xref: /btstack/src/ble/sm.c (revision 02eb0186642e198e424594090e8b69d439591c44)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
24  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "sm.c"
39 
40 #include <string.h>
41 #include <inttypes.h>
42 
43 #include "ble/le_device_db.h"
44 #include "ble/core.h"
45 #include "ble/sm.h"
46 #include "bluetooth_company_id.h"
47 #include "btstack_bool.h"
48 #include "btstack_crypto.h"
49 #include "btstack_debug.h"
50 #include "btstack_event.h"
51 #include "btstack_linked_list.h"
52 #include "btstack_memory.h"
53 #include "btstack_tlv.h"
54 #include "gap.h"
55 #include "hci.h"
56 #include "hci_dump.h"
57 #include "l2cap.h"
58 
59 #if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL)
60 #error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h."
61 #endif
62 
63 #if defined(ENABLE_CROSS_TRANSPORT_KEY_DERIVATION) && (!defined(ENABLE_CLASSIC) || !defined(ENABLE_LE_SECURE_CONNECTIONS))
64 #error "Cross Transport Key Derivation requires support for LE Secure Connections and BR/EDR (Classic)"
65 #endif
66 
67 // assert SM Public Key can be sent/received
68 #ifdef ENABLE_LE_SECURE_CONNECTIONS
69 #if HCI_ACL_PAYLOAD_SIZE < 69
70 #error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS"
71 #endif
72 #endif
73 
74 #if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL)
75 #define IS_RESPONDER(role) ((role) == HCI_ROLE_SLAVE)
76 #else
77 #ifdef ENABLE_LE_CENTRAL
78 // only central - never responder (avoid 'unused variable' warnings)
79 #define IS_RESPONDER(role) (0 && ((role) == HCI_ROLE_SLAVE))
80 #else
81 // only peripheral - always responder (avoid 'unused variable' warnings)
82 #define IS_RESPONDER(role) (1 || ((role) == HCI_ROLE_SLAVE))
83 #endif
84 #endif
85 
86 #if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS)
87 #define USE_CMAC_ENGINE
88 #endif
89 
90 
91 #define BTSTACK_TAG32(A,B,C,D) (((A) << 24) | ((B) << 16) | ((C) << 8) | (D))
92 
93 //
94 // SM internal types and globals
95 //
96 
97 typedef enum {
98     DKG_W4_WORKING,
99     DKG_CALC_IRK,
100     DKG_CALC_DHK,
101     DKG_READY
102 } derived_key_generation_t;
103 
104 typedef enum {
105     RAU_IDLE,
106     RAU_GET_RANDOM,
107     RAU_W4_RANDOM,
108     RAU_GET_ENC,
109     RAU_W4_ENC,
110 } random_address_update_t;
111 
112 typedef enum {
113     CMAC_IDLE,
114     CMAC_CALC_SUBKEYS,
115     CMAC_W4_SUBKEYS,
116     CMAC_CALC_MI,
117     CMAC_W4_MI,
118     CMAC_CALC_MLAST,
119     CMAC_W4_MLAST
120 } cmac_state_t;
121 
122 typedef enum {
123     JUST_WORKS,
124     PK_RESP_INPUT,       // Initiator displays PK, responder inputs PK
125     PK_INIT_INPUT,       // Responder displays PK, initiator inputs PK
126     PK_BOTH_INPUT,       // Only input on both, both input PK
127     NUMERIC_COMPARISON,  // Only numerical compparison (yes/no) on on both sides
128     OOB                  // OOB available on one (SC) or both sides (legacy)
129 } stk_generation_method_t;
130 
131 typedef enum {
132     SM_USER_RESPONSE_IDLE,
133     SM_USER_RESPONSE_PENDING,
134     SM_USER_RESPONSE_CONFIRM,
135     SM_USER_RESPONSE_PASSKEY,
136     SM_USER_RESPONSE_DECLINE
137 } sm_user_response_t;
138 
139 typedef enum {
140     SM_AES128_IDLE,
141     SM_AES128_ACTIVE
142 } sm_aes128_state_t;
143 
144 typedef enum {
145     ADDRESS_RESOLUTION_IDLE,
146     ADDRESS_RESOLUTION_GENERAL,
147     ADDRESS_RESOLUTION_FOR_CONNECTION,
148 } address_resolution_mode_t;
149 
150 typedef enum {
151     ADDRESS_RESOLUTION_SUCCEEDED,
152     ADDRESS_RESOLUTION_FAILED,
153 } address_resolution_event_t;
154 
155 typedef enum {
156     EC_KEY_GENERATION_IDLE,
157     EC_KEY_GENERATION_ACTIVE,
158     EC_KEY_GENERATION_DONE,
159 } ec_key_generation_state_t;
160 
161 typedef enum {
162     SM_STATE_VAR_DHKEY_NEEDED = 1 << 0,
163     SM_STATE_VAR_DHKEY_CALCULATED = 1 << 1,
164     SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 2,
165 } sm_state_var_t;
166 
167 typedef enum {
168     SM_SC_OOB_IDLE,
169     SM_SC_OOB_W4_RANDOM,
170     SM_SC_OOB_W2_CALC_CONFIRM,
171     SM_SC_OOB_W4_CONFIRM,
172 } sm_sc_oob_state_t;
173 
174 typedef uint8_t sm_key24_t[3];
175 typedef uint8_t sm_key56_t[7];
176 typedef uint8_t sm_key256_t[32];
177 
178 //
179 // GLOBAL DATA
180 //
181 
182 static bool sm_initialized;
