065 //
2066 // h7(SALT, W) = AES-CMAC_SALT(W)
2067 // - SALT is 128 bits
2068 // - W    is 128 bits
2069 static void h7_engine(sm_connection_t * sm_conn, const sm_key_t salt, const sm_key_t w) {
2070 	const uint16_t message_len = 16;
2071 	sm_cmac_connection = sm_conn;
2072 	log_info("h7 key");
2073 	log_info_hexdump(salt, 16);
2074 	log_info("h7 message");
2075 	log_info_hexdump(w, 16);
2076 	sm_cmac_message_start(salt, message_len, w, &sm_sc_cmac_done);
2077 }
2078 
2079 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated)
2080 // Errata Service Release to the Bluetooth Specification: ESR09
2081 //   E6405 – Cross transport key derivation from a key of size less than 128 bits
2082 //   "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
2083 
2084 static void h6_calculate_ilk_from_le_ltk(sm_connection_t * sm_conn){
2085     h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031);    // "tmp1"
2086 }
2087 
2088 static void h6_calculate_ilk_from_br_edr(sm_connection_t * sm_conn){
2089     h6_engine(sm_conn, setup->sm_link_key, 0x746D7032);    // "tmp2"
2090 }
2091 
2092 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){
2093     h6_engine(sm_conn, setup->sm_t, 0x6c656272);    // "lebr"
2094 }
2095 
2096 static void h6_calculate_le_ltk(sm_connection_t * sm_conn){
2097     h6_engine(sm_conn, setup->sm_t, 0x62726C65);    // "brle"
2098 }
2099 
2100 static void h7_calculate_ilk_from_le_ltk(sm_connection_t * sm_conn){
2101 	const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x31};  // "tmp1"
2102 	h7_engine(sm_conn, salt, setup->sm_local_ltk);
2103 }
2104 
2105 static void h7_calculate_ilk_from_br_edr(sm_connection_t * sm_conn){
2106     const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x32};  // "tmp2"
2107     h7_engine(sm_conn, salt, setup->sm_link_key);
2108 }
2109 
2110 static void sm_ctkd_fetch_br_edr_link_key(sm_connection_t * sm_conn){
2111     hci_connection_t * hci_connection = hci_connection_for_handle(sm_conn->sm_handle);
2112     btstack_assert(hci_connection != NULL);
2113     reverse_128(hci_connection->link_key, setup->sm_link_key);
2114     setup->sm_link_key_type =  hci_connection->link_key_type;
2115 }
2116 
2117 static void sm_ctkd_start_from_br_edr(sm_connection_t * sm_conn){
2118     // only derive LTK if EncKey is set by both
2119     bool derive_ltk = (sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres) &
2120                               sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres) & SM_KEYDIST_ENC_KEY) != 0;
2121     if (derive_ltk){
2122         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2123         sm_conn->sm_engine_state = use_h7 ? SM_BR_EDR_W2_CALCULATE_ILK_USING_H7 : SM_BR_EDR_W2_CALCULATE_ILK_USING_H6;
2124     } else {
2125         sm_done_for_handle(sm_conn->sm_handle);
2126     }
2127 }
2128 
2129 #endif
2130 
2131 #endif
2132 
2133 // key management legacy connections:
2134 // - potentially two different LTKs based on direction. each device stores LTK provided by peer
2135 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect)
2136 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder
2137 // - responder  reconnects: responder uses LTK receveived from master
2138 
2139 // key management secure connections:
2140 // - both devices store same LTK from ECDH key exchange.
2141 
2142 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL)
2143 static void sm_load_security_info(sm_connection_t * sm_connection){
2144     int encryption_key_size;
2145     int authenticated;
2146     int authorized;
2147     int secure_connection;
2148 
2149     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
2150     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
2151                                 &encryption_key_size, &authenticated, &authorized, &secure_connection);
2152     log_info("db index %u, key size %u, authenticated %u, authorized %u, secure connetion %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized, secure_connection);
2153     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
2154     sm_connection->sm_connection_authenticated = authenticated;
2155     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
2156     sm_connection->sm_connection_sc = secure_connection != 0;
2157 }
2158 #endif
2159 
2160 #ifdef ENABLE_LE_PERIPHERAL
2161 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){
2162     (void)memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
2163     setup->sm_local_ediv = sm_connection->sm_local_ediv;
2164     // re-establish used key encryption size
2165     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2166     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7u] & 0x0fu) + 1u;
2167     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
2168     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7u] & 0x10u) >> 4u;
2169     // Legacy paring -> not SC
2170     sm_connection->sm_connection_sc = false;
2171     log_info("sm: received ltk request with key size %u, authenticated %u",
2172             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
2173 }
2174 #endif
2175 
2176 // distributed key generation
2177 static bool sm_run_dpkg(void){
2178     switch (dkg_state){
2179         case DKG_CALC_IRK:
2180             // already busy?
2181             if (sm_aes128_state == SM_AES128_IDLE) {
2182                 log_info("DKG_CALC_IRK started");
2183                 // IRK = d1(IR, 1, 0)
2184                 sm_d1_d_prime(1, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2185                 sm_aes128_state = SM_AES128_ACTIVE;
2186                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_irk, sm_handle_encryption_result_dkg_irk, NULL);
2187                 return true;
2188             }
2189             break;
2190         case DKG_CALC_DHK:
2191             // already busy?
2192             if (sm_aes128_state == SM_AES128_IDLE) {
2193                 log_info("DKG_CALC_DHK started");
2194                 // DHK = d1(IR, 3, 0)
2195                 sm_d1_d_prime(3, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2196                 sm_aes128_state = SM_AES128_ACTIVE;
2197                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_dhk, sm_handle_encryption_result_dkg_dhk, NULL);
2198                 return true;
2199             }
2200             break;
2201         default:
2202             break;
2203     }
2204     return false;
2205 }
2206 
2207 // random address updates
2208 static bool sm_run_rau(void){
2209     switch (rau_state){
2210         case RAU_GET_RANDOM:
2211             rau_state = RAU_W4_RANDOM;
2212             btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_address, 6, &sm_handle_random_result_rau, NULL);
2213             return true;
2214         case RAU_GET_ENC:
2215             // already busy?
2216             if (sm_aes128_state == SM_AES128_IDLE) {
2217                 sm_ah_r_prime(sm_random_address, sm_aes128_plaintext);
2218                 sm_aes128_state = SM_AES128_ACTIVE;
2219                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_irk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_rau, NULL);
2220                 return true;
2221             }
2222             break;
2223         default:
2224             break;
2225     }
2226     return false;
2227 }
2228 
2229 // device lookup with IRK
2230 static bool sm_run_irk_lookup(void){
2231     btstack_linked_list_iterator_t it;
2232 
2233     // -- if IRK lookup ready, find connection that require csrk lookup
2234     if (sm_address_resolution_idle()){
2235         hci_connections_get_iterator(&it);
2236         while(btstack_linked_list_iterator_has_next(&it)){
2237             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2238             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
2239             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
2240                 // and start lookup
2241                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
2242                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
2243                 break;
2244             }
2245         }
2246     }
2247 
2248     // -- if csrk lookup ready, resolved addresses for received addresses
2249     if (sm_address_resolution_idle()) {
2250         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
2251             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
2252             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
2253             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
2254             btstack_memory_sm_lookup_entry_free(entry);
2255         }
2256     }
2257 
2258     // -- Continue with device lookup by public or resolvable private address
2259     if (!sm_address_resolution_idle()){
2260         while (sm_address_resolution_test < le_device_db_max_count()){
2261             int addr_type = BD_ADDR_TYPE_UNKNOWN;
2262             bd_addr_t addr;
2263             sm_key_t irk;
2264             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
2265 
2266             // skip unused entries
2267             if (addr_type == BD_ADDR_TYPE_UNKNOWN){
2268                 sm_address_resolution_test++;
2269                 continue;
2270             }
2271 
2272             log_info("LE Device Lookup: device %u of %u - type %u, %s", sm_address_resolution_test,
2273                      le_device_db_max_count(), addr_type, bd_addr_to_str(addr));
2274 
2275             // map resolved identity addresses to regular addresses
2276             int regular_addr_type = sm_address_resolution_addr_type & 1;
2277             if ((regular_addr_type == addr_type) && (memcmp(addr, sm_address_resolution_address, 6) == 0)){
2278                 log_info("LE Device Lookup: found by { addr_type, address} ");
2279                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
2280                 break;
2281             }
2282 
2283             // if connection type is not random (i.e. public or resolved identity), it must be a different entry
2284             if (sm_address_resolution_addr_type != BD_ADDR_TYPE_LE_RANDOM){
2285                 sm_address_resolution_test++;
2286                 continue;
2287             }
2288 
2289             // skip AH if no IRK
2290             if (sm_is_null_key(irk)){
2291                 sm_address_resolution_test++;
2292                 continue;
2293             }
2294 
2295             if (sm_aes128_state == SM_AES128_ACTIVE) break;
2296 
2297             log_info("LE Device Lookup: calculate AH");
2298             log_info_key("IRK", irk);
2299 
2300             (void)memcpy(sm_aes128_key, irk, 16);
2301             sm_ah_r_prime(sm_address_resolution_address, sm_aes128_plaintext);
2302             sm_aes128_state = SM_AES128_ACTIVE;
2303             btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_aes128_key, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_address_resolution, NULL);
2304             return true;
2305         }
2306 
2307         if (sm_address_resolution_test >= le_device_db_max_count()){
2308             log_info("LE Device Lookup: not found");
2309             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
2310         }
2311     }
2312     return false;
2313 }
2314 
2315 // SC OOB
2316 static bool sm_run_oob(void){
2317 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2318     switch (sm_sc_oob_state){
2319         case SM_SC_OOB_W2_CALC_CONFIRM:
2320             if (!sm_cmac_ready()) break;
2321             sm_sc_oob_state = SM_SC_OOB_W4_CONFIRM;
2322             f4_engine(NULL, ec_q, ec_q, sm_sc_oob_random, 0);
2323             return true;
2324         default:
2325             break;
2326     }
2327 #endif
2328     return false;
2329 }
2330 
2331 static void sm_send_connectionless(sm_connection_t * sm_connection, const uint8_t * buffer, uint16_t size){
2332     l2cap_send_connectionless(sm_connection->sm_handle, sm_connection->sm_cid, (uint8_t*) buffer, size);
2333 }
2334 
2335 // handle basic actions that don't requires the full context
2336 static bool sm_run_basic(void){
2337     btstack_linked_list_iterator_t it;
2338     hci_connections_get_iterator(&it);
2339     while(btstack_linked_list_iterator_has_next(&it)){
2340         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2341         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2342         switch(sm_connection->sm_engine_state){
2343 
2344             // general
2345             case SM_GENERAL_SEND_PAIRING_FAILED: {
2346                 uint8_t buffer[2];
2347                 buffer[0] = SM_CODE_PAIRING_FAILED;
2348                 buffer[1] = sm_connection->sm_pairing_failed_reason;
2349                 sm_connection->sm_engine_state = sm_connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2350                 sm_send_connectionless(sm_connection, (uint8_t*) buffer, sizeof(buffer));
2351                 sm_pairing_complete(sm_connection, ERROR_CODE_AUTHENTICATION_FAILURE, sm_connection->sm_pairing_failed_reason);
2352                 sm_done_for_handle(sm_connection->sm_handle);
2353                 break;
2354             }
2355 
2356             // responder side
2357             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
2358                 sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2359                 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2360                 return true;
2361 
2362 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2363             case SM_SC_RECEIVED_LTK_REQUEST:
2364                 switch (sm_connection->sm_irk_lookup_state){
2365                     case IRK_LOOKUP_FAILED:
2366                         log_info("LTK Request: IRK Lookup Failed)");
2367                         sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2368                         hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2369                         return true;
2370                     default:
2371                         break;
2372                 }
2373                 break;
2374 #endif
2375             default:
2376                 break;
2377         }
2378     }
2379     return false;
2380 }
2381 
2382 static void sm_run_activate_connection(void){
2383     // Find connections that requires setup context and make active if no other is locked
2384     btstack_linked_list_iterator_t it;
2385     hci_connections_get_iterator(&it);
2386     while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
2387         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2388         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2389         // - if no connection locked and we're ready/waiting for setup context, fetch it and start
2390         bool done = true;
2391         int err;
2392         UNUSED(err);
2393 
2394 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2395         // assert ec key is ready
2396         if (   (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED)
2397             || (sm_connection->sm_engine_state == SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST)
2398 			|| (sm_connection->sm_engine_state == SM_RESPONDER_SEND_SECURITY_REQUEST)){
2399             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
2400                 sm_ec_generate_new_key();
2401             }
2402             if (ec_key_generation_state != EC_KEY_GENERATION_DONE){
2403                 continue;
2404             }
2405         }
2406 #endif
2407 
2408         switch (sm_connection->sm_engine_state) {
2409 #ifdef ENABLE_LE_PERIPHERAL
2410             case SM_RESPONDER_SEND_SECURITY_REQUEST:
2411             case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2412             case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
2413 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2414             case SM_SC_RECEIVED_LTK_REQUEST:
2415 #endif
2416 #endif
2417 #ifdef ENABLE_LE_CENTRAL
2418             case SM_INITIATOR_PH4_HAS_LTK:
2419 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2420 #endif
2421 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2422             case SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED:
2423             case SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST:
2424 #endif
2425 				// just lock context
2426 				break;
2427             default:
2428                 done = false;
2429                 break;
2430         }
2431         if (done){
2432             sm_active_connection_handle = sm_connection->sm_handle;
2433             log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state);
2434         }
2435     }
2436 }
2437 
2438 static void sm_run_send_keypress_notification(sm_connection_t * connection){
2439     int i;
2440     uint8_t flags       = setup->sm_keypress_notification & 0x1fu;
2441     uint8_t num_actions = setup->sm_keypress_notification >> 5;
2442     uint8_t action = 0;
2443     for (i=SM_KEYPRESS_PASSKEY_ENTRY_STARTED;i<=SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED;i++){
2444         if ((flags & (1u<<i)) != 0u){
2445             bool clear_flag = true;
2446             switch (i){
2447                 case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
2448                 case SM_KEYPRESS_PASSKEY_CLEARED:
2449                 case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
2450                 default:
2451                     break;
2452                 case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
2453                 case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
2454                     num_actions--;
2455                     clear_flag = num_actions == 0u;
2456                     break;
2457             }
2458             if (clear_flag){
2459                 flags &= ~(1<<i);
2460             }
2461             action = i;
2462             break;
2463         }
2464     }
2465     setup->sm_keypress_notification = (num_actions << 5) | flags;
2466 
2467     // send keypress notification
2468     uint8_t buffer[2];
2469     buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION;
2470     buffer[1] = action;
2471     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2472 
2473     // try
2474     l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, connection->sm_cid);
2475 }
2476 
2477 static void sm_run_distribute_keys(sm_connection_t * connection){
2478     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION) != 0u){
2479         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2480         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2481         uint8_t buffer[17];
2482         buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2483         reverse_128(setup->sm_ltk, &buffer[1]);
2484         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2485         sm_timeout_reset(connection);
2486         return;
2487     }
2488     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION) != 0u){
2489         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2490         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2491         uint8_t buffer[11];
2492         buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2493         little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2494         reverse_64(setup->sm_local_rand, &buffer[3]);
2495         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2496         sm_timeout_reset(connection);
2497         return;
2498     }
2499     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
2500         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2501         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2502         uint8_t buffer[17];
2503         buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2504         reverse_128(sm_persistent_irk, &buffer[1]);
2505         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2506         sm_timeout_reset(connection);
2507         return;
2508     }
2509     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0u){
2510         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2511         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2512         bd_addr_t local_address;
2513         uint8_t buffer[8];
2514         buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2515         switch (gap_random_address_get_mode()){
2516             case GAP_RANDOM_ADDRESS_TYPE_OFF:
2517             case GAP_RANDOM_ADDRESS_TYPE_STATIC:
2518                 // public or static random
2519                 gap_le_get_own_address(&buffer[1], local_address);
2520                 break;
2521             case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2522             case GAP_RANDOM_ADDRESS_RESOLVABLE:
2523                 // fallback to public
2524                 gap_local_bd_addr(local_address);
2525                 buffer[1] = 0;
2526                 break;
2527             default:
2528                 btstack_assert(false);
2529                 break;
2530         }
2531         reverse_bd_addr(local_address, &buffer[2]);
2532         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2533         sm_timeout_reset(connection);
2534         return;
2535     }
2536     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION) != 0u){
2537         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2538         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2539 
2540 #ifdef ENABLE_LE_SIGNED_WRITE
2541         // hack to reproduce test runs
2542                     if (test_use_fixed_local_csrk){
2543                         memset(setup->sm_local_csrk, 0xcc, 16);
2544                     }
2545 
2546                     // store local CSRK
2547                     if (setup->sm_le_device_index >= 0){
2548                         log_info("sm: store local CSRK");
2549                         le_device_db_local_csrk_set(setup->sm_le_device_index, setup->sm_local_csrk);
2550                         le_device_db_local_counter_set(setup->sm_le_device_index, 0);
2551                     }
2552 #endif
2553 
2554         uint8_t buffer[17];
2555         buffer[0] = SM_CODE_SIGNING_INFORMATION;
2556         reverse_128(setup->sm_local_csrk, &buffer[1]);
2557         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2558         sm_timeout_reset(connection);
2559         return;
2560     }
2561     btstack_assert(false);
2562 }
2563 
2564 static bool sm_ctkd_from_le(sm_connection_t *sm_connection) {
2565 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2566     // requirements to derive link key from  LE:
2567     // - use secure connections
2568     if (setup->sm_use_secure_connections == 0) return false;
2569     // - bonding needs to be enabled:
2570     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_BONDING ) != 0u;
2571     if (!bonding_enabled) return false;
2572     // - need identity address / public addr
2573     bool have_identity_address_info = ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0) || (setup->sm_peer_addr_type == 0);
2574     if (!have_identity_address_info) return false;
2575     // - there is no stored BR/EDR link key or the derived key has at least the same level of authentication (bail if stored key has higher authentication)
2576     //   this requirement is motivated by BLURtooth paper. The paper recommends to not overwrite keys at all.
