1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define __BTSTACK_FILE__ "sm.c" 39 40 #include <stdio.h> 41 #include <string.h> 42 #include <inttypes.h> 43 44 #include "ble/le_device_db.h" 45 #include "ble/core.h" 46 #include "ble/sm.h" 47 #include "bluetooth_company_id.h" 48 #include "btstack_debug.h" 49 #include "btstack_event.h" 50 #include "btstack_linked_list.h" 51 #include "btstack_memory.h" 52 #include "gap.h" 53 #include "hci.h" 54 #include "hci_dump.h" 55 #include "l2cap.h" 56 57 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL) 58 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h." 59 #endif 60 61 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL) 62 #define IS_RESPONDER(role) (role) 63 #else 64 #ifdef ENABLE_LE_CENTRAL 65 // only central - never responder (avoid 'unused variable' warnings) 66 #define IS_RESPONDER(role) (0 && role) 67 #else 68 // only peripheral - always responder (avoid 'unused variable' warnings) 69 #define IS_RESPONDER(role) (1 || role) 70 #endif 71 #endif 72 73 #ifdef ENABLE_LE_SECURE_CONNECTIONS 74 // assert SM Public Key can be sent/received 75 #if HCI_ACL_PAYLOAD_SIZE < 69 76 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS" 77 #endif 78 79 // configure ECC implementations 80 #ifdef ENABLE_LE_SECURE_CONNECTIONS 81 #if defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) && defined(HAVE_MBEDTLS_ECC_P256) 82 #error "If you already have mbedTLS (HAVE_MBEDTLS_ECC_P256), please disable uECC (USE_MICRO_ECC_FOR_ECDH) in bstack_config.h" 83 #endif 84 #ifdef ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS 85 #define USE_SOFTWARE_ECDH_IMPLEMENTATION 86 #define USE_MICRO_ECC_FOR_ECDH 87 #endif 88 #ifdef HAVE_MBEDTLS_ECC_P256 89 #define USE_SOFTWARE_ECDH_IMPLEMENTATION 90 #define USE_MBEDTLS_FOR_ECDH 91 #endif 92 #endif /* ENABLE_LE_SECURE_CONNECTIONS */ 93 94 // Software ECDH implementation provided by micro-ecc 95 #ifdef USE_MICRO_ECC_FOR_ECDH 96 #include "uECC.h" 97 #endif 98 #endif 99 100 // Software ECDH implementation provided by mbedTLS 101 #ifdef USE_MBEDTLS_FOR_ECDH 102 #include "mbedtls/config.h" 103 #include "mbedtls/platform.h" 104 #include "mbedtls/ecp.h" 105 #endif 106 107 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS) 108 #define ENABLE_CMAC_ENGINE 109 #endif 110 111 // 112 // SM internal types and globals 113 // 114 115 typedef enum { 116 DKG_W4_WORKING, 117 DKG_CALC_IRK, 118 DKG_W4_IRK, 119 DKG_CALC_DHK, 120 DKG_W4_DHK, 121 DKG_READY 122 } derived_key_generation_t; 123 124 typedef enum { 125 RAU_W4_WORKING, 126 RAU_IDLE, 127 RAU_GET_RANDOM, 128 RAU_W4_RANDOM, 129 RAU_GET_ENC, 130 RAU_W4_ENC, 131 RAU_SET_ADDRESS, 132 } random_address_update_t; 133 134 typedef enum { 135 CMAC_IDLE, 136 CMAC_CALC_SUBKEYS, 137 CMAC_W4_SUBKEYS, 138 CMAC_CALC_MI, 139 CMAC_W4_MI, 140 CMAC_CALC_MLAST, 141 CMAC_W4_MLAST 142 } cmac_state_t; 143 144 typedef enum { 145 JUST_WORKS, 146 PK_RESP_INPUT, // Initiator displays PK, responder inputs PK 147 PK_INIT_INPUT, // Responder displays PK, initiator inputs PK 148 OK_BOTH_INPUT, // Only input on both, both input PK 149 NK_BOTH_INPUT, // Only numerical compparison (yes/no) on on both sides 150 OOB // OOB available on both sides 151 } stk_generation_method_t; 152 153 typedef enum { 154 SM_USER_RESPONSE_IDLE, 155 SM_USER_RESPONSE_PENDING, 156 SM_USER_RESPONSE_CONFIRM, 157 SM_USER_RESPONSE_PASSKEY, 158 SM_USER_RESPONSE_DECLINE 159 } sm_user_response_t; 160 161 typedef enum { 162 SM_AES128_IDLE, 163 SM_AES128_ACTIVE 164 } sm_aes128_state_t; 165 166 typedef enum { 167 ADDRESS_RESOLUTION_IDLE, 168 ADDRESS_RESOLUTION_GENERAL, 169 ADDRESS_RESOLUTION_FOR_CONNECTION, 170 } address_resolution_mode_t; 171 172 typedef enum { 173 ADDRESS_RESOLUTION_SUCEEDED, 174 ADDRESS_RESOLUTION_FAILED, 175 } address_resolution_event_t; 176 177 typedef enum { 178 EC_KEY_GENERATION_IDLE, 179 EC_KEY_GENERATION_ACTIVE, 180 EC_KEY_GENERATION_W4_KEY, 181 EC_KEY_GENERATION_DONE, 182 } ec_key_generation_state_t; 183 184 typedef enum { 185 SM_STATE_VAR_DHKEY_NEEDED = 1 << 0, 186 SM_STATE_VAR_DHKEY_CALCULATED = 1 << 1, 187 SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 2, 188 } sm_state_var_t; 189 190 typedef enum { 191 SM_SC_OOB_IDLE, 192 SM_SC_OOB_W2_GET_RANDOM_1, 193 SM_SC_OOB_W4_RANDOM_1, 194 SM_SC_OOB_W2_GET_RANDOM_2, 195 SM_SC_OOB_W4_RANDOM_2, 196 SM_SC_OOB_W2_CALC_CONFIRM, 197 SM_SC_OOB_W4_CONFIRM, 198 } sm_sc_oob_state_t; 199 200 typedef uint8_t sm_key24_t[3]; 201 typedef uint8_t sm_key56_t[7]; 202 typedef uint8_t sm_key256_t[32]; 203 204 // 205 // GLOBAL DATA 206 // 207 208 static uint8_t test_use_fixed_local_csrk; 209 210 #ifdef ENABLE_TESTING_SUPPORT 211 static uint8_t test_pairing_failure; 212 #endif 213 214 // configuration 215 static uint8_t sm_accepted_stk_generation_methods; 216 static uint8_t sm_max_encryption_key_size; 217 static uint8_t sm_min_encryption_key_size; 218 static uint8_t sm_auth_req = 0; 219 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT; 220 static uint8_t sm_slave_request_security; 221 static uint32_t sm_fixed_passkey_in_display_role; 222 static uint8_t sm_reconstruct_ltk_without_le_device_db_entry; 223 #ifdef ENABLE_LE_SECURE_CONNECTIONS 224 static uint8_t sm_have_ec_keypair; 225 #endif 226 227 #ifdef ENABLE_LE_SECURE_CONNECTIONS 228 static uint8_t sm_sc_oob_random[16]; 229 static void (*sm_sc_oob_callback)(const uint8_t * confirm_value, const uint8_t * random_value); 230 static sm_sc_oob_state_t sm_sc_oob_state; 231 #endif 232 233 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values 234 static sm_key_t sm_persistent_er; 235 static sm_key_t sm_persistent_ir; 236 237 // derived from sm_persistent_ir 238 static sm_key_t sm_persistent_dhk; 239 static sm_key_t sm_persistent_irk; 240 static uint8_t sm_persistent_irk_ready = 0; // used for testing 241 static derived_key_generation_t dkg_state; 242 243 // derived from sm_persistent_er 244 // .. 245 246 // random address update 247 static random_address_update_t rau_state; 248 static bd_addr_t sm_random_address; 249 250 // CMAC Calculation: General 251 #ifdef ENABLE_CMAC_ENGINE 252 static cmac_state_t sm_cmac_state; 253 static uint16_t sm_cmac_message_len; 254 static sm_key_t sm_cmac_k; 255 static sm_key_t sm_cmac_x; 256 static sm_key_t sm_cmac_m_last; 257 static uint8_t sm_cmac_block_current; 258 static uint8_t sm_cmac_block_count; 259 static uint8_t (*sm_cmac_get_byte)(uint16_t offset); 260 static void (*sm_cmac_done_handler)(uint8_t * hash); 261 #endif 262 263 // CMAC for ATT Signed Writes 264 #ifdef ENABLE_LE_SIGNED_WRITE 265 static uint8_t sm_cmac_header[3]; 266 static const uint8_t * sm_cmac_message; 267 static uint8_t sm_cmac_sign_counter[4]; 268 #endif 269 270 // CMAC for Secure Connection functions 271 #ifdef ENABLE_LE_SECURE_CONNECTIONS 272 static sm_connection_t * sm_cmac_connection; 273 static uint8_t sm_cmac_sc_buffer[80]; 274 #endif 275 276 // resolvable private address lookup / CSRK calculation 277 static int sm_address_resolution_test; 278 static int sm_address_resolution_ah_calculation_active; 279 static uint8_t sm_address_resolution_addr_type; 280 static bd_addr_t sm_address_resolution_address; 281 static void * sm_address_resolution_context; 282 static address_resolution_mode_t sm_address_resolution_mode; 283 static btstack_linked_list_t sm_address_resolution_general_queue; 284 285 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context 286 static sm_aes128_state_t sm_aes128_state; 287 static void * sm_aes128_context; 288 289 // use aes128 provided by MCU - not needed usually 290 #ifdef HAVE_AES128 291 static uint8_t aes128_result_flipped[16]; 292 static btstack_timer_source_t aes128_timer; 293 void btstack_aes128_calc(uint8_t * key, uint8_t * plaintext, uint8_t * result); 294 #endif 295 296 // random engine. store context (ususally sm_connection_t) 297 static void * sm_random_context; 298 299 // to receive hci events 300 static btstack_packet_callback_registration_t hci_event_callback_registration; 301 302 /* to dispatch sm event */ 303 static btstack_linked_list_t sm_event_handlers; 304 305 // LE Secure Connections 306 #ifdef ENABLE_LE_SECURE_CONNECTIONS 307 static ec_key_generation_state_t ec_key_generation_state; 308 static uint8_t ec_d[32]; 309 static uint8_t ec_q[64]; 310 #endif 311 312 // Software ECDH implementation provided by mbedtls 313 #ifdef USE_MBEDTLS_FOR_ECDH 314 static mbedtls_ecp_group mbedtls_ec_group; 315 #endif 316 317 // 318 // Volume 3, Part H, Chapter 24 319 // "Security shall be initiated by the Security Manager in the device in the master role. 320 // The device in the slave role shall be the responding device." 321 // -> master := initiator, slave := responder 322 // 323 324 // data needed for security setup 325 typedef struct sm_setup_context { 326 327 btstack_timer_source_t sm_timeout; 328 329 // used in all phases 330 uint8_t sm_pairing_failed_reason; 331 332 // user response, (Phase 1 and/or 2) 333 uint8_t sm_user_response; 334 uint8_t sm_keypress_notification; // bitmap: passkey started, digit entered, digit erased, passkey cleared, passkey complete, 3 bit count 335 336 // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3 337 int sm_key_distribution_send_set; 338 int sm_key_distribution_received_set; 339 340 // Phase 2 (Pairing over SMP) 341 stk_generation_method_t sm_stk_generation_method; 342 sm_key_t sm_tk; 343 uint8_t sm_have_oob_data; 344 uint8_t sm_use_secure_connections; 345 346 sm_key_t sm_c1_t3_value; // c1 calculation 347 sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1 348 sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1 349 sm_key_t sm_local_random; 350 sm_key_t sm_local_confirm; 351 sm_key_t sm_peer_random; 352 sm_key_t sm_peer_confirm; 353 uint8_t sm_m_addr_type; // address and type can be removed 354 uint8_t sm_s_addr_type; // '' 355 bd_addr_t sm_m_address; // '' 356 bd_addr_t sm_s_address; // '' 357 sm_key_t sm_ltk; 358 359 uint8_t sm_state_vars; 360 #ifdef ENABLE_LE_SECURE_CONNECTIONS 361 uint8_t sm_peer_q[64]; // also stores random for EC key generation during init 362 sm_key_t sm_peer_nonce; // might be combined with sm_peer_random 363 sm_key_t sm_local_nonce; // might be combined with sm_local_random 364 sm_key_t sm_dhkey; 365 sm_key_t sm_peer_dhkey_check; 366 sm_key_t sm_local_dhkey_check; 367 sm_key_t sm_ra; 368 sm_key_t sm_rb; 369 sm_key_t sm_t; // used for f5 and h6 370 sm_key_t sm_mackey; 371 uint8_t sm_passkey_bit; // also stores number of generated random bytes for EC key generation 372 #endif 373 374 // Phase 3 375 376 // key distribution, we generate 377 uint16_t sm_local_y; 378 uint16_t sm_local_div; 379 uint16_t sm_local_ediv; 380 uint8_t sm_local_rand[8]; 381 sm_key_t sm_local_ltk; 382 sm_key_t sm_local_csrk; 383 sm_key_t sm_local_irk; 384 // sm_local_address/addr_type not needed 385 386 // key distribution, received from peer 387 uint16_t sm_peer_y; 388 uint16_t sm_peer_div; 389 uint16_t sm_peer_ediv; 390 uint8_t sm_peer_rand[8]; 391 sm_key_t sm_peer_ltk; 392 sm_key_t sm_peer_irk; 393 sm_key_t sm_peer_csrk; 394 uint8_t sm_peer_addr_type; 395 bd_addr_t sm_peer_address; 396 397 } sm_setup_context_t; 398 399 // 400 static sm_setup_context_t the_setup; 401 static sm_setup_context_t * setup = &the_setup; 402 403 // active connection - the one for which the_setup is used for 404 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 405 406 // @returns 1 if oob data is available 407 // stores oob data in provided 16 byte buffer if not null 408 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL; 409 static int (*sm_get_sc_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random); 410 411 // horizontal: initiator capabilities 412 // vertial: responder capabilities 413 static const stk_generation_method_t stk_generation_method [5] [5] = { 414 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 415 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 416 { PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT }, 417 { JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS }, 418 { PK_RESP_INPUT, PK_RESP_INPUT, PK_INIT_INPUT, JUST_WORKS, PK_RESP_INPUT }, 419 }; 420 421 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations 422 #ifdef ENABLE_LE_SECURE_CONNECTIONS 423 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = { 424 { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, 425 { JUST_WORKS, NK_BOTH_INPUT, PK_INIT_INPUT, JUST_WORKS, NK_BOTH_INPUT }, 426 { PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT }, 427 { JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS }, 428 { PK_RESP_INPUT, NK_BOTH_INPUT, PK_INIT_INPUT, JUST_WORKS, NK_BOTH_INPUT }, 429 }; 430 #endif 431 432 static void sm_run(void); 433 static void sm_done_for_handle(hci_con_handle_t con_handle); 434 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle); 435 static inline int sm_calc_actual_encryption_key_size(int other); 436 static int sm_validate_stk_generation_method(void); 437 static void sm_handle_encryption_result(uint8_t * data); 438 static void sm_notify_client_status_reason(sm_connection_t * sm_conn, uint8_t status, uint8_t reason); 439 #ifdef ENABLE_LE_SECURE_CONNECTIONS 440 static int sm_passkey_entry(stk_generation_method_t method); 441 #endif 442 443 static void log_info_hex16(const char * name, uint16_t value){ 444 log_info("%-6s 0x%04x", name, value); 445 } 446 447 // static inline uint8_t sm_pairing_packet_get_code(sm_pairing_packet_t packet){ 448 // return packet[0]; 449 // } 450 static inline uint8_t sm_pairing_packet_get_io_capability(sm_pairing_packet_t packet){ 451 return packet[1]; 452 } 453 static inline uint8_t sm_pairing_packet_get_oob_data_flag(sm_pairing_packet_t packet){ 454 return packet[2]; 455 } 456 static inline uint8_t sm_pairing_packet_get_auth_req(sm_pairing_packet_t packet){ 457 return packet[3]; 458 } 459 static inline uint8_t sm_pairing_packet_get_max_encryption_key_size(sm_pairing_packet_t packet){ 460 return packet[4]; 461 } 462 static inline uint8_t sm_pairing_packet_get_initiator_key_distribution(sm_pairing_packet_t packet){ 463 return packet[5]; 464 } 465 static inline uint8_t sm_pairing_packet_get_responder_key_distribution(sm_pairing_packet_t packet){ 466 return packet[6]; 467 } 468 469 static inline void sm_pairing_packet_set_code(sm_pairing_packet_t packet, uint8_t code){ 470 packet[0] = code; 471 } 472 static inline void sm_pairing_packet_set_io_capability(sm_pairing_packet_t packet, uint8_t io_capability){ 473 packet[1] = io_capability; 474 } 475 static inline void sm_pairing_packet_set_oob_data_flag(sm_pairing_packet_t packet, uint8_t oob_data_flag){ 476 packet[2] = oob_data_flag; 477 } 478 static inline void sm_pairing_packet_set_auth_req(sm_pairing_packet_t packet, uint8_t auth_req){ 479 packet[3] = auth_req; 480 } 481 static inline void sm_pairing_packet_set_max_encryption_key_size(sm_pairing_packet_t packet, uint8_t max_encryption_key_size){ 482 packet[4] = max_encryption_key_size; 483 } 484 static inline void sm_pairing_packet_set_initiator_key_distribution(sm_pairing_packet_t packet, uint8_t initiator_key_distribution){ 485 packet[5] = initiator_key_distribution; 486 } 487 static inline void sm_pairing_packet_set_responder_key_distribution(sm_pairing_packet_t packet, uint8_t responder_key_distribution){ 488 packet[6] = responder_key_distribution; 489 } 490 491 // @returns 1 if all bytes are 0 492 static int sm_is_null(uint8_t * data, int size){ 493 int i; 494 for (i=0; i < size ; i++){ 495 if (data[i]) return 0; 496 } 497 return 1; 498 } 499 500 static int sm_is_null_random(uint8_t random[8]){ 501 return sm_is_null(random, 8); 502 } 503 504 static int sm_is_null_key(uint8_t * key){ 505 return sm_is_null(key, 16); 506 } 507 508 // Key utils 509 static void sm_reset_tk(void){ 510 int i; 511 for (i=0;i<16;i++){ 512 setup->sm_tk[i] = 0; 513 } 514 } 515 516 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0 517 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0."" 518 static void sm_truncate_key(sm_key_t key, int max_encryption_size){ 519 int i; 520 for (i = max_encryption_size ; i < 16 ; i++){ 521 key[15-i] = 0; 522 } 523 } 524 525 // SMP Timeout implementation 526 527 // Upon transmission of the Pairing Request command or reception of the Pairing Request command, 528 // the Security Manager Timer shall be reset and started. 529 // 530 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission. 531 // 532 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed, 533 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP 534 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been 535 // established. 536 537 static void sm_timeout_handler(btstack_timer_source_t * timer){ 538 log_info("SM timeout"); 539 sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer); 540 sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT; 541 sm_notify_client_status_reason(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT, 0); 542 sm_done_for_handle(sm_conn->sm_handle); 543 544 // trigger handling of next ready connection 545 sm_run(); 546 } 547 static void sm_timeout_start(sm_connection_t * sm_conn){ 548 btstack_run_loop_remove_timer(&setup->sm_timeout); 549 btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn); 550 btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler); 551 btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout 552 btstack_run_loop_add_timer(&setup->sm_timeout); 553 } 554 static void sm_timeout_stop(void){ 555 btstack_run_loop_remove_timer(&setup->sm_timeout); 556 } 557 static void sm_timeout_reset(sm_connection_t * sm_conn){ 558 sm_timeout_stop(); 559 sm_timeout_start(sm_conn); 560 } 561 562 // end of sm timeout 563 564 // GAP Random Address updates 565 static gap_random_address_type_t gap_random_adress_type; 566 static btstack_timer_source_t gap_random_address_update_timer; 567 static uint32_t gap_random_adress_update_period; 568 569 static void gap_random_address_trigger(void){ 570 if (rau_state != RAU_IDLE) return; 571 log_info("gap_random_address_trigger"); 572 rau_state = RAU_GET_RANDOM; 573 sm_run(); 574 } 575 576 static void gap_random_address_update_handler(btstack_timer_source_t * timer){ 577 UNUSED(timer); 578 579 log_info("GAP Random Address Update due"); 580 btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period); 581 btstack_run_loop_add_timer(&gap_random_address_update_timer); 582 gap_random_address_trigger(); 583 } 584 585 static void gap_random_address_update_start(void){ 586 btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler); 587 btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period); 588 btstack_run_loop_add_timer(&gap_random_address_update_timer); 589 } 590 591 static void gap_random_address_update_stop(void){ 592 btstack_run_loop_remove_timer(&gap_random_address_update_timer); 593 } 594 595 596 static void sm_random_start(void * context){ 597 sm_random_context = context; 598 hci_send_cmd(&hci_le_rand); 599 } 600 601 #ifdef HAVE_AES128 602 static void aes128_completed(btstack_timer_source_t * ts){ 603 UNUSED(ts); 604 sm_handle_encryption_result(&aes128_result_flipped[0]); 605 sm_run(); 606 } 607 #endif 608 609 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1 610 // context is made availabe to aes128 result handler by this 611 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){ 612 sm_aes128_state = SM_AES128_ACTIVE; 613 sm_aes128_context = context; 614 615 #ifdef HAVE_AES128 616 // calc result directly 617 sm_key_t result; 618 btstack_aes128_calc(key, plaintext, result); 619 620 // log 621 log_info_key("key", key); 622 log_info_key("txt", plaintext); 623 log_info_key("res", result); 624 625 // flip 626 reverse_128(&result[0], &aes128_result_flipped[0]); 627 628 // deliver via timer 629 btstack_run_loop_set_timer_handler(&aes128_timer, &aes128_completed); 630 btstack_run_loop_set_timer(&aes128_timer, 0); // no delay 631 btstack_run_loop_add_timer(&aes128_timer); 632 #else 633 sm_key_t key_flipped, plaintext_flipped; 634 reverse_128(key, key_flipped); 635 reverse_128(plaintext, plaintext_flipped); 636 hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped); 637 #endif 638 } 639 640 // ah(k,r) helper 641 // r = padding || r 642 // r - 24 bit value 643 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){ 644 // r'= padding || r 645 memset(r_prime, 0, 16); 646 memcpy(&r_prime[13], r, 3); 647 } 648 649 // d1 helper 650 // d' = padding || r || d 651 // d,r - 16 bit values 652 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){ 653 // d'= padding || r || d 654 memset(d1_prime, 0, 16); 655 big_endian_store_16(d1_prime, 12, r); 656 big_endian_store_16(d1_prime, 14, d); 657 } 658 659 // dm helper 660 // r’ = padding || r 661 // r - 64 bit value 662 static void sm_dm_r_prime(uint8_t r[8], uint8_t * r_prime){ 663 memset(r_prime, 0, 16); 664 memcpy(&r_prime[8], r, 8); 665 } 666 667 // calculate arguments for first AES128 operation in C1 function 668 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){ 669 670 // p1 = pres || preq || rat’ || iat’ 671 // "The octet of iat’ becomes the least significant octet of p1 and the most signifi- 672 // cant octet of pres becomes the most significant octet of p1. 