183 
184 static bool test_use_fixed_local_csrk;
185 static bool test_use_fixed_local_irk;
186 
187 #ifdef ENABLE_TESTING_SUPPORT
188 static uint8_t test_pairing_failure;
189 #endif
190 
191 // configuration
192 static uint8_t sm_accepted_stk_generation_methods;
193 static uint8_t sm_max_encryption_key_size;
194 static uint8_t sm_min_encryption_key_size;
195 static uint8_t sm_auth_req = 0;
196 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
197 static uint32_t sm_fixed_passkey_in_display_role;
198 static bool sm_reconstruct_ltk_without_le_device_db_entry;
199 
200 #ifdef ENABLE_LE_PERIPHERAL
201 static bool sm_slave_request_security;
202 #endif
203 
204 #ifdef ENABLE_LE_SECURE_CONNECTIONS
205 static bool sm_sc_only_mode;
206 static uint8_t sm_sc_oob_random[16];
207 static void (*sm_sc_oob_callback)(const uint8_t * confirm_value, const uint8_t * random_value);
208 static sm_sc_oob_state_t sm_sc_oob_state;
209 #ifdef ENABLE_LE_SECURE_CONNECTIONS_DEBUG_KEY
210 static bool sm_sc_debug_keys_enabled;
211 #endif
212 #endif
213 
214 
215 static bool                  sm_persistent_keys_random_active;
216 static const btstack_tlv_t * sm_tlv_impl;
217 static void *                sm_tlv_context;
218 
219 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
220 static sm_key_t sm_persistent_er;
221 static sm_key_t sm_persistent_ir;
222 
223 // derived from sm_persistent_ir
224 static sm_key_t sm_persistent_dhk;
225 static sm_key_t sm_persistent_irk;
226 static derived_key_generation_t dkg_state;
227 
228 // derived from sm_persistent_er
229 // ..
230 
231 // random address update
232 static random_address_update_t rau_state;
233 static bd_addr_t sm_random_address;
234 
235 #ifdef USE_CMAC_ENGINE
236 // CMAC Calculation: General
237 static btstack_crypto_aes128_cmac_t sm_cmac_request;
238 static void (*sm_cmac_done_callback)(uint8_t hash[8]);
239 static uint8_t sm_cmac_active;
240 static uint8_t sm_cmac_hash[16];
241 #endif
242 
243 // CMAC for ATT Signed Writes
244 #ifdef ENABLE_LE_SIGNED_WRITE
245 static uint16_t        sm_cmac_signed_write_message_len;
246 static uint8_t         sm_cmac_signed_write_header[3];
247 static const uint8_t * sm_cmac_signed_write_message;
248 static uint8_t         sm_cmac_signed_write_sign_counter[4];
249 #endif
250 
251 // CMAC for Secure Connection functions
252 #ifdef ENABLE_LE_SECURE_CONNECTIONS
253 static sm_connection_t * sm_cmac_connection;
254 static uint8_t           sm_cmac_sc_buffer[80];
255 #endif
256 
257 // resolvable private address lookup / CSRK calculation
258 static int       sm_address_resolution_test;
259 static uint8_t   sm_address_resolution_addr_type;
260 static bd_addr_t sm_address_resolution_address;
261 static void *    sm_address_resolution_context;
262 static address_resolution_mode_t sm_address_resolution_mode;
263 static btstack_linked_list_t sm_address_resolution_general_queue;
264 
265 // aes128 crypto engine.
266 static sm_aes128_state_t  sm_aes128_state;
267 
268 // crypto
269 static btstack_crypto_random_t   sm_crypto_random_request;
270 static btstack_crypto_aes128_t   sm_crypto_aes128_request;
271 #ifdef ENABLE_LE_SECURE_CONNECTIONS
272 static btstack_crypto_ecc_p256_t sm_crypto_ecc_p256_request;
273 #endif
274 
275 // temp storage for random data
276 static uint8_t sm_random_data[8];
277 static uint8_t sm_aes128_key[16];
278 static uint8_t sm_aes128_plaintext[16];
279 static uint8_t sm_aes128_ciphertext[16];
280 
281 // to receive events
282 static btstack_packet_callback_registration_t hci_event_callback_registration;
283 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
284 static btstack_packet_callback_registration_t l2cap_event_callback_registration;
285 #endif
286 
287 /* to dispatch sm event */
288 static btstack_linked_list_t sm_event_handlers;
289 
290 /* to schedule calls to sm_run */
291 static btstack_timer_source_t sm_run_timer;
292 
293 // LE Secure Connections
294 #ifdef ENABLE_LE_SECURE_CONNECTIONS
295 static ec_key_generation_state_t ec_key_generation_state;
296 static uint8_t ec_q[64];
297 #endif
298 
299 //
300 // Volume 3, Part H, Chapter 24
301 // "Security shall be initiated by the Security Manager in the device in the master role.
302 // The device in the slave role shall be the responding device."