2577     //      If SC is authenticated, we consider it safe to overwrite a stored key.
2578     //      If stored link key is not authenticated, it could already be compromised by a MITM attack. Allowing overwrite by unauthenticated derived key does not make it worse.
2579     uint8_t link_key[16];
2580     link_key_type_t link_key_type;
2581     bool have_link_key             = gap_get_link_key_for_bd_addr(setup->sm_peer_address, link_key, &link_key_type);
2582     bool link_key_authenticated    = gap_authenticated_for_link_key_type(link_key_type);
2583     bool derived_key_authenticated = sm_connection->sm_connection_authenticated != 0;
2584     if (have_link_key && link_key_authenticated && !derived_key_authenticated) {
2585         return false;
2586     }
2587     // get started (all of the above are true)
2588     return true;
2589 #else
2590     UNUSED(sm_connection);
2591 	return false;
2592 #endif
2593 }
2594 
2595 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2596 static bool sm_ctkd_from_classic(sm_connection_t * sm_connection){
2597     hci_connection_t * hci_connection = hci_connection_for_handle(sm_connection->sm_handle);
2598     btstack_assert(hci_connection != NULL);
2599     // requirements to derive ltk from BR/EDR:
2600     // - BR/EDR uses secure connections
2601     if (gap_secure_connection_for_link_key_type(hci_connection->link_key_type) == false) return false;
2602     // - there is no stored LTK or the derived key has at least the same level of authentication (bail if LTK is authenticated but Link Key isn't)
2603     bool link_key_authenticated = gap_authenticated_for_link_key_type(hci_connection->link_key_type);
2604     if (link_key_authenticated) return true;
2605     int index = sm_le_device_db_index_lookup(BD_ADDR_TYPE_LE_PUBLIC, hci_connection->address);
2606     if (index >= 0){
2607         int ltk_authenticated;
2608         sm_key_t ltk;
2609         le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, &ltk_authenticated, NULL, NULL);
2610         bool have_ltk = !sm_is_null_key(ltk);
2611         if (have_ltk && ltk_authenticated) return false;
2612     }
2613     return true;
2614 }
2615 #endif
2616 
2617 static void sm_key_distribution_complete_responder(sm_connection_t * connection){
2618     if (sm_ctkd_from_le(connection)){
2619         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2620         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2621     } else {
2622         connection->sm_engine_state = SM_RESPONDER_IDLE;
2623         sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
2624         sm_done_for_handle(connection->sm_handle);
2625     }
2626 }
2627 
2628 static void sm_key_distribution_complete_initiator(sm_connection_t * connection){
2629     if (sm_ctkd_from_le(connection)){
2630         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2631         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2632     } else {
2633         sm_master_pairing_success(connection);
2634     }
2635 }
2636 
2637 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2638 static void sm_run_state_sc_send_confirmation(sm_connection_t *connection) {
2639     uint8_t buffer[17];
2640     buffer[0] = SM_CODE_PAIRING_CONFIRM;
2641     reverse_128(setup->sm_local_confirm, &buffer[1]);
2642     if (IS_RESPONDER(connection->sm_role)){
2643         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2644     } else {
2645         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2646     }
2647     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2648     sm_timeout_reset(connection);
2649 }
2650 
2651 static void sm_run_state_sc_send_pairing_random(sm_connection_t *connection) {
2652     uint8_t buffer[17];
2653     buffer[0] = SM_CODE_PAIRING_RANDOM;
2654     reverse_128(setup->sm_local_nonce, &buffer[1]);
2655     log_info("stk method %u, bit num: %u", setup->sm_stk_generation_method, setup->sm_passkey_bit);
2656     if (sm_passkey_entry(setup->sm_stk_generation_method) && (setup->sm_passkey_bit < 20u)){
2657         log_info("SM_SC_SEND_PAIRING_RANDOM A");
2658         if (IS_RESPONDER(connection->sm_role)){
2659             // responder
2660             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2661         } else {
2662             // initiator
2663             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2664         }
2665     } else {
2666         log_info("SM_SC_SEND_PAIRING_RANDOM B");
2667         if (IS_RESPONDER(connection->sm_role)){
2668             // responder
2669             if (setup->sm_stk_generation_method == NUMERIC_COMPARISON){
2670                 log_info("SM_SC_SEND_PAIRING_RANDOM B1");
2671                 connection->sm_engine_state = SM_SC_W2_CALCULATE_G2;
2672             } else {
2673                 log_info("SM_SC_SEND_PAIRING_RANDOM B2");
2674                 sm_sc_prepare_dhkey_check(connection);
2675             }
2676         } else {
2677             // initiator
2678             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2679         }
2680     }
2681     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2682     sm_timeout_reset(connection);
2683 }
2684 
2685 static void sm_run_state_sc_send_dhkey_check_command(sm_connection_t *connection) {
2686     uint8_t buffer[17];
2687     buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
2688     reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
2689 
2690     if (IS_RESPONDER(connection->sm_role)){
2691         connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
2692     } else {
2693         connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
2694     }
2695 
2696     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2697     sm_timeout_reset(connection);
2698 }
2699 
2700 static void sm_run_state_sc_send_public_key_command(sm_connection_t *connection) {
2701     bool trigger_user_response   = false;
2702     bool trigger_start_calculating_local_confirm = false;
2703     uint8_t buffer[65];
2704     buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
2705     //
2706     reverse_256(&ec_q[0],  &buffer[1]);
2707     reverse_256(&ec_q[32], &buffer[33]);
2708 
2709 #ifdef ENABLE_TESTING_SUPPORT
2710     if (test_pairing_failure == SM_REASON_DHKEY_CHECK_FAILED){
2711             log_info("testing_support: invalidating public key");
2712             // flip single bit of public key coordinate
2713             buffer[1] ^= 1;
2714         }
2715 #endif
2716 
2717     // stk generation method
2718 // passkey entry: notify app to show passkey or to request passkey
2719     switch (setup->sm_stk_generation_method){
2720         case JUST_WORKS:
2721         case NUMERIC_COMPARISON:
2722             if (IS_RESPONDER(connection->sm_role)){
2723                 // responder
2724                 trigger_start_calculating_local_confirm = true;
2725                 connection->sm_engine_state = SM_SC_W4_LOCAL_NONCE;
2726             } else {
2727                 // initiator
2728                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2729             }
2730             break;
2731         case PK_INIT_INPUT:
2732         case PK_RESP_INPUT:
2733         case PK_BOTH_INPUT:
2734             // use random TK for display
2735             (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
2736             (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
2737             setup->sm_passkey_bit = 0;
2738 
2739             if (IS_RESPONDER(connection->sm_role)){
2740                 // responder
2741                 connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2742             } else {
2743                 // initiator
2744                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2745             }
2746             trigger_user_response = true;
2747             break;
2748         case OOB:
2749             if (IS_RESPONDER(connection->sm_role)){
2750                 // responder
2751                 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2752             } else {
2753                 // initiator
2754                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2755             }
2756             break;
2757         default:
2758             btstack_assert(false);
2759             break;
2760     }
2761 
2762     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2763     sm_timeout_reset(connection);
2764 
2765     // trigger user response and calc confirm after sending pdu
2766     if (trigger_user_response){
2767         sm_trigger_user_response(connection);
2768     }
2769     if (trigger_start_calculating_local_confirm){
2770         sm_sc_start_calculating_local_confirm(connection);
2771     }
2772 }
2773 #endif
2774 
2775 static bool sm_run_non_connection_logic(void){
2776     bool done;;
2777 
2778     done = sm_run_dpkg();
2779     if (done) return true;
2780 
2781     done = sm_run_rau();
2782     if (done) return true;
2783 
2784     done = sm_run_irk_lookup();
2785     if (done) return true;
2786 
2787     done = sm_run_oob();
2788     return done;
2789 }
2790 
2791 static void sm_run(void){
2792 
2793     // assert that stack has already bootet
2794     if (hci_get_state() != HCI_STATE_WORKING) return;
2795 
2796     // assert that we can send at least commands
2797     if (!hci_can_send_command_packet_now()) return;
2798 
2799     // pause until IR/ER are ready
2800     if (sm_persistent_keys_random_active) return;
2801 
2802     // non-connection related behaviour
2803     bool done = sm_run_non_connection_logic();
2804     if (done) return;
2805 
2806     // assert that we can send at least commands - cmd might have been sent by crypto engine
2807     if (!hci_can_send_command_packet_now()) return;
2808 
2809     // handle basic actions that don't requires the full context
2810     done = sm_run_basic();
2811     if (done) return;
2812 
2813     //
2814     // active connection handling
2815     // -- use loop to handle next connection if lock on setup context is released
2816 
2817     while (true) {
2818 
2819         sm_run_activate_connection();
2820 
2821         if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return;
2822 
2823         //
2824         // active connection handling
2825         //
2826 
2827         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle);
2828         if (!connection) {
2829             log_info("no connection for handle 0x%04x", sm_active_connection_handle);
2830             return;
2831         }
2832 
2833         // assert that we could send a SM PDU - not needed for all of the following
2834         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, connection->sm_cid)) {
2835             log_info("cannot send now, requesting can send now event");
2836             l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, connection->sm_cid);
2837             return;
2838         }
2839 
2840         // send keypress notifications
2841         if (setup->sm_keypress_notification != 0u){
2842             sm_run_send_keypress_notification(connection);
2843             return;
2844         }
2845 
2846 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2847         // assert that sm cmac engine is ready
2848         if (sm_cmac_ready() == false){
2849             break;
2850         }
2851 #endif
2852 
2853         int key_distribution_flags;
2854         UNUSED(key_distribution_flags);
2855 #ifdef ENABLE_LE_PERIPHERAL
2856         int err;
2857         bool have_ltk;
2858         uint8_t ltk[16];
2859 #endif
2860 
2861         log_info("sm_run: state %u", connection->sm_engine_state);
2862         switch (connection->sm_engine_state){
2863 
2864             // secure connections, initiator + responding states
2865 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2866             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
2867                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
2868                 sm_sc_calculate_local_confirm(connection);
2869                 break;
2870             case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
2871                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
2872                 sm_sc_calculate_remote_confirm(connection);
2873                 break;
2874             case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
2875                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK;
2876                 sm_sc_calculate_f6_for_dhkey_check(connection);
2877                 break;
2878             case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
2879                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
2880                 sm_sc_calculate_f6_to_verify_dhkey_check(connection);
2881                 break;
2882             case SM_SC_W2_CALCULATE_F5_SALT:
2883                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT;
2884                 f5_calculate_salt(connection);
2885                 break;
2886             case SM_SC_W2_CALCULATE_F5_MACKEY:
2887                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY;
2888                 f5_calculate_mackey(connection);
2889                 break;
2890             case SM_SC_W2_CALCULATE_F5_LTK:
2891                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK;
2892                 f5_calculate_ltk(connection);
2893                 break;
2894             case SM_SC_W2_CALCULATE_G2:
2895                 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2;
2896                 g2_calculate(connection);
2897                 break;
2898 #endif
2899 
2900 #ifdef ENABLE_LE_CENTRAL
2901             // initiator side
2902 
2903             case SM_INITIATOR_PH4_HAS_LTK: {
2904 				sm_reset_setup();
2905 				sm_load_security_info(connection);
2906 
2907                 // cache key before using
2908                 sm_cache_ltk(connection, setup->sm_peer_ltk);
2909 
2910                 sm_key_t peer_ltk_flipped;
2911                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
2912                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
2913                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
2914                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
2915                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
2916                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
2917 
2918                 // notify after sending
2919                 sm_reencryption_started(connection);
2920                 return;
2921             }
2922 
2923 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2924 				sm_reset_setup();
2925 				sm_init_setup(connection);
2926 
2927                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
2928                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
2929                 sm_send_connectionless(connection, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
2930                 sm_timeout_reset(connection);
2931 
2932                 // notify after sending
2933                 sm_pairing_started(connection);
2934                 break;
2935 #endif
2936 
2937 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2938             case SM_SC_SEND_PUBLIC_KEY_COMMAND:
2939                 sm_run_state_sc_send_public_key_command(connection);
2940                 break;
2941             case SM_SC_SEND_CONFIRMATION:
2942                 sm_run_state_sc_send_confirmation(connection);
2943                 break;
2944             case SM_SC_SEND_PAIRING_RANDOM:
2945                 sm_run_state_sc_send_pairing_random(connection);
2946                 break;
2947             case SM_SC_SEND_DHKEY_CHECK_COMMAND:
2948                 sm_run_state_sc_send_dhkey_check_command(connection);
2949                 break;
2950 #endif
2951 
2952 #ifdef ENABLE_LE_PERIPHERAL
2953 
2954 			case SM_RESPONDER_SEND_SECURITY_REQUEST: {
2955 				const uint8_t buffer[2] = {SM_CODE_SECURITY_REQUEST, sm_auth_req};
2956 				connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
2957 				sm_send_connectionless(connection,  (uint8_t *) buffer, sizeof(buffer));
2958 				sm_timeout_start(connection);
2959 				break;
2960 			}
2961 
2962 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2963 			case SM_SC_RECEIVED_LTK_REQUEST:
2964 				switch (connection->sm_irk_lookup_state){
2965 					case IRK_LOOKUP_SUCCEEDED:
2966 						// assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null
2967 						// start using context by loading security info
2968 						sm_reset_setup();
2969 						sm_load_security_info(connection);
2970 						if ((setup->sm_peer_ediv == 0u) && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){
2971 							(void)memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16);
2972 							connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
2973                             sm_reencryption_started(connection);
2974                             sm_trigger_run();
2975 							break;
2976 						}
2977 						log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)");
2978 						connection->sm_engine_state = SM_RESPONDER_IDLE;
2979 						hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
2980 						return;
2981 					default:
2982 						// just wait until IRK lookup is completed
2983 						break;
2984 				}
2985 				break;
2986 #endif /* ENABLE_LE_SECURE_CONNECTIONS */
2987 
2988 			case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2989                 sm_reset_setup();
2990 
2991 			    // handle Pairing Request with LTK available
2992                 switch (connection->sm_irk_lookup_state) {
2993                     case IRK_LOOKUP_SUCCEEDED:
2994                         le_device_db_encryption_get(connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
2995                         have_ltk = !sm_is_null_key(ltk);
2996                         if (have_ltk){
2997                             log_info("pairing request but LTK available");
2998                             // emit re-encryption start/fail sequence
2999                             sm_reencryption_started(connection);
3000                             sm_reencryption_complete(connection, ERROR_CODE_PIN_OR_KEY_MISSING);
3001                         }
3002                         break;
3003                     default:
3004                         break;
3005                 }
3006 
3007 				sm_init_setup(connection);
3008 
3009 				// recover pairing request
3010 				(void)memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
3011 				err = sm_stk_generation_init(connection);
3012 
3013 #ifdef ENABLE_TESTING_SUPPORT
3014 				if ((0 < test_pairing_failure) && (test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED)){
3015                         log_info("testing_support: respond with pairing failure %u", test_pairing_failure);
3016                         err = test_pairing_failure;
3017                     }
3018 #endif
3019 				if (err != 0){
3020                     // emit pairing started/failed sequence
3021                     sm_pairing_started(connection);
3022                     sm_pairing_error(connection, err);
3023 					sm_trigger_run();
3024 					break;
3025 				}
3026 
3027 				sm_timeout_start(connection);
3028 
3029 				// generate random number first, if we need to show passkey, otherwise send response
3030 				if (setup->sm_stk_generation_method == PK_INIT_INPUT){
3031 					btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk, (void *)(uintptr_t) connection->sm_handle);
3032 					break;
3033 				}
3034 
3035 				/* fall through */
3036 
3037             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
3038                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
3039 
3040                 // start with initiator key dist flags
3041                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
3042 
3043 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3044                 // LTK (= encryption information & master identification) only exchanged for LE Legacy Connection
3045                 if (setup->sm_use_secure_connections){
3046                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
3047                 }
3048 #endif
3049                 // setup in response
3050                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
3051                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
3052 
3053                 // update key distribution after ENC was dropped
3054                 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres), sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
3055 
3056                 if (setup->sm_use_secure_connections){
3057                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
3058                 } else {
3059                     connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
3060                 }
3061 
3062                 sm_send_connectionless(connection, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
3063                 sm_timeout_reset(connection);
3064 
3065                 // notify after sending
3066                 sm_pairing_started(connection);
3067 
3068                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
3069                 if (!setup->sm_use_secure_connections || (setup->sm_stk_generation_method == JUST_WORKS)){
3070                     sm_trigger_user_response(connection);
3071                 }
3072                 return;
3073 #endif
3074 
3075             case SM_PH2_SEND_PAIRING_RANDOM: {
3076                 uint8_t buffer[17];
3077                 buffer[0] = SM_CODE_PAIRING_RANDOM;
3078                 reverse_128(setup->sm_local_random, &buffer[1]);
3079                 if (IS_RESPONDER(connection->sm_role)){
3080                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
3081                 } else {
3082                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
3083                 }
3084                 sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
3085                 sm_timeout_reset(connection);
3086                 break;
3087             }
3088 
3089             case SM_PH2_C1_GET_ENC_A:
3090                 // already busy?