673 // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq 674 // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then 675 // p1 is 0x05000800000302070710000001010001." 676 677 sm_key_t p1; 678 reverse_56(pres, &p1[0]); 679 reverse_56(preq, &p1[7]); 680 p1[14] = rat; 681 p1[15] = iat; 682 log_info_key("p1", p1); 683 log_info_key("r", r); 684 685 // t1 = r xor p1 686 int i; 687 for (i=0;i<16;i++){ 688 t1[i] = r[i] ^ p1[i]; 689 } 690 log_info_key("t1", t1); 691 } 692 693 // calculate arguments for second AES128 operation in C1 function 694 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){ 695 // p2 = padding || ia || ra 696 // "The least significant octet of ra becomes the least significant octet of p2 and 697 // the most significant octet of padding becomes the most significant octet of p2. 698 // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is 699 // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6. 700 701 sm_key_t p2; 702 memset(p2, 0, 16); 703 memcpy(&p2[4], ia, 6); 704 memcpy(&p2[10], ra, 6); 705 log_info_key("p2", p2); 706 707 // c1 = e(k, t2_xor_p2) 708 int i; 709 for (i=0;i<16;i++){ 710 t3[i] = t2[i] ^ p2[i]; 711 } 712 log_info_key("t3", t3); 713 } 714 715 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){ 716 log_info_key("r1", r1); 717 log_info_key("r2", r2); 718 memcpy(&r_prime[8], &r2[8], 8); 719 memcpy(&r_prime[0], &r1[8], 8); 720 } 721 722 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){ 723 UNUSED(channel); 724 725 // log event 726 hci_dump_packet(packet_type, 1, packet, size); 727 // dispatch to all event handlers 728 btstack_linked_list_iterator_t it; 729 btstack_linked_list_iterator_init(&it, &sm_event_handlers); 730 while (btstack_linked_list_iterator_has_next(&it)){ 731 btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it); 732 entry->callback(packet_type, 0, packet, size); 733 } 734 } 735 736 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){ 737 event[0] = type; 738 event[1] = event_size - 2; 739 little_endian_store_16(event, 2, con_handle); 740 event[4] = addr_type; 741 reverse_bd_addr(address, &event[5]); 742 } 743 744 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){ 745 uint8_t event[11]; 746 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 747 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 748 } 749 750 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){ 751 uint8_t event[15]; 752 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 753 little_endian_store_32(event, 11, passkey); 754 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 755 } 756 757 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){ 758 // fetch addr and addr type from db 759 bd_addr_t identity_address; 760 int identity_address_type; 761 le_device_db_info(index, &identity_address_type, identity_address, NULL); 762 763 uint8_t event[19]; 764 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 765 event[11] = identity_address_type; 766 reverse_bd_addr(identity_address, &event[12]); 767 event[18] = index; 768 sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event)); 769 } 770 771 static void sm_notify_client_status(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t status){ 772 uint8_t event[12]; 773 sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address); 774 event[11] = status; 775 sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event)); 776 } 777 778 static void sm_notify_client_status_reason(sm_connection_t * sm_conn, uint8_t status, uint8_t reason){ 779 uint8_t event[13]; 780 sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_COMPLETE, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address); 781 event[11] = status; 782 event[12] = reason; 783 sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event)); 784 } 785 786 // decide on stk generation based on 787 // - pairing request 788 // - io capabilities 789 // - OOB data availability 790 static void sm_setup_tk(void){ 791 792 // default: just works 793 setup->sm_stk_generation_method = JUST_WORKS; 794 795 #ifdef ENABLE_LE_SECURE_CONNECTIONS 796 setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq) 797 & sm_pairing_packet_get_auth_req(setup->sm_s_pres) 798 & SM_AUTHREQ_SECURE_CONNECTION ) != 0; 799 #else 800 setup->sm_use_secure_connections = 0; 801 #endif 802 log_info("Secure pairing: %u", setup->sm_use_secure_connections); 803 804 805 // decide if OOB will be used based on SC vs. Legacy and oob flags 806 int use_oob = 0; 807 if (setup->sm_use_secure_connections){ 808 // In LE Secure Connections pairing, the out of band method is used if at least 809 // one device has the peer device's out of band authentication data available. 810 use_oob = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) | sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres); 811 } else { 812 // In LE legacy pairing, the out of band method is used if both the devices have 813 // the other device's out of band authentication data available. 814 use_oob = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) & sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres); 815 } 816 if (use_oob){ 817 log_info("SM: have OOB data"); 818 log_info_key("OOB", setup->sm_tk); 819 setup->sm_stk_generation_method = OOB; 820 return; 821 } 822 823 // If both devices have not set the MITM option in the Authentication Requirements 824 // Flags, then the IO capabilities shall be ignored and the Just Works association 825 // model shall be used. 826 if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0) 827 && ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){ 828 log_info("SM: MITM not required by both -> JUST WORKS"); 829 return; 830 } 831 832 // Reset TK as it has been setup in sm_init_setup 833 sm_reset_tk(); 834 835 // Also use just works if unknown io capabilites 836 if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){ 837 return; 838 } 839 840 // Otherwise the IO capabilities of the devices shall be used to determine the 841 // pairing method as defined in Table 2.4. 842 // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array 843 const stk_generation_method_t (*generation_method)[5] = stk_generation_method; 844 845 #ifdef ENABLE_LE_SECURE_CONNECTIONS 846 // table not define by default 847 if (setup->sm_use_secure_connections){ 848 generation_method = stk_generation_method_with_secure_connection; 849 } 850 #endif 851 setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)]; 852 853 log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u", 854 sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method); 855 } 856 857 static int sm_key_distribution_flags_for_set(uint8_t key_set){ 858 int flags = 0; 859 if (key_set & SM_KEYDIST_ENC_KEY){ 860 flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 861 flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 862 } 863 if (key_set & SM_KEYDIST_ID_KEY){ 864 flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 865 flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 866 } 867 if (key_set & SM_KEYDIST_SIGN){ 868 flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 869 } 870 return flags; 871 } 872 873 static void sm_setup_key_distribution(uint8_t key_set){ 874 setup->sm_key_distribution_received_set = 0; 875 setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set); 876 } 877 878 // CSRK Key Lookup 879 880 881 static int sm_address_resolution_idle(void){ 882 return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE; 883 } 884 885 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){ 886 memcpy(sm_address_resolution_address, addr, 6); 887 sm_address_resolution_addr_type = addr_type; 888 sm_address_resolution_test = 0; 889 sm_address_resolution_mode = mode; 890 sm_address_resolution_context = context; 891 sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr); 892 } 893 894 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){ 895 // check if already in list 896 btstack_linked_list_iterator_t it; 897 sm_lookup_entry_t * entry; 898 btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue); 899 while(btstack_linked_list_iterator_has_next(&it)){ 900 entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it); 901 if (entry->address_type != address_type) continue; 902 if (memcmp(entry->address, address, 6)) continue; 903 // already in list 904 return BTSTACK_BUSY; 905 } 906 entry = btstack_memory_sm_lookup_entry_get(); 907 if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED; 908 entry->address_type = (bd_addr_type_t) address_type; 909 memcpy(entry->address, address, 6); 910 btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry); 911 sm_run(); 912 return 0; 913 } 914 915 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now 916 static inline void sm_next_responding_state(sm_connection_t * sm_conn){ 917 sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1); 918 } 919 static inline void dkg_next_state(void){ 920 dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1); 921 } 922 static inline void rau_next_state(void){ 923 rau_state = (random_address_update_t) (((int)rau_state) + 1); 924 } 925 926 // CMAC calculation using AES Engine 927 #ifdef ENABLE_CMAC_ENGINE 928 929 static inline void sm_cmac_next_state(void){ 930 sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1); 931 } 932 933 static int sm_cmac_last_block_complete(void){ 934 if (sm_cmac_message_len == 0) return 0; 935 return (sm_cmac_message_len & 0x0f) == 0; 936 } 937 938 int sm_cmac_ready(void){ 939 return sm_cmac_state == CMAC_IDLE; 940 } 941 942 // generic cmac calculation 943 void sm_cmac_general_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){ 944 // Generalized CMAC 945 memcpy(sm_cmac_k, key, 16); 946 memset(sm_cmac_x, 0, 16); 947 sm_cmac_block_current = 0; 948 sm_cmac_message_len = message_len; 949 sm_cmac_done_handler = done_callback; 950 sm_cmac_get_byte = get_byte_callback; 951 952 // step 2: n := ceil(len/const_Bsize); 953 sm_cmac_block_count = (sm_cmac_message_len + 15) / 16; 954 955 // step 3: .. 956 if (sm_cmac_block_count==0){ 957 sm_cmac_block_count = 1; 958 } 959 log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count); 960 961 // first, we need to compute l for k1, k2, and m_last 962 sm_cmac_state = CMAC_CALC_SUBKEYS; 963 964 // let's go 965 sm_run(); 966 } 967 #endif 968 969 // cmac for ATT Message signing 970 #ifdef ENABLE_LE_SIGNED_WRITE 971 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){ 972 if (offset >= sm_cmac_message_len) { 973 log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len); 974 return 0; 975 } 976 977 offset = sm_cmac_message_len - 1 - offset; 978 979 // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4] 980 if (offset < 3){ 981 return sm_cmac_header[offset]; 982 } 983 int actual_message_len_incl_header = sm_cmac_message_len - 4; 984 if (offset < actual_message_len_incl_header){ 985 return sm_cmac_message[offset - 3]; 986 } 987 return sm_cmac_sign_counter[offset - actual_message_len_incl_header]; 988 } 989 990 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){ 991 // ATT Message Signing 992 sm_cmac_header[0] = opcode; 993 little_endian_store_16(sm_cmac_header, 1, con_handle); 994 little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter); 995 uint16_t total_message_len = 3 + message_len + 4; // incl. virtually prepended att opcode, handle and appended sign_counter in LE 996 sm_cmac_message = message; 997 sm_cmac_general_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler); 998 } 999 #endif 1000 1001 #ifdef ENABLE_CMAC_ENGINE 1002 static void sm_cmac_handle_aes_engine_ready(void){ 1003 switch (sm_cmac_state){ 1004 case CMAC_CALC_SUBKEYS: { 1005 sm_key_t const_zero; 1006 memset(const_zero, 0, 16); 1007 sm_cmac_next_state(); 1008 sm_aes128_start(sm_cmac_k, const_zero, NULL); 1009 break; 1010 } 1011 case CMAC_CALC_MI: { 1012 int j; 1013 sm_key_t y; 1014 for (j=0;j<16;j++){ 1015 y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j); 1016 } 1017 sm_cmac_block_current++; 1018 sm_cmac_next_state(); 1019 sm_aes128_start(sm_cmac_k, y, NULL); 1020 break; 1021 } 1022 case CMAC_CALC_MLAST: { 1023 int i; 1024 sm_key_t y; 1025 for (i=0;i<16;i++){ 1026 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i]; 1027 } 1028 log_info_key("Y", y); 1029 sm_cmac_block_current++; 1030 sm_cmac_next_state(); 1031 sm_aes128_start(sm_cmac_k, y, NULL); 1032 break; 1033 } 1034 default: 1035 log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state); 1036 break; 1037 } 1038 } 1039 1040 // CMAC Implementation using AES128 engine 1041 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){ 1042 int i; 1043 int carry = 0; 1044 for (i=len-1; i >= 0 ; i--){ 1045 int new_carry = data[i] >> 7; 1046 data[i] = data[i] << 1 | carry; 1047 carry = new_carry; 1048 } 1049 } 1050 1051 static void sm_cmac_handle_encryption_result(sm_key_t data){ 1052 switch (sm_cmac_state){ 1053 case CMAC_W4_SUBKEYS: { 1054 sm_key_t k1; 1055 memcpy(k1, data, 16); 1056 sm_shift_left_by_one_bit_inplace(16, k1); 1057 if (data[0] & 0x80){ 1058 k1[15] ^= 0x87; 1059 } 1060 sm_key_t k2; 1061 memcpy(k2, k1, 16); 1062 sm_shift_left_by_one_bit_inplace(16, k2); 1063 if (k1[0] & 0x80){ 1064 k2[15] ^= 0x87; 1065 } 1066 1067 log_info_key("k", sm_cmac_k); 1068 log_info_key("k1", k1); 1069 log_info_key("k2", k2); 1070 1071 // step 4: set m_last 1072 int i; 1073 if (sm_cmac_last_block_complete()){ 1074 for (i=0;i<16;i++){ 1075 sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i]; 1076 } 1077 } else { 1078 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f; 1079 for (i=0;i<16;i++){ 1080 if (i < valid_octets_in_last_block){ 1081 sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i]; 1082 continue; 1083 } 1084 if (i == valid_octets_in_last_block){ 1085 sm_cmac_m_last[i] = 0x80 ^ k2[i]; 1086 continue; 1087 } 1088 sm_cmac_m_last[i] = k2[i]; 1089 } 1090 } 1091 1092 // next 1093 sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; 1094 break; 1095 } 1096 case CMAC_W4_MI: 1097 memcpy(sm_cmac_x, data, 16); 1098 sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; 1099 break; 1100 case CMAC_W4_MLAST: 1101 // done 1102 log_info("Setting CMAC Engine to IDLE"); 1103 sm_cmac_state = CMAC_IDLE; 1104 log_info_key("CMAC", data); 1105 sm_cmac_done_handler(data); 1106 break; 1107 default: 1108 log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state); 1109 break; 1110 } 1111 } 1112 #endif 1113 1114 static void sm_trigger_user_response(sm_connection_t * sm_conn){ 1115 // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input 1116 setup->sm_user_response = SM_USER_RESPONSE_IDLE; 1117 switch (setup->sm_stk_generation_method){ 1118 case PK_RESP_INPUT: 1119 if (IS_RESPONDER(sm_conn->sm_role)){ 1120 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1121 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1122 } else { 1123 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1124 } 1125 break; 1126 case PK_INIT_INPUT: 1127 if (IS_RESPONDER(sm_conn->sm_role)){ 1128 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1129 } else { 1130 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1131 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1132 } 1133 break; 1134 case OK_BOTH_INPUT: 1135 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1136 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1137 break; 1138 case NK_BOTH_INPUT: 1139 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1140 sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12)); 1141 break; 1142 case JUST_WORKS: 1143 setup->sm_user_response = SM_USER_RESPONSE_PENDING; 1144 sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 1145 break; 1146 case OOB: 1147 // client already provided OOB data, let's skip notification. 