303 // -> master := initiator, slave := responder
304 //
305 
306 // data needed for security setup
307 typedef struct sm_setup_context {
308 
309     btstack_timer_source_t sm_timeout;
310 
311     // user response, (Phase 1 and/or 2)
312     uint8_t   sm_user_response;
313     uint8_t   sm_keypress_notification; // bitmap: passkey started, digit entered, digit erased, passkey cleared, passkey complete, 3 bit count
314 
315     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
316     uint8_t   sm_key_distribution_send_set;
317     uint8_t   sm_key_distribution_sent_set;
318     uint8_t   sm_key_distribution_expected_set;
319     uint8_t   sm_key_distribution_received_set;
320 
321     // Phase 2 (Pairing over SMP)
322     stk_generation_method_t sm_stk_generation_method;
323     sm_key_t  sm_tk;
324     uint8_t   sm_have_oob_data;
325     bool      sm_use_secure_connections;
326 
327     sm_key_t  sm_c1_t3_value;   // c1 calculation
328     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
329     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
330     sm_key_t  sm_local_random;
331     sm_key_t  sm_local_confirm;
332     sm_key_t  sm_peer_random;
333     sm_key_t  sm_peer_confirm;
334     uint8_t   sm_m_addr_type;   // address and type can be removed
335     uint8_t   sm_s_addr_type;   //  ''
336     bd_addr_t sm_m_address;     //  ''
337     bd_addr_t sm_s_address;     //  ''
338     sm_key_t  sm_ltk;
339 
340     uint8_t   sm_state_vars;
341 #ifdef ENABLE_LE_SECURE_CONNECTIONS
342     uint8_t   sm_peer_q[64];    // also stores random for EC key generation during init
343     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
344     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
345     uint8_t   sm_dhkey[32];
346     sm_key_t  sm_peer_dhkey_check;
347     sm_key_t  sm_local_dhkey_check;
348     sm_key_t  sm_ra;
349     sm_key_t  sm_rb;
350     sm_key_t  sm_t;             // used for f5 and h6
351     sm_key_t  sm_mackey;
352     uint8_t   sm_passkey_bit;   // also stores number of generated random bytes for EC key generation
353 #endif
354 
355     // Phase 3
356 
357     // key distribution, we generate
358     uint16_t  sm_local_y;
359     uint16_t  sm_local_div;
360     uint16_t  sm_local_ediv;
361     uint8_t   sm_local_rand[8];
362     sm_key_t  sm_local_ltk;
363     sm_key_t  sm_local_csrk;
364     sm_key_t  sm_local_irk;
365     // sm_local_address/addr_type not needed
366 
367     // key distribution, received from peer
368     uint16_t  sm_peer_y;
369     uint16_t  sm_peer_div;
370     uint16_t  sm_peer_ediv;
371     uint8_t   sm_peer_rand[8];
372     sm_key_t  sm_peer_ltk;
373     sm_key_t  sm_peer_irk;
374     sm_key_t  sm_peer_csrk;
375     uint8_t   sm_peer_addr_type;
376     bd_addr_t sm_peer_address;
377 #ifdef ENABLE_LE_SIGNED_WRITE
378     int       sm_le_device_index;
379 #endif
380 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
381     link_key_t sm_link_key;
382     link_key_type_t sm_link_key_type;
383 #endif
384 } sm_setup_context_t;
385 
386 //
387 static sm_setup_context_t the_setup;
388 static sm_setup_context_t * setup = &the_setup;
389 
390 // active connection - the one for which the_setup is used for
391 static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
392 
393 // @return 1 if oob data is available
394 // stores oob data in provided 16 byte buffer if not null
395 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
396 static int (*sm_get_sc_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random);
397 static bool (*sm_get_ltk_callback)(hci_con_handle_t con_handle, uint8_t addres_type, bd_addr_t addr, uint8_t * ltk);
398 
399 static void sm_run(void);
400 static void sm_state_reset(void);
401 static void sm_done_for_handle(hci_con_handle_t con_handle);
402 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
403 static void sm_cache_ltk(sm_connection_t * connection, const sm_key_t ltk);
404 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
405 static sm_connection_t * sm_get_connection_for_bd_addr_and_type(bd_addr_t address, bd_addr_type_t addr_type);
406 #endif
407 static inline int sm_calc_actual_encryption_key_size(int other);
408 static int sm_validate_stk_generation_method(void);
409 static void sm_handle_encryption_result_address_resolution(void *arg);
410 static void sm_handle_encryption_result_dkg_dhk(void *arg);
411 static void sm_handle_encryption_result_dkg_irk(void *arg);
412 static void sm_handle_encryption_result_enc_a(void *arg);
413 static void sm_handle_encryption_result_enc_b(void *arg);
414 static void sm_handle_encryption_result_enc_c(void *arg);
415 static void sm_handle_encryption_result_enc_csrk(void *arg);
416 static void sm_handle_encryption_result_enc_d(void * arg);
417 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg);
418 static void sm_handle_encryption_result_enc_ph3_y(void *arg);
419 #ifdef ENABLE_LE_PERIPHERAL
420 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg);