3091                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3092                 // calculate confirm using aes128 engine - step 1
3093                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
3094                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_A;
3095                 sm_aes128_state = SM_AES128_ACTIVE;
3096                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_a, (void *)(uintptr_t) connection->sm_handle);
3097                 break;
3098 
3099             case SM_PH2_C1_GET_ENC_C:
3100                 // already busy?
3101                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3102                 // calculate m_confirm using aes128 engine - step 1
3103                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
3104                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_C;
3105                 sm_aes128_state = SM_AES128_ACTIVE;
3106                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_c, (void *)(uintptr_t) connection->sm_handle);
3107                 break;
3108 
3109             case SM_PH2_CALC_STK:
3110                 // already busy?
3111                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3112                 // calculate STK
3113                 if (IS_RESPONDER(connection->sm_role)){
3114                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, sm_aes128_plaintext);
3115                 } else {
3116                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3117                 }
3118                 connection->sm_engine_state = SM_PH2_W4_STK;
3119                 sm_aes128_state = SM_AES128_ACTIVE;
3120                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3121                 break;
3122 
3123             case SM_PH3_Y_GET_ENC:
3124                 // already busy?
3125                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3126                 // PH3B2 - calculate Y from      - enc
3127 
3128                 // dm helper (was sm_dm_r_prime)
3129                 // r' = padding || r
3130                 // r - 64 bit value
3131                 memset(&sm_aes128_plaintext[0], 0, 8);
3132                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
3133 
3134                 // Y = dm(DHK, Rand)
3135                 connection->sm_engine_state = SM_PH3_Y_W4_ENC;
3136                 sm_aes128_state = SM_AES128_ACTIVE;
3137                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph3_y, (void *)(uintptr_t) connection->sm_handle);
3138                 break;
3139 
3140             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
3141                 uint8_t buffer[17];
3142                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
3143                 reverse_128(setup->sm_local_confirm, &buffer[1]);
3144                 if (IS_RESPONDER(connection->sm_role)){
3145                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
3146                 } else {
3147                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
3148                 }
3149                 sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
3150                 sm_timeout_reset(connection);
3151                 return;
3152             }
3153 #ifdef ENABLE_LE_PERIPHERAL
3154             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
3155                 // cache key before using
3156                 sm_cache_ltk(connection, setup->sm_ltk);
3157                 sm_key_t stk_flipped;
3158                 reverse_128(setup->sm_ltk, stk_flipped);
3159                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3160                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
3161                 return;
3162             }
3163             case SM_RESPONDER_PH4_SEND_LTK_REPLY: {
3164                 // allow to override LTK
3165                 if (sm_get_ltk_callback != NULL){
3166                     (void)(*sm_get_ltk_callback)(connection->sm_handle, connection->sm_peer_addr_type, connection->sm_peer_address, setup->sm_ltk);
3167                 }
3168                 // cache key before using
3169                 sm_cache_ltk(connection, setup->sm_ltk);
3170                 sm_key_t ltk_flipped;
3171                 reverse_128(setup->sm_ltk, ltk_flipped);
3172                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
3173                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
3174                 return;
3175             }
3176 
3177 			case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
3178                 // already busy?
3179                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3180                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
3181 
3182 				sm_reset_setup();
3183 				sm_start_calculating_ltk_from_ediv_and_rand(connection);
3184 
3185 				sm_reencryption_started(connection);
3186 
3187                 // dm helper (was sm_dm_r_prime)
3188                 // r' = padding || r
3189                 // r - 64 bit value
3190                 memset(&sm_aes128_plaintext[0], 0, 8);
3191                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
3192 
3193                 // Y = dm(DHK, Rand)
3194                 connection->sm_engine_state = SM_RESPONDER_PH4_Y_W4_ENC;
3195                 sm_aes128_state = SM_AES128_ACTIVE;
3196                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph4_y, (void *)(uintptr_t) connection->sm_handle);
3197                 return;
3198 #endif
3199 #ifdef ENABLE_LE_CENTRAL
3200             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
3201                 // cache key before using
3202                 sm_cache_ltk(connection, setup->sm_ltk);
3203 
3204                 sm_key_t stk_flipped;
3205                 reverse_128(setup->sm_ltk, stk_flipped);
3206                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3207                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
3208                 return;
3209             }
3210 #endif
3211 
3212             case SM_PH3_DISTRIBUTE_KEYS:
3213                 // send next key
3214                 if (setup->sm_key_distribution_send_set != 0){
3215                     sm_run_distribute_keys(connection);
3216                 }
3217 
3218                 // more to send?
3219                 if (setup->sm_key_distribution_send_set != 0){
3220                     return;
3221                 }
3222 
3223                 // keys are sent
3224                 if (IS_RESPONDER(connection->sm_role)){
3225                     // slave -> receive master keys if any
3226                     if (sm_key_distribution_all_received()){
3227                         sm_key_distribution_handle_all_received(connection);
3228                         sm_key_distribution_complete_responder(connection);
3229                         // start CTKD right away
3230                         continue;
3231                     } else {
3232                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3233                     }
3234                 } else {
3235                     sm_master_pairing_success(connection);
3236                 }
3237                 break;
3238 
3239 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3240             case SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST:
3241                 // fill in sm setup (lite version of sm_init_setup)
3242                 sm_reset_setup();
3243                 setup->sm_peer_addr_type = connection->sm_peer_addr_type;
3244                 setup->sm_m_addr_type = connection->sm_peer_addr_type;
3245                 setup->sm_s_addr_type = connection->sm_own_addr_type;
3246                 (void) memcpy(setup->sm_peer_address, connection->sm_peer_address, 6);
3247                 (void) memcpy(setup->sm_m_address, connection->sm_peer_address, 6);
3248                 (void) memcpy(setup->sm_s_address, connection->sm_own_address, 6);
3249                 setup->sm_use_secure_connections = true;
3250                 sm_ctkd_fetch_br_edr_link_key(connection);
3251 
3252                 // Enc Key and IRK if requested
3253                 key_distribution_flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_ENC_KEY;
3254 #ifdef ENABLE_LE_SIGNED_WRITE
3255                 // Plus signing key if supported
3256                 key_distribution_flags |= SM_KEYDIST_ID_KEY;
3257 #endif
3258                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
3259                 sm_pairing_packet_set_io_capability(setup->sm_m_preq, 0);
3260                 sm_pairing_packet_set_oob_data_flag(setup->sm_m_preq, 0);
3261                 sm_pairing_packet_set_auth_req(setup->sm_m_preq, SM_AUTHREQ_CT2);
3262                 sm_pairing_packet_set_max_encryption_key_size(setup->sm_m_preq, sm_max_encryption_key_size);
3263                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
3264                 sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
3265 
3266                 // set state and send pairing response
3267                 sm_timeout_start(connection);
3268                 connection->sm_engine_state = SM_BR_EDR_INITIATOR_W4_PAIRING_RESPONSE;
3269                 sm_send_connectionless(connection, (uint8_t *) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
3270                 break;
3271 
3272             case SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED:
3273                 // fill in sm setup (lite version of sm_init_setup)
3274                 sm_reset_setup();
3275                 setup->sm_peer_addr_type = connection->sm_peer_addr_type;
3276                 setup->sm_m_addr_type = connection->sm_peer_addr_type;
3277                 setup->sm_s_addr_type = connection->sm_own_addr_type;
3278                 (void) memcpy(setup->sm_peer_address, connection->sm_peer_address, 6);
3279                 (void) memcpy(setup->sm_m_address, connection->sm_peer_address, 6);
3280                 (void) memcpy(setup->sm_s_address, connection->sm_own_address, 6);
3281                 setup->sm_use_secure_connections = true;
3282                 sm_ctkd_fetch_br_edr_link_key(connection);
3283                 (void) memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
3284 
3285                 // Enc Key and IRK if requested
3286                 key_distribution_flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_ENC_KEY;
3287 #ifdef ENABLE_LE_SIGNED_WRITE
3288                 // Plus signing key if supported
3289                 key_distribution_flags |= SM_KEYDIST_ID_KEY;
3290 #endif
3291                 // drop flags not requested by initiator
3292                 key_distribution_flags &= sm_pairing_packet_get_initiator_key_distribution(connection->sm_m_preq);
3293 
3294                 // If Secure Connections pairing has been initiated over BR/EDR, the following fields of the SM Pairing Request PDU are reserved for future use:
3295                 // - the IO Capability field,
3296                 // - the OOB data flag field, and
3297                 // - all bits in the Auth Req field except the CT2 bit.