1148 break; 1149 } 1150 } 1151 1152 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){ 1153 int recv_flags; 1154 if (IS_RESPONDER(sm_conn->sm_role)){ 1155 // slave / responder 1156 recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres)); 1157 } else { 1158 // master / initiator 1159 recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres)); 1160 } 1161 log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags); 1162 return recv_flags == setup->sm_key_distribution_received_set; 1163 } 1164 1165 static void sm_done_for_handle(hci_con_handle_t con_handle){ 1166 if (sm_active_connection_handle == con_handle){ 1167 sm_timeout_stop(); 1168 sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 1169 log_info("sm: connection 0x%x released setup context", con_handle); 1170 } 1171 } 1172 1173 static int sm_key_distribution_flags_for_auth_req(void){ 1174 1175 int flags = SM_KEYDIST_ID_KEY; 1176 if (sm_auth_req & SM_AUTHREQ_BONDING){ 1177 // encryption and signing information only if bonding requested 1178 flags |= SM_KEYDIST_ENC_KEY; 1179 #ifdef ENABLE_LE_SIGNED_WRITE 1180 flags |= SM_KEYDIST_SIGN; 1181 #endif 1182 } 1183 return flags; 1184 } 1185 1186 static void sm_reset_setup(void){ 1187 // fill in sm setup 1188 setup->sm_state_vars = 0; 1189 setup->sm_keypress_notification = 0; 1190 sm_reset_tk(); 1191 } 1192 1193 static void sm_init_setup(sm_connection_t * sm_conn){ 1194 1195 // fill in sm setup 1196 setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type; 1197 memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6); 1198 1199 // query client for Legacy Pairing OOB data 1200 setup->sm_have_oob_data = 0; 1201 if (sm_get_oob_data) { 1202 setup->sm_have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk); 1203 } 1204 1205 // if available and SC supported, also ask for SC OOB Data 1206 #ifdef ENABLE_LE_SECURE_CONNECTIONS 1207 memset(setup->sm_ra, 0, 16); 1208 memset(setup->sm_rb, 0, 16); 1209 if (setup->sm_have_oob_data && (sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION)){ 1210 if (sm_get_sc_oob_data){ 1211 if (IS_RESPONDER(sm_conn->sm_role)){ 1212 setup->sm_have_oob_data = (*sm_get_sc_oob_data)( 1213 sm_conn->sm_peer_addr_type, 1214 sm_conn->sm_peer_address, 1215 setup->sm_peer_confirm, 1216 setup->sm_ra); 1217 } else { 1218 setup->sm_have_oob_data = (*sm_get_sc_oob_data)( 1219 sm_conn->sm_peer_addr_type, 1220 sm_conn->sm_peer_address, 1221 setup->sm_peer_confirm, 1222 setup->sm_rb); 1223 } 1224 } else { 1225 setup->sm_have_oob_data = 0; 1226 } 1227 } 1228 #endif 1229 1230 sm_pairing_packet_t * local_packet; 1231 if (IS_RESPONDER(sm_conn->sm_role)){ 1232 // slave 1233 local_packet = &setup->sm_s_pres; 1234 gap_le_get_own_address(&setup->sm_s_addr_type, setup->sm_s_address); 1235 setup->sm_m_addr_type = sm_conn->sm_peer_addr_type; 1236 memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6); 1237 } else { 1238 // master 1239 local_packet = &setup->sm_m_preq; 1240 gap_le_get_own_address(&setup->sm_m_addr_type, setup->sm_m_address); 1241 setup->sm_s_addr_type = sm_conn->sm_peer_addr_type; 1242 memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6); 1243 1244 int key_distribution_flags = sm_key_distribution_flags_for_auth_req(); 1245 sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags); 1246 sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags); 1247 } 1248 1249 uint8_t auth_req = sm_auth_req; 1250 sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities); 1251 sm_pairing_packet_set_oob_data_flag(*local_packet, setup->sm_have_oob_data); 1252 sm_pairing_packet_set_auth_req(*local_packet, auth_req); 1253 sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size); 1254 } 1255 1256 static int sm_stk_generation_init(sm_connection_t * sm_conn){ 1257 1258 sm_pairing_packet_t * remote_packet; 1259 int remote_key_request; 1260 if (IS_RESPONDER(sm_conn->sm_role)){ 1261 // slave / responder 1262 remote_packet = &setup->sm_m_preq; 1263 remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq); 1264 } else { 1265 // master / initiator 1266 remote_packet = &setup->sm_s_pres; 1267 remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres); 1268 } 1269 1270 // check key size 1271 sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet)); 1272 if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE; 1273 1274 // decide on STK generation method 1275 sm_setup_tk(); 1276 log_info("SMP: generation method %u", setup->sm_stk_generation_method); 1277 1278 // check if STK generation method is acceptable by client 1279 if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS; 1280 1281 // identical to responder 1282 sm_setup_key_distribution(remote_key_request); 1283 1284 // JUST WORKS doens't provide authentication 1285 sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1; 1286 1287 return 0; 1288 } 1289 1290 static void sm_address_resolution_handle_event(address_resolution_event_t event){ 1291 1292 // cache and reset context 1293 int matched_device_id = sm_address_resolution_test; 1294 address_resolution_mode_t mode = sm_address_resolution_mode; 1295 void * context = sm_address_resolution_context; 1296 1297 // reset context 1298 sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE; 1299 sm_address_resolution_context = NULL; 1300 sm_address_resolution_test = -1; 1301 hci_con_handle_t con_handle = 0; 1302 1303 sm_connection_t * sm_connection; 1304 #ifdef ENABLE_LE_CENTRAL 1305 sm_key_t ltk; 1306 #endif 1307 switch (mode){ 1308 case ADDRESS_RESOLUTION_GENERAL: 1309 break; 1310 case ADDRESS_RESOLUTION_FOR_CONNECTION: 1311 sm_connection = (sm_connection_t *) context; 1312 con_handle = sm_connection->sm_handle; 1313 switch (event){ 1314 case ADDRESS_RESOLUTION_SUCEEDED: 1315 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED; 1316 sm_connection->sm_le_db_index = matched_device_id; 1317 log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index); 1318 if (sm_connection->sm_role) { 1319 // LTK request received before, IRK required -> start LTK calculation 1320 if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){ 1321 sm_connection->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST; 1322 } 1323 break; 1324 } 1325 #ifdef ENABLE_LE_CENTRAL 1326 if (!sm_connection->sm_pairing_requested && !sm_connection->sm_security_request_received) break; 1327 sm_connection->sm_security_request_received = 0; 1328 sm_connection->sm_pairing_requested = 0; 1329 le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL); 1330 if (!sm_is_null_key(ltk)){ 1331 sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 1332 } else { 1333 sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 1334 } 1335 #endif 1336 break; 1337 case ADDRESS_RESOLUTION_FAILED: 1338 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED; 1339 if (sm_connection->sm_role) { 1340 // LTK request received before, IRK required -> negative LTK reply 1341 if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){ 1342 sm_connection->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY; 1343 } 1344 break; 1345 } 1346 #ifdef ENABLE_LE_CENTRAL 1347 if (!sm_connection->sm_pairing_requested && !sm_connection->sm_security_request_received) break; 1348 sm_connection->sm_security_request_received = 0; 1349 sm_connection->sm_pairing_requested = 0; 1350 sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 1351 #endif 1352 break; 1353 } 1354 break; 1355 default: 1356 break; 1357 } 1358 1359 switch (event){ 1360 case ADDRESS_RESOLUTION_SUCEEDED: 1361 sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id); 1362 break; 1363 case ADDRESS_RESOLUTION_FAILED: 1364 sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address); 1365 break; 1366 } 1367 } 1368 1369 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){ 1370 1371 int le_db_index = -1; 1372 1373 // only store pairing information if both sides are bondable, i.e., the bonadble flag is set 1374 int bonding_enabed = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq) 1375 & sm_pairing_packet_get_auth_req(setup->sm_s_pres) 1376 & SM_AUTHREQ_BONDING ) != 0; 1377 1378 if (bonding_enabed){ 1379 1380 // lookup device based on IRK 1381 if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){ 1382 int i; 1383 for (i=0; i < le_device_db_max_count(); i++){ 1384 sm_key_t irk; 1385 bd_addr_t address; 1386 int address_type; 1387 le_device_db_info(i, &address_type, address, irk); 1388 if (memcmp(irk, setup->sm_peer_irk, 16) == 0){ 1389 log_info("sm: device found for IRK, updating"); 1390 le_db_index = i; 1391 break; 1392 } 1393 } 1394 } 1395 1396 // if not found, lookup via public address if possible 1397 log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address)); 1398 if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){ 1399 int i; 1400 for (i=0; i < le_device_db_max_count(); i++){ 1401 bd_addr_t address; 1402 int address_type; 1403 le_device_db_info(i, &address_type, address, NULL); 1404 log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address)); 1405 if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){ 1406 log_info("sm: device found for public address, updating"); 1407 le_db_index = i; 1408 break; 1409 } 1410 } 1411 } 1412 1413 // if not found, add to db 1414 if (le_db_index < 0) { 1415 le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk); 1416 } 1417 1418 if (le_db_index >= 0){ 1419 1420 sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index); 1421 1422 #ifdef ENABLE_LE_SIGNED_WRITE 1423 // store local CSRK 1424 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 1425 log_info("sm: store local CSRK"); 1426 le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk); 1427 le_device_db_local_counter_set(le_db_index, 0); 1428 } 1429 1430 // store remote CSRK 1431 if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 1432 log_info("sm: store remote CSRK"); 1433 le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk); 1434 le_device_db_remote_counter_set(le_db_index, 0); 1435 } 1436 #endif 1437 // store encryption information for secure connections: LTK generated by ECDH 1438 if (setup->sm_use_secure_connections){ 1439 log_info("sm: store SC LTK (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated); 1440 uint8_t zero_rand[8]; 1441 memset(zero_rand, 0, 8); 1442 le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size, 1443 sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED); 1444 } 1445 1446 // store encryption information for legacy pairing: peer LTK, EDIV, RAND 1447 else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION) 1448 && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){ 1449 log_info("sm: set encryption information (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated); 1450 le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk, 1451 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED); 1452 1453 } 1454 } 1455 } else { 1456 log_info("Ignoring received keys, bonding not enabled"); 1457 } 1458 1459 // keep le_db_index 1460 sm_conn->sm_le_db_index = le_db_index; 1461 } 1462 1463 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){ 1464 setup->sm_pairing_failed_reason = reason; 1465 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 1466 } 1467 1468 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){ 1469 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON); 1470 } 1471 1472 #ifdef ENABLE_LE_SECURE_CONNECTIONS 1473 1474 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn); 1475 static int sm_passkey_used(stk_generation_method_t method); 1476 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method); 1477 1478 static void sm_log_ec_keypair(void){ 1479 log_info("Elliptic curve: X"); 1480 log_info_hexdump(&ec_q[0],32); 1481 log_info("Elliptic curve: Y"); 1482 log_info_hexdump(&ec_q[32],32); 1483 } 1484 1485 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){ 1486 if (sm_passkey_used(setup->sm_stk_generation_method)){ 1487 sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A; 1488 } else { 1489 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION; 1490 } 1491 } 1492 1493 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){ 1494 if (IS_RESPONDER(sm_conn->sm_role)){ 1495 // Responder 1496 if (setup->sm_stk_generation_method == OOB){ 1497 // generate Nb 1498 log_info("Generate Nb"); 1499 sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A; 1500 } else { 1501 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 1502 } 1503 } else { 1504 // Initiator role 1505 switch (setup->sm_stk_generation_method){ 1506 case JUST_WORKS: 1507 sm_sc_prepare_dhkey_check(sm_conn); 1508 break; 1509 1510 case NK_BOTH_INPUT: 1511 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2; 1512 break; 1513 case PK_INIT_INPUT: 1514 case PK_RESP_INPUT: 1515 case OK_BOTH_INPUT: 1516 if (setup->sm_passkey_bit < 20) { 1517 sm_sc_start_calculating_local_confirm(sm_conn); 1518 } else { 1519 sm_sc_prepare_dhkey_check(sm_conn); 1520 } 1521 break; 1522 case OOB: 1523 sm_sc_prepare_dhkey_check(sm_conn); 1524 break; 1525 } 1526 } 1527 } 1528 1529 static uint8_t sm_sc_cmac_get_byte(uint16_t offset){ 1530 return sm_cmac_sc_buffer[offset]; 1531 } 1532 1533 static void sm_sc_cmac_done(uint8_t * hash){ 1534 log_info("sm_sc_cmac_done: "); 1535 log_info_hexdump(hash, 16); 1536 1537 if (sm_sc_oob_state == SM_SC_OOB_W4_CONFIRM){ 1538 sm_sc_oob_state = SM_SC_OOB_IDLE; 1539 (*sm_sc_oob_callback)(hash, sm_sc_oob_random); 1540 return; 1541 } 1542 1543 sm_connection_t * sm_conn = sm_cmac_connection; 1544 sm_cmac_connection = NULL; 1545 #ifdef ENABLE_CLASSIC 1546 link_key_type_t link_key_type; 1547 #endif 1548 1549 switch (sm_conn->sm_engine_state){ 1550 case SM_SC_W4_CMAC_FOR_CONFIRMATION: 1551 memcpy(setup->sm_local_confirm, hash, 16); 1552 sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION; 1553 break; 1554 case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION: 1555 // check 1556 if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){ 1557 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED); 1558 break; 1559 } 1560 sm_sc_state_after_receiving_random(sm_conn); 1561 break; 1562 case SM_SC_W4_CALCULATE_G2: { 1563 uint32_t vab = big_endian_read_32(hash, 12) % 1000000; 1564 big_endian_store_32(setup->sm_tk, 12, vab); 1565 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 1566 sm_trigger_user_response(sm_conn); 1567 break; 1568 } 1569 case SM_SC_W4_CALCULATE_F5_SALT: 1570 memcpy(setup->sm_t, hash, 16); 1571 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY; 1572 break; 1573 case SM_SC_W4_CALCULATE_F5_MACKEY: 1574 memcpy(setup->sm_mackey, hash, 16); 1575 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK; 1576 break; 1577 case SM_SC_W4_CALCULATE_F5_LTK: 1578 // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk 1579 // Errata Service Release to the Bluetooth Specification: ESR09 1580 // E6405 – Cross transport key derivation from a key of size less than 128 bits 1581 // Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked." 1582 memcpy(setup->sm_ltk, hash, 16); 1583 memcpy(setup->sm_local_ltk, hash, 16); 1584 sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size); 1585 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK; 1586 break; 1587 case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK: 1588 memcpy(setup->sm_local_dhkey_check, hash, 16); 1589 if (IS_RESPONDER(sm_conn->sm_role)){ 1590 // responder 1591 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED){ 1592 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 1593 } else { 1594 sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND; 1595 } 1596 } else { 1597 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND; 1598 } 1599 break; 1600 case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK: 1601 if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){ 1602 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED); 1603 break; 1604 } 1605 if (IS_RESPONDER(sm_conn->sm_role)){ 1606 // responder 1607 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND; 1608 } else { 1609 // initiator 1610 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION; 1611 } 1612 break; 1613 case SM_SC_W4_CALCULATE_H6_ILK: 1614 memcpy(setup->sm_t, hash, 16); 1615 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY; 1616 break; 1617 case SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY: 1618 #ifdef ENABLE_CLASSIC 1619 reverse_128(hash, setup->sm_t); 1620 link_key_type = sm_conn->sm_connection_authenticated ? 1621 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256; 1622 log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type); 1623 if (IS_RESPONDER(sm_conn->sm_role)){ 1624 gap_store_link_key_for_bd_addr(setup->sm_m_address, setup->sm_t, link_key_type); 1625 } else { 1626 gap_store_link_key_for_bd_addr(setup->sm_s_address, setup->sm_t, link_key_type); 1627 } 1628 #endif 1629 if (IS_RESPONDER(sm_conn->sm_role)){ 1630 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 1631 } else { 1632 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 1633 } 1634 sm_notify_client_status_reason(sm_conn, ERROR_CODE_SUCCESS, 0); 1635 sm_done_for_handle(sm_conn->sm_handle); 1636 break; 1637 default: 1638 log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state); 1639 break; 1640 } 1641 sm_run(); 1642 } 1643 1644 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){ 1645 const uint16_t message_len = 65; 1646 sm_cmac_connection = sm_conn; 1647 memcpy(sm_cmac_sc_buffer, u, 32); 1648 memcpy(sm_cmac_sc_buffer+32, v, 32); 1649 sm_cmac_sc_buffer[64] = z; 1650 log_info("f4 key"); 1651 log_info_hexdump(x, 16); 1652 log_info("f4 message"); 1653 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1654 sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1655 } 1656 1657 static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE}; 1658 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 }; 1659 static const uint8_t f5_length[] = { 0x01, 0x00}; 1660 1661 #ifdef USE_SOFTWARE_ECDH_IMPLEMENTATION 1662 1663 static void sm_sc_calculate_dhkey(sm_key256_t dhkey){ 1664 memset(dhkey, 0, 32); 1665 1666 #ifdef USE_MICRO_ECC_FOR_ECDH 1667 #if uECC_SUPPORTS_secp256r1 1668 // standard version 1669 uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey, uECC_secp256r1()); 1670 #else 1671 // static version 1672 uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey); 1673 #endif 1674 #endif 1675 1676 #ifdef USE_MBEDTLS_FOR_ECDH 1677 // da * Pb 1678 mbedtls_mpi d; 1679 mbedtls_ecp_point Q; 1680 mbedtls_ecp_point DH; 1681 mbedtls_mpi_init(&d); 1682 mbedtls_ecp_point_init(&Q); 1683 mbedtls_ecp_point_init(&DH); 1684 mbedtls_mpi_read_binary(&d, ec_d, 32); 1685 mbedtls_mpi_read_binary(&Q.X, &setup->sm_peer_q[0] , 32); 1686 mbedtls_mpi_read_binary(&Q.Y, &setup->sm_peer_q[32], 32); 1687 mbedtls_mpi_lset(&Q.Z, 1); 1688 mbedtls_ecp_mul(&mbedtls_ec_group, &DH, &d, &Q, NULL, NULL); 1689 mbedtls_mpi_write_binary(&DH.X, dhkey, 32); 1690 mbedtls_ecp_point_free(&DH); 1691 mbedtls_mpi_free(&d); 1692 mbedtls_ecp_point_free(&Q); 1693 #endif 1694 1695 log_info("dhkey"); 1696 log_info_hexdump(dhkey, 32); 1697 } 1698 #endif 1699 1700 static void f5_calculate_salt(sm_connection_t * sm_conn){ 1701 log_info("f5_calculate_salt"); 1702 // calculate salt for f5 1703 const uint16_t message_len = 32; 1704 sm_cmac_connection = sm_conn; 1705 memcpy(sm_cmac_sc_buffer, setup->sm_dhkey, message_len); 1706 sm_cmac_general_start(f5_salt, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1707 } 1708 1709 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){ 1710 const uint16_t message_len = 53; 1711 sm_cmac_connection = sm_conn; 1712 1713 // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey 1714 sm_cmac_sc_buffer[0] = 0; 1715 memcpy(sm_cmac_sc_buffer+01, f5_key_id, 4); 1716 memcpy(sm_cmac_sc_buffer+05, n1, 16); 1717 memcpy(sm_cmac_sc_buffer+21, n2, 16); 1718 memcpy(sm_cmac_sc_buffer+37, a1, 7); 1719 memcpy(sm_cmac_sc_buffer+44, a2, 7); 1720 memcpy(sm_cmac_sc_buffer+51, f5_length, 2); 1721 log_info("f5 key"); 1722 log_info_hexdump(t, 16); 1723 log_info("f5 message for MacKey"); 1724 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1725 sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1726 } 1727 1728 static void f5_calculate_mackey(sm_connection_t * sm_conn){ 1729 sm_key56_t bd_addr_master, bd_addr_slave; 1730 bd_addr_master[0] = setup->sm_m_addr_type; 1731 bd_addr_slave[0] = setup->sm_s_addr_type; 1732 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1733 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1734 if (IS_RESPONDER(sm_conn->sm_role)){ 1735 // responder 1736 f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave); 1737 } else { 1738 // initiator 1739 f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave); 1740 } 