421 static void sm_handle_encryption_result_enc_ph4_y(void *arg);
422 #endif
423 static void sm_handle_encryption_result_enc_stk(void *arg);
424 static void sm_handle_encryption_result_rau(void *arg);
425 static void sm_handle_random_result_ph2_tk(void * arg);
426 static void sm_handle_random_result_rau(void * arg);
427 #ifdef ENABLE_LE_SECURE_CONNECTIONS
428 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash));
429 static void sm_ec_generate_new_key(void);
430 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg);
431 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg);
432 static bool sm_passkey_entry(stk_generation_method_t method);
433 #endif
434 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason);
435 
436 static void log_info_hex16(const char * name, uint16_t value){
437     log_info("%-6s 0x%04x", name, value);
438 }
439 
440 // static inline uint8_t sm_pairing_packet_get_code(sm_pairing_packet_t packet){
441 //     return packet[0];
442 // }
443 static inline uint8_t sm_pairing_packet_get_io_capability(sm_pairing_packet_t packet){
444     return packet[1];
445 }
446 static inline uint8_t sm_pairing_packet_get_oob_data_flag(sm_pairing_packet_t packet){
447     return packet[2];
448 }
449 static inline uint8_t sm_pairing_packet_get_auth_req(sm_pairing_packet_t packet){
450     return packet[3];
451 }
452 static inline uint8_t sm_pairing_packet_get_max_encryption_key_size(sm_pairing_packet_t packet){
453     return packet[4];
454 }
455 static inline uint8_t sm_pairing_packet_get_initiator_key_distribution(sm_pairing_packet_t packet){
456     return packet[5];
457 }
458 static inline uint8_t sm_pairing_packet_get_responder_key_distribution(sm_pairing_packet_t packet){
459     return packet[6];
460 }
461 
462 static inline void sm_pairing_packet_set_code(sm_pairing_packet_t packet, uint8_t code){
463     packet[0] = code;
464 }
465 static inline void sm_pairing_packet_set_io_capability(sm_pairing_packet_t packet, uint8_t io_capability){
466     packet[1] = io_capability;
467 }
468 static inline void sm_pairing_packet_set_oob_data_flag(sm_pairing_packet_t packet, uint8_t oob_data_flag){
469     packet[2] = oob_data_flag;
470 }
471 static inline void sm_pairing_packet_set_auth_req(sm_pairing_packet_t packet, uint8_t auth_req){
472     packet[3] = auth_req;
473 }
474 static inline void sm_pairing_packet_set_max_encryption_key_size(sm_pairing_packet_t packet, uint8_t max_encryption_key_size){
475     packet[4] = max_encryption_key_size;
476 }
477 static inline void sm_pairing_packet_set_initiator_key_distribution(sm_pairing_packet_t packet, uint8_t initiator_key_distribution){
478     packet[5] = initiator_key_distribution;
479 }
480 static inline void sm_pairing_packet_set_responder_key_distribution(sm_pairing_packet_t packet, uint8_t responder_key_distribution){
481     packet[6] = responder_key_distribution;
482 }
483 
484 static bool sm_is_null_random(uint8_t random[8]){
485     return btstack_is_null(random, 8);
486 }
487 
488 static bool sm_is_null_key(uint8_t * key){
489     return btstack_is_null(key, 16);
490 }
491 
492 #ifdef ENABLE_LE_SECURE_CONNECTIONS
493 static bool sm_is_ff(const uint8_t * buffer, uint16_t size){
494     uint16_t i;
495     for (i=0; i < size ; i++){
496         if (buffer[i] != 0xff) {
497             return false;
498         }
499     }
500     return true;
501 }
502 #endif
503 
504 // sm_trigger_run allows to schedule callback from main run loop // reduces stack depth
505 static void sm_run_timer_handler(btstack_timer_source_t * ts){
506 	UNUSED(ts);
507 	sm_run();
508 }
509 static void sm_trigger_run(void){
510     if (!sm_initialized) return;
511 	(void)btstack_run_loop_remove_timer(&sm_run_timer);
512 	btstack_run_loop_set_timer(&sm_run_timer, 0);
513 	btstack_run_loop_add_timer(&sm_run_timer);
514 }
515 
516 // Key utils
517 static void sm_reset_tk(void){
518     int i;
519     for (i=0;i<16;i++){
520         setup->sm_tk[i] = 0;
521     }
522 }
523 
524 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
525 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
526 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
527     int i;
528     for (i = max_encryption_size ; i < 16 ; i++){
529         key[15-i] = 0;
530     }
531 }
532 
533 // ER / IR checks
534 static void sm_er_ir_set_default(void){
535     int i;
536     for (i=0;i<16;i++){
537         sm_persistent_er[i] = 0x30 + i;
538         sm_persistent_ir[i] = 0x90 + i;
539     }
540 }
541 
542 static bool sm_er_is_default(void){
543     int i;
544     for (i=0;i<16;i++){
545         if (sm_persistent_er[i] != (0x30+i)) return true;
546     }
547     return false;
548 }
549 
550 static bool sm_ir_is_default(void){
551     int i;
552     for (i=0;i<16;i++){
553         if (sm_persistent_ir[i] != (0x90+i)) return true;
554     }
555     return false;
556 }
557 
558 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
559     UNUSED(channel);
560 
561     // log event
562     hci_dump_packet(packet_type, 1, packet, size);