3298                 sm_pairing_packet_set_code(setup->sm_s_pres, SM_CODE_PAIRING_RESPONSE);
3299                 sm_pairing_packet_set_io_capability(setup->sm_s_pres, 0);
3300                 sm_pairing_packet_set_oob_data_flag(setup->sm_s_pres, 0);
3301                 sm_pairing_packet_set_auth_req(setup->sm_s_pres, SM_AUTHREQ_CT2);
3302                 sm_pairing_packet_set_max_encryption_key_size(setup->sm_s_pres, connection->sm_actual_encryption_key_size);
3303                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, key_distribution_flags);
3304                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, key_distribution_flags);
3305 
3306                 // configure key distribution, LTK is derived locally
3307                 key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
3308                 sm_setup_key_distribution(key_distribution_flags, key_distribution_flags);
3309 
3310                 // set state and send pairing response
3311                 sm_timeout_start(connection);
3312                 connection->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
3313                 sm_send_connectionless(connection, (uint8_t *) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
3314                 break;
3315             case SM_BR_EDR_DISTRIBUTE_KEYS:
3316                 if (setup->sm_key_distribution_send_set != 0) {
3317                     sm_run_distribute_keys(connection);
3318                     return;
3319                 }
3320                 // keys are sent
3321                 if (IS_RESPONDER(connection->sm_role)) {
3322                     // responder -> receive master keys if there are any
3323                     if (!sm_key_distribution_all_received()){
3324                         connection->sm_engine_state = SM_BR_EDR_RECEIVE_KEYS;
3325                         break;
3326                     }
3327                 }
3328                 // otherwise start CTKD right away (responder and no keys to receive / initiator)
3329                 sm_ctkd_start_from_br_edr(connection);
3330                 continue;
3331             case SM_SC_W2_CALCULATE_ILK_USING_H6:
3332                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
3333                 h6_calculate_ilk_from_le_ltk(connection);
3334                 break;
3335             case SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY:
3336                 connection->sm_engine_state = SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY;
3337                 h6_calculate_br_edr_link_key(connection);
3338                 break;
3339             case SM_SC_W2_CALCULATE_ILK_USING_H7:
3340                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
3341                 h7_calculate_ilk_from_le_ltk(connection);
3342                 break;
3343             case SM_BR_EDR_W2_CALCULATE_ILK_USING_H6:
3344                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_ILK;
3345                 h6_calculate_ilk_from_br_edr(connection);
3346                 break;
3347             case SM_BR_EDR_W2_CALCULATE_LE_LTK:
3348                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_LE_LTK;
3349                 h6_calculate_le_ltk(connection);
3350                 break;
3351             case SM_BR_EDR_W2_CALCULATE_ILK_USING_H7:
3352                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_ILK;
3353                 h7_calculate_ilk_from_br_edr(connection);
3354                 break;
3355 #endif
3356 
3357             default:
3358                 break;
3359         }
3360 
3361         // check again if active connection was released
3362         if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break;
3363     }
3364 }
3365 
3366 // sm_aes128_state stays active
3367 static void sm_handle_encryption_result_enc_a(void *arg){
3368     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3369     sm_aes128_state = SM_AES128_IDLE;
3370 
3371     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3372     if (connection == NULL) return;
3373 
3374     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3375     sm_aes128_state = SM_AES128_ACTIVE;
3376     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, setup->sm_local_confirm, sm_handle_encryption_result_enc_b, (void *)(uintptr_t) connection->sm_handle);
3377 }
3378 
3379 static void sm_handle_encryption_result_enc_b(void *arg){
3380     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3381     sm_aes128_state = SM_AES128_IDLE;
3382 
3383     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3384     if (connection == NULL) return;
3385 
3386     log_info_key("c1!", setup->sm_local_confirm);
3387     connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
3388     sm_trigger_run();
3389 }
3390 
3391 // sm_aes128_state stays active
3392 static void sm_handle_encryption_result_enc_c(void *arg){
3393     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3394     sm_aes128_state = SM_AES128_IDLE;
3395 
3396     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3397     if (connection == NULL) return;
3398 
3399     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3400     sm_aes128_state = SM_AES128_ACTIVE;
3401     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, sm_aes128_ciphertext, sm_handle_encryption_result_enc_d, (void *)(uintptr_t) connection->sm_handle);
3402 }
3403 
3404 static void sm_handle_encryption_result_enc_d(void * arg){
3405     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3406     sm_aes128_state = SM_AES128_IDLE;
3407 
3408     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3409     if (connection == NULL) return;
3410 
3411     log_info_key("c1!", sm_aes128_ciphertext);
3412     if (memcmp(setup->sm_peer_confirm, sm_aes128_ciphertext, 16) != 0){
3413         sm_pairing_error(connection, SM_REASON_CONFIRM_VALUE_FAILED);
3414         sm_trigger_run();
3415         return;
3416     }
3417     if (IS_RESPONDER(connection->sm_role)){
3418         connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
3419         sm_trigger_run();
3420     } else {
3421         sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3422         sm_aes128_state = SM_AES128_ACTIVE;
3423         btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3424     }
3425 }
3426 
3427 static void sm_handle_encryption_result_enc_stk(void *arg){
3428     sm_aes128_state = SM_AES128_IDLE;
3429     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3430 
3431     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3432     if (connection == NULL) return;
3433 
3434     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3435     log_info_key("stk", setup->sm_ltk);
3436     if (IS_RESPONDER(connection->sm_role)){
3437         connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
3438     } else {
3439         connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
3440     }
3441     sm_trigger_run();
3442 }
3443 
3444 // sm_aes128_state stays active
3445 static void sm_handle_encryption_result_enc_ph3_y(void *arg){
3446     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3447     sm_aes128_state = SM_AES128_IDLE;
3448 
3449     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3450     if (connection == NULL) return;
3451 
3452     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3453     log_info_hex16("y", setup->sm_local_y);
3454     // PH3B3 - calculate EDIV
3455     setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
3456     log_info_hex16("ediv", setup->sm_local_ediv);
3457     // PH3B4 - calculate LTK         - enc
3458     // LTK = d1(ER, DIV, 0))
3459     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3460     sm_aes128_state = SM_AES128_ACTIVE;
3461     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph3_ltk, (void *)(uintptr_t) connection->sm_handle);
3462 }
3463 
3464 #ifdef ENABLE_LE_PERIPHERAL
3465 // sm_aes128_state stays active
3466 static void sm_handle_encryption_result_enc_ph4_y(void *arg){
3467     sm_aes128_state = SM_AES128_IDLE;
3468     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3469 
3470     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3471     if (connection == NULL) return;
3472 
3473     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3474     log_info_hex16("y", setup->sm_local_y);
3475 
3476     // PH3B3 - calculate DIV
3477     setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
3478     log_info_hex16("ediv", setup->sm_local_ediv);
3479     // PH3B4 - calculate LTK         - enc
3480     // LTK = d1(ER, DIV, 0))
3481     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3482     sm_aes128_state = SM_AES128_ACTIVE;
3483     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph4_ltk, (void *)(uintptr_t) connection->sm_handle);
3484 }
3485 #endif
3486 
3487 // sm_aes128_state stays active
3488 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg){
3489     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3490     sm_aes128_state = SM_AES128_IDLE;
3491 
3492     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3493     if (connection == NULL) return;
3494 
3495     log_info_key("ltk", setup->sm_ltk);
3496     // calc CSRK next
3497     sm_d1_d_prime(setup->sm_local_div, 1, sm_aes128_plaintext);
3498     sm_aes128_state = SM_AES128_ACTIVE;
3499     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_local_csrk, sm_handle_encryption_result_enc_csrk, (void *)(uintptr_t) connection->sm_handle);
3500 }
3501 
3502 static void sm_handle_encryption_result_enc_csrk(void *arg){
3503     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3504     sm_aes128_state = SM_AES128_IDLE;
3505 
3506     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3507     if (connection == NULL) return;
3508 
3509     sm_aes128_state = SM_AES128_IDLE;
3510     log_info_key("csrk", setup->sm_local_csrk);
3511     if (setup->sm_key_distribution_send_set != 0u){
3512         connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3513     } else {
3514         // no keys to send, just continue
3515         if (IS_RESPONDER(connection->sm_role)){
3516             if (sm_key_distribution_all_received()){
3517                 sm_key_distribution_handle_all_received(connection);
3518                 sm_key_distribution_complete_responder(connection);
3519             } else {
3520                 // slave -> receive master keys
3521                 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3522             }
3523         } else {
3524             sm_key_distribution_complete_initiator(connection);
3525         }
3526     }
3527     sm_trigger_run();
3528 }
3529 
3530 #ifdef ENABLE_LE_PERIPHERAL
3531 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg){
3532     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3533     sm_aes128_state = SM_AES128_IDLE;
3534 
3535     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3536     if (connection == NULL) return;
3537 
3538     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3539     log_info_key("ltk", setup->sm_ltk);
3540     connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
3541     sm_trigger_run();
3542 }
3543 #endif
3544 
3545 static void sm_handle_encryption_result_address_resolution(void *arg){
3546     UNUSED(arg);
3547     sm_aes128_state = SM_AES128_IDLE;
3548 
3549     // compare calulated address against connecting device
3550     uint8_t * hash = &sm_aes128_ciphertext[13];
3551     if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
3552         log_info("LE Device Lookup: matched resolvable private address");
3553         sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
3554         sm_trigger_run();
3555         return;
3556     }
3557     // no match, try next
3558     sm_address_resolution_test++;
3559     sm_trigger_run();
3560 }
3561 
3562 static void sm_handle_encryption_result_dkg_irk(void *arg){
3563     UNUSED(arg);
3564     sm_aes128_state = SM_AES128_IDLE;
3565 
3566     log_info_key("irk", sm_persistent_irk);
3567     dkg_state = DKG_CALC_DHK;
3568     sm_trigger_run();
3569 }
3570 
3571 static void sm_handle_encryption_result_dkg_dhk(void *arg){
3572     UNUSED(arg);
3573     sm_aes128_state = SM_AES128_IDLE;
3574 
3575     log_info_key("dhk", sm_persistent_dhk);
3576     dkg_state = DKG_READY;
3577     sm_trigger_run();
3578 }
3579 
3580 static void sm_handle_encryption_result_rau(void *arg){
3581     UNUSED(arg);
3582     sm_aes128_state = SM_AES128_IDLE;
3583 
3584     (void)memcpy(&sm_random_address[3], &sm_aes128_ciphertext[13], 3);
3585     rau_state = RAU_IDLE;
3586     hci_le_random_address_set(sm_random_address);
3587 
3588     sm_trigger_run();
3589 }
3590 
3591 static void sm_handle_random_result_rau(void * arg){
3592     UNUSED(arg);
3593     // non-resolvable vs. resolvable
3594     switch (gap_random_adress_type){
3595         case GAP_RANDOM_ADDRESS_RESOLVABLE:
3596             // resolvable: use random as prand and calc address hash
3597             // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
3598             sm_random_address[0u] &= 0x3fu;
3599             sm_random_address[0u] |= 0x40u;
3600             rau_state = RAU_GET_ENC;
3601             break;
3602         case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
3603         default:
3604             // "The two most significant bits of the address shall be equal to ‘0’""
3605             sm_random_address[0u] &= 0x3fu;
3606             rau_state = RAU_IDLE;
3607             hci_le_random_address_set(sm_random_address);
3608             break;
3609     }
3610     sm_trigger_run();
3611 }
3612 
3613 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3614 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg){
3615     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3616     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3617     if (connection == NULL) return;
3618 
3619     connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
3620     sm_trigger_run();
3621 }
3622 
3623 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg){
3624     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3625     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3626     if (connection == NULL) return;
3627 
3628     connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
3629     sm_trigger_run();
3630 }
3631 #endif
3632 
3633 static void sm_handle_random_result_ph2_random(void * arg){
3634     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3635     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3636     if (connection == NULL) return;
3637 
3638     connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
3639     sm_trigger_run();
3640 }
3641 
3642 static void sm_handle_random_result_ph2_tk(void * arg){
3643     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3644     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3645     if (connection == NULL) return;
3646 
3647     sm_reset_tk();
3648     uint32_t tk;
3649     if (sm_fixed_passkey_in_display_role == 0xffffffffU){
3650         // map random to 0-999999 without speding much cycles on a modulus operation
3651         tk = little_endian_read_32(sm_random_data,0);
3652         tk = tk & 0xfffff;  // 1048575
3653         if (tk >= 999999u){
3654             tk = tk - 999999u;
3655         }
3656     } else {
3657         // override with pre-defined passkey
3658         tk = sm_fixed_passkey_in_display_role;
3659     }
3660     big_endian_store_32(setup->sm_tk, 12, tk);
3661     if (IS_RESPONDER(connection->sm_role)){
3662         connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
3663     } else {
3664         if (setup->sm_use_secure_connections){
3665             connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3666         } else {
3667             connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3668             sm_trigger_user_response(connection);
3669             // response_idle == nothing <--> sm_trigger_user_response() did not require response
3670             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3671                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) connection->sm_handle);
3672             }
3673         }
3674     }
3675     sm_trigger_run();
3676 }
3677 
3678 static void sm_handle_random_result_ph3_div(void * arg){
3679     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3680     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3681     if (connection == NULL) return;
3682 
3683     // use 16 bit from random value as div
3684     setup->sm_local_div = big_endian_read_16(sm_random_data, 0);
3685     log_info_hex16("div", setup->sm_local_div);
3686     connection->sm_engine_state = SM_PH3_Y_GET_ENC;
3687     sm_trigger_run();
3688 }
3689 
3690 static void sm_handle_random_result_ph3_random(void * arg){
3691     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3692     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3693     if (connection == NULL) return;
3694 
3695     reverse_64(sm_random_data, setup->sm_local_rand);
3696     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
3697     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xf0u) + (connection->sm_actual_encryption_key_size - 1u);
3698     // no db for authenticated flag hack: store flag in bit 4 of LSB
3699     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xefu) + (connection->sm_connection_authenticated << 4u);
3700     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 2, &sm_handle_random_result_ph3_div, (void *)(uintptr_t) connection->sm_handle);
3701 }
3702 static void sm_validate_er_ir(void){
3703     // warn about default ER/IR
3704     bool warning = false;
3705     if (sm_ir_is_default()){
3706         warning = true;
3707         log_error("Persistent IR not set with sm_set_ir. Use of private addresses will cause pairing issues");
3708     }
3709     if (sm_er_is_default()){
3710         warning = true;
3711         log_error("Persistent ER not set with sm_set_er. Legacy Pairing LTK is not secure");
3712     }
3713     if (warning) {
3714         log_error("Please configure btstack_tlv to let BTstack setup ER and IR keys");
3715     }
3716 }
3717 
3718 static void sm_handle_random_result_ir(void *arg){
3719     sm_persistent_keys_random_active = false;
3720     if (arg != NULL){
3721         // key generated, store in tlv
3722         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3723         log_info("Generated IR key. Store in TLV status: %d", status);
3724         UNUSED(status);
3725     }
3726     log_info_key("IR", sm_persistent_ir);
3727     dkg_state = DKG_CALC_IRK;
3728 
3729     if (test_use_fixed_local_irk){
3730         log_info_key("IRK", sm_persistent_irk);
3731         dkg_state = DKG_CALC_DHK;
3732     }
3733 
3734     sm_trigger_run();
3735 }
3736 
3737 static void sm_handle_random_result_er(void *arg){
3738     sm_persistent_keys_random_active = false;
3739     if (arg != 0){
3740         // key generated, store in tlv
3741         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3742         log_info("Generated ER key. Store in TLV status: %d", status);
3743         UNUSED(status);
3744     }
3745     log_info_key("ER", sm_persistent_er);
3746 
3747     // try load ir
3748     int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3749     if (key_size == 16){
3750         // ok, let's continue
3751         log_info("IR from TLV");
3752         sm_handle_random_result_ir( NULL );
3753     } else {
3754         // invalid, generate new random one
3755         sm_persistent_keys_random_active = true;
3756         btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_ir, 16, &sm_handle_random_result_ir, &sm_persistent_ir);
3757     }
3758 }
3759 
3760 static void sm_connection_init(sm_connection_t * sm_conn, hci_con_handle_t con_handle, uint8_t role, uint8_t peer_addr_type, bd_addr_t peer_address){
3761 
3762     // connection info
3763     sm_conn->sm_handle = con_handle;
3764     sm_conn->sm_role = role;
3765     sm_conn->sm_peer_addr_type = peer_addr_type;
3766     memcpy(sm_conn->sm_peer_address, peer_address, 6);
3767 
3768     // security properties
3769     sm_conn->sm_connection_encrypted = 0;
3770     sm_conn->sm_connection_authenticated = 0;
3771     sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
3772     sm_conn->sm_le_db_index = -1;
3773     sm_conn->sm_reencryption_active = false;
3774 
3775     // prepare CSRK lookup (does not involve setup)
3776     sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
3777 
3778     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
3779 }
3780 
3781 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3782 static void sm_event_handle_classic_encryption_event(sm_connection_t * sm_conn, hci_con_handle_t con_handle){
3783     // CTKD requires BR/EDR Secure Connection
3784     if (sm_conn->sm_connection_encrypted != 2) return;
3785     // prepare for pairing request
3786     if (IS_RESPONDER(sm_conn->sm_role)){
3787         sm_conn->sm_engine_state = SM_BR_EDR_RESPONDER_W4_PAIRING_REQUEST;
3788     } else if (sm_conn->sm_pairing_requested){
3789         // check if remote supports fixed channels
3790         bool defer = true;
3791         const hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
3792         if (hci_connection->l2cap_state.information_state == L2CAP_INFORMATION_STATE_DONE){
3793             // check if remote supports SMP over BR/EDR
3794             if ((hci_connection->l2cap_state.fixed_channels_supported & (1 << L2CAP_CID_BR_EDR_SECURITY_MANAGER)) != 0){
3795                 log_info("CTKD: SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST");
3796                 sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST;
3797             } else {
3798                 defer = false;
3799             }
3800         } else {
3801             // wait for fixed channel info
3802             log_info("CTKD: SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK");
3803             sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK;
3804         }
3805         if (defer){
3806             hci_dedicated_bonding_defer_disconnect(con_handle, true);
3807         }
3808     }
3809 }
3810 #endif
3811 
3812 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
3813 
3814     UNUSED(channel);    // ok: there is no channel
3815     UNUSED(size);       // ok: fixed format HCI events
3816 
3817     sm_connection_t * sm_conn;
3818     hci_con_handle_t  con_handle;
3819     uint8_t           status;
3820     bd_addr_t         addr;
3821     bd_addr_type_t    addr_type;
3822 
3823     switch (packet_type) {
3824 
3825 		case HCI_EVENT_PACKET:
3826 			switch (hci_event_packet_get_type(packet)) {
3827 
3828                 case BTSTACK_EVENT_STATE:
3829                     switch (btstack_event_state_get_state(packet)){
3830                         case HCI_STATE_WORKING:
3831                             log_info("HCI Working!");
3832                             // setup IR/ER with TLV
3833                             btstack_tlv_get_instance(&sm_tlv_impl, &sm_tlv_context);
3834                             if (sm_tlv_impl != NULL){
3835                                 int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3836                                 if (key_size == 16){
3837                                     // ok, let's continue
3838                                     log_info("ER from TLV");
3839                                     sm_handle_random_result_er( NULL );
3840                                 } else {
3841                                     // invalid, generate random one
3842                                     sm_persistent_keys_random_active = true;
3843                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_er, 16, &sm_handle_random_result_er, &sm_persistent_er);
3844                                 }
3845                             } else {
3846                                 sm_validate_er_ir();
3847                                 dkg_state = DKG_CALC_IRK;
3848 
3849                                 if (test_use_fixed_local_irk){