1741 } 1742 1743 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused 1744 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){ 1745 const uint16_t message_len = 53; 1746 sm_cmac_connection = sm_conn; 1747 sm_cmac_sc_buffer[0] = 1; 1748 // 1..52 setup before 1749 log_info("f5 key"); 1750 log_info_hexdump(t, 16); 1751 log_info("f5 message for LTK"); 1752 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1753 sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1754 } 1755 1756 static void f5_calculate_ltk(sm_connection_t * sm_conn){ 1757 f5_ltk(sm_conn, setup->sm_t); 1758 } 1759 1760 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){ 1761 const uint16_t message_len = 65; 1762 sm_cmac_connection = sm_conn; 1763 memcpy(sm_cmac_sc_buffer, n1, 16); 1764 memcpy(sm_cmac_sc_buffer+16, n2, 16); 1765 memcpy(sm_cmac_sc_buffer+32, r, 16); 1766 memcpy(sm_cmac_sc_buffer+48, io_cap, 3); 1767 memcpy(sm_cmac_sc_buffer+51, a1, 7); 1768 memcpy(sm_cmac_sc_buffer+58, a2, 7); 1769 log_info("f6 key"); 1770 log_info_hexdump(w, 16); 1771 log_info("f6 message"); 1772 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1773 sm_cmac_general_start(w, 65, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1774 } 1775 1776 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32 1777 // - U is 256 bits 1778 // - V is 256 bits 1779 // - X is 128 bits 1780 // - Y is 128 bits 1781 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){ 1782 const uint16_t message_len = 80; 1783 sm_cmac_connection = sm_conn; 1784 memcpy(sm_cmac_sc_buffer, u, 32); 1785 memcpy(sm_cmac_sc_buffer+32, v, 32); 1786 memcpy(sm_cmac_sc_buffer+64, y, 16); 1787 log_info("g2 key"); 1788 log_info_hexdump(x, 16); 1789 log_info("g2 message"); 1790 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1791 sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1792 } 1793 1794 static void g2_calculate(sm_connection_t * sm_conn) { 1795 // calc Va if numeric comparison 1796 if (IS_RESPONDER(sm_conn->sm_role)){ 1797 // responder 1798 g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);; 1799 } else { 1800 // initiator 1801 g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce); 1802 } 1803 } 1804 1805 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){ 1806 uint8_t z = 0; 1807 if (sm_passkey_entry(setup->sm_stk_generation_method)){ 1808 // some form of passkey 1809 uint32_t pk = big_endian_read_32(setup->sm_tk, 12); 1810 z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1); 1811 setup->sm_passkey_bit++; 1812 } 1813 f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z); 1814 } 1815 1816 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){ 1817 // OOB 1818 if (setup->sm_stk_generation_method == OOB){ 1819 if (IS_RESPONDER(sm_conn->sm_role)){ 1820 f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_ra, 0); 1821 } else { 1822 f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_rb, 0); 1823 } 1824 return; 1825 } 1826 1827 uint8_t z = 0; 1828 if (sm_passkey_entry(setup->sm_stk_generation_method)){ 1829 // some form of passkey 1830 uint32_t pk = big_endian_read_32(setup->sm_tk, 12); 1831 // sm_passkey_bit was increased before sending confirm value 1832 z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1); 1833 } 1834 f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z); 1835 } 1836 1837 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){ 1838 1839 #ifdef USE_SOFTWARE_ECDH_IMPLEMENTATION 1840 // calculate DHKEY 1841 sm_sc_calculate_dhkey(setup->sm_dhkey); 1842 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED; 1843 #endif 1844 1845 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED){ 1846 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT; 1847 return; 1848 } else { 1849 sm_conn->sm_engine_state = SM_SC_W4_CALCULATE_DHKEY; 1850 } 1851 1852 } 1853 1854 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){ 1855 // calculate DHKCheck 1856 sm_key56_t bd_addr_master, bd_addr_slave; 1857 bd_addr_master[0] = setup->sm_m_addr_type; 1858 bd_addr_slave[0] = setup->sm_s_addr_type; 1859 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1860 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1861 uint8_t iocap_a[3]; 1862 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq); 1863 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq); 1864 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq); 1865 uint8_t iocap_b[3]; 1866 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres); 1867 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres); 1868 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres); 1869 if (IS_RESPONDER(sm_conn->sm_role)){ 1870 // responder 1871 f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master); 1872 } else { 1873 // initiator 1874 f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave); 1875 } 1876 } 1877 1878 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){ 1879 // validate E = f6() 1880 sm_key56_t bd_addr_master, bd_addr_slave; 1881 bd_addr_master[0] = setup->sm_m_addr_type; 1882 bd_addr_slave[0] = setup->sm_s_addr_type; 1883 memcpy(&bd_addr_master[1], setup->sm_m_address, 6); 1884 memcpy(&bd_addr_slave[1], setup->sm_s_address, 6); 1885 1886 uint8_t iocap_a[3]; 1887 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq); 1888 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq); 1889 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq); 1890 uint8_t iocap_b[3]; 1891 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres); 1892 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres); 1893 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres); 1894 if (IS_RESPONDER(sm_conn->sm_role)){ 1895 // responder 1896 f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave); 1897 } else { 1898 // initiator 1899 f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master); 1900 } 1901 } 1902 1903 1904 // 1905 // Link Key Conversion Function h6 1906 // 1907 // h6(W, keyID) = AES-CMACW(keyID) 1908 // - W is 128 bits 1909 // - keyID is 32 bits 1910 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){ 1911 const uint16_t message_len = 4; 1912 sm_cmac_connection = sm_conn; 1913 big_endian_store_32(sm_cmac_sc_buffer, 0, key_id); 1914 log_info("h6 key"); 1915 log_info_hexdump(w, 16); 1916 log_info("h6 message"); 1917 log_info_hexdump(sm_cmac_sc_buffer, message_len); 1918 sm_cmac_general_start(w, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done); 1919 } 1920 1921 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated) 1922 // Errata Service Release to the Bluetooth Specification: ESR09 1923 // E6405 – Cross transport key derivation from a key of size less than 128 bits 1924 // "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked." 1925 static void h6_calculate_ilk(sm_connection_t * sm_conn){ 1926 h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031); // "tmp1" 1927 } 1928 1929 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){ 1930 h6_engine(sm_conn, setup->sm_t, 0x6c656272); // "lebr" 1931 } 1932 1933 #endif 1934 1935 // key management legacy connections: 1936 // - potentially two different LTKs based on direction. each device stores LTK provided by peer 1937 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect) 1938 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder 1939 // - responder reconnects: responder uses LTK receveived from master 1940 1941 // key management secure connections: 1942 // - both devices store same LTK from ECDH key exchange. 1943 1944 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL) 1945 static void sm_load_security_info(sm_connection_t * sm_connection){ 1946 int encryption_key_size; 1947 int authenticated; 1948 int authorized; 1949 1950 // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled 1951 le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk, 1952 &encryption_key_size, &authenticated, &authorized); 1953 log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized); 1954 sm_connection->sm_actual_encryption_key_size = encryption_key_size; 1955 sm_connection->sm_connection_authenticated = authenticated; 1956 sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN; 1957 } 1958 #endif 1959 1960 #ifdef ENABLE_LE_PERIPHERAL 1961 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){ 1962 memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8); 1963 setup->sm_local_ediv = sm_connection->sm_local_ediv; 1964 // re-establish used key encryption size 1965 // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand 1966 sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1; 1967 // no db for authenticated flag hack: flag is stored in bit 4 of LSB 1968 sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4; 1969 log_info("sm: received ltk request with key size %u, authenticated %u", 1970 sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated); 1971 sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC; 1972 } 1973 #endif 1974 1975 static void sm_run(void){ 1976 1977 btstack_linked_list_iterator_t it; 1978 1979 // assert that stack has already bootet 1980 if (hci_get_state() != HCI_STATE_WORKING) return; 1981 1982 // assert that we can send at least commands 1983 if (!hci_can_send_command_packet_now()) return; 1984 1985 // 1986 // non-connection related behaviour 1987 // 1988 1989 // distributed key generation 1990 switch (dkg_state){ 1991 case DKG_CALC_IRK: 1992 // already busy? 1993 if (sm_aes128_state == SM_AES128_IDLE) { 1994 // IRK = d1(IR, 1, 0) 1995 sm_key_t d1_prime; 1996 sm_d1_d_prime(1, 0, d1_prime); // plaintext 1997 dkg_next_state(); 1998 sm_aes128_start(sm_persistent_ir, d1_prime, NULL); 1999 return; 2000 } 2001 break; 2002 case DKG_CALC_DHK: 2003 // already busy? 2004 if (sm_aes128_state == SM_AES128_IDLE) { 2005 // DHK = d1(IR, 3, 0) 2006 sm_key_t d1_prime; 2007 sm_d1_d_prime(3, 0, d1_prime); // plaintext 2008 dkg_next_state(); 2009 sm_aes128_start(sm_persistent_ir, d1_prime, NULL); 2010 return; 2011 } 2012 break; 2013 default: 2014 break; 2015 } 2016 2017 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2018 if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){ 2019 #ifdef USE_SOFTWARE_ECDH_IMPLEMENTATION 2020 sm_random_start(NULL); 2021 #else 2022 ec_key_generation_state = EC_KEY_GENERATION_W4_KEY; 2023 hci_send_cmd(&hci_le_read_local_p256_public_key); 2024 #endif 2025 return; 2026 } 2027 #endif 2028 2029 // random address updates 2030 switch (rau_state){ 2031 case RAU_GET_RANDOM: 2032 rau_next_state(); 2033 sm_random_start(NULL); 2034 return; 2035 case RAU_GET_ENC: 2036 // already busy? 2037 if (sm_aes128_state == SM_AES128_IDLE) { 2038 sm_key_t r_prime; 2039 sm_ah_r_prime(sm_random_address, r_prime); 2040 rau_next_state(); 2041 sm_aes128_start(sm_persistent_irk, r_prime, NULL); 2042 return; 2043 } 2044 break; 2045 case RAU_SET_ADDRESS: 2046 log_info("New random address: %s", bd_addr_to_str(sm_random_address)); 2047 rau_state = RAU_IDLE; 2048 hci_send_cmd(&hci_le_set_random_address, sm_random_address); 2049 return; 2050 default: 2051 break; 2052 } 2053 2054 #ifdef ENABLE_CMAC_ENGINE 2055 // CMAC 2056 switch (sm_cmac_state){ 2057 case CMAC_CALC_SUBKEYS: 2058 case CMAC_CALC_MI: 2059 case CMAC_CALC_MLAST: 2060 // already busy? 2061 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2062 sm_cmac_handle_aes_engine_ready(); 2063 return; 2064 default: 2065 break; 2066 } 2067 #endif 2068 2069 // CSRK Lookup 2070 // -- if csrk lookup ready, find connection that require csrk lookup 2071 if (sm_address_resolution_idle()){ 2072 hci_connections_get_iterator(&it); 2073 while(btstack_linked_list_iterator_has_next(&it)){ 2074 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 2075 sm_connection_t * sm_connection = &hci_connection->sm_connection; 2076 if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){ 2077 // and start lookup 2078 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection); 2079 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED; 2080 break; 2081 } 2082 } 2083 } 2084 2085 // -- if csrk lookup ready, resolved addresses for received addresses 2086 if (sm_address_resolution_idle()) { 2087 if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){ 2088 sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue; 2089 btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry); 2090 sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL); 2091 btstack_memory_sm_lookup_entry_free(entry); 2092 } 2093 } 2094 2095 // -- Continue with CSRK device lookup by public or resolvable private address 2096 if (!sm_address_resolution_idle()){ 2097 log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_max_count()); 2098 while (sm_address_resolution_test < le_device_db_max_count()){ 2099 int addr_type; 2100 bd_addr_t addr; 2101 sm_key_t irk; 2102 le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk); 2103 log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr)); 2104 2105 if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){ 2106 log_info("LE Device Lookup: found CSRK by { addr_type, address} "); 2107 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED); 2108 break; 2109 } 2110 2111 if (sm_address_resolution_addr_type == 0){ 2112 sm_address_resolution_test++; 2113 continue; 2114 } 2115 2116 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2117 2118 log_info("LE Device Lookup: calculate AH"); 2119 log_info_key("IRK", irk); 2120 2121 sm_key_t r_prime; 2122 sm_ah_r_prime(sm_address_resolution_address, r_prime); 2123 sm_address_resolution_ah_calculation_active = 1; 2124 sm_aes128_start(irk, r_prime, sm_address_resolution_context); // keep context 2125 return; 2126 } 2127 2128 if (sm_address_resolution_test >= le_device_db_max_count()){ 2129 log_info("LE Device Lookup: not found"); 2130 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED); 2131 } 2132 } 2133 2134 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2135 // TODO: we need to verify that nobody's already waiting for random data 2136 switch (sm_sc_oob_state){ 2137 case SM_SC_OOB_W2_GET_RANDOM_1: 2138 sm_sc_oob_state = SM_SC_OOB_W4_RANDOM_1; 2139 sm_random_start(NULL); 2140 return; 2141 case SM_SC_OOB_W2_GET_RANDOM_2: 2142 sm_sc_oob_state = SM_SC_OOB_W4_RANDOM_2; 2143 sm_random_start(NULL); 2144 return; 2145 case SM_SC_OOB_W2_CALC_CONFIRM: 2146 if (!sm_cmac_ready()) break; 2147 if (ec_key_generation_state != EC_KEY_GENERATION_DONE) break; 2148 sm_sc_oob_state = SM_SC_OOB_W4_CONFIRM; 2149 f4_engine(NULL, ec_q, ec_q, sm_sc_oob_random, 0); 2150 break; 2151 default: 2152 break; 2153 } 2154 #endif 2155 2156 // handle basic actions that don't requires the full context 2157 hci_connections_get_iterator(&it); 2158 while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){ 2159 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 2160 sm_connection_t * sm_connection = &hci_connection->sm_connection; 2161 switch(sm_connection->sm_engine_state){ 2162 // responder side 2163 case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY: 2164 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2165 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2166 return; 2167 2168 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2169 case SM_SC_RECEIVED_LTK_REQUEST: 2170 switch (sm_connection->sm_irk_lookup_state){ 2171 case IRK_LOOKUP_FAILED: 2172 log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Failed)"); 2173 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2174 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2175 return; 2176 default: 2177 break; 2178 } 2179 break; 2180 #endif 2181 default: 2182 break; 2183 } 2184 } 2185 2186 // 2187 // active connection handling 2188 // -- use loop to handle next connection if lock on setup context is released 2189 2190 while (1) { 2191 2192 // Find connections that requires setup context and make active if no other is locked 2193 hci_connections_get_iterator(&it); 2194 while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){ 2195 hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); 2196 sm_connection_t * sm_connection = &hci_connection->sm_connection; 2197 // - if no connection locked and we're ready/waiting for setup context, fetch it and start 2198 int done = 1; 2199 int err; 2200 UNUSED(err); 2201 switch (sm_connection->sm_engine_state) { 2202 #ifdef ENABLE_LE_PERIPHERAL 2203 case SM_RESPONDER_SEND_SECURITY_REQUEST: 2204 // send packet if possible, 2205 if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){ 2206 const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING}; 2207 sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST; 2208 l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2209 } else { 2210 l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 2211 } 2212 // don't lock sxetup context yet 2213 done = 0; 2214 break; 2215 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED: 2216 sm_reset_setup(); 2217 sm_init_setup(sm_connection); 2218 // recover pairing request 2219 memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t)); 2220 err = sm_stk_generation_init(sm_connection); 2221 2222 #ifdef ENABLE_TESTING_SUPPORT 2223 if (0 < test_pairing_failure && test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED){ 2224 log_info("testing_support: respond with pairing failure %u", test_pairing_failure); 2225 err = test_pairing_failure; 2226 } 2227 #endif 2228 if (err){ 2229 setup->sm_pairing_failed_reason = err; 2230 sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 2231 break; 2232 } 2233 sm_timeout_start(sm_connection); 2234 // generate random number first, if we need to show passkey 2235 if (setup->sm_stk_generation_method == PK_INIT_INPUT){ 2236 sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK; 2237 break; 2238 } 2239 sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE; 2240 break; 2241 case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST: 2242 sm_reset_setup(); 2243 sm_start_calculating_ltk_from_ediv_and_rand(sm_connection); 2244 break; 2245 #endif 2246 #ifdef ENABLE_LE_CENTRAL 2247 case SM_INITIATOR_PH0_HAS_LTK: 2248 sm_reset_setup(); 2249 sm_load_security_info(sm_connection); 2250 sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION; 2251 break; 2252 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST: 2253 sm_reset_setup(); 2254 sm_init_setup(sm_connection); 2255 sm_timeout_start(sm_connection); 2256 sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST; 2257 break; 2258 #endif 2259 2260 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2261 case SM_SC_RECEIVED_LTK_REQUEST: 2262 switch (sm_connection->sm_irk_lookup_state){ 2263 case IRK_LOOKUP_SUCCEEDED: 2264 // assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null 2265 // start using context by loading security info 2266 sm_reset_setup(); 2267 sm_load_security_info(sm_connection); 2268 if (setup->sm_peer_ediv == 0 && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){ 2269 memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16); 2270 sm_connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY; 2271 break; 2272 } 2273 log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)"); 2274 sm_connection->sm_engine_state = SM_RESPONDER_IDLE; 2275 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle); 