563     // dispatch to all event handlers
564     btstack_linked_list_iterator_t it;
565     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
566     while (btstack_linked_list_iterator_has_next(&it)){
567         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
568         entry->callback(packet_type, 0, packet, size);
569     }
570 }
571 
572 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
573     event[0] = type;
574     event[1] = event_size - 2;
575     little_endian_store_16(event, 2, con_handle);
576     event[4] = addr_type;
577     reverse_bd_addr(address, &event[5]);
578 }
579 
580 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
581     uint8_t event[11];
582     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
583     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
584 }
585 
586 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
587     // fetch addr and addr type from db, only called for valid entries
588     bd_addr_t identity_address;
589     int identity_address_type;
590     le_device_db_info(index, &identity_address_type, identity_address, NULL);
591 
592     uint8_t event[20];
593     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
594     event[11] = identity_address_type;
595     reverse_bd_addr(identity_address, &event[12]);
596     little_endian_store_16(event, 18, index);
597     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
598 }
599 
600 static void sm_notify_client_status(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t status){
601     uint8_t event[12];
602     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
603     event[11] = status;
604     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
605 }
606 
607 
608 static void sm_reencryption_started(sm_connection_t * sm_conn){
609 
610     if (sm_conn->sm_reencryption_active) return;
611 
612     sm_conn->sm_reencryption_active = true;
613 
614     int       identity_addr_type;
615     bd_addr_t identity_addr;
616     if (sm_conn->sm_le_db_index >= 0){
617         // fetch addr and addr type from db, only called for valid entries
618         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
619     } else {
620         // for legacy pairing with LTK re-construction, use current peer addr
621         identity_addr_type = sm_conn->sm_peer_addr_type;
622         // cppcheck-suppress uninitvar ; identity_addr is reported as uninitialized although it's the destination of the memcpy
623         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
624     }
625 
626     sm_notify_client_base(SM_EVENT_REENCRYPTION_STARTED, sm_conn->sm_handle, identity_addr_type, identity_addr);
627 }
628 
629 static void sm_reencryption_complete(sm_connection_t * sm_conn, uint8_t status){
630 
631     if (!sm_conn->sm_reencryption_active) return;
632 
633     sm_conn->sm_reencryption_active = false;
634 
635     int       identity_addr_type;
636     bd_addr_t identity_addr;
637     if (sm_conn->sm_le_db_index >= 0){
638         // fetch addr and addr type from db, only called for valid entries
639         le_device_db_info(sm_conn->sm_le_db_index, &identity_addr_type, identity_addr, NULL);
640     } else {
641         // for legacy pairing with LTK re-construction, use current peer addr
642         identity_addr_type = sm_conn->sm_peer_addr_type;
643         // cppcheck-suppress uninitvar ; identity_addr is reported as uninitialized although it's the destination of the memcpy
644         memcpy(identity_addr, sm_conn->sm_peer_address, 6);
645     }
646 
647     sm_notify_client_status(SM_EVENT_REENCRYPTION_COMPLETE, sm_conn->sm_handle, identity_addr_type, identity_addr, status);
648 }
649 
650 static void sm_pairing_started(sm_connection_t * sm_conn){
651 
652     if (sm_conn->sm_pairing_active) return;
653 
654     sm_conn->sm_pairing_active = true;
655 
656     uint8_t event[11];
657     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_STARTED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
658     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
659 }
660 
661 static void sm_pairing_complete(sm_connection_t * sm_conn, uint8_t status, uint8_t reason){
662 
663     if (!sm_conn->sm_pairing_active) return;
664 
665     sm_conn->sm_pairing_active = false;
666 
667     uint8_t event[13];
668     sm_setup_event_base(event, sizeof(event), SM_EVENT_PAIRING_COMPLETE, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address);
669     event[11] = status;
670     event[12] = reason;
671     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
672 }
673 
674 // SMP Timeout implementation
675 
676 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
677 // the Security Manager Timer shall be reset and started.
678 //
679 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
680 //
681 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
682 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
683 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
684 // established.