3850                                     log_info_key("IRK", sm_persistent_irk);
3851                                     dkg_state = DKG_CALC_DHK;
3852                                 }
3853                             }
3854 
3855 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3856                             // trigger ECC key generation
3857                             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
3858                                 sm_ec_generate_new_key();
3859                             }
3860 #endif
3861 
3862                             // restart random address updates after power cycle
3863                             if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_STATIC){
3864                                 gap_random_address_set(sm_random_address);
3865                             } else {
3866                                 gap_random_address_set_mode(gap_random_adress_type);
3867                             }
3868                             break;
3869 
3870                         case HCI_STATE_OFF:
3871                         case HCI_STATE_HALTING:
3872                             log_info("SM: reset state");
3873                             // stop random address update
3874                             gap_random_address_update_stop();
3875                             // reset state
3876                             sm_state_reset();
3877                             break;
3878 
3879                         default:
3880                             break;
3881                     }
3882 					break;
3883 
3884 #ifdef ENABLE_CLASSIC
3885 			    case HCI_EVENT_CONNECTION_COMPLETE:
3886 			        // ignore if connection failed
3887 			        if (hci_event_connection_complete_get_status(packet)) return;
3888 
3889 			        con_handle = hci_event_connection_complete_get_connection_handle(packet);
3890 			        sm_conn = sm_get_connection_for_handle(con_handle);
3891 			        if (!sm_conn) break;
3892 
3893                     hci_event_connection_complete_get_bd_addr(packet, addr);
3894 			        sm_connection_init(sm_conn,
3895                                        con_handle,
3896                                        (uint8_t) gap_get_role(con_handle),
3897                                        BD_ADDR_TYPE_LE_PUBLIC,
3898                                        addr);
3899 			        // classic connection corresponds to public le address
3900 			        sm_conn->sm_own_addr_type = BD_ADDR_TYPE_LE_PUBLIC;
3901                     gap_local_bd_addr(sm_conn->sm_own_address);
3902                     sm_conn->sm_cid = L2CAP_CID_BR_EDR_SECURITY_MANAGER;
3903                     sm_conn->sm_engine_state = SM_BR_EDR_W4_ENCRYPTION_COMPLETE;
3904 			        break;
3905 #endif
3906 
3907 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3908 			    case HCI_EVENT_SIMPLE_PAIRING_COMPLETE:
3909 			        if (hci_event_simple_pairing_complete_get_status(packet) != ERROR_CODE_SUCCESS) break;
3910                     hci_event_simple_pairing_complete_get_bd_addr(packet, addr);
3911                     sm_conn = sm_get_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
3912                     if (sm_conn == NULL) break;
3913                     sm_conn->sm_pairing_requested = true;
3914 			        break;
3915 #endif
3916 
3917 			    case HCI_EVENT_META_GAP:
3918 			        switch (hci_event_gap_meta_get_subevent_code(packet)) {
3919 			            case GAP_SUBEVENT_LE_CONNECTION_COMPLETE:
3920 			                // ignore if connection failed
3921 			                if (gap_subevent_le_connection_complete_get_status(packet) != ERROR_CODE_SUCCESS) break;
3922 
3923 			                con_handle = gap_subevent_le_connection_complete_get_connection_handle(packet);
3924 			                sm_conn = sm_get_connection_for_handle(con_handle);
3925 			                if (!sm_conn) break;
3926 
3927                             // Get current peer address
3928                             addr_type = gap_subevent_le_connection_complete_get_peer_address_type(packet);
3929                             if (hci_is_le_identity_address_type(addr_type)){
3930                                 addr_type = BD_ADDR_TYPE_LE_RANDOM;
3931                                 gap_subevent_le_connection_complete_get_peer_resolvable_private_address(packet, addr);
3932                             } else {
3933                                 gap_subevent_le_connection_complete_get_peer_address(packet, addr);
3934                             }
3935 			                sm_connection_init(sm_conn,
3936                                                con_handle,
3937                                                gap_subevent_le_connection_complete_get_role(packet),
3938                                                addr_type,
3939                                                addr);
3940 			                sm_conn->sm_cid = L2CAP_CID_SECURITY_MANAGER_PROTOCOL;
3941 
3942 			                // track our addr used for this connection and set state
3943 #ifdef ENABLE_LE_PERIPHERAL
3944 			                if (gap_subevent_le_connection_complete_get_role(packet) != 0){
3945 			                    // responder - use own address from advertisements
3946 #ifdef ENABLE_LE_EXTENDED_ADVERTISING
3947                                 if (hci_le_extended_advertising_supported()){
3948                                     // cache local resolvable address
3949                                     // note: will be overwritten if random or private address was used in adv set by HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED
3950                                     sm_conn->sm_own_addr_type = BD_ADDR_TYPE_LE_RANDOM;
3951                                     gap_subevent_le_connection_complete_get_local_resolvable_private_address(packet,sm_conn->sm_own_address);
3952                                 } else
3953 #endif
3954                                 {
3955                                     gap_le_get_own_advertisements_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address);
3956                                 }
3957 			                    sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3958 			                }
3959 #endif
3960 #ifdef ENABLE_LE_CENTRAL
3961 			                if (gap_subevent_le_connection_complete_get_role(packet) == 0){
3962 			                    // initiator - use own address from create connection
3963 			                    gap_le_get_own_connection_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address);
3964 			                    sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3965 			                }
3966 #endif
3967 			                break;
3968 			            default:
3969 			                break;
3970 			        }
3971 			        break;
3972                 case HCI_EVENT_LE_META:
3973                     switch (hci_event_le_meta_get_subevent_code(packet)) {
3974 #ifdef ENABLE_LE_PERIPHERAL
3975 #ifdef ENABLE_LE_EXTENDED_ADVERTISING
3976                         case HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED:
3977                             if (hci_subevent_le_advertising_set_terminated_get_status(packet) == ERROR_CODE_SUCCESS){
3978                                 uint8_t advertising_handle = hci_subevent_le_advertising_set_terminated_get_advertising_handle(packet);
3979                                 con_handle = hci_subevent_le_advertising_set_terminated_get_connection_handle(packet);
3980                                 sm_conn = sm_get_connection_for_handle(con_handle);
3981                                 gap_le_get_own_advertising_set_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address, advertising_handle);
3982                                 log_info("Adv set %u terminated -> use addr type %u, addr %s for con handle 0x%04x", advertising_handle, sm_conn->sm_own_addr_type,
3983                                          bd_addr_to_str(sm_conn->sm_own_address), con_handle);
3984                             }
3985                             break;
3986 #endif
3987 #endif
3988                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
3989                             con_handle = hci_subevent_le_long_term_key_request_get_connection_handle(packet);
3990                             sm_conn = sm_get_connection_for_handle(con_handle);
3991                             if (!sm_conn) break;
3992 
3993                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
3994                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
3995                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
3996                                 break;
3997                             }
3998                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
3999                                 // PH2 SEND LTK as we need to exchange keys in PH3
4000                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
4001                                 break;
4002                             }
4003 
4004                             // store rand and ediv
4005                             reverse_64(&packet[5], sm_conn->sm_local_rand);
4006                             sm_conn->sm_local_ediv = hci_subevent_le_long_term_key_request_get_encryption_diversifier(packet);
4007 
4008                             // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a
4009                             // potentially stored LTK is from the master
4010                             if ((sm_conn->sm_local_ediv != 0u) || !sm_is_null_random(sm_conn->sm_local_rand)){
4011                                 if (sm_reconstruct_ltk_without_le_device_db_entry){
4012                                     sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
4013                                     break;
4014                                 }
4015                                 // additionally check if remote is in LE Device DB if requested
4016                                 switch(sm_conn->sm_irk_lookup_state){
4017                                     case IRK_LOOKUP_FAILED:
4018                                         log_info("LTK Request: device not in device db");
4019                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
4020                                         break;
4021                                     case IRK_LOOKUP_SUCCEEDED:
4022                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
4023                                         break;
4024                                     default:
4025                                         // wait for irk look doen
4026                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK;
4027                                         break;
4028                                 }
4029                                 break;
4030                             }
4031 
4032 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4033                             sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST;
4034 #else
4035                             log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported");
4036                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
4037 #endif
4038                             break;
4039 
4040                         default:
4041                             break;
4042                     }
4043                     break;
4044 
4045                 case HCI_EVENT_ENCRYPTION_CHANGE:
4046                 case HCI_EVENT_ENCRYPTION_CHANGE_V2:
4047                 	con_handle = hci_event_encryption_change_get_connection_handle(packet);
4048                     sm_conn = sm_get_connection_for_handle(con_handle);
4049                     if (!sm_conn) break;
4050 
4051                     sm_conn->sm_connection_encrypted = hci_event_encryption_change_get_encryption_enabled(packet);
4052                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
4053                         sm_conn->sm_actual_encryption_key_size);
4054                     log_info("event handler, state %u", sm_conn->sm_engine_state);
4055 
4056                     switch (sm_conn->sm_engine_state){
4057 
4058                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4059                             // encryption change event concludes re-encryption for bonded devices (even if it fails)
4060                             if (sm_conn->sm_connection_encrypted != 0u) {
4061                                 status = ERROR_CODE_SUCCESS;
4062                                 if (IS_RESPONDER(sm_conn->sm_role)){
4063                                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
4064                                 } else {
4065                                     sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4066                                 }
4067                             } else {
4068                                 status = hci_event_encryption_change_get_status(packet);
4069                                 // set state to 'RE-ENCRYPTION FAILED' to allow pairing but prevent other interactions
4070                                 // also, gap_reconnect_security_setup_active will return true
4071                                 sm_conn->sm_engine_state = SM_GENERAL_REENCRYPTION_FAILED;
4072                             }
4073 
4074                             // emit re-encryption complete
4075                             sm_reencryption_complete(sm_conn, status);
4076 
4077                             // notify client, if pairing was requested before
4078                             if (sm_conn->sm_pairing_requested){
4079                                 sm_conn->sm_pairing_requested = false;
4080                                 sm_pairing_complete(sm_conn, status, 0);
4081                             }
4082 
4083                             sm_done_for_handle(sm_conn->sm_handle);
4084                             break;
4085 
4086                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4087                             if (!sm_conn->sm_connection_encrypted) break;
4088                             // handler for HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE
4089                             // contains the same code for this state
4090                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
4091                             if (IS_RESPONDER(sm_conn->sm_role)){
4092                                 // slave
4093                                 if (sm_conn->sm_connection_sc){
4094                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4095                                 } else {
4096                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4097                                 }
4098                             } else {
4099                                 // master
4100                                 if (sm_key_distribution_all_received()){
4101                                     // skip receiving keys as there are none
4102                                     sm_key_distribution_handle_all_received(sm_conn);
4103                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4104                                 } else {
4105                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
4106                                 }
4107                             }
4108                             break;
4109 
4110 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4111                         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4112                             sm_event_handle_classic_encryption_event(sm_conn, con_handle);
4113                             break;
4114 #endif
4115                         default:
4116                             break;
4117                     }
4118                     break;
4119 
4120                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
4121                     con_handle = little_endian_read_16(packet, 3);
4122                     sm_conn = sm_get_connection_for_handle(con_handle);
4123                     if (!sm_conn) break;
4124 
4125                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
4126                     log_info("event handler, state %u", sm_conn->sm_engine_state);
4127                     // continue if part of initial pairing
4128                     switch (sm_conn->sm_engine_state){
4129                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4130                             if (IS_RESPONDER(sm_conn->sm_role)){
4131                                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
4132                             } else {
4133                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4134                             }
4135                             sm_done_for_handle(sm_conn->sm_handle);
4136                             break;
4137                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4138                             // handler for HCI_EVENT_ENCRYPTION_CHANGE
4139                             // contains the same code for this state
4140                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
4141                             if (IS_RESPONDER(sm_conn->sm_role)){
4142                                 // slave
4143                                 if (sm_conn->sm_connection_sc){
4144                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4145                                 } else {
4146                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4147                                 }
4148                             } else {
4149                                 // master
4150                                 if (sm_key_distribution_all_received()){
4151                                     // skip receiving keys as there are none
4152                                     sm_key_distribution_handle_all_received(sm_conn);
4153                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4154                                 } else {
4155                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
4156                                 }
4157                             }
4158                             break;
4159 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4160                         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4161                             sm_event_handle_classic_encryption_event(sm_conn, con_handle);
4162                             break;
4163 #endif
4164                         default:
4165                             break;
4166                     }
4167                     break;
4168 
4169 
4170                 case HCI_EVENT_DISCONNECTION_COMPLETE:
4171                     con_handle = little_endian_read_16(packet, 3);
4172                     sm_done_for_handle(con_handle);
4173                     sm_conn = sm_get_connection_for_handle(con_handle);
4174                     if (!sm_conn) break;
4175 
4176                     // pairing failed, if it was ongoing
4177                     switch (sm_conn->sm_engine_state){
4178                         case SM_GENERAL_IDLE:
4179                         case SM_INITIATOR_CONNECTED:
4180                         case SM_RESPONDER_IDLE:
4181                             break;
4182                         default:
4183                             sm_reencryption_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
4184                             sm_pairing_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION, 0);
4185                             break;
4186                     }
4187 
4188                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
4189                     sm_conn->sm_handle = 0;
4190                     break;
4191 
4192                 case HCI_EVENT_COMMAND_COMPLETE:
4193                     if (hci_event_command_complete_get_command_opcode(packet) == HCI_OPCODE_HCI_READ_BD_ADDR) {
4194                         // set local addr for le device db
4195                         reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr);
4196                         le_device_db_set_local_bd_addr(addr);
4197                     }
4198                     break;
4199 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4200                 case L2CAP_EVENT_INFORMATION_RESPONSE:
4201                     con_handle = l2cap_event_information_response_get_con_handle(packet);
4202                     sm_conn = sm_get_connection_for_handle(con_handle);
4203                     if (!sm_conn) break;
4204                     if (sm_conn->sm_engine_state == SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK){
4205                         // check if remote supports SMP over BR/EDR
4206                         const hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
4207                         if ((hci_connection->l2cap_state.fixed_channels_supported & (1 << L2CAP_CID_BR_EDR_SECURITY_MANAGER)) != 0){
4208                             sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST;
4209                         } else {
4210                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4211                             hci_dedicated_bonding_defer_disconnect(con_handle, false);
4212                         }
4213                     }
4214                     break;
4215 #endif
4216                 default:
4217                     break;
4218 			}
4219             break;
4220         default:
4221             break;
4222 	}
4223 
4224     sm_run();
4225 }
4226 
4227 static inline int sm_calc_actual_encryption_key_size(int other){
4228     if (other < sm_min_encryption_key_size) return 0;
4229     if (other < sm_max_encryption_key_size) return other;
4230     return sm_max_encryption_key_size;
4231 }
4232 
4233 
4234 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4235 static bool sm_just_works_or_numeric_comparison(stk_generation_method_t method){
4236     switch (method){
4237         case JUST_WORKS:
4238         case NUMERIC_COMPARISON:
4239             return true;
4240         default:
4241             return false;
4242     }
4243 }
4244 // responder
4245 
4246 static bool sm_passkey_used(stk_generation_method_t method){
4247     switch (method){
4248         case PK_RESP_INPUT:
4249             return true;
4250         default:
4251             return 0;
4252     }
4253 }
4254 
4255 static bool sm_passkey_entry(stk_generation_method_t method){
4256     switch (method){
4257         case PK_RESP_INPUT:
4258         case PK_INIT_INPUT:
4259         case PK_BOTH_INPUT:
4260             return true;
4261         default:
4262             return false;
4263     }
4264 }
4265 
4266 #endif
4267 
4268 /**
4269  * @return ok
4270  */
4271 static int sm_validate_stk_generation_method(void){
4272     // check if STK generation method is acceptable by client
4273     switch (setup->sm_stk_generation_method){
4274         case JUST_WORKS:
4275             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0u;
4276         case PK_RESP_INPUT:
4277         case PK_INIT_INPUT:
4278         case PK_BOTH_INPUT:
4279             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0u;
4280         case OOB:
4281             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0u;
4282         case NUMERIC_COMPARISON:
4283             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0u;
4284         default:
4285             return 0;
4286     }
4287 }
4288 
4289 #ifdef ENABLE_LE_CENTRAL
4290 static void sm_initiator_connected_handle_security_request(sm_connection_t * sm_conn, const uint8_t *packet){
4291 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4292     if (sm_sc_only_mode){
4293         uint8_t auth_req = packet[1];
4294         if ((auth_req & SM_AUTHREQ_SECURE_CONNECTION) == 0){
4295             sm_pairing_error(sm_conn, SM_REASON_AUTHENTHICATION_REQUIREMENTS);
4296             return;
4297         }
4298     }
4299 #else
4300     UNUSED(packet);
4301 #endif
4302 
4303     int have_ltk;
4304     uint8_t ltk[16];
4305 
4306     // IRK complete?