2276 // don't lock setup context yet 2277 return; 2278 default: 2279 // just wait until IRK lookup is completed 2280 // don't lock setup context yet 2281 done = 0; 2282 break; 2283 } 2284 break; 2285 #endif 2286 default: 2287 done = 0; 2288 break; 2289 } 2290 if (done){ 2291 sm_active_connection_handle = sm_connection->sm_handle; 2292 log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state); 2293 } 2294 } 2295 2296 // 2297 // active connection handling 2298 // 2299 2300 if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return; 2301 2302 sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle); 2303 if (!connection) { 2304 log_info("no connection for handle 0x%04x", sm_active_connection_handle); 2305 return; 2306 } 2307 2308 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(USE_SOFTWARE_ECDH_IMPLEMENTATION) 2309 if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_NEEDED){ 2310 setup->sm_state_vars &= ~SM_STATE_VAR_DHKEY_NEEDED; 2311 hci_send_cmd(&hci_le_generate_dhkey, &setup->sm_peer_q[0], &setup->sm_peer_q[32]); 2312 return; 2313 } 2314 #endif 2315 2316 // assert that we could send a SM PDU - not needed for all of the following 2317 if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) { 2318 log_info("cannot send now, requesting can send now event"); 2319 l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 2320 return; 2321 } 2322 2323 // send keypress notifications 2324 if (setup->sm_keypress_notification){ 2325 int i; 2326 uint8_t flags = setup->sm_keypress_notification & 0x1f; 2327 uint8_t num_actions = setup->sm_keypress_notification >> 5; 2328 uint8_t action = 0; 2329 for (i=SM_KEYPRESS_PASSKEY_ENTRY_STARTED;i<=SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED;i++){ 2330 if (flags & (1<<i)){ 2331 int clear_flag = 1; 2332 switch (i){ 2333 case SM_KEYPRESS_PASSKEY_ENTRY_STARTED: 2334 case SM_KEYPRESS_PASSKEY_CLEARED: 2335 case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED: 2336 default: 2337 break; 2338 case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED: 2339 case SM_KEYPRESS_PASSKEY_DIGIT_ERASED: 2340 num_actions--; 2341 clear_flag = num_actions == 0; 2342 break; 2343 } 2344 if (clear_flag){ 2345 flags &= ~(1<<i); 2346 } 2347 action = i; 2348 break; 2349 } 2350 } 2351 setup->sm_keypress_notification = (num_actions << 5) | flags; 2352 2353 // send keypress notification 2354 uint8_t buffer[2]; 2355 buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION; 2356 buffer[1] = action; 2357 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2358 2359 // try 2360 l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 2361 return; 2362 } 2363 2364 sm_key_t plaintext; 2365 int key_distribution_flags; 2366 UNUSED(key_distribution_flags); 2367 2368 log_info("sm_run: state %u", connection->sm_engine_state); 2369 if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) { 2370 log_info("sm_run // cannot send"); 2371 } 2372 switch (connection->sm_engine_state){ 2373 2374 // general 2375 case SM_GENERAL_SEND_PAIRING_FAILED: { 2376 uint8_t buffer[2]; 2377 buffer[0] = SM_CODE_PAIRING_FAILED; 2378 buffer[1] = setup->sm_pairing_failed_reason; 2379 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED; 2380 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2381 sm_notify_client_status_reason(connection, ERROR_CODE_AUTHENTICATION_FAILURE, setup->sm_pairing_failed_reason); 2382 sm_done_for_handle(connection->sm_handle); 2383 break; 2384 } 2385 2386 // responding state 2387 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2388 case SM_SC_W2_GET_RANDOM_A: 2389 sm_random_start(connection); 2390 connection->sm_engine_state = SM_SC_W4_GET_RANDOM_A; 2391 break; 2392 case SM_SC_W2_GET_RANDOM_B: 2393 sm_random_start(connection); 2394 connection->sm_engine_state = SM_SC_W4_GET_RANDOM_B; 2395 break; 2396 case SM_SC_W2_CMAC_FOR_CONFIRMATION: 2397 if (!sm_cmac_ready()) break; 2398 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION; 2399 sm_sc_calculate_local_confirm(connection); 2400 break; 2401 case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION: 2402 if (!sm_cmac_ready()) break; 2403 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION; 2404 sm_sc_calculate_remote_confirm(connection); 2405 break; 2406 case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK: 2407 if (!sm_cmac_ready()) break; 2408 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK; 2409 sm_sc_calculate_f6_for_dhkey_check(connection); 2410 break; 2411 case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK: 2412 if (!sm_cmac_ready()) break; 2413 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 2414 sm_sc_calculate_f6_to_verify_dhkey_check(connection); 2415 break; 2416 case SM_SC_W2_CALCULATE_F5_SALT: 2417 if (!sm_cmac_ready()) break; 2418 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT; 2419 f5_calculate_salt(connection); 2420 break; 2421 case SM_SC_W2_CALCULATE_F5_MACKEY: 2422 if (!sm_cmac_ready()) break; 2423 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY; 2424 f5_calculate_mackey(connection); 2425 break; 2426 case SM_SC_W2_CALCULATE_F5_LTK: 2427 if (!sm_cmac_ready()) break; 2428 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK; 2429 f5_calculate_ltk(connection); 2430 break; 2431 case SM_SC_W2_CALCULATE_G2: 2432 if (!sm_cmac_ready()) break; 2433 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2; 2434 g2_calculate(connection); 2435 break; 2436 case SM_SC_W2_CALCULATE_H6_ILK: 2437 if (!sm_cmac_ready()) break; 2438 connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_ILK; 2439 h6_calculate_ilk(connection); 2440 break; 2441 case SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY: 2442 if (!sm_cmac_ready()) break; 2443 connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY; 2444 h6_calculate_br_edr_link_key(connection); 2445 break; 2446 #endif 2447 2448 #ifdef ENABLE_LE_CENTRAL 2449 // initiator side 2450 case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: { 2451 sm_key_t peer_ltk_flipped; 2452 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped); 2453 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED; 2454 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv); 2455 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0); 2456 uint32_t rand_low = big_endian_read_32(setup->sm_peer_rand, 4); 2457 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped); 2458 return; 2459 } 2460 2461 case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST: 2462 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST); 2463 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE; 2464 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t)); 2465 sm_timeout_reset(connection); 2466 break; 2467 #endif 2468 2469 #ifdef ENABLE_LE_SECURE_CONNECTIONS 2470 2471 case SM_SC_SEND_PUBLIC_KEY_COMMAND: { 2472 int trigger_user_response = 0; 2473 2474 uint8_t buffer[65]; 2475 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY; 2476 // 2477 reverse_256(&ec_q[0], &buffer[1]); 2478 reverse_256(&ec_q[32], &buffer[33]); 2479 2480 // stk generation method 2481 // passkey entry: notify app to show passkey or to request passkey 2482 switch (setup->sm_stk_generation_method){ 2483 case JUST_WORKS: 2484 case NK_BOTH_INPUT: 2485 if (IS_RESPONDER(connection->sm_role)){ 2486 // responder 2487 sm_sc_start_calculating_local_confirm(connection); 2488 } else { 2489 // initiator 2490 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2491 } 2492 break; 2493 case PK_INIT_INPUT: 2494 case PK_RESP_INPUT: 2495 case OK_BOTH_INPUT: 2496 // use random TK for display 2497 memcpy(setup->sm_ra, setup->sm_tk, 16); 2498 memcpy(setup->sm_rb, setup->sm_tk, 16); 2499 setup->sm_passkey_bit = 0; 2500 2501 if (IS_RESPONDER(connection->sm_role)){ 2502 // responder 2503 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2504 } else { 2505 // initiator 2506 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2507 } 2508 trigger_user_response = 1; 2509 break; 2510 case OOB: 2511 if (IS_RESPONDER(connection->sm_role)){ 2512 // responder 2513 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2514 } else { 2515 // initiator 2516 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2517 } 2518 break; 2519 } 2520 2521 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2522 sm_timeout_reset(connection); 2523 2524 // trigger user response after sending pdu 2525 if (trigger_user_response){ 2526 sm_trigger_user_response(connection); 2527 } 2528 break; 2529 } 2530 case SM_SC_SEND_CONFIRMATION: { 2531 uint8_t buffer[17]; 2532 buffer[0] = SM_CODE_PAIRING_CONFIRM; 2533 reverse_128(setup->sm_local_confirm, &buffer[1]); 2534 if (IS_RESPONDER(connection->sm_role)){ 2535 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2536 } else { 2537 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2538 } 2539 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2540 sm_timeout_reset(connection); 2541 break; 2542 } 2543 case SM_SC_SEND_PAIRING_RANDOM: { 2544 uint8_t buffer[17]; 2545 buffer[0] = SM_CODE_PAIRING_RANDOM; 2546 reverse_128(setup->sm_local_nonce, &buffer[1]); 2547 log_info("stk method %u, num bits %u", setup->sm_stk_generation_method, setup->sm_passkey_bit); 2548 if (sm_passkey_entry(setup->sm_stk_generation_method) && setup->sm_passkey_bit < 20){ 2549 log_info("SM_SC_SEND_PAIRING_RANDOM A"); 2550 if (IS_RESPONDER(connection->sm_role)){ 2551 // responder 2552 connection->sm_engine_state = SM_SC_W4_CONFIRMATION; 2553 } else { 2554 // initiator 2555 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2556 } 2557 } else { 2558 log_info("SM_SC_SEND_PAIRING_RANDOM B"); 2559 if (IS_RESPONDER(connection->sm_role)){ 2560 // responder 2561 if (setup->sm_stk_generation_method == NK_BOTH_INPUT){ 2562 log_info("SM_SC_SEND_PAIRING_RANDOM B1"); 2563 connection->sm_engine_state = SM_SC_W2_CALCULATE_G2; 2564 } else { 2565 log_info("SM_SC_SEND_PAIRING_RANDOM B2"); 2566 sm_sc_prepare_dhkey_check(connection); 2567 } 2568 } else { 2569 // initiator 2570 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM; 2571 } 2572 } 2573 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2574 sm_timeout_reset(connection); 2575 break; 2576 } 2577 case SM_SC_SEND_DHKEY_CHECK_COMMAND: { 2578 uint8_t buffer[17]; 2579 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK; 2580 reverse_128(setup->sm_local_dhkey_check, &buffer[1]); 2581 2582 if (IS_RESPONDER(connection->sm_role)){ 2583 connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC; 2584 } else { 2585 connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND; 2586 } 2587 2588 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2589 sm_timeout_reset(connection); 2590 break; 2591 } 2592 2593 #endif 2594 2595 #ifdef ENABLE_LE_PERIPHERAL 2596 case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE: 2597 // echo initiator for now 2598 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE); 2599 key_distribution_flags = sm_key_distribution_flags_for_auth_req(); 2600 2601 if (setup->sm_use_secure_connections){ 2602 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND; 2603 // skip LTK/EDIV for SC 2604 log_info("sm: dropping encryption information flag"); 2605 key_distribution_flags &= ~SM_KEYDIST_ENC_KEY; 2606 } else { 2607 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM; 2608 } 2609 2610 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags); 2611 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags); 2612 // update key distribution after ENC was dropped 2613 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres)); 2614 2615 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t)); 2616 sm_timeout_reset(connection); 2617 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged 2618 if (!setup->sm_use_secure_connections || setup->sm_stk_generation_method == JUST_WORKS){ 2619 sm_trigger_user_response(connection); 2620 } 2621 return; 2622 #endif 2623 2624 case SM_PH2_SEND_PAIRING_RANDOM: { 2625 uint8_t buffer[17]; 2626 buffer[0] = SM_CODE_PAIRING_RANDOM; 2627 reverse_128(setup->sm_local_random, &buffer[1]); 2628 if (IS_RESPONDER(connection->sm_role)){ 2629 connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST; 2630 } else { 2631 connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM; 2632 } 2633 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2634 sm_timeout_reset(connection); 2635 break; 2636 } 2637 2638 case SM_PH2_GET_RANDOM_TK: 2639 case SM_PH2_C1_GET_RANDOM_A: 2640 case SM_PH2_C1_GET_RANDOM_B: 2641 case SM_PH3_GET_RANDOM: 2642 case SM_PH3_GET_DIV: 2643 sm_next_responding_state(connection); 2644 sm_random_start(connection); 2645 return; 2646 2647 case SM_PH2_C1_GET_ENC_B: 2648 case SM_PH2_C1_GET_ENC_D: 2649 // already busy? 2650 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2651 sm_next_responding_state(connection); 2652 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection); 2653 return; 2654 2655 case SM_PH3_LTK_GET_ENC: 2656 case SM_RESPONDER_PH4_LTK_GET_ENC: 2657 // already busy? 2658 if (sm_aes128_state == SM_AES128_IDLE) { 2659 sm_key_t d_prime; 2660 sm_d1_d_prime(setup->sm_local_div, 0, d_prime); 2661 sm_next_responding_state(connection); 2662 sm_aes128_start(sm_persistent_er, d_prime, connection); 2663 return; 2664 } 2665 break; 2666 2667 case SM_PH3_CSRK_GET_ENC: 2668 // already busy? 2669 if (sm_aes128_state == SM_AES128_IDLE) { 2670 sm_key_t d_prime; 2671 sm_d1_d_prime(setup->sm_local_div, 1, d_prime); 2672 sm_next_responding_state(connection); 2673 sm_aes128_start(sm_persistent_er, d_prime, connection); 2674 return; 2675 } 2676 break; 2677 2678 case SM_PH2_C1_GET_ENC_C: 2679 // already busy? 2680 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2681 // calculate m_confirm using aes128 engine - step 1 2682 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext); 2683 sm_next_responding_state(connection); 2684 sm_aes128_start(setup->sm_tk, plaintext, connection); 2685 break; 2686 case SM_PH2_C1_GET_ENC_A: 2687 // already busy? 2688 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2689 // calculate confirm using aes128 engine - step 1 2690 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext); 2691 sm_next_responding_state(connection); 2692 sm_aes128_start(setup->sm_tk, plaintext, connection); 2693 break; 2694 case SM_PH2_CALC_STK: 2695 // already busy? 2696 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2697 // calculate STK 2698 if (IS_RESPONDER(connection->sm_role)){ 2699 sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext); 2700 } else { 2701 sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext); 2702 } 2703 sm_next_responding_state(connection); 2704 sm_aes128_start(setup->sm_tk, plaintext, connection); 2705 break; 2706 case SM_PH3_Y_GET_ENC: 2707 // already busy? 2708 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2709 // PH3B2 - calculate Y from - enc 2710 // Y = dm(DHK, Rand) 2711 sm_dm_r_prime(setup->sm_local_rand, plaintext); 2712 sm_next_responding_state(connection); 2713 sm_aes128_start(sm_persistent_dhk, plaintext, connection); 2714 return; 2715 case SM_PH2_C1_SEND_PAIRING_CONFIRM: { 2716 uint8_t buffer[17]; 2717 buffer[0] = SM_CODE_PAIRING_CONFIRM; 2718 reverse_128(setup->sm_local_confirm, &buffer[1]); 2719 if (IS_RESPONDER(connection->sm_role)){ 2720 connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM; 2721 } else { 2722 connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM; 2723 } 2724 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2725 sm_timeout_reset(connection); 2726 return; 2727 } 2728 #ifdef ENABLE_LE_PERIPHERAL 2729 case SM_RESPONDER_PH2_SEND_LTK_REPLY: { 2730 sm_key_t stk_flipped; 2731 reverse_128(setup->sm_ltk, stk_flipped); 2732 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED; 2733 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped); 2734 return; 2735 } 2736 case SM_RESPONDER_PH4_SEND_LTK_REPLY: { 2737 sm_key_t ltk_flipped; 2738 reverse_128(setup->sm_ltk, ltk_flipped); 2739 connection->sm_engine_state = SM_RESPONDER_IDLE; 2740 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped); 2741 sm_done_for_handle(connection->sm_handle); 2742 return; 2743 } 2744 case SM_RESPONDER_PH4_Y_GET_ENC: 2745 // already busy? 2746 if (sm_aes128_state == SM_AES128_ACTIVE) break; 2747 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv); 2748 // Y = dm(DHK, Rand) 2749 sm_dm_r_prime(setup->sm_local_rand, plaintext); 2750 sm_next_responding_state(connection); 2751 sm_aes128_start(sm_persistent_dhk, plaintext, connection); 2752 return; 2753 #endif 2754 #ifdef ENABLE_LE_CENTRAL 2755 case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: { 2756 sm_key_t stk_flipped; 2757 reverse_128(setup->sm_ltk, stk_flipped); 2758 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED; 2759 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped); 2760 return; 2761 } 2762 #endif 2763 2764 case SM_PH3_DISTRIBUTE_KEYS: 2765 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){ 2766 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 2767 uint8_t buffer[17]; 2768 buffer[0] = SM_CODE_ENCRYPTION_INFORMATION; 2769 reverse_128(setup->sm_ltk, &buffer[1]); 2770 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2771 sm_timeout_reset(connection); 2772 return; 2773 } 2774 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){ 2775 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 2776 uint8_t buffer[11]; 2777 buffer[0] = SM_CODE_MASTER_IDENTIFICATION; 2778 little_endian_store_16(buffer, 1, setup->sm_local_ediv); 2779 reverse_64(setup->sm_local_rand, &buffer[3]); 2780 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2781 sm_timeout_reset(connection); 2782 return; 2783 } 2784 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){ 2785 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 2786 uint8_t buffer[17]; 2787 buffer[0] = SM_CODE_IDENTITY_INFORMATION; 2788 reverse_128(sm_persistent_irk, &buffer[1]); 2789 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2790 sm_timeout_reset(connection); 2791 return; 2792 } 2793 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){ 2794 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 2795 bd_addr_t local_address; 2796 uint8_t buffer[8]; 2797 buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION; 2798 switch (gap_random_address_get_mode()){ 2799 case GAP_RANDOM_ADDRESS_TYPE_OFF: 2800 case GAP_RANDOM_ADDRESS_TYPE_STATIC: 2801 // public or static random 2802 gap_le_get_own_address(&buffer[1], local_address); 2803 break; 2804 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE: 2805 case GAP_RANDOM_ADDRESS_RESOLVABLE: 2806 // fallback to public 2807 gap_local_bd_addr(local_address); 2808 buffer[1] = 0; 2809 break; 2810 } 2811 reverse_bd_addr(local_address, &buffer[2]); 2812 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2813 sm_timeout_reset(connection); 2814 return; 2815 } 2816 if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ 2817 setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 2818 2819 // hack to reproduce test runs 2820 if (test_use_fixed_local_csrk){ 2821 memset(setup->sm_local_csrk, 0xcc, 16); 2822 } 2823 2824 uint8_t buffer[17]; 2825 buffer[0] = SM_CODE_SIGNING_INFORMATION; 2826 reverse_128(setup->sm_local_csrk, &buffer[1]); 