685 
686 static void sm_timeout_handler(btstack_timer_source_t * timer){
687     log_info("SM timeout");
688     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
689     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
690     sm_reencryption_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT);
691     sm_pairing_complete(sm_conn, ERROR_CODE_CONNECTION_TIMEOUT, 0);
692     sm_done_for_handle(sm_conn->sm_handle);
693 
694     // trigger handling of next ready connection
695     sm_run();
696 }
697 static void sm_timeout_start(sm_connection_t * sm_conn){
698     btstack_run_loop_remove_timer(&setup->sm_timeout);
699     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
700     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
701     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
702     btstack_run_loop_add_timer(&setup->sm_timeout);
703 }
704 static void sm_timeout_stop(void){
705     btstack_run_loop_remove_timer(&setup->sm_timeout);
706 }
707 static void sm_timeout_reset(sm_connection_t * sm_conn){
708     sm_timeout_stop();
709     sm_timeout_start(sm_conn);
710 }
711 
712 // end of sm timeout
713 
714 // GAP Random Address updates
715 static gap_random_address_type_t gap_random_adress_type;
716 static btstack_timer_source_t gap_random_address_update_timer;
717 static uint32_t gap_random_adress_update_period;
718 
719 static void gap_random_address_trigger(void){
720     log_info("gap_random_address_trigger, state %u", rau_state);
721     if (rau_state != RAU_IDLE) return;
722     rau_state = RAU_GET_RANDOM;
723     sm_trigger_run();
724 }
725 
726 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
727     UNUSED(timer);
728 
729     log_info("GAP Random Address Update due");
730     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
731     btstack_run_loop_add_timer(&gap_random_address_update_timer);
732     gap_random_address_trigger();
733 }
734 
735 static void gap_random_address_update_start(void){
736     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
737     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
738     btstack_run_loop_add_timer(&gap_random_address_update_timer);
739 }
740 
741 static void gap_random_address_update_stop(void){
742     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
743 }
744 
745 // ah(k,r) helper
746 // r = padding || r
747 // r - 24 bit value
748 static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){
749     // r'= padding || r
750     memset(r_prime, 0, 16);
751     (void)memcpy(&r_prime[13], r, 3);
752 }
753 
754 // d1 helper
755 // d' = padding || r || d
756 // d,r - 16 bit values
757 static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){
758     // d'= padding || r || d
759     memset(d1_prime, 0, 16);
760     big_endian_store_16(d1_prime, 12, r);
761     big_endian_store_16(d1_prime, 14, d);
762 }
763 
764 // calculate arguments for first AES128 operation in C1 function
765 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){
766 
767     // p1 = pres || preq || rat’ || iat’
768     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
769     // cant octet of pres becomes the most significant octet of p1.
770     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
771     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
772     // p1 is 0x05000800000302070710000001010001."
773 
774     sm_key_t p1;
775     reverse_56(pres, &p1[0]);
776     reverse_56(preq, &p1[7]);
777     p1[14] = rat;
778     p1[15] = iat;
779     log_info_key("p1", p1);
780     log_info_key("r", r);
781 
782     // t1 = r xor p1
783     int i;
784     for (i=0;i<16;i++){
785         t1[i] = r[i] ^ p1[i];
786     }
787     log_info_key("t1", t1);
788 }
789 
790 // calculate arguments for second AES128 operation in C1 function
791 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){
792      // p2 = padding || ia || ra
793     // "The least significant octet of ra becomes the least significant octet of p2 and
794     // the most significant octet of padding becomes the most significant octet of p2.
795     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
796     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
797 
798     sm_key_t p2;
799     // cppcheck-suppress uninitvar ; p2 is reported as uninitialized
800     memset(p2, 0, 16);
801     (void)memcpy(&p2[4], ia, 6);
802     (void)memcpy(&p2[10], ra, 6);
803     log_info_key("p2", p2);
804 
805     // c1 = e(k, t2_xor_p2)
806     int i;
807     for (i=0;i<16;i++){
808         t3[i] = t2[i] ^ p2[i];
809     }
810     log_info_key("t3", t3);
811 }
812 
813 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){
814     log_info_key("r1", r1);
815     log_info_key("r2", r2);
816     (void)memcpy(&r_prime[8], &r2[8], 8);
817     (void)memcpy(&r_prime[0], &r1[8], 8);
818 }
819 
820 
821 // decide on stk generation based on
822 // - pairing request
823 // - io capabilities
824 // - OOB data availability
825 static void sm_setup_tk(void){
826 
827     // horizontal: initiator capabilities
828     // vertial:    responder capabilities
829     static const stk_generation_method_t stk_generation_method [5] [5] = {
830             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
831             { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
832             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
833             { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
834             { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
835     };
836 
837     // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
838 #ifdef ENABLE_LE_SECURE_CONNECTIONS
839     static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
840             { JUST_WORKS,      JUST_WORKS,         PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT      },
841             { JUST_WORKS,      NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
842             { PK_RESP_INPUT,   PK_RESP_INPUT,      PK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT      },
843             { JUST_WORKS,      JUST_WORKS,         JUST_WORKS,      JUST_WORKS,    JUST_WORKS         },
844             { PK_RESP_INPUT,   NUMERIC_COMPARISON, PK_INIT_INPUT,   JUST_WORKS,    NUMERIC_COMPARISON },
845     };
846 #endif
847 
848     // default: just works
849     setup->sm_stk_generation_method = JUST_WORKS;
850 
851 #ifdef ENABLE_LE_SECURE_CONNECTIONS
852     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
853                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
854                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0u;
855 #else
856     setup->sm_use_secure_connections = false;
857 #endif
858     log_info("Secure pairing: %u", setup->sm_use_secure_connections);
859 
860 
861     // decide if OOB will be used based on SC vs. Legacy and oob flags
862     bool use_oob;
863     if (setup->sm_use_secure_connections){
864         // In LE Secure Connections pairing, the out of band method is used if at least
865         // one device has the peer device's out of band authentication data available.
866         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) | sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
867     } else {
868         // In LE legacy pairing, the out of band method is used if both the devices have
869         // the other device's out of band authentication data available.
870         use_oob = (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) & sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)) != 0;
871     }
872     if (use_oob){
873         log_info("SM: have OOB data");
874         log_info_key("OOB", setup->sm_tk);
875         setup->sm_stk_generation_method = OOB;
876         return;
877     }
878 
879     // If both devices have not set the MITM option in the Authentication Requirements
880     // Flags, then the IO capabilities shall be ignored and the Just Works association
881     // model shall be used.