4307     switch (sm_conn->sm_irk_lookup_state){
4308         case IRK_LOOKUP_FAILED:
4309             // start pairing
4310             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4311             break;
4312         case IRK_LOOKUP_SUCCEEDED:
4313             le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
4314             have_ltk = !sm_is_null_key(ltk);
4315             log_info("central: security request - have_ltk %u, encryption %u", have_ltk, sm_conn->sm_connection_encrypted);
4316             if (have_ltk && (sm_conn->sm_connection_encrypted == 0)){
4317                 // start re-encrypt if we have LTK and the connection is not already encrypted
4318                 sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
4319             } else {
4320                 // start pairing
4321                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4322             }
4323             break;
4324         default:
4325             // otherwise, store security request
4326             sm_conn->sm_security_request_received = true;
4327             break;
4328     }
4329 }
4330 #endif
4331 
4332 static uint8_t sm_pdu_validate_and_get_opcode(uint8_t packet_type, const uint8_t *packet, uint16_t size){
4333 
4334     // size of complete sm_pdu used to validate input
4335     static const uint8_t sm_pdu_size[] = {
4336             0,  // 0x00 invalid opcode
4337             7,  // 0x01 pairing request
4338             7,  // 0x02 pairing response
4339             17, // 0x03 pairing confirm
4340             17, // 0x04 pairing random
4341             2,  // 0x05 pairing failed
4342             17, // 0x06 encryption information
4343             11, // 0x07 master identification
4344             17, // 0x08 identification information
4345             8,  // 0x09 identify address information
4346             17, // 0x0a signing information
4347             2,  // 0x0b security request
4348             65, // 0x0c pairing public key
4349             17, // 0x0d pairing dhk check
4350             2,  // 0x0e keypress notification
4351     };
4352 
4353     if (packet_type != SM_DATA_PACKET) return 0;
4354     if (size == 0u) return 0;
4355 
4356     uint8_t sm_pdu_code = packet[0];
4357 
4358     // validate pdu size
4359     if (sm_pdu_code >= sizeof(sm_pdu_size)) return 0;
4360     if (sm_pdu_size[sm_pdu_code] != size)   return 0;
4361 
4362     return sm_pdu_code;
4363 }
4364 
4365 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
4366 
4367     if ((packet_type == HCI_EVENT_PACKET) && (packet[0] == L2CAP_EVENT_CAN_SEND_NOW)){
4368         sm_run();
4369     }
4370 
4371     uint8_t sm_pdu_code = sm_pdu_validate_and_get_opcode(packet_type, packet, size);
4372     if (sm_pdu_code == 0) return;
4373 
4374     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4375     if (!sm_conn) return;
4376 
4377     if (sm_pdu_code == SM_CODE_PAIRING_FAILED){
4378         sm_reencryption_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE);
4379         sm_pairing_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE, packet[1]);
4380         sm_done_for_handle(con_handle);
4381         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
4382         return;
4383     }
4384 
4385     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, sm_pdu_code);
4386 
4387     int err;
4388     uint8_t max_encryption_key_size;
4389     UNUSED(err);
4390 
4391     if (sm_pdu_code == SM_CODE_KEYPRESS_NOTIFICATION){
4392         uint8_t buffer[5];
4393         buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION;
4394         buffer[1] = 3;
4395         little_endian_store_16(buffer, 2, con_handle);
4396         buffer[4] = packet[1];
4397         sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer));
4398         return;
4399     }
4400 
4401     switch (sm_conn->sm_engine_state){
4402 
4403         // a sm timeout requires a new physical connection
4404         case SM_GENERAL_TIMEOUT:
4405             return;
4406 
4407 #ifdef ENABLE_LE_CENTRAL
4408 
4409         // Initiator
4410         case SM_INITIATOR_CONNECTED:
4411             if ((sm_pdu_code != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
4412                 sm_pdu_received_in_wrong_state(sm_conn);
4413                 break;
4414             }
4415             sm_initiator_connected_handle_security_request(sm_conn, packet);
4416             break;
4417 
4418         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
4419             // Core 5, Vol 3, Part H, 2.4.6:
4420             // "The master shall ignore the slave’s Security Request if the master has sent a Pairing Request
4421             //  without receiving a Pairing Response from the slave or if the master has initiated encryption mode setup."
4422             if (sm_pdu_code == SM_CODE_SECURITY_REQUEST){
4423                 log_info("Ignoring Security Request");
4424                 break;
4425             }
4426 
4427             // all other pdus are incorrect
4428             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
4429                 sm_pdu_received_in_wrong_state(sm_conn);
4430                 break;
4431             }
4432 
4433             // store pairing request
4434             (void)memcpy(&setup->sm_s_pres, packet,
4435                          sizeof(sm_pairing_packet_t));
4436 
4437             // validate encryption key size
4438             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_s_pres);
4439             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4440                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4441                 break;
4442             }
4443 
4444             err = sm_stk_generation_init(sm_conn);
4445 
4446 #ifdef ENABLE_TESTING_SUPPORT
4447             if (0 < test_pairing_failure && test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED){
4448                 log_info("testing_support: abort with pairing failure %u", test_pairing_failure);
4449                 err = test_pairing_failure;
4450             }
4451 #endif
4452 
4453             if (err != 0){
4454                 sm_pairing_error(sm_conn, err);
4455                 break;
4456             }
4457 
4458             // generate random number first, if we need to show passkey
4459             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
4460                 btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk,  (void *)(uintptr_t) sm_conn->sm_handle);
4461                 break;
4462             }
4463 
4464 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4465             if (setup->sm_use_secure_connections){
4466                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
4467                 if (setup->sm_stk_generation_method == JUST_WORKS){
4468                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4469                     sm_trigger_user_response(sm_conn);
4470                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
4471                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4472                     }
4473                 } else {
4474                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4475                 }
4476                 break;
4477             }
4478 #endif
4479             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4480             sm_trigger_user_response(sm_conn);
4481             // response_idle == nothing <--> sm_trigger_user_response() did not require response
4482             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
4483                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4484             }
4485             break;
4486 
4487         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
4488             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4489                 sm_pdu_received_in_wrong_state(sm_conn);
4490                 break;
4491             }
4492 
4493             // store s_confirm
4494             reverse_128(&packet[1], setup->sm_peer_confirm);
4495 
4496             // abort if s_confirm matches m_confirm
4497             if (memcmp(setup->sm_local_confirm, setup->sm_peer_confirm, 16) == 0){
4498                 sm_pdu_received_in_wrong_state(sm_conn);
4499                 break;
4500             }
4501 
4502 #ifdef ENABLE_TESTING_SUPPORT
4503             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4504                 log_info("testing_support: reset confirm value");
4505                 memset(setup->sm_peer_confirm, 0, 16);
4506             }
4507 #endif
4508             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
4509             break;
4510 
4511         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
4512             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4513                 sm_pdu_received_in_wrong_state(sm_conn);
4514                 break;;
4515             }
4516 
4517             // received random value
4518             reverse_128(&packet[1], setup->sm_peer_random);
4519             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4520             break;
4521 
4522         case SM_INITIATOR_PH4_HAS_LTK:
4523         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4524             // ignore Security Request, see SM_INITIATOR_PH1_W4_PAIRING_RESPONSE above
4525             if (sm_pdu_code != SM_CODE_SECURITY_REQUEST){
4526                 sm_pdu_received_in_wrong_state(sm_conn);
4527             }
4528             break;
4529 #endif
4530 
4531 #ifdef ENABLE_LE_PERIPHERAL
4532         // Responder
4533         case SM_RESPONDER_IDLE:
4534         case SM_RESPONDER_SEND_SECURITY_REQUEST:
4535         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
4536             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
4537                 sm_pdu_received_in_wrong_state(sm_conn);
4538                 break;;
4539             }
4540 
4541             // store pairing request
4542             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
4543 
4544             // validation encryption key size
4545             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(sm_conn->sm_m_preq);
4546             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4547                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4548                 break;
4549             }
4550 
4551             // check if IRK completed
4552             switch (sm_conn->sm_irk_lookup_state){
4553                 case IRK_LOOKUP_SUCCEEDED:
4554                 case IRK_LOOKUP_FAILED:
4555                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
4556                     break;
4557                 default:
4558                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK;
4559                     break;
4560             }
4561             break;
4562 #endif
4563 
4564 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4565         case SM_SC_W4_PUBLIC_KEY_COMMAND:
4566             if (sm_pdu_code != SM_CODE_PAIRING_PUBLIC_KEY){
4567                 sm_pdu_received_in_wrong_state(sm_conn);
4568                 break;
4569             }
4570 
4571             // store public key for DH Key calculation
4572             reverse_256(&packet[01], &setup->sm_peer_q[0]);
4573             reverse_256(&packet[33], &setup->sm_peer_q[32]);
4574 
4575             // CVE-2020-26558: abort pairing if remote uses the same public key
4576             if (memcmp(&setup->sm_peer_q, ec_q, 64) == 0){
4577                 log_info("Remote PK matches ours");
4578                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4579                 break;
4580             }
4581 
4582             // validate public key
4583             err = btstack_crypto_ecc_p256_validate_public_key(setup->sm_peer_q);
4584             if (err != 0){
4585                 log_info("sm: peer public key invalid %x", err);
4586                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4587                 break;
4588             }
4589 
4590             // start calculating dhkey
4591             btstack_crypto_ecc_p256_calculate_dhkey(&sm_crypto_ecc_p256_request, setup->sm_peer_q, setup->sm_dhkey, sm_sc_dhkey_calculated, (void*)(uintptr_t) sm_conn->sm_handle);
4592 
4593 
4594             log_info("public key received, generation method %u", setup->sm_stk_generation_method);
4595             if (IS_RESPONDER(sm_conn->sm_role)){
4596                 // responder
4597                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4598             } else {
4599                 // initiator
4600                 // stk generation method
4601                 // passkey entry: notify app to show passkey or to request passkey
4602                 switch (setup->sm_stk_generation_method){
4603                     case JUST_WORKS:
4604                     case NUMERIC_COMPARISON:
4605                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
4606                         break;
4607                     case PK_RESP_INPUT:
4608                         sm_sc_start_calculating_local_confirm(sm_conn);
4609                         break;
4610                     case PK_INIT_INPUT:
4611                     case PK_BOTH_INPUT:
4612                         if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4613                             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4614                             break;
4615                         }
4616                         sm_sc_start_calculating_local_confirm(sm_conn);
4617                         break;
4618                     case OOB:
4619                         // generate Nx
4620                         log_info("Generate Na");
4621                         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4622                         break;
4623                     default:
4624                         btstack_assert(false);
4625                         break;
4626                 }
4627             }
4628             break;
4629 
4630         case SM_SC_W4_CONFIRMATION:
4631             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4632                 sm_pdu_received_in_wrong_state(sm_conn);
4633                 break;
4634             }
4635             // received confirm value
4636             reverse_128(&packet[1], setup->sm_peer_confirm);
4637 
4638 #ifdef ENABLE_TESTING_SUPPORT
4639             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4640                 log_info("testing_support: reset confirm value");
4641                 memset(setup->sm_peer_confirm, 0, 16);
4642             }
4643 #endif
4644             if (IS_RESPONDER(sm_conn->sm_role)){
4645                 // responder
4646                 if (sm_passkey_used(setup->sm_stk_generation_method)){
4647                     if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4648                         // still waiting for passkey
4649                         sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4650                         break;
4651                     }
4652                 }
4653                 sm_sc_start_calculating_local_confirm(sm_conn);
4654             } else {
4655                 // initiator
4656                 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
4657                     btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4658                 } else {
4659                     sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
4660                 }
4661             }
4662             break;
4663 
4664         case SM_SC_W4_PAIRING_RANDOM:
4665             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4666                 sm_pdu_received_in_wrong_state(sm_conn);
4667                 break;
4668             }
4669 
4670             // received random value
4671             reverse_128(&packet[1], setup->sm_peer_nonce);
4672 
4673             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
4674             // only check for JUST WORK/NC in initiator role OR passkey entry
4675             log_info("SM_SC_W4_PAIRING_RANDOM, responder: %u, just works: %u, passkey used %u, passkey entry %u",
4676                      IS_RESPONDER(sm_conn->sm_role), sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method),
4677                      sm_passkey_used(setup->sm_stk_generation_method), sm_passkey_entry(setup->sm_stk_generation_method));
4678             if ( (!IS_RESPONDER(sm_conn->sm_role) && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method))
4679             ||   (sm_passkey_entry(setup->sm_stk_generation_method)) ) {
4680                  sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4681                  break;
4682             }
4683 
4684             // OOB
4685             if (setup->sm_stk_generation_method == OOB){
4686 
4687                 // setup local random, set to zero if remote did not receive our data
4688                 log_info("Received nonce, setup local random ra/rb for dhkey check");
4689                 if (IS_RESPONDER(sm_conn->sm_role)){
4690                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) == 0u){
4691                         log_info("Reset rb as A does not have OOB data");
4692                         memset(setup->sm_rb, 0, 16);
4693                     } else {
4694                         (void)memcpy(setup->sm_rb, sm_sc_oob_random, 16);
4695                         log_info("Use stored rb");
4696                         log_info_hexdump(setup->sm_rb, 16);
4697                     }
4698                 }  else {
4699                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres) == 0u){
4700                         log_info("Reset ra as B does not have OOB data");
4701                         memset(setup->sm_ra, 0, 16);
4702                     } else {
4703                         (void)memcpy(setup->sm_ra, sm_sc_oob_random, 16);
4704                         log_info("Use stored ra");
4705                         log_info_hexdump(setup->sm_ra, 16);
4706                     }
4707                 }
4708 
4709                 // validate confirm value if Cb = f4(PKb, Pkb, rb, 0) for OOB if data received
4710                 if (setup->sm_have_oob_data){
4711                      sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4712                      break;
4713                 }
4714             }
4715 
4716             // TODO: we only get here for Responder role with JW/NC
4717             sm_sc_state_after_receiving_random(sm_conn);
4718             break;
4719 
4720         case SM_SC_W2_CALCULATE_G2:
4721         case SM_SC_W4_CALCULATE_G2:
4722         case SM_SC_W4_CALCULATE_DHKEY:
4723         case SM_SC_W2_CALCULATE_F5_SALT:
4724         case SM_SC_W4_CALCULATE_F5_SALT:
4725         case SM_SC_W2_CALCULATE_F5_MACKEY:
4726         case SM_SC_W4_CALCULATE_F5_MACKEY:
4727         case SM_SC_W2_CALCULATE_F5_LTK:
4728         case SM_SC_W4_CALCULATE_F5_LTK:
4729         case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
4730         case SM_SC_W4_DHKEY_CHECK_COMMAND:
4731         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
4732         case SM_SC_W4_USER_RESPONSE:
4733             if (sm_pdu_code != SM_CODE_PAIRING_DHKEY_CHECK){
4734                 sm_pdu_received_in_wrong_state(sm_conn);
4735                 break;
4736             }
4737             // store DHKey Check
4738             setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED;
4739             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
4740 
4741             // have we been only waiting for dhkey check command?