2827 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); 2828 sm_timeout_reset(connection); 2829 return; 2830 } 2831 2832 // keys are sent 2833 if (IS_RESPONDER(connection->sm_role)){ 2834 // slave -> receive master keys if any 2835 if (sm_key_distribution_all_received(connection)){ 2836 sm_key_distribution_handle_all_received(connection); 2837 connection->sm_engine_state = SM_RESPONDER_IDLE; 2838 sm_notify_client_status_reason(connection, ERROR_CODE_SUCCESS, 0); 2839 sm_done_for_handle(connection->sm_handle); 2840 } else { 2841 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS; 2842 } 2843 } else { 2844 // master -> all done 2845 connection->sm_engine_state = SM_INITIATOR_CONNECTED; 2846 sm_notify_client_status_reason(connection, ERROR_CODE_SUCCESS, 0); 2847 sm_done_for_handle(connection->sm_handle); 2848 } 2849 break; 2850 2851 default: 2852 break; 2853 } 2854 2855 // check again if active connection was released 2856 if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break; 2857 } 2858 } 2859 2860 // note: aes engine is ready as we just got the aes result 2861 static void sm_handle_encryption_result(uint8_t * data){ 2862 2863 sm_aes128_state = SM_AES128_IDLE; 2864 2865 if (sm_address_resolution_ah_calculation_active){ 2866 sm_address_resolution_ah_calculation_active = 0; 2867 // compare calulated address against connecting device 2868 uint8_t hash[3]; 2869 reverse_24(data, hash); 2870 if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){ 2871 log_info("LE Device Lookup: matched resolvable private address"); 2872 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED); 2873 return; 2874 } 2875 // no match, try next 2876 sm_address_resolution_test++; 2877 return; 2878 } 2879 2880 switch (dkg_state){ 2881 case DKG_W4_IRK: 2882 reverse_128(data, sm_persistent_irk); 2883 log_info_key("irk", sm_persistent_irk); 2884 dkg_next_state(); 2885 return; 2886 case DKG_W4_DHK: 2887 reverse_128(data, sm_persistent_dhk); 2888 log_info_key("dhk", sm_persistent_dhk); 2889 dkg_next_state(); 2890 // SM Init Finished 2891 return; 2892 default: 2893 break; 2894 } 2895 2896 switch (rau_state){ 2897 case RAU_W4_ENC: 2898 reverse_24(data, &sm_random_address[3]); 2899 rau_next_state(); 2900 return; 2901 default: 2902 break; 2903 } 2904 2905 #ifdef ENABLE_CMAC_ENGINE 2906 switch (sm_cmac_state){ 2907 case CMAC_W4_SUBKEYS: 2908 case CMAC_W4_MI: 2909 case CMAC_W4_MLAST: 2910 { 2911 sm_key_t t; 2912 reverse_128(data, t); 2913 sm_cmac_handle_encryption_result(t); 2914 } 2915 return; 2916 default: 2917 break; 2918 } 2919 #endif 2920 2921 // retrieve sm_connection provided to sm_aes128_start_encryption 2922 sm_connection_t * connection = (sm_connection_t*) sm_aes128_context; 2923 if (!connection) return; 2924 switch (connection->sm_engine_state){ 2925 case SM_PH2_C1_W4_ENC_A: 2926 case SM_PH2_C1_W4_ENC_C: 2927 { 2928 sm_key_t t2; 2929 reverse_128(data, t2); 2930 sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value); 2931 } 2932 sm_next_responding_state(connection); 2933 return; 2934 case SM_PH2_C1_W4_ENC_B: 2935 reverse_128(data, setup->sm_local_confirm); 2936 log_info_key("c1!", setup->sm_local_confirm); 2937 connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM; 2938 return; 2939 case SM_PH2_C1_W4_ENC_D: 2940 { 2941 sm_key_t peer_confirm_test; 2942 reverse_128(data, peer_confirm_test); 2943 log_info_key("c1!", peer_confirm_test); 2944 if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){ 2945 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED; 2946 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 2947 return; 2948 } 2949 if (IS_RESPONDER(connection->sm_role)){ 2950 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM; 2951 } else { 2952 connection->sm_engine_state = SM_PH2_CALC_STK; 2953 } 2954 } 2955 return; 2956 case SM_PH2_W4_STK: 2957 reverse_128(data, setup->sm_ltk); 2958 sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size); 2959 log_info_key("stk", setup->sm_ltk); 2960 if (IS_RESPONDER(connection->sm_role)){ 2961 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY; 2962 } else { 2963 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION; 2964 } 2965 return; 2966 case SM_PH3_Y_W4_ENC:{ 2967 sm_key_t y128; 2968 reverse_128(data, y128); 2969 setup->sm_local_y = big_endian_read_16(y128, 14); 2970 log_info_hex16("y", setup->sm_local_y); 2971 // PH3B3 - calculate EDIV 2972 setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div; 2973 log_info_hex16("ediv", setup->sm_local_ediv); 2974 // PH3B4 - calculate LTK - enc 2975 // LTK = d1(ER, DIV, 0)) 2976 connection->sm_engine_state = SM_PH3_LTK_GET_ENC; 2977 return; 2978 } 2979 case SM_RESPONDER_PH4_Y_W4_ENC:{ 2980 sm_key_t y128; 2981 reverse_128(data, y128); 2982 setup->sm_local_y = big_endian_read_16(y128, 14); 2983 log_info_hex16("y", setup->sm_local_y); 2984 2985 // PH3B3 - calculate DIV 2986 setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv; 2987 log_info_hex16("ediv", setup->sm_local_ediv); 2988 // PH3B4 - calculate LTK - enc 2989 // LTK = d1(ER, DIV, 0)) 2990 connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC; 2991 return; 2992 } 2993 case SM_PH3_LTK_W4_ENC: 2994 reverse_128(data, setup->sm_ltk); 2995 log_info_key("ltk", setup->sm_ltk); 2996 // calc CSRK next 2997 connection->sm_engine_state = SM_PH3_CSRK_GET_ENC; 2998 return; 2999 case SM_PH3_CSRK_W4_ENC: 3000 reverse_128(data, setup->sm_local_csrk); 3001 log_info_key("csrk", setup->sm_local_csrk); 3002 if (setup->sm_key_distribution_send_set){ 3003 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 3004 } else { 3005 // no keys to send, just continue 3006 if (IS_RESPONDER(connection->sm_role)){ 3007 // slave -> receive master keys 3008 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS; 3009 } else { 3010 if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){ 3011 connection->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK; 3012 } else { 3013 // master -> all done 3014 connection->sm_engine_state = SM_INITIATOR_CONNECTED; 3015 sm_notify_client_status_reason(connection, ERROR_CODE_SUCCESS, 0); 3016 sm_done_for_handle(connection->sm_handle); 3017 } 3018 } 3019 } 3020 return; 3021 #ifdef ENABLE_LE_PERIPHERAL 3022 case SM_RESPONDER_PH4_LTK_W4_ENC: 3023 reverse_128(data, setup->sm_ltk); 3024 sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size); 3025 log_info_key("ltk", setup->sm_ltk); 3026 connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY; 3027 return; 3028 #endif 3029 default: 3030 break; 3031 } 3032 } 3033 3034 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3035 3036 #if (defined(USE_MICRO_ECC_FOR_ECDH) && !defined(WICED_VERSION)) || defined(USE_MBEDTLS_FOR_ECDH) 3037 // @return OK 3038 static int sm_generate_f_rng(unsigned char * buffer, unsigned size){ 3039 if (ec_key_generation_state != EC_KEY_GENERATION_ACTIVE) return 0; 3040 int offset = setup->sm_passkey_bit; 3041 log_info("sm_generate_f_rng: size %u - offset %u", (int) size, offset); 3042 while (size) { 3043 *buffer++ = setup->sm_peer_q[offset++]; 3044 size--; 3045 } 3046 setup->sm_passkey_bit = offset; 3047 return 1; 3048 } 3049 #endif 3050 #ifdef USE_MBEDTLS_FOR_ECDH 3051 // @return error - just wrap sm_generate_f_rng 3052 static int sm_generate_f_rng_mbedtls(void * context, unsigned char * buffer, size_t size){ 3053 UNUSED(context); 3054 return sm_generate_f_rng(buffer, size) == 0; 3055 } 3056 #endif /* USE_MBEDTLS_FOR_ECDH */ 3057 #endif /* ENABLE_LE_SECURE_CONNECTIONS */ 3058 3059 // note: random generator is ready. this doesn NOT imply that aes engine is unused! 3060 static void sm_handle_random_result(uint8_t * data){ 3061 3062 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined(USE_SOFTWARE_ECDH_IMPLEMENTATION) 3063 3064 if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){ 3065 int num_bytes = setup->sm_passkey_bit; 3066 memcpy(&setup->sm_peer_q[num_bytes], data, 8); 3067 num_bytes += 8; 3068 setup->sm_passkey_bit = num_bytes; 3069 3070 if (num_bytes >= 64){ 3071 3072 // init pre-generated random data from sm_peer_q 3073 setup->sm_passkey_bit = 0; 3074 3075 // generate EC key 3076 #ifdef USE_MICRO_ECC_FOR_ECDH 3077 3078 #ifndef WICED_VERSION 3079 log_info("set uECC RNG for initial key generation with 64 random bytes"); 3080 // micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it 3081 uECC_set_rng(&sm_generate_f_rng); 3082 #endif /* WICED_VERSION */ 3083 3084 #if uECC_SUPPORTS_secp256r1 3085 // standard version 3086 uECC_make_key(ec_q, ec_d, uECC_secp256r1()); 3087 3088 // disable RNG again, as returning no randmon data lets shared key generation fail 3089 log_info("disable uECC RNG in standard version after key generation"); 3090 uECC_set_rng(NULL); 3091 #else 3092 // static version 3093 uECC_make_key(ec_q, ec_d); 3094 #endif 3095 #endif /* USE_MICRO_ECC_FOR_ECDH */ 3096 3097 #ifdef USE_MBEDTLS_FOR_ECDH 3098 mbedtls_mpi d; 3099 mbedtls_ecp_point P; 3100 mbedtls_mpi_init(&d); 3101 mbedtls_ecp_point_init(&P); 3102 int res = mbedtls_ecp_gen_keypair(&mbedtls_ec_group, &d, &P, &sm_generate_f_rng_mbedtls, NULL); 3103 log_info("gen keypair %x", res); 3104 mbedtls_mpi_write_binary(&P.X, &ec_q[0], 32); 3105 mbedtls_mpi_write_binary(&P.Y, &ec_q[32], 32); 3106 mbedtls_mpi_write_binary(&d, ec_d, 32); 3107 mbedtls_ecp_point_free(&P); 3108 mbedtls_mpi_free(&d); 3109 #endif /* USE_MBEDTLS_FOR_ECDH */ 3110 3111 ec_key_generation_state = EC_KEY_GENERATION_DONE; 3112 log_info("Elliptic curve: d"); 3113 log_info_hexdump(ec_d,32); 3114 sm_log_ec_keypair(); 3115 } 3116 } 3117 #endif 3118 3119 switch (rau_state){ 3120 case RAU_W4_RANDOM: 3121 // non-resolvable vs. resolvable 3122 switch (gap_random_adress_type){ 3123 case GAP_RANDOM_ADDRESS_RESOLVABLE: 3124 // resolvable: use random as prand and calc address hash 3125 // "The two most significant bits of prand shall be equal to ‘0’ and ‘1" 3126 memcpy(sm_random_address, data, 3); 3127 sm_random_address[0] &= 0x3f; 3128 sm_random_address[0] |= 0x40; 3129 rau_state = RAU_GET_ENC; 3130 break; 3131 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE: 3132 default: 3133 // "The two most significant bits of the address shall be equal to ‘0’"" 3134 memcpy(sm_random_address, data, 6); 3135 sm_random_address[0] &= 0x3f; 3136 rau_state = RAU_SET_ADDRESS; 3137 break; 3138 } 3139 return; 3140 default: 3141 break; 3142 } 3143 3144 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3145 switch (sm_sc_oob_state){ 3146 case SM_SC_OOB_W4_RANDOM_1: 3147 memcpy(&sm_sc_oob_random[0], data, 8); 3148 sm_sc_oob_state = SM_SC_OOB_W2_GET_RANDOM_2; 3149 return; 3150 case SM_SC_OOB_W4_RANDOM_2: 3151 memcpy(&sm_sc_oob_random[8], data, 8); 3152 sm_sc_oob_state = SM_SC_OOB_W2_CALC_CONFIRM; 3153 return; 3154 default: 3155 break; 3156 } 3157 #endif 3158 3159 // retrieve sm_connection provided to sm_random_start 3160 sm_connection_t * connection = (sm_connection_t *) sm_random_context; 3161 if (!connection) return; 3162 switch (connection->sm_engine_state){ 3163 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3164 case SM_SC_W4_GET_RANDOM_A: 3165 memcpy(&setup->sm_local_nonce[0], data, 8); 3166 connection->sm_engine_state = SM_SC_W2_GET_RANDOM_B; 3167 break; 3168 case SM_SC_W4_GET_RANDOM_B: 3169 memcpy(&setup->sm_local_nonce[8], data, 8); 3170 // OOB 3171 if (setup->sm_stk_generation_method == OOB){ 3172 connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 3173 break; 3174 } 3175 // initiator & jw/nc -> send pairing random 3176 if (connection->sm_role == 0 && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){ 3177 connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 3178 break; 3179 } else { 3180 connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION; 3181 } 3182 break; 3183 #endif 3184 3185 case SM_PH2_W4_RANDOM_TK: 3186 { 3187 sm_reset_tk(); 3188 uint32_t tk; 3189 if (sm_fixed_passkey_in_display_role == 0xffffffff){ 3190 // map random to 0-999999 without speding much cycles on a modulus operation 3191 tk = little_endian_read_32(data,0); 3192 tk = tk & 0xfffff; // 1048575 3193 if (tk >= 999999){ 3194 tk = tk - 999999; 3195 } 3196 } else { 3197 // override with pre-defined passkey 3198 tk = sm_fixed_passkey_in_display_role; 3199 } 3200 big_endian_store_32(setup->sm_tk, 12, tk); 3201 if (IS_RESPONDER(connection->sm_role)){ 3202 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE; 3203 } else { 3204 if (setup->sm_use_secure_connections){ 3205 connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3206 } else { 3207 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3208 sm_trigger_user_response(connection); 3209 // response_idle == nothing <--> sm_trigger_user_response() did not require response 3210 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 3211 connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 3212 } 3213 } 3214 } 3215 return; 3216 } 3217 case SM_PH2_C1_W4_RANDOM_A: 3218 memcpy(&setup->sm_local_random[0], data, 8); // random endinaness 3219 connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B; 3220 return; 3221 case SM_PH2_C1_W4_RANDOM_B: 3222 memcpy(&setup->sm_local_random[8], data, 8); // random endinaness 3223 connection->sm_engine_state = SM_PH2_C1_GET_ENC_A; 3224 return; 3225 case SM_PH3_W4_RANDOM: 3226 reverse_64(data, setup->sm_local_rand); 3227 // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand 3228 setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1); 3229 // no db for authenticated flag hack: store flag in bit 4 of LSB 3230 setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4); 3231 connection->sm_engine_state = SM_PH3_GET_DIV; 3232 return; 3233 case SM_PH3_W4_DIV: 3234 // use 16 bit from random value as div 3235 setup->sm_local_div = big_endian_read_16(data, 0); 3236 log_info_hex16("div", setup->sm_local_div); 3237 connection->sm_engine_state = SM_PH3_Y_GET_ENC; 3238 return; 3239 default: 3240 break; 3241 } 3242 } 3243 3244 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 3245 3246 UNUSED(channel); // ok: there is no channel 3247 UNUSED(size); // ok: fixed format HCI events 3248 3249 sm_connection_t * sm_conn; 3250 hci_con_handle_t con_handle; 3251 3252 switch (packet_type) { 3253 3254 case HCI_EVENT_PACKET: 3255 switch (hci_event_packet_get_type(packet)) { 3256 3257 case BTSTACK_EVENT_STATE: 3258 // bt stack activated, get started 3259 if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){ 3260 log_info("HCI Working!"); 3261 3262 3263 dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK; 3264 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3265 if (!sm_have_ec_keypair){ 3266 setup->sm_passkey_bit = 0; 3267 ec_key_generation_state = EC_KEY_GENERATION_ACTIVE; 3268 } 3269 #endif 3270 // trigger Random Address generation if requested before 3271 switch (gap_random_adress_type){ 3272 case GAP_RANDOM_ADDRESS_TYPE_OFF: 3273 rau_state = RAU_IDLE; 3274 break; 3275 case GAP_RANDOM_ADDRESS_TYPE_STATIC: 3276 rau_state = RAU_SET_ADDRESS; 3277 break; 3278 default: 3279 rau_state = RAU_GET_RANDOM; 3280 break; 3281 } 3282 sm_run(); 3283 } 3284 break; 3285 3286 case HCI_EVENT_LE_META: 3287 switch (packet[2]) { 3288 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 3289 3290 log_info("sm: connected"); 3291 3292 if (packet[3]) return; // connection failed 3293 3294 con_handle = little_endian_read_16(packet, 4); 3295 sm_conn = sm_get_connection_for_handle(con_handle); 3296 if (!sm_conn) break; 3297 3298 sm_conn->sm_handle = con_handle; 3299 sm_conn->sm_role = packet[6]; 3300 sm_conn->sm_peer_addr_type = packet[7]; 3301 reverse_bd_addr(&packet[8], sm_conn->sm_peer_address); 3302 3303 log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master"); 3304 3305 // reset security properties 3306 sm_conn->sm_connection_encrypted = 0; 3307 sm_conn->sm_connection_authenticated = 0; 3308 sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN; 3309 sm_conn->sm_le_db_index = -1; 3310 3311 // prepare CSRK lookup (does not involve setup) 3312 sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY; 3313 3314 // just connected -> everything else happens in sm_run() 3315 if (IS_RESPONDER(sm_conn->sm_role)){ 3316 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead 3317 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){ 3318 if (sm_slave_request_security) { 3319 // request security if requested by app 3320 sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST; 3321 } else { 3322 // otherwise, wait for pairing request 3323 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 3324 } 3325 } 3326 break; 3327 } else { 3328 // master 3329 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3330 } 3331 break; 3332 3333 case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST: 3334 con_handle = little_endian_read_16(packet, 3); 3335 sm_conn = sm_get_connection_for_handle(con_handle); 3336 if (!sm_conn) break; 3337 3338 log_info("LTK Request: state %u", sm_conn->sm_engine_state); 3339 if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){ 3340 sm_conn->sm_engine_state = SM_PH2_CALC_STK; 3341 break; 3342 } 3343 if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){ 3344 // PH2 SEND LTK as we need to exchange keys in PH3 3345 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY; 3346 break; 3347 } 3348 3349 // store rand and ediv 3350 reverse_64(&packet[5], sm_conn->sm_local_rand); 3351 sm_conn->sm_local_ediv = little_endian_read_16(packet, 13); 3352 3353 // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a 3354 // potentially stored LTK is from the master 3355 if (sm_conn->sm_local_ediv != 0 || !sm_is_null_random(sm_conn->sm_local_rand)){ 3356 if (sm_reconstruct_ltk_without_le_device_db_entry){ 3357 sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST; 3358 break; 3359 } 3360 // additionally check if remote is in LE Device DB if requested 3361 switch(sm_conn->sm_irk_lookup_state){ 3362 case IRK_LOOKUP_FAILED: 3363 log_info("LTK Request: device not in device db"); 3364 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY; 3365 break; 3366 case IRK_LOOKUP_SUCCEEDED: 3367 sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST; 3368 break; 3369 default: 3370 // wait for irk look doen 3371 sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK; 3372 break; 3373 } 3374 break; 3375 } 3376 3377 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3378 sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST; 3379 #else 3380 log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported"); 3381 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY; 3382 #endif 3383 break; 3384 3385 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(USE_SOFTWARE_ECDH_IMPLEMENTATION) 3386 case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE: 3387 if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){ 3388 log_error("Read Local P256 Public Key failed"); 3389 break; 3390 } 3391 3392 hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &ec_q[0]); 3393 hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &ec_q[32]); 3394 3395 ec_key_generation_state = EC_KEY_GENERATION_DONE; 3396 sm_log_ec_keypair(); 3397 break; 3398 case HCI_SUBEVENT_LE_GENERATE_DHKEY_COMPLETE: 3399 sm_conn = sm_get_connection_for_handle(sm_active_connection_handle); 