882     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0u)
883         &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0u)){
884         log_info("SM: MITM not required by both -> JUST WORKS");
885         return;
886     }
887 
888     // Reset TK as it has been setup in sm_init_setup
889     sm_reset_tk();
890 
891     // Also use just works if unknown io capabilites
892     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
893         return;
894     }
895 
896     // Otherwise the IO capabilities of the devices shall be used to determine the
897     // pairing method as defined in Table 2.4.
898     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
899     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
900 
901 #ifdef ENABLE_LE_SECURE_CONNECTIONS
902     // table not define by default
903     if (setup->sm_use_secure_connections){
904         generation_method = stk_generation_method_with_secure_connection;
905     }
906 #endif
907     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
908 
909     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
910         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
911 }
912 
913 static int sm_key_distribution_flags_for_set(uint8_t key_set){
914     int flags = 0;
915     if ((key_set & SM_KEYDIST_ENC_KEY) != 0u){
916         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
917         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
918     }
919     if ((key_set & SM_KEYDIST_ID_KEY) != 0u){
920         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
921         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
922     }
923     if ((key_set & SM_KEYDIST_SIGN) != 0u){
924         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
925     }
926     return flags;
927 }
928 
929 static void sm_setup_key_distribution(uint8_t keys_to_send, uint8_t keys_to_receive){
930     setup->sm_key_distribution_received_set = 0;
931     setup->sm_key_distribution_expected_set = sm_key_distribution_flags_for_set(keys_to_receive);
932     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(keys_to_send);
933     setup->sm_key_distribution_sent_set = 0;
934 #ifdef ENABLE_LE_SIGNED_WRITE
935     setup->sm_le_device_index = -1;
936 #endif
937 }
938 
939 // CSRK Key Lookup
940 
941 
942 static bool sm_address_resolution_idle(void){
943     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
944 }
945 
946 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
947     (void)memcpy(sm_address_resolution_address, addr, 6);
948     sm_address_resolution_addr_type = addr_type;
949     sm_address_resolution_test = 0;
950     sm_address_resolution_mode = mode;
951     sm_address_resolution_context = context;
952     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
953 }
954 
955 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
956     // check if already in list
957     btstack_linked_list_iterator_t it;
958     sm_lookup_entry_t * entry;
959     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
960     while(btstack_linked_list_iterator_has_next(&it)){
961         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
962         if (entry->address_type != address_type) continue;
963         if (memcmp(entry->address, address, 6) != 0)  continue;
964         // already in list
965         return BTSTACK_BUSY;
966     }
967     entry = btstack_memory_sm_lookup_entry_get();
968     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
969     entry->address_type = (bd_addr_type_t) address_type;
970     (void)memcpy(entry->address, address, 6);
971     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
972     sm_trigger_run();
973     return 0;
974 }
975 
976 // CMAC calculation using AES Engineq
977 #ifdef USE_CMAC_ENGINE
978 
979 static void sm_cmac_done_trampoline(void * arg){
980     UNUSED(arg);
981     sm_cmac_active = 0;
982     (*sm_cmac_done_callback)(sm_cmac_hash);
983     sm_trigger_run();
984 }
985 
986 int sm_cmac_ready(void){
987     return sm_cmac_active == 0u;
988 }
989 #endif
990 
991 #ifdef ENABLE_LE_SECURE_CONNECTIONS
992 // generic cmac calculation
993 static void sm_cmac_message_start(const sm_key_t key, uint16_t message_len, const uint8_t * message, void (*done_callback)(uint8_t * hash)){
994     sm_cmac_active = 1;
995     sm_cmac_done_callback = done_callback;
996     btstack_crypto_aes128_cmac_message(&sm_cmac_request, key, message_len, message, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
997 }
998 #endif
999 
1000 // cmac for ATT Message signing
1001 #ifdef ENABLE_LE_SIGNED_WRITE
1002 
1003 static void sm_cmac_generator_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t * hash)){
1004     sm_cmac_active = 1;
1005     sm_cmac_done_callback = done_callback;
1006     btstack_crypto_aes128_cmac_generator(&sm_cmac_request, key, message_len, get_byte_callback, sm_cmac_hash, sm_cmac_done_trampoline, NULL);
1007 }
1008 
1009 static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){
1010     if (offset >= sm_cmac_signed_write_message_len) {
1011         log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_signed_write_message_len);
1012         return 0;
1013     }
1014 
1015     offset = sm_cmac_signed_write_message_len - 1 - offset;
1016 
1017     // sm_cmac_signed_write_header[3] | message[] | sm_cmac_signed_write_sign_counter[4]
1018     if (offset < 3){
1019         return sm_cmac_signed_write_header[offset];
1020     }
1021     int actual_message_len_incl_header = sm_cmac_signed_write_message_len - 4;
1022     if (offset <  actual_message_len_incl_header){
1023         return sm_cmac_signed_write_message[offset - 3];
1024     }
1025     return sm_cmac_signed_write_sign_counter[offset - actual_message_len_incl_header];
1026 }
1027 
1028 void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
1029     // ATT Message Signing
1030     sm_cmac_signed_write_header[0] = opcode;