4742             if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){
4743                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
4744             }
4745             break;
4746 #endif
4747 
4748 #ifdef ENABLE_LE_PERIPHERAL
4749         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
4750             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4751                 sm_pdu_received_in_wrong_state(sm_conn);
4752                 break;
4753             }
4754 
4755             // received confirm value
4756             reverse_128(&packet[1], setup->sm_peer_confirm);
4757 
4758 #ifdef ENABLE_TESTING_SUPPORT
4759             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4760                 log_info("testing_support: reset confirm value");
4761                 memset(setup->sm_peer_confirm, 0, 16);
4762             }
4763 #endif
4764             // notify client to hide shown passkey
4765             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
4766                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
4767             }
4768 
4769             // handle user cancel pairing?
4770             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
4771                 sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
4772                 break;
4773             }
4774 
4775             // wait for user action?
4776             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
4777                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4778                 break;
4779             }
4780 
4781             // calculate and send local_confirm
4782             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4783             break;
4784 
4785         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
4786             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4787                 sm_pdu_received_in_wrong_state(sm_conn);
4788                 break;;
4789             }
4790 
4791             // received random value
4792             reverse_128(&packet[1], setup->sm_peer_random);
4793             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4794             break;
4795 #endif
4796 
4797         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4798         case SM_PH3_RECEIVE_KEYS:
4799             switch(sm_pdu_code){
4800                 case SM_CODE_ENCRYPTION_INFORMATION:
4801                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
4802                     reverse_128(&packet[1], setup->sm_peer_ltk);
4803                     break;
4804 
4805                 case SM_CODE_MASTER_IDENTIFICATION:
4806                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
4807                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
4808                     reverse_64(&packet[3], setup->sm_peer_rand);
4809                     break;
4810 
4811                 case SM_CODE_IDENTITY_INFORMATION:
4812                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4813                     reverse_128(&packet[1], setup->sm_peer_irk);
4814                     break;
4815 
4816                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4817                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4818                     setup->sm_peer_addr_type = packet[1];
4819                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4820                     break;
4821 
4822                 case SM_CODE_SIGNING_INFORMATION:
4823                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4824                     reverse_128(&packet[1], setup->sm_peer_csrk);
4825                     break;
4826                 default:
4827                     // Unexpected PDU
4828                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4829                     break;
4830             }
4831             // done with key distribution?
4832             if (sm_key_distribution_all_received()){
4833 
4834                 sm_key_distribution_handle_all_received(sm_conn);
4835 
4836                 if (IS_RESPONDER(sm_conn->sm_role)){
4837                     sm_key_distribution_complete_responder(sm_conn);
4838                 } else {
4839                     if (setup->sm_use_secure_connections){
4840                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4841                     } else {
4842                         btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4843                     }
4844                 }
4845             }
4846             break;
4847 
4848 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4849 
4850         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4851             // GAP/DM/LEP/BI-02-C - reject CTKD if P-192 encryption is used
4852             if (sm_pdu_code == SM_CODE_PAIRING_REQUEST){
4853                 sm_pairing_error(sm_conn, SM_REASON_CROSS_TRANSPORT_KEY_DERIVATION_NOT_ALLOWED);
4854             }
4855             break;
4856 
4857         case SM_BR_EDR_INITIATOR_W4_PAIRING_RESPONSE:
4858 
4859             // dedicated bonding complete
4860             hci_dedicated_bonding_defer_disconnect(sm_conn->sm_handle, false);
4861 
4862             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
4863                 sm_pdu_received_in_wrong_state(sm_conn);
4864                 break;
4865             }
4866             // store pairing response
4867             (void)memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
4868 
4869             // validate encryption key size
4870             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_s_pres);
4871             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4872                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4873                 break;
4874             }
4875             sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(max_encryption_key_size);
4876             // SC Only mandates 128 bit key size
4877             if (sm_sc_only_mode && (sm_conn->sm_actual_encryption_key_size < 16)) {
4878                 sm_conn->sm_actual_encryption_key_size  = 0;
4879             }
4880             if (sm_conn->sm_actual_encryption_key_size == 0){
4881                 sm_pairing_error(sm_conn, SM_REASON_ENCRYPTION_KEY_SIZE);
4882                 break;
4883             }
4884 
4885             // prepare key exchange, LTK is derived locally
4886             sm_setup_key_distribution(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres) & ~SM_KEYDIST_ENC_KEY,
4887                                       sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres) & ~SM_KEYDIST_ENC_KEY);
4888 
4889             // skip receive if there are none
4890             if (sm_key_distribution_all_received()){
4891                 // distribute keys in run handles 'no keys to send'
4892                 sm_conn->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
4893             } else {
4894                 sm_conn->sm_engine_state = SM_BR_EDR_RECEIVE_KEYS;
4895             }
4896             break;
4897 
4898         case SM_BR_EDR_RESPONDER_W4_PAIRING_REQUEST:
4899             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
4900                 sm_pdu_received_in_wrong_state(sm_conn);
4901                 break;
4902             }
4903 
4904             // store pairing request
4905             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
4906 
4907             // validate encryption key size
4908             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(sm_conn->sm_m_preq);
4909             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4910                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4911                 break;
4912             }
4913             sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(max_encryption_key_size);
4914             // SC Only mandates 128 bit key size
4915             if (sm_sc_only_mode && (sm_conn->sm_actual_encryption_key_size < 16)) {
4916                 sm_conn->sm_actual_encryption_key_size  = 0;
4917             }
4918             if (sm_conn->sm_actual_encryption_key_size == 0){
4919                 sm_pairing_error(sm_conn, SM_REASON_ENCRYPTION_KEY_SIZE);
4920                 break;
4921             }
4922             // trigger response
4923             if (sm_ctkd_from_classic(sm_conn)){
4924                 sm_conn->sm_engine_state = SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED;
4925             } else {
4926                 sm_pairing_error(sm_conn, SM_REASON_CROSS_TRANSPORT_KEY_DERIVATION_NOT_ALLOWED);
4927             }
4928             break;
4929 
4930         case SM_BR_EDR_RECEIVE_KEYS:
4931             switch(sm_pdu_code){
4932                 case SM_CODE_IDENTITY_INFORMATION:
4933                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4934                     reverse_128(&packet[1], setup->sm_peer_irk);
4935                     break;
4936                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4937                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4938                     setup->sm_peer_addr_type = packet[1];
4939                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4940                     break;
4941                 case SM_CODE_SIGNING_INFORMATION:
4942                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4943                     reverse_128(&packet[1], setup->sm_peer_csrk);
4944                     break;
4945                 default:
4946                     // Unexpected PDU
4947                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4948                     break;
4949             }
4950 
4951             // all keys received
4952             if (sm_key_distribution_all_received()){
4953                 if (IS_RESPONDER(sm_conn->sm_role)){
4954                     // responder -> keys exchanged, derive LE LTK
4955                     sm_ctkd_start_from_br_edr(sm_conn);
4956                 } else {
4957                     // initiator -> send our keys if any
4958                     sm_conn->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
4959                 }
4960             }
4961             break;
4962 #endif
4963 
4964         default:
4965             // Unexpected PDU
4966             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
4967             sm_pdu_received_in_wrong_state(sm_conn);
4968             break;
4969     }
4970 
4971     // try to send next pdu
4972     sm_trigger_run();
4973 }
4974 
4975 // Security Manager Client API
4976 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_data)){
4977     sm_get_oob_data = get_oob_data_callback;
4978 }
4979 
4980 void sm_register_sc_oob_data_callback( int (*get_sc_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random)){
4981     sm_get_sc_oob_data = get_sc_oob_data_callback;
4982 }
4983 
4984 void sm_register_ltk_callback( bool (*get_ltk_callback)(hci_con_handle_t con_handle, uint8_t address_type, bd_addr_t addr, uint8_t * ltk)){
4985     sm_get_ltk_callback = get_ltk_callback;
4986 }
4987 
4988 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
4989     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
4990 }
4991 
4992 void sm_remove_event_handler(btstack_packet_callback_registration_t * callback_handler){
4993     btstack_linked_list_remove(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
4994 }
4995 
4996 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
4997     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
4998 }
4999 
5000 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
5001 	sm_min_encryption_key_size = min_size;
5002 	sm_max_encryption_key_size = max_size;
5003 }
5004 
5005 void sm_set_authentication_requirements(uint8_t auth_req){
5006 #ifndef ENABLE_LE_SECURE_CONNECTIONS
5007     if (auth_req & SM_AUTHREQ_SECURE_CONNECTION){
5008         log_error("ENABLE_LE_SECURE_CONNECTIONS not defined, but requested by app. Dropping SC flag");
5009         auth_req &= ~SM_AUTHREQ_SECURE_CONNECTION;
5010     }
5011 #endif
5012     sm_auth_req = auth_req;
5013 }
5014 
5015 void sm_set_io_capabilities(io_capability_t io_capability){
5016     sm_io_capabilities = io_capability;
5017 }
5018 
5019 #ifdef ENABLE_LE_PERIPHERAL
5020 void sm_set_request_security(bool enable){
5021     sm_slave_request_security = enable;
5022 }
5023 #endif
5024 
5025 void sm_set_er(sm_key_t er){
5026     (void)memcpy(sm_persistent_er, er, 16);
5027 }
5028 
5029 void sm_set_ir(sm_key_t ir){
5030     (void)memcpy(sm_persistent_ir, ir, 16);
5031 }
5032 
5033 // Testing support only
5034 void sm_test_set_irk(sm_key_t irk){
5035     (void)memcpy(sm_persistent_irk, irk, 16);
5036     dkg_state = DKG_CALC_DHK;
5037     test_use_fixed_local_irk = true;
5038 }
5039 
5040 void sm_test_use_fixed_local_csrk(void){
5041     test_use_fixed_local_csrk = true;
5042 }
5043 
5044 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5045 static void sm_ec_generated(void * arg){
5046     UNUSED(arg);
5047     ec_key_generation_state = EC_KEY_GENERATION_DONE;
5048     // trigger pairing if pending for ec key
5049     sm_trigger_run();
5050 }
5051 static void sm_ec_generate_new_key(void) {
5052     log_info("sm: generate new ec key");
5053 #ifdef ENABLE_LE_SECURE_CONNECTIONS_DEBUG_KEY
5054     // LE Secure Connections Debug Key
5055     const uint8_t debug_key_public[64] = {
5056         0x20, 0xb0, 0x03, 0xd2, 0xf2, 0x97, 0xbe, 0x2c, 0x5e, 0x2c, 0x83, 0xa7, 0xe9, 0xf9, 0xa5, 0xb9,
5057         0xef, 0xf4, 0x91, 0x11, 0xac, 0xf4, 0xfd, 0xdb, 0xcc, 0x03, 0x01, 0x48, 0x0e, 0x35, 0x9d, 0xe6,
5058         0xdc, 0x80, 0x9c, 0x49, 0x65, 0x2a, 0xeb, 0x6d, 0x63, 0x32, 0x9a, 0xbf, 0x5a, 0x52, 0x15, 0x5c,
5059         0x76, 0x63, 0x45, 0xc2, 0x8f, 0xed, 0x30, 0x24, 0x74, 0x1c, 0x8e, 0xd0, 0x15, 0x89, 0xd2, 0x8b
5060     };
5061     const uint8_t debug_key_private[32] = {
5062         0x3f, 0x49, 0xf6, 0xd4, 0xa3, 0xc5, 0x5f, 0x38, 0x74, 0xc9, 0xb3, 0xe3, 0xd2, 0x10, 0x3f, 0x50,
5063         0x4a, 0xff, 0x60, 0x7b, 0xeb, 0x40, 0xb7, 0x99, 0x58, 0x99, 0xb8, 0xa6, 0xcd, 0x3c, 0x1a, 0xbd
5064     };
5065     if (sm_sc_debug_keys_enabled) {
5066         memcpy(ec_q, debug_key_public, 64);
5067         btstack_crypto_ecc_p256_set_key(debug_key_public, debug_key_private);
5068         ec_key_generation_state = EC_KEY_GENERATION_DONE;
5069     } else
5070 #endif
5071     {
5072         ec_key_generation_state = EC_KEY_GENERATION_ACTIVE;
5073         btstack_crypto_ecc_p256_generate_key(&sm_crypto_ecc_p256_request, ec_q, &sm_ec_generated, NULL);
5074     }
5075 }
5076 #endif
5077 
5078 #ifdef ENABLE_TESTING_SUPPORT
5079 void sm_test_set_pairing_failure(int reason){
5080     test_pairing_failure = reason;
5081 }
5082 #endif
5083 
5084 static void sm_state_reset(void) {
5085 #ifdef USE_CMAC_ENGINE
5086     sm_cmac_active  = 0;
5087 #endif
5088     dkg_state = DKG_W4_WORKING;
5089     rau_state = RAU_IDLE;
5090     sm_aes128_state = SM_AES128_IDLE;
5091     sm_address_resolution_test = -1;    // no private address to resolve yet
5092     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
5093     sm_address_resolution_general_queue = NULL;
5094     sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
5095     sm_persistent_keys_random_active = false;
5096 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5097     ec_key_generation_state = EC_KEY_GENERATION_IDLE;
5098 #endif
5099 }
5100 
5101 void sm_init(void){
5102 
5103     if (sm_initialized) return;
5104 
5105     // set default ER and IR values (should be unique - set by app or sm later using TLV)
5106     sm_er_ir_set_default();
5107 
5108     // defaults
5109     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
5110                                        | SM_STK_GENERATION_METHOD_OOB
5111                                        | SM_STK_GENERATION_METHOD_PASSKEY
5112                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
5113 
5114     sm_max_encryption_key_size = 16;
5115     sm_min_encryption_key_size = 7;
5116 
5117     sm_fixed_passkey_in_display_role = 0xffffffffU;
5118     sm_reconstruct_ltk_without_le_device_db_entry = true;
5119 
5120     gap_random_adress_update_period = 15 * 60 * 1000L;
5121 
5122     test_use_fixed_local_csrk = false;
5123 
5124     // other
5125     btstack_run_loop_set_timer_handler(&sm_run_timer, &sm_run_timer_handler);
5126 
5127     // register for HCI Events
5128     hci_event_callback_registration.callback = &sm_event_packet_handler;
5129     hci_add_event_handler(&hci_event_callback_registration);
5130 
5131 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
5132     // register for L2CAP events
5133     l2cap_event_callback_registration.callback = &sm_event_packet_handler;
5134     l2cap_add_event_handler(&l2cap_event_callback_registration);
5135 #endif
5136 
5137     //
5138     btstack_crypto_init();
5139 
5140     // init le_device_db
5141     le_device_db_init();
5142 
5143     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
5144     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
5145 #ifdef ENABLE_CLASSIC
5146     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_BR_EDR_SECURITY_MANAGER);
5147 #endif
5148 
5149     // state
5150     sm_state_reset();
5151 
5152     sm_initialized = true;
5153 }
5154 
5155 void sm_deinit(void){
5156     sm_initialized = false;
5157     btstack_run_loop_remove_timer(&sm_run_timer);
5158 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined (ENABLE_LE_SECURE_CONNECTION_DEBUG_KEY)
5159     sm_sc_debug_keys_enabled = false;
5160 #endif
5161 }
5162 
5163 void sm_use_fixed_passkey_in_display_role(uint32_t passkey){
5164     sm_fixed_passkey_in_display_role = passkey;
5165 }
5166 
5167 void sm_allow_ltk_reconstruction_without_le_device_db_entry(int allow){
5168     sm_reconstruct_ltk_without_le_device_db_entry = allow != 0;