3400 if (hci_subevent_le_generate_dhkey_complete_get_status(packet)){ 3401 log_error("Generate DHKEY failed -> abort"); 3402 // abort pairing with 'unspecified reason' 3403 sm_pdu_received_in_wrong_state(sm_conn); 3404 break; 3405 } 3406 3407 hci_subevent_le_generate_dhkey_complete_get_dhkey(packet, &setup->sm_dhkey[0]); 3408 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED; 3409 log_info("dhkey"); 3410 log_info_hexdump(&setup->sm_dhkey[0], 32); 3411 3412 // trigger next step 3413 if (sm_conn->sm_engine_state == SM_SC_W4_CALCULATE_DHKEY){ 3414 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT; 3415 } 3416 break; 3417 #endif 3418 default: 3419 break; 3420 } 3421 break; 3422 3423 case HCI_EVENT_ENCRYPTION_CHANGE: 3424 con_handle = little_endian_read_16(packet, 3); 3425 sm_conn = sm_get_connection_for_handle(con_handle); 3426 if (!sm_conn) break; 3427 3428 sm_conn->sm_connection_encrypted = packet[5]; 3429 log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted, 3430 sm_conn->sm_actual_encryption_key_size); 3431 log_info("event handler, state %u", sm_conn->sm_engine_state); 3432 if (!sm_conn->sm_connection_encrypted) break; 3433 // continue if part of initial pairing 3434 switch (sm_conn->sm_engine_state){ 3435 case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED: 3436 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3437 sm_done_for_handle(sm_conn->sm_handle); 3438 break; 3439 case SM_PH2_W4_CONNECTION_ENCRYPTED: 3440 if (IS_RESPONDER(sm_conn->sm_role)){ 3441 // slave 3442 if (setup->sm_use_secure_connections){ 3443 sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 3444 } else { 3445 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3446 } 3447 } else { 3448 // master 3449 if (sm_key_distribution_all_received(sm_conn)){ 3450 // skip receiving keys as there are none 3451 sm_key_distribution_handle_all_received(sm_conn); 3452 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3453 } else { 3454 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS; 3455 } 3456 } 3457 break; 3458 default: 3459 break; 3460 } 3461 break; 3462 3463 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE: 3464 con_handle = little_endian_read_16(packet, 3); 3465 sm_conn = sm_get_connection_for_handle(con_handle); 3466 if (!sm_conn) break; 3467 3468 log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size); 3469 log_info("event handler, state %u", sm_conn->sm_engine_state); 3470 // continue if part of initial pairing 3471 switch (sm_conn->sm_engine_state){ 3472 case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED: 3473 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED; 3474 sm_done_for_handle(sm_conn->sm_handle); 3475 break; 3476 case SM_PH2_W4_CONNECTION_ENCRYPTED: 3477 if (IS_RESPONDER(sm_conn->sm_role)){ 3478 // slave 3479 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 3480 } else { 3481 // master 3482 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS; 3483 } 3484 break; 3485 default: 3486 break; 3487 } 3488 break; 3489 3490 3491 case HCI_EVENT_DISCONNECTION_COMPLETE: 3492 con_handle = little_endian_read_16(packet, 3); 3493 sm_done_for_handle(con_handle); 3494 sm_conn = sm_get_connection_for_handle(con_handle); 3495 if (!sm_conn) break; 3496 3497 // delete stored bonding on disconnect with authentication failure in ph0 3498 if (sm_conn->sm_role == 0 3499 && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED 3500 && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){ 3501 le_device_db_remove(sm_conn->sm_le_db_index); 3502 } 3503 3504 // pairing failed, if it was ongoing 3505 if (sm_conn->sm_engine_state != SM_INITIATOR_CONNECTED && sm_conn->sm_engine_state != SM_GENERAL_IDLE){ 3506 sm_notify_client_status_reason(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION, 0); 3507 } 3508 3509 sm_conn->sm_engine_state = SM_GENERAL_IDLE; 3510 sm_conn->sm_handle = 0; 3511 break; 3512 3513 case HCI_EVENT_COMMAND_COMPLETE: 3514 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){ 3515 sm_handle_encryption_result(&packet[6]); 3516 break; 3517 } 3518 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){ 3519 sm_handle_random_result(&packet[6]); 3520 break; 3521 } 3522 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)){ 3523 // set local addr for le device db 3524 bd_addr_t addr; 3525 reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr); 3526 le_device_db_set_local_bd_addr(addr); 3527 } 3528 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_commands)){ 3529 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(USE_SOFTWARE_ECDH_IMPLEMENTATION) 3530 if ((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+34] & 0x06) != 0x06){ 3531 // mbedTLS can also be used if already available (and malloc is supported) 3532 log_error("LE Secure Connections enabled, but HCI Controller doesn't support it. Please add USE_MICRO_ECC_FOR_ECDH to btstack_config.h"); 3533 } 3534 #endif 3535 } 3536 break; 3537 default: 3538 break; 3539 } 3540 break; 3541 default: 3542 break; 3543 } 3544 3545 sm_run(); 3546 } 3547 3548 static inline int sm_calc_actual_encryption_key_size(int other){ 3549 if (other < sm_min_encryption_key_size) return 0; 3550 if (other < sm_max_encryption_key_size) return other; 3551 return sm_max_encryption_key_size; 3552 } 3553 3554 3555 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3556 static int sm_just_works_or_numeric_comparison(stk_generation_method_t method){ 3557 switch (method){ 3558 case JUST_WORKS: 3559 case NK_BOTH_INPUT: 3560 return 1; 3561 default: 3562 return 0; 3563 } 3564 } 3565 // responder 3566 3567 static int sm_passkey_used(stk_generation_method_t method){ 3568 switch (method){ 3569 case PK_RESP_INPUT: 3570 return 1; 3571 default: 3572 return 0; 3573 } 3574 } 3575 3576 static int sm_passkey_entry(stk_generation_method_t method){ 3577 switch (method){ 3578 case PK_RESP_INPUT: 3579 case PK_INIT_INPUT: 3580 case OK_BOTH_INPUT: 3581 return 1; 3582 default: 3583 return 0; 3584 } 3585 } 3586 3587 #endif 3588 3589 /** 3590 * @return ok 3591 */ 3592 static int sm_validate_stk_generation_method(void){ 3593 // check if STK generation method is acceptable by client 3594 switch (setup->sm_stk_generation_method){ 3595 case JUST_WORKS: 3596 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0; 3597 case PK_RESP_INPUT: 3598 case PK_INIT_INPUT: 3599 case OK_BOTH_INPUT: 3600 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0; 3601 case OOB: 3602 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0; 3603 case NK_BOTH_INPUT: 3604 return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0; 3605 return 1; 3606 default: 3607 return 0; 3608 } 3609 } 3610 3611 // size of complete sm_pdu used to validate input 3612 static const uint8_t sm_pdu_size[] = { 3613 0, // 0x00 invalid opcode 3614 7, // 0x01 pairing request 3615 7, // 0x02 pairing response 3616 17, // 0x03 pairing confirm 3617 17, // 0x04 pairing random 3618 2, // 0x05 pairing failed 3619 17, // 0x06 encryption information 3620 11, // 0x07 master identification 3621 17, // 0x08 identification information 3622 8, // 0x09 identify address information 3623 17, // 0x0a signing information 3624 2, // 0x0b security request 3625 65, // 0x0c pairing public key 3626 17, // 0x0d pairing dhk check 3627 2, // 0x0e keypress notification 3628 }; 3629 3630 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){ 3631 3632 if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){ 3633 sm_run(); 3634 } 3635 3636 if (packet_type != SM_DATA_PACKET) return; 3637 if (size == 0) return; 3638 3639 uint8_t sm_pdu_code = packet[0]; 3640 3641 // validate pdu size 3642 if (sm_pdu_code >= sizeof(sm_pdu_size)) return; 3643 if (sm_pdu_size[sm_pdu_code] != size) return; 3644 3645 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 3646 if (!sm_conn) return; 3647 3648 if (sm_pdu_code == SM_CODE_PAIRING_FAILED){ 3649 sm_notify_client_status_reason(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE, packet[1]); 3650 sm_done_for_handle(con_handle); 3651 sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED; 3652 return; 3653 } 3654 3655 log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, sm_pdu_code); 3656 3657 int err; 3658 UNUSED(err); 3659 3660 if (sm_pdu_code == SM_CODE_KEYPRESS_NOTIFICATION){ 3661 uint8_t buffer[5]; 3662 buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION; 3663 buffer[1] = 3; 3664 little_endian_store_16(buffer, 2, con_handle); 3665 buffer[4] = packet[1]; 3666 sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer)); 3667 return; 3668 } 3669 3670 switch (sm_conn->sm_engine_state){ 3671 3672 // a sm timeout requries a new physical connection 3673 case SM_GENERAL_TIMEOUT: 3674 return; 3675 3676 #ifdef ENABLE_LE_CENTRAL 3677 3678 // Initiator 3679 case SM_INITIATOR_CONNECTED: 3680 if ((sm_pdu_code != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){ 3681 sm_pdu_received_in_wrong_state(sm_conn); 3682 break; 3683 } 3684 if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){ 3685 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3686 break; 3687 } 3688 if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){ 3689 sm_key_t ltk; 3690 le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL); 3691 if (!sm_is_null_key(ltk)){ 3692 log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index); 3693 sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 3694 } else { 3695 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 3696 } 3697 break; 3698 } 3699 // otherwise, store security request 3700 sm_conn->sm_security_request_received = 1; 3701 break; 3702 3703 case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE: 3704 if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){ 3705 sm_pdu_received_in_wrong_state(sm_conn); 3706 break; 3707 } 3708 3709 // store pairing request 3710 memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t)); 3711 err = sm_stk_generation_init(sm_conn); 3712 3713 #ifdef ENABLE_TESTING_SUPPORT 3714 if (0 < test_pairing_failure && test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED){ 3715 log_info("testing_support: abort with pairing failure %u", test_pairing_failure); 3716 err = test_pairing_failure; 3717 } 3718 #endif 3719 3720 if (err){ 3721 setup->sm_pairing_failed_reason = err; 3722 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 3723 break; 3724 } 3725 3726 // generate random number first, if we need to show passkey 3727 if (setup->sm_stk_generation_method == PK_RESP_INPUT){ 3728 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK; 3729 break; 3730 } 3731 3732 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3733 if (setup->sm_use_secure_connections){ 3734 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged 3735 if (setup->sm_stk_generation_method == JUST_WORKS){ 3736 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3737 sm_trigger_user_response(sm_conn); 3738 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 3739 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3740 } 3741 } else { 3742 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3743 } 3744 break; 3745 } 3746 #endif 3747 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 3748 sm_trigger_user_response(sm_conn); 3749 // response_idle == nothing <--> sm_trigger_user_response() did not require response 3750 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){ 3751 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 3752 } 3753 break; 3754 3755 case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM: 3756 if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){ 3757 sm_pdu_received_in_wrong_state(sm_conn); 3758 break; 3759 } 3760 3761 // store s_confirm 3762 reverse_128(&packet[1], setup->sm_peer_confirm); 3763 3764 #ifdef ENABLE_TESTING_SUPPORT 3765 if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){ 3766 log_info("testing_support: reset confirm value"); 3767 memset(setup->sm_peer_confirm, 0, 16); 3768 } 3769 #endif 3770 sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM; 3771 break; 3772 3773 case SM_INITIATOR_PH2_W4_PAIRING_RANDOM: 3774 if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){ 3775 sm_pdu_received_in_wrong_state(sm_conn); 3776 break;; 3777 } 3778 3779 // received random value 3780 reverse_128(&packet[1], setup->sm_peer_random); 3781 sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C; 3782 break; 3783 #endif 3784 3785 #ifdef ENABLE_LE_PERIPHERAL 3786 // Responder 3787 case SM_RESPONDER_IDLE: 3788 case SM_RESPONDER_SEND_SECURITY_REQUEST: 3789 case SM_RESPONDER_PH1_W4_PAIRING_REQUEST: 3790 if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){ 3791 sm_pdu_received_in_wrong_state(sm_conn); 3792 break;; 3793 } 3794 3795 // store pairing request 3796 memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t)); 3797 sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED; 3798 break; 3799 #endif 3800 3801 #ifdef ENABLE_LE_SECURE_CONNECTIONS 3802 case SM_SC_W4_PUBLIC_KEY_COMMAND: 3803 if (sm_pdu_code != SM_CODE_PAIRING_PUBLIC_KEY){ 3804 sm_pdu_received_in_wrong_state(sm_conn); 3805 break; 3806 } 3807 3808 // store public key for DH Key calculation 3809 reverse_256(&packet[01], &setup->sm_peer_q[0]); 3810 reverse_256(&packet[33], &setup->sm_peer_q[32]); 3811 3812 // validate public key using micro-ecc 3813 err = 0; 3814 3815 #ifdef USE_MICRO_ECC_FOR_ECDH 3816 #if uECC_SUPPORTS_secp256r1 3817 // standard version 3818 err = uECC_valid_public_key(setup->sm_peer_q, uECC_secp256r1()) == 0; 3819 #else 3820 // static version 3821 err = uECC_valid_public_key(setup->sm_peer_q) == 0; 3822 #endif 3823 #endif 3824 3825 #ifdef USE_MBEDTLS_FOR_ECDH 3826 mbedtls_ecp_point Q; 3827 mbedtls_ecp_point_init( &Q ); 3828 mbedtls_mpi_read_binary(&Q.X, &setup->sm_peer_q[0], 32); 3829 mbedtls_mpi_read_binary(&Q.Y, &setup->sm_peer_q[32], 32); 3830 mbedtls_mpi_lset(&Q.Z, 1); 3831 err = mbedtls_ecp_check_pubkey(&mbedtls_ec_group, &Q); 3832 mbedtls_ecp_point_free( & Q); 3833 #endif 3834 3835 if (err){ 3836 log_error("sm: peer public key invalid %x", err); 3837 // uses "unspecified reason", there is no "public key invalid" error code 3838 sm_pdu_received_in_wrong_state(sm_conn); 3839 break; 3840 } 3841 3842 #ifndef USE_SOFTWARE_ECDH_IMPLEMENTATION 3843 // ask controller to calculate dhkey 3844 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_NEEDED; 3845 #endif 3846 3847 3848 log_info("public key received, generation method %u", setup->sm_stk_generation_method); 3849 if (IS_RESPONDER(sm_conn->sm_role)){ 3850 // responder 3851 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 3852 } else { 3853 // initiator 3854 // stk generation method 3855 // passkey entry: notify app to show passkey or to request passkey 3856 switch (setup->sm_stk_generation_method){ 3857 case JUST_WORKS: 3858 case NK_BOTH_INPUT: 3859 sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION; 3860 break; 3861 case PK_RESP_INPUT: 3862 sm_sc_start_calculating_local_confirm(sm_conn); 3863 break; 3864 case PK_INIT_INPUT: 3865 case OK_BOTH_INPUT: 3866 if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){ 3867 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 3868 break; 3869 } 3870 sm_sc_start_calculating_local_confirm(sm_conn); 3871 break; 3872 case OOB: 3873 // generate Na 3874 log_info("Generate Na"); 3875 sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A; 3876 break; 3877 } 3878 } 3879 break; 3880 3881 case SM_SC_W4_CONFIRMATION: 3882 if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){ 3883 sm_pdu_received_in_wrong_state(sm_conn); 3884 break; 3885 } 3886 // received confirm value 3887 reverse_128(&packet[1], setup->sm_peer_confirm); 3888 3889 #ifdef ENABLE_TESTING_SUPPORT 3890 if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){ 3891 log_info("testing_support: reset confirm value"); 3892 memset(setup->sm_peer_confirm, 0, 16); 3893 } 3894 #endif 3895 if (IS_RESPONDER(sm_conn->sm_role)){ 3896 // responder 3897 if (sm_passkey_used(setup->sm_stk_generation_method)){ 3898 if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){ 3899 // still waiting for passkey 3900 sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE; 3901 break; 3902 } 3903 } 3904 sm_sc_start_calculating_local_confirm(sm_conn); 3905 } else { 3906 // initiator 3907 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){ 3908 sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A; 3909 } else { 3910 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM; 3911 } 3912 } 3913 break; 3914 3915 case SM_SC_W4_PAIRING_RANDOM: 3916 if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){ 3917 sm_pdu_received_in_wrong_state(sm_conn); 3918 break; 3919 } 3920 3921 // received random value 3922 reverse_128(&packet[1], setup->sm_peer_nonce); 3923 3924 // validate confirm value if Cb = f4(Pkb, Pka, Nb, z) 3925 // only check for JUST WORK/NC in initiator role OR passkey entry 3926 if ( (!IS_RESPONDER(sm_conn->sm_role) && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)) 3927 || (sm_passkey_used(setup->sm_stk_generation_method)) ) { 3928 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION; 3929 break; 3930 } 3931 3932 // OOB 3933 if (setup->sm_stk_generation_method == OOB){ 3934 3935 // setup local random, set to zero if remote did not receive our data 3936 log_info("Received nonce, setup local random ra/rb for dhkey check"); 3937 if (IS_RESPONDER(sm_conn->sm_role)){ 3938 if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) == 0){ 3939 log_info("Reset rb as A does not have OOB data"); 3940 memset(setup->sm_rb, 0, 16); 3941 } else { 3942 memcpy(setup->sm_rb, sm_sc_oob_random, 16); 3943 log_info("Use stored rb"); 3944 log_info_hexdump(setup->sm_rb, 16); 3945 } 3946 } else { 3947 if (sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres) == 0){ 3948 log_info("Reset ra as B does not have OOB data"); 3949 memset(setup->sm_ra, 0, 16); 3950 } else { 3951 memcpy(setup->sm_ra, sm_sc_oob_random, 16); 3952 log_info("Use stored ra"); 3953 log_info_hexdump(setup->sm_ra, 16); 3954 } 3955 } 3956 3957 // validate confirm value if Cb = f4(PKb, Pkb, rb, 0) for OOB if data received 3958 if (setup->sm_have_oob_data){ 3959 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION; 3960 break; 3961 } 3962 } 3963 3964 // TODO: we only get here for Responder role with JW/NC 3965 sm_sc_state_after_receiving_random(sm_conn); 3966 break; 3967 3968 case SM_SC_W2_CALCULATE_G2: 3969 case SM_SC_W4_CALCULATE_G2: 3970 case SM_SC_W4_CALCULATE_DHKEY: 3971 case SM_SC_W2_CALCULATE_F5_SALT: 3972 case SM_SC_W4_CALCULATE_F5_SALT: 3973 case SM_SC_W2_CALCULATE_F5_MACKEY: 3974 case SM_SC_W4_CALCULATE_F5_MACKEY: 3975 case SM_SC_W2_CALCULATE_F5_LTK: 3976 case SM_SC_W4_CALCULATE_F5_LTK: 3977 case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK: 3978 case SM_SC_W4_DHKEY_CHECK_COMMAND: 3979 case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK: 3980 if (sm_pdu_code != SM_CODE_PAIRING_DHKEY_CHECK){ 3981 sm_pdu_received_in_wrong_state(sm_conn); 3982 break; 3983 } 3984 // store DHKey Check 3985 setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED; 3986 reverse_128(&packet[01], setup->sm_peer_dhkey_check); 3987 3988 // have we been only waiting for dhkey check command? 