5169 }
5170 
5171 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
5172     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
5173     if (!hci_con) return NULL;
5174     return &hci_con->sm_connection;
5175 }
5176 
5177 static void sm_cache_ltk(sm_connection_t * connection, const sm_key_t ltk){
5178     hci_connection_t * hci_con = hci_connection_for_handle(connection->sm_handle);
5179     btstack_assert(hci_con != NULL);
5180     memcpy(hci_con->link_key, ltk, 16);
5181     hci_con->link_key_type = COMBINATION_KEY;
5182 }
5183 
5184 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
5185 static sm_connection_t * sm_get_connection_for_bd_addr_and_type(bd_addr_t address, bd_addr_type_t addr_type){
5186     hci_connection_t * hci_con = hci_connection_for_bd_addr_and_type(address, addr_type);
5187     if (!hci_con) return NULL;
5188     return &hci_con->sm_connection;
5189 }
5190 #endif
5191 
5192 // @deprecated: map onto sm_request_pairing
5193 void sm_send_security_request(hci_con_handle_t con_handle){
5194     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5195     if (!sm_conn) return;
5196     if (!IS_RESPONDER(sm_conn->sm_role)) return;
5197     sm_request_pairing(con_handle);
5198 }
5199 
5200 // request pairing
5201 void sm_request_pairing(hci_con_handle_t con_handle){
5202     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5203     if (!sm_conn) return;     // wrong connection
5204 
5205     bool have_ltk;
5206     uint8_t ltk[16];
5207     bool auth_required;
5208     int authenticated;
5209     bool trigger_reencryption;
5210     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
5211     if (IS_RESPONDER(sm_conn->sm_role)){
5212         switch (sm_conn->sm_engine_state){
5213             case SM_GENERAL_IDLE:
5214             case SM_RESPONDER_IDLE:
5215                 switch (sm_conn->sm_irk_lookup_state){
5216                     case IRK_LOOKUP_SUCCEEDED:
5217                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
5218                         have_ltk = !sm_is_null_key(ltk);
5219                         log_info("have ltk %u", have_ltk);
5220                         if (have_ltk){
5221                             sm_conn->sm_pairing_requested = true;
5222                             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
5223                             sm_reencryption_started(sm_conn);
5224                             break;
5225                         }
5226                         /* fall through */
5227 
5228                     case IRK_LOOKUP_FAILED:
5229                         sm_conn->sm_pairing_requested = true;
5230                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
5231                         sm_pairing_started(sm_conn);
5232                         break;
5233                     default:
5234                         log_info("irk lookup pending");
5235                         sm_conn->sm_pairing_requested = true;
5236                         break;
5237                 }
5238                 break;
5239             default:
5240                 break;
5241         }
5242     } else {
5243         // used as a trigger to start central/master/initiator security procedures
5244         switch (sm_conn->sm_engine_state){
5245             case SM_INITIATOR_CONNECTED:
5246                 switch (sm_conn->sm_irk_lookup_state){
5247                     case IRK_LOOKUP_SUCCEEDED:
5248                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, &authenticated, NULL, NULL);
5249                         have_ltk = !sm_is_null_key(ltk);
5250                         auth_required = sm_auth_req & SM_AUTHREQ_MITM_PROTECTION;
5251                         // re-encrypt is sufficient if we have ltk and that is either already authenticated or we don't require authentication
5252                         trigger_reencryption = have_ltk && ((authenticated != 0) || (auth_required == false));
5253                         log_info("have ltk %u, authenticated %u, auth required %u => reencrypt %u", have_ltk, authenticated, auth_required, trigger_reencryption);
5254                         if (trigger_reencryption){
5255                             sm_conn->sm_pairing_requested = true;
5256                             sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
5257                             break;
5258                         }
5259                         /* fall through */
5260 
5261                     case IRK_LOOKUP_FAILED:
5262                         sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
5263                         break;
5264                     default:
5265                         log_info("irk lookup pending");
5266                         sm_conn->sm_pairing_requested = true;
5267                         break;
5268                 }
5269                 break;
5270             case SM_GENERAL_REENCRYPTION_FAILED:
5271                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
5272                 break;
5273             case SM_GENERAL_IDLE:
5274                 sm_conn->sm_pairing_requested = true;
5275                 break;
5276             default:
5277                 break;
5278         }
5279     }
5280     sm_trigger_run();
5281 }
5282 
5283 // called by client app on authorization request
5284 void sm_authorization_decline(hci_con_handle_t con_handle){
5285     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5286     if (!sm_conn) return;     // wrong connection
5287     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
5288     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
5289 }
5290 
5291 void sm_authorization_grant(hci_con_handle_t con_handle){
5292     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5293     if (!sm_conn) return;     // wrong connection
5294     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
5295     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
5296 }
5297 
5298 // GAP Bonding API
5299 
5300 void sm_bonding_decline(hci_con_handle_t con_handle){
5301     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5302     if (!sm_conn) return;     // wrong connection
5303     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
5304     log_info("decline, state %u", sm_conn->sm_engine_state);
5305     switch(sm_conn->sm_engine_state){
5306 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5307         case SM_SC_W4_USER_RESPONSE:
5308         case SM_SC_W4_CONFIRMATION:
5309         case SM_SC_W4_PUBLIC_KEY_COMMAND:
5310 #endif
5311         case SM_PH1_W4_USER_RESPONSE:
5312             switch (setup->sm_stk_generation_method){
5313                 case PK_RESP_INPUT:
5314                 case PK_INIT_INPUT:
5315                 case PK_BOTH_INPUT:
5316                     sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
5317                     break;
5318                 case NUMERIC_COMPARISON:
5319                     sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
5320                     break;
5321                 case JUST_WORKS:
5322                 case OOB:
5323                     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
5324                     break;
5325                 default:
5326                     btstack_assert(false);
5327                     break;
5328             }
5329             break;
5330         default:
5331             break;
5332     }
5333     sm_trigger_run();
5334 }
5335 
5336 void sm_just_works_confirm(hci_con_handle_t con_handle){
5337     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5338     if (!sm_conn) return;     // wrong connection
5339     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
5340     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
5341         if (setup->sm_use_secure_connections){
5342             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
5343         } else {
5344             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
5345         }
5346     }
5347 
5348 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5349     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
5350         sm_sc_prepare_dhkey_check(sm_conn);
5351     }
5352 #endif
5353 
5354     sm_trigger_run();
5355 }
5356 
5357 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
5358     // for now, it's the same
5359     sm_just_works_confirm(con_handle);
5360 }
5361 
5362 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
5363     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5364     if (!sm_conn) return;     // wrong connection
5365     sm_reset_tk();
5366     big_endian_store_32(setup->sm_tk, 12, passkey);
5367     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
5368     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
5369         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
5370     }
5371 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5372     (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
5373     (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
5374     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
5375         sm_sc_start_calculating_local_confirm(sm_conn);
5376     }
5377 #endif
5378     sm_trigger_run();
5379 }
5380 
5381 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){
5382     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5383     if (!sm_conn) return;     // wrong connection
5384     if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return;
5385     uint8_t num_actions = setup->sm_keypress_notification >> 5;
5386     uint8_t flags = setup->sm_keypress_notification & 0x1fu;
5387     switch (action){
5388         case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
5389         case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
5390             flags |= (1u << action);
5391             break;
5392         case SM_KEYPRESS_PASSKEY_CLEARED:
5393             // clear counter, keypress & erased flags + set passkey cleared
5394             flags = (flags & 0x19u) | (1u << SM_KEYPRESS_PASSKEY_CLEARED);
5395             break;
5396         case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
5397             if ((flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED)) != 0u){
5398                 // erase actions queued
5399                 num_actions--;
5400                 if (num_actions == 0u){
5401                     // clear counter, keypress & erased flags
5402                     flags &= 0x19u;
5403                 }
5404                 break;
5405             }
5406             num_actions++;
5407             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED);
5408             break;
5409         case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
5410             if ((flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED)) != 0u){
5411                 // enter actions queued
5412                 num_actions--;
5413                 if (num_actions == 0u){
5414                     // clear counter, keypress & erased flags
5415                     flags &= 0x19u;
5416                 }
5417                 break;
5418             }
5419             num_actions++;
5420             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED);
5421             break;
5422         default:
5423             break;
5424     }
5425     setup->sm_keypress_notification = (num_actions << 5) | flags;
5426     sm_trigger_run();
5427 }
5428 
5429 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5430 static void sm_handle_random_result_oob(void * arg){
5431     UNUSED(arg);
5432     sm_sc_oob_state = SM_SC_OOB_W2_CALC_CONFIRM;
5433     sm_trigger_run();
5434 }
5435 uint8_t sm_generate_sc_oob_data(void (*callback)(const uint8_t * confirm_value, const uint8_t * random_value)){
5436 
5437     static btstack_crypto_random_t   sm_crypto_random_oob_request;
5438 
5439     if (sm_sc_oob_state != SM_SC_OOB_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
5440     sm_sc_oob_callback = callback;
5441     sm_sc_oob_state = SM_SC_OOB_W4_RANDOM;
5442     btstack_crypto_random_generate(&sm_crypto_random_oob_request, sm_sc_oob_random, 16, &sm_handle_random_result_oob, NULL);
5443     return 0;
5444 }
5445 #endif
5446 
5447 /**
5448  * @brief Get Identity Resolving state
5449  * @param con_handle
5450  * @return irk_lookup_state_t
5451  */
5452 irk_lookup_state_t sm_identity_resolving_state(hci_con_handle_t con_handle){
5453     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5454     if (!sm_conn) return IRK_LOOKUP_IDLE;
5455     return sm_conn->sm_irk_lookup_state;
5456 }
5457 
5458 /**
5459  * @brief Identify device in LE Device DB
5460  * @param handle
5461  * @return index from le_device_db or -1 if not found/identified
5462  */
5463 int sm_le_device_index(hci_con_handle_t con_handle ){
5464     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5465     if (!sm_conn) return -1;
5466     return sm_conn->sm_le_db_index;
5467 }
5468 
5469 uint8_t sm_get_ltk(hci_con_handle_t con_handle, sm_key_t ltk){
5470     hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
5471     if (hci_connection == NULL){
5472         return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
5473     }
5474     if (hci_connection->link_key_type == INVALID_LINK_KEY){
5475         return ERROR_CODE_PIN_OR_KEY_MISSING;
5476     }
5477     memcpy(ltk, hci_connection->link_key, 16);
5478     return ERROR_CODE_SUCCESS;
5479 }
5480 
5481 static int gap_random_address_type_requires_updates(void){
5482     switch (gap_random_adress_type){
5483         case GAP_RANDOM_ADDRESS_TYPE_OFF:
5484         case GAP_RANDOM_ADDRESS_TYPE_STATIC:
5485             return 0;
5486         default:
5487             return 1;
5488     }
5489 }
5490 
5491 static uint8_t own_address_type(void){
5492     switch (gap_random_adress_type){
5493         case GAP_RANDOM_ADDRESS_TYPE_OFF:
5494             return BD_ADDR_TYPE_LE_PUBLIC;
5495         default:
5496             return BD_ADDR_TYPE_LE_RANDOM;
5497     }
5498 }
5499 
5500 // GAP LE API
5501 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
5502     gap_random_address_update_stop();
5503     gap_random_adress_type = random_address_type;
5504     hci_le_set_own_address_type(own_address_type());
5505     if (!gap_random_address_type_requires_updates()) return;
5506     gap_random_address_update_start();
5507     gap_random_address_trigger();
5508 }
5509 
5510 gap_random_address_type_t gap_random_address_get_mode(void){
5511     return gap_random_adress_type;
5512 }
5513 
5514 void gap_random_address_set_update_period(int period_ms){
5515     gap_random_adress_update_period = period_ms;
5516     if (!gap_random_address_type_requires_updates()) return;
5517     gap_random_address_update_stop();
5518     gap_random_address_update_start();
5519 }
5520 
5521 void gap_random_address_set(const bd_addr_t addr){
5522     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC);
5523     (void)memcpy(sm_random_address, addr, 6);
5524     // assert msb bits are set to '11'
5525     sm_random_address[0] |= 0xc0;
5526     hci_le_random_address_set(sm_random_address);
5527 }
5528 
5529 #ifdef ENABLE_LE_PERIPHERAL
5530 /*
5531  * @brief Set Advertisement Paramters
5532  * @param adv_int_min
5533  * @param adv_int_max
5534  * @param adv_type
5535  * @param direct_address_type
5536  * @param direct_address
5537  * @param channel_map
5538  * @param filter_policy
5539  *
5540  * @note own_address_type is used from gap_random_address_set_mode
5541  */
5542 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
5543     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
5544     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type,
5545         direct_address_typ, direct_address, channel_map, filter_policy);
5546 }
5547 #endif
5548 
5549 bool gap_reconnect_security_setup_active(hci_con_handle_t con_handle){
5550     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5551      // wrong connection
5552     if (!sm_conn) return false;
5553     // already encrypted
5554     if (sm_conn->sm_connection_encrypted) return false;
5555     // irk status?
5556     switch(sm_conn->sm_irk_lookup_state){
5557         case IRK_LOOKUP_FAILED:
5558             // done, cannot setup encryption
5559             return false;
5560         case IRK_LOOKUP_SUCCEEDED:
5561             break;
5562         default:
5563             // IR Lookup pending
5564             return true;
5565     }
5566     // IRK Lookup Succeeded, re-encryption should be initiated. When done, state gets reset or indicates failure
5567     if (sm_conn->sm_engine_state == SM_GENERAL_REENCRYPTION_FAILED) return false;
5568     if (sm_conn->sm_role != 0){
5569         return sm_conn->sm_engine_state != SM_RESPONDER_IDLE;
5570     } else {
5571         return sm_conn->sm_engine_state != SM_INITIATOR_CONNECTED;
5572     }
5573 }
5574 
5575 void sm_set_secure_connections_only_mode(bool enable){
5576 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5577     sm_sc_only_mode = enable;
5578 #else
5579     // SC Only mode not possible without support for SC
5580     btstack_assert(enable == false);
5581 #endif
5582 }
5583 
5584 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined (ENABLE_LE_SECURE_CONNECTION_DEBUG_KEY)
5585 void sm_test_enable_secure_connections_debug_keys(void) {
5586     log_info("Enable LE Secure Connection Debug Keys for testing");
5587     sm_sc_debug_keys_enabled = true;
5588     // set debug key
5589     sm_ec_generate_new_key();
5590 }
5591 #endif
5592 
5593 const uint8_t * gap_get_persistent_irk(void){
5594     return sm_persistent_irk;
5595 }
5596 
5597 void gap_delete_bonding(bd_addr_type_t address_type, bd_addr_t address){
5598     int index = sm_le_device_db_index_lookup(address_type, address);
5599     if (index >= 0){
5600         sm_remove_le_device_db_entry(index);
5601     }
5602 }
5603