3989 if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){ 3990 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK; 3991 } 3992 break; 3993 #endif 3994 3995 #ifdef ENABLE_LE_PERIPHERAL 3996 case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM: 3997 if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){ 3998 sm_pdu_received_in_wrong_state(sm_conn); 3999 break; 4000 } 4001 4002 // received confirm value 4003 reverse_128(&packet[1], setup->sm_peer_confirm); 4004 4005 #ifdef ENABLE_TESTING_SUPPORT 4006 if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){ 4007 log_info("testing_support: reset confirm value"); 4008 memset(setup->sm_peer_confirm, 0, 16); 4009 } 4010 #endif 4011 // notify client to hide shown passkey 4012 if (setup->sm_stk_generation_method == PK_INIT_INPUT){ 4013 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address); 4014 } 4015 4016 // handle user cancel pairing? 4017 if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){ 4018 setup->sm_pairing_failed_reason = SM_REASON_PASSKEY_ENTRY_FAILED; 4019 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED; 4020 break; 4021 } 4022 4023 // wait for user action? 4024 if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){ 4025 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE; 4026 break; 4027 } 4028 4029 // calculate and send local_confirm 4030 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 4031 break; 4032 4033 case SM_RESPONDER_PH2_W4_PAIRING_RANDOM: 4034 if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){ 4035 sm_pdu_received_in_wrong_state(sm_conn); 4036 break;; 4037 } 4038 4039 // received random value 4040 reverse_128(&packet[1], setup->sm_peer_random); 4041 sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C; 4042 break; 4043 #endif 4044 4045 case SM_PH3_RECEIVE_KEYS: 4046 switch(sm_pdu_code){ 4047 case SM_CODE_ENCRYPTION_INFORMATION: 4048 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; 4049 reverse_128(&packet[1], setup->sm_peer_ltk); 4050 break; 4051 4052 case SM_CODE_MASTER_IDENTIFICATION: 4053 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; 4054 setup->sm_peer_ediv = little_endian_read_16(packet, 1); 4055 reverse_64(&packet[3], setup->sm_peer_rand); 4056 break; 4057 4058 case SM_CODE_IDENTITY_INFORMATION: 4059 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION; 4060 reverse_128(&packet[1], setup->sm_peer_irk); 4061 break; 4062 4063 case SM_CODE_IDENTITY_ADDRESS_INFORMATION: 4064 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; 4065 setup->sm_peer_addr_type = packet[1]; 4066 reverse_bd_addr(&packet[2], setup->sm_peer_address); 4067 break; 4068 4069 case SM_CODE_SIGNING_INFORMATION: 4070 setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; 4071 reverse_128(&packet[1], setup->sm_peer_csrk); 4072 break; 4073 default: 4074 // Unexpected PDU 4075 log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]); 4076 break; 4077 } 4078 // done with key distribution? 4079 if (sm_key_distribution_all_received(sm_conn)){ 4080 4081 sm_key_distribution_handle_all_received(sm_conn); 4082 4083 if (IS_RESPONDER(sm_conn->sm_role)){ 4084 if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){ 4085 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK; 4086 } else { 4087 sm_conn->sm_engine_state = SM_RESPONDER_IDLE; 4088 sm_notify_client_status_reason(sm_conn, ERROR_CODE_SUCCESS, 0); 4089 sm_done_for_handle(sm_conn->sm_handle); 4090 } 4091 } else { 4092 if (setup->sm_use_secure_connections){ 4093 sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS; 4094 } else { 4095 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM; 4096 } 4097 } 4098 } 4099 break; 4100 default: 4101 // Unexpected PDU 4102 log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state); 4103 break; 4104 } 4105 4106 // try to send preparared packet 4107 sm_run(); 4108 } 4109 4110 // Security Manager Client API 4111 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_data)){ 4112 sm_get_oob_data = get_oob_data_callback; 4113 } 4114 4115 void sm_register_sc_oob_data_callback( int (*get_sc_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random)){ 4116 sm_get_sc_oob_data = get_sc_oob_data_callback; 4117 } 4118 4119 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){ 4120 btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler); 4121 } 4122 4123 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){ 4124 sm_accepted_stk_generation_methods = accepted_stk_generation_methods; 4125 } 4126 4127 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){ 4128 sm_min_encryption_key_size = min_size; 4129 sm_max_encryption_key_size = max_size; 4130 } 4131 4132 void sm_set_authentication_requirements(uint8_t auth_req){ 4133 #ifndef ENABLE_LE_SECURE_CONNECTIONS 4134 if (auth_req & SM_AUTHREQ_SECURE_CONNECTION){ 4135 log_error("ENABLE_LE_SECURE_CONNECTIONS not defined, but requested by app. Dropping SC flag"); 4136 auth_req &= ~SM_AUTHREQ_SECURE_CONNECTION; 4137 } 4138 #endif 4139 sm_auth_req = auth_req; 4140 } 4141 4142 void sm_set_io_capabilities(io_capability_t io_capability){ 4143 sm_io_capabilities = io_capability; 4144 } 4145 4146 #ifdef ENABLE_LE_PERIPHERAL 4147 void sm_set_request_security(int enable){ 4148 sm_slave_request_security = enable; 4149 } 4150 #endif 4151 4152 void sm_set_er(sm_key_t er){ 4153 memcpy(sm_persistent_er, er, 16); 4154 } 4155 4156 void sm_set_ir(sm_key_t ir){ 4157 memcpy(sm_persistent_ir, ir, 16); 4158 } 4159 4160 // Testing support only 4161 void sm_test_set_irk(sm_key_t irk){ 4162 memcpy(sm_persistent_irk, irk, 16); 4163 sm_persistent_irk_ready = 1; 4164 } 4165 4166 void sm_test_use_fixed_local_csrk(void){ 4167 test_use_fixed_local_csrk = 1; 4168 } 4169 4170 #ifdef ENABLE_TESTING_SUPPORT 4171 void sm_test_set_pairing_failure(int reason){ 4172 test_pairing_failure = reason; 4173 } 4174 #endif 4175 4176 void sm_init(void){ 4177 // set some (BTstack default) ER and IR 4178 int i; 4179 sm_key_t er; 4180 sm_key_t ir; 4181 for (i=0;i<16;i++){ 4182 er[i] = 0x30 + i; 4183 ir[i] = 0x90 + i; 4184 } 4185 sm_set_er(er); 4186 sm_set_ir(ir); 4187 // defaults 4188 sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS 4189 | SM_STK_GENERATION_METHOD_OOB 4190 | SM_STK_GENERATION_METHOD_PASSKEY 4191 | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON; 4192 4193 sm_max_encryption_key_size = 16; 4194 sm_min_encryption_key_size = 7; 4195 4196 sm_fixed_passkey_in_display_role = 0xffffffff; 4197 sm_reconstruct_ltk_without_le_device_db_entry = 1; 4198 4199 #ifdef ENABLE_CMAC_ENGINE 4200 sm_cmac_state = CMAC_IDLE; 4201 #endif 4202 dkg_state = DKG_W4_WORKING; 4203 rau_state = RAU_W4_WORKING; 4204 sm_aes128_state = SM_AES128_IDLE; 4205 sm_address_resolution_test = -1; // no private address to resolve yet 4206 sm_address_resolution_ah_calculation_active = 0; 4207 sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE; 4208 sm_address_resolution_general_queue = NULL; 4209 4210 gap_random_adress_update_period = 15 * 60 * 1000L; 4211 sm_active_connection_handle = HCI_CON_HANDLE_INVALID; 4212 4213 test_use_fixed_local_csrk = 0; 4214 4215 // register for HCI Events from HCI 4216 hci_event_callback_registration.callback = &sm_event_packet_handler; 4217 hci_add_event_handler(&hci_event_callback_registration); 4218 4219 // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW 4220 l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); 4221 4222 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4223 ec_key_generation_state = EC_KEY_GENERATION_IDLE; 4224 #endif 4225 4226 #ifdef USE_MBEDTLS_FOR_ECDH 4227 mbedtls_ecp_group_init(&mbedtls_ec_group); 4228 mbedtls_ecp_group_load(&mbedtls_ec_group, MBEDTLS_ECP_DP_SECP256R1); 4229 #endif 4230 } 4231 4232 void sm_use_fixed_ec_keypair(uint8_t * qx, uint8_t * qy, uint8_t * d){ 4233 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4234 memcpy(&ec_q[0], qx, 32); 4235 memcpy(&ec_q[32], qy, 32); 4236 memcpy(ec_d, d, 32); 4237 sm_have_ec_keypair = 1; 4238 ec_key_generation_state = EC_KEY_GENERATION_DONE; 4239 #else 4240 UNUSED(qx); 4241 UNUSED(qy); 4242 UNUSED(d); 4243 #endif 4244 } 4245 4246 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4247 static void parse_hex(uint8_t * buffer, const char * hex_string){ 4248 while (*hex_string){ 4249 int high_nibble = nibble_for_char(*hex_string++); 4250 int low_nibble = nibble_for_char(*hex_string++); 4251 *buffer++ = (high_nibble << 4) | low_nibble; 4252 } 4253 } 4254 #endif 4255 4256 void sm_test_use_fixed_ec_keypair(void){ 4257 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4258 const char * ec_d_string = "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd"; 4259 const char * ec_qx_string = "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6"; 4260 const char * ec_qy_string = "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b"; 4261 parse_hex(ec_d, ec_d_string); 4262 parse_hex(&ec_q[0], ec_qx_string); 4263 parse_hex(&ec_q[32], ec_qy_string); 4264 sm_have_ec_keypair = 1; 4265 ec_key_generation_state = EC_KEY_GENERATION_DONE; 4266 #endif 4267 } 4268 4269 void sm_use_fixed_passkey_in_display_role(uint32_t passkey){ 4270 sm_fixed_passkey_in_display_role = passkey; 4271 } 4272 4273 void sm_allow_ltk_reconstruction_without_le_device_db_entry(int allow){ 4274 sm_reconstruct_ltk_without_le_device_db_entry = allow; 4275 } 4276 4277 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){ 4278 hci_connection_t * hci_con = hci_connection_for_handle(con_handle); 4279 if (!hci_con) return NULL; 4280 return &hci_con->sm_connection; 4281 } 4282 4283 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){ 4284 switch (sm_conn->sm_engine_state){ 4285 case SM_GENERAL_IDLE: 4286 case SM_RESPONDER_IDLE: 4287 sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST; 4288 sm_run(); 4289 break; 4290 default: 4291 break; 4292 } 4293 } 4294 4295 /** 4296 * @brief Trigger Security Request 4297 */ 4298 void sm_send_security_request(hci_con_handle_t con_handle){ 4299 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4300 if (!sm_conn) return; 4301 sm_send_security_request_for_connection(sm_conn); 4302 } 4303 4304 // request pairing 4305 void sm_request_pairing(hci_con_handle_t con_handle){ 4306 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4307 if (!sm_conn) return; // wrong connection 4308 4309 log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state); 4310 if (IS_RESPONDER(sm_conn->sm_role)){ 4311 sm_send_security_request_for_connection(sm_conn); 4312 } else { 4313 // used as a trigger to start central/master/initiator security procedures 4314 uint16_t ediv; 4315 sm_key_t ltk; 4316 if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){ 4317 switch (sm_conn->sm_irk_lookup_state){ 4318 case IRK_LOOKUP_FAILED: 4319 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 4320 break; 4321 case IRK_LOOKUP_SUCCEEDED: 4322 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, ltk, NULL, NULL, NULL); 4323 if (!sm_is_null_key(ltk) || ediv){ 4324 log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index); 4325 sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK; 4326 } else { 4327 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST; 4328 } 4329 break; 4330 default: 4331 sm_conn->sm_pairing_requested = 1; 4332 break; 4333 } 4334 } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){ 4335 sm_conn->sm_pairing_requested = 1; 4336 } 4337 } 4338 sm_run(); 4339 } 4340 4341 // called by client app on authorization request 4342 void sm_authorization_decline(hci_con_handle_t con_handle){ 4343 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4344 if (!sm_conn) return; // wrong connection 4345 sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED; 4346 sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0); 4347 } 4348 4349 void sm_authorization_grant(hci_con_handle_t con_handle){ 4350 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4351 if (!sm_conn) return; // wrong connection 4352 sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED; 4353 sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1); 4354 } 4355 4356 // GAP Bonding API 4357 4358 void sm_bonding_decline(hci_con_handle_t con_handle){ 4359 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4360 if (!sm_conn) return; // wrong connection 4361 setup->sm_user_response = SM_USER_RESPONSE_DECLINE; 4362 log_info("decline, state %u", sm_conn->sm_engine_state); 4363 switch(sm_conn->sm_engine_state){ 4364 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4365 case SM_SC_W4_USER_RESPONSE: 4366 case SM_SC_W4_CONFIRMATION: 4367 case SM_SC_W4_PUBLIC_KEY_COMMAND: 4368 #endif 4369 case SM_PH1_W4_USER_RESPONSE: 4370 switch (setup->sm_stk_generation_method){ 4371 case PK_RESP_INPUT: 4372 case PK_INIT_INPUT: 4373 case OK_BOTH_INPUT: 4374 sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED); 4375 break; 4376 case NK_BOTH_INPUT: 4377 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED); 4378 break; 4379 case JUST_WORKS: 4380 case OOB: 4381 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON); 4382 break; 4383 } 4384 break; 4385 default: 4386 break; 4387 } 4388 sm_run(); 4389 } 4390 4391 void sm_just_works_confirm(hci_con_handle_t con_handle){ 4392 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4393 if (!sm_conn) return; // wrong connection 4394 setup->sm_user_response = SM_USER_RESPONSE_CONFIRM; 4395 if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){ 4396 if (setup->sm_use_secure_connections){ 4397 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND; 4398 } else { 4399 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 4400 } 4401 } 4402 4403 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4404 if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){ 4405 sm_sc_prepare_dhkey_check(sm_conn); 4406 } 4407 #endif 4408 4409 sm_run(); 4410 } 4411 4412 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){ 4413 // for now, it's the same 4414 sm_just_works_confirm(con_handle); 4415 } 4416 4417 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){ 4418 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4419 if (!sm_conn) return; // wrong connection 4420 sm_reset_tk(); 4421 big_endian_store_32(setup->sm_tk, 12, passkey); 4422 setup->sm_user_response = SM_USER_RESPONSE_PASSKEY; 4423 if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){ 4424 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A; 4425 } 4426 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4427 memcpy(setup->sm_ra, setup->sm_tk, 16); 4428 memcpy(setup->sm_rb, setup->sm_tk, 16); 4429 if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){ 4430 sm_sc_start_calculating_local_confirm(sm_conn); 4431 } 4432 #endif 4433 sm_run(); 4434 } 4435 4436 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){ 4437 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4438 if (!sm_conn) return; // wrong connection 4439 if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return; 4440 uint8_t num_actions = setup->sm_keypress_notification >> 5; 4441 uint8_t flags = setup->sm_keypress_notification & 0x1f; 4442 switch (action){ 4443 case SM_KEYPRESS_PASSKEY_ENTRY_STARTED: 4444 case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED: 4445 flags |= (1 << action); 4446 break; 4447 case SM_KEYPRESS_PASSKEY_CLEARED: 4448 // clear counter, keypress & erased flags + set passkey cleared 4449 flags = (flags & 0x19) | (1 << SM_KEYPRESS_PASSKEY_CLEARED); 4450 break; 4451 case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED: 4452 if (flags & (1 << SM_KEYPRESS_PASSKEY_DIGIT_ERASED)){ 4453 // erase actions queued 4454 num_actions--; 4455 if (num_actions == 0){ 4456 // clear counter, keypress & erased flags 4457 flags &= 0x19; 4458 } 4459 break; 4460 } 4461 num_actions++; 4462 flags |= (1 << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED); 4463 break; 4464 case SM_KEYPRESS_PASSKEY_DIGIT_ERASED: 4465 if (flags & (1 << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED)){ 4466 // enter actions queued 4467 num_actions--; 4468 if (num_actions == 0){ 4469 // clear counter, keypress & erased flags 4470 flags &= 0x19; 4471 } 4472 break; 4473 } 4474 num_actions++; 4475 flags |= (1 << SM_KEYPRESS_PASSKEY_DIGIT_ERASED); 4476 break; 4477 default: 4478 break; 4479 } 4480 setup->sm_keypress_notification = (num_actions << 5) | flags; 4481 sm_run(); 4482 } 4483 4484 #ifdef ENABLE_LE_SECURE_CONNECTIONS 4485 uint8_t sm_generate_sc_oob_data(void (*callback)(const uint8_t * confirm_value, const uint8_t * random_value)){ 4486 if (sm_sc_oob_state != SM_SC_OOB_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; 4487 sm_sc_oob_callback = callback; 4488 sm_sc_oob_state = SM_SC_OOB_W2_GET_RANDOM_1; 4489 sm_run(); 4490 return 0; 4491 } 4492 #endif 4493 4494 /** 4495 * @brief Identify device in LE Device DB 4496 * @param handle 4497 * @returns index from le_device_db or -1 if not found/identified 4498 */ 4499 int sm_le_device_index(hci_con_handle_t con_handle ){ 4500 sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); 4501 if (!sm_conn) return -1; 4502 return sm_conn->sm_le_db_index; 4503 } 4504 4505 static int gap_random_address_type_requires_updates(void){ 4506 if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0; 4507 if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0; 4508 return 1; 4509 } 4510 4511 static uint8_t own_address_type(void){ 4512 switch (gap_random_adress_type){ 4513 case GAP_RANDOM_ADDRESS_TYPE_OFF: 4514 return BD_ADDR_TYPE_LE_PUBLIC; 4515 default: 4516 return BD_ADDR_TYPE_LE_RANDOM; 4517 } 4518 } 4519 4520 // GAP LE API 4521 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){ 4522 gap_random_address_update_stop(); 4523 gap_random_adress_type = random_address_type; 4524 hci_le_set_own_address_type(own_address_type()); 4525 if (!gap_random_address_type_requires_updates()) return; 4526 gap_random_address_update_start(); 4527 gap_random_address_trigger(); 4528 } 4529 4530 gap_random_address_type_t gap_random_address_get_mode(void){ 4531 return gap_random_adress_type; 4532 } 4533 4534 void gap_random_address_set_update_period(int period_ms){ 4535 gap_random_adress_update_period = period_ms; 4536 if (!gap_random_address_type_requires_updates()) return; 4537 gap_random_address_update_stop(); 4538 gap_random_address_update_start(); 4539 } 4540 4541 void gap_random_address_set(bd_addr_t addr){ 4542 gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC); 4543 memcpy(sm_random_address, addr, 6); 4544 if (rau_state == RAU_W4_WORKING) return; 4545 rau_state = RAU_SET_ADDRESS; 4546 sm_run(); 4547 } 4548 4549 #ifdef ENABLE_LE_PERIPHERAL 4550 /* 4551 * @brief Set Advertisement Paramters 4552 * @param adv_int_min 4553 * @param adv_int_max 4554 * @param adv_type 4555 * @param direct_address_type 4556 * @param direct_address 4557 * @param channel_map 4558 * @param filter_policy 4559 * 4560 * @note own_address_type is used from gap_random_address_set_mode 4561 */ 4562 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type, 4563 uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){ 4564 hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, 4565 direct_address_typ, direct_address, channel_map, filter_policy); 4566 } 4567 #endif 4568