1031     little_endian_store_16(sm_cmac_signed_write_header, 1, con_handle);
1032     little_endian_store_32(sm_cmac_signed_write_sign_counter, 0, sign_counter);
1033     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
1034     sm_cmac_signed_write_message     = message;
1035     sm_cmac_signed_write_message_len = total_message_len;
1036     sm_cmac_generator_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler);
1037 }
1038 #endif
1039 
1040 static void sm_trigger_user_response_basic(sm_connection_t * sm_conn, uint8_t event_type){
1041     setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1042     uint8_t event[12];
1043     sm_setup_event_base(event, sizeof(event), event_type, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1044     event[11] = setup->sm_use_secure_connections ? 1 : 0;
1045     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
1046 }
1047 
1048 static void sm_trigger_user_response_passkey(sm_connection_t * sm_conn, uint8_t event_type){
1049     uint8_t event[16];
1050     uint32_t passkey = big_endian_read_32(setup->sm_tk, 12);
1051     sm_setup_event_base(event, sizeof(event), event_type, sm_conn->sm_handle,
1052                         sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1053     event[11] = setup->sm_use_secure_connections ? 1 : 0;
1054     little_endian_store_32(event, 12, passkey);
1055     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
1056 }
1057 
1058 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1059     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1060     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1061     sm_conn->sm_pairing_active = true;
1062     switch (setup->sm_stk_generation_method){
1063         case PK_RESP_INPUT:
1064             if (IS_RESPONDER(sm_conn->sm_role)){
1065                 sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1066             } else {
1067                 sm_trigger_user_response_passkey(sm_conn, SM_EVENT_PASSKEY_DISPLAY_NUMBER);
1068             }
1069             break;
1070         case PK_INIT_INPUT:
1071             if (IS_RESPONDER(sm_conn->sm_role)){
1072                 sm_trigger_user_response_passkey(sm_conn, SM_EVENT_PASSKEY_DISPLAY_NUMBER);
1073             } else {
1074                 sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1075             }
1076             break;
1077         case PK_BOTH_INPUT:
1078             sm_trigger_user_response_basic(sm_conn, SM_EVENT_PASSKEY_INPUT_NUMBER);
1079             break;
1080         case NUMERIC_COMPARISON:
1081             sm_trigger_user_response_passkey(sm_conn, SM_EVENT_NUMERIC_COMPARISON_REQUEST);
1082             break;
1083         case JUST_WORKS:
1084             sm_trigger_user_response_basic(sm_conn, SM_EVENT_JUST_WORKS_REQUEST);
1085             break;
1086         case OOB:
1087             // client already provided OOB data, let's skip notification.
1088             break;
1089         default:
1090             btstack_assert(false);
1091             break;
1092     }
1093 }
1094 
1095 static bool sm_key_distribution_all_received(void) {
1096     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, setup->sm_key_distribution_expected_set);
1097     return (setup->sm_key_distribution_expected_set & setup->sm_key_distribution_received_set) == setup->sm_key_distribution_expected_set;
1098 }
1099 
1100 static void sm_done_for_handle(hci_con_handle_t con_handle){
1101     if (sm_active_connection_handle == con_handle){
1102         sm_timeout_stop();
1103         sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
1104         log_info("sm: connection 0x%x released setup context", con_handle);
1105 
1106 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1107         // generate new ec key after each pairing (that used it)
1108         if (setup->sm_use_secure_connections){
1109             sm_ec_generate_new_key();
1110         }
1111 #endif
1112     }
1113 }
1114 
1115 static void sm_master_pairing_success(sm_connection_t *connection) {// master -> all done
1116     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
1117     sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
1118     sm_done_for_handle(connection->sm_handle);
1119 }
1120 
1121 static int sm_key_distribution_flags_for_auth_req(void){
1122 
1123     int flags = SM_KEYDIST_ID_KEY;
1124     if ((sm_auth_req & SM_AUTHREQ_BONDING) != 0u){
1125         // encryption and signing information only if bonding requested
1126         flags |= SM_KEYDIST_ENC_KEY;
1127 #ifdef ENABLE_LE_SIGNED_WRITE
1128         flags |= SM_KEYDIST_SIGN;
1129 #endif
1130 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1131         // LinkKey for CTKD requires SC and BR/EDR Support
1132         if (hci_classic_supported() && ((sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION) != 0)){
1133         	flags |= SM_KEYDIST_LINK_KEY;
1134         }
1135 #endif
1136     }
1137     return flags;
1138 }
1139 
1140 static void sm_reset_setup(void){
1141     // fill in sm setup
1142     setup->sm_state_vars = 0;
1143     setup->sm_keypress_notification = 0;
1144     setup->sm_have_oob_data = 0;
1145     sm_reset_tk();
1146 }
1147 
1148 static void sm_init_setup(sm_connection_t * sm_conn){
1149     // fill in sm setup
1150     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1151     (void)memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1152 
1153     // query client for Legacy Pairing OOB data
1154     if (sm_get_oob_data != NULL) {
1155         setup->sm_have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1156     }
1157 
1158     // if available and SC supported, also ask for SC OOB Data
1159 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1160     memset(setup->sm_ra, 0, 16);
1161     memset(setup->sm_rb, 0, 16);
1162     if (setup->sm_have_oob_data && (sm_auth_req & SM_AUTHREQ_SECURE_CONNECTION)){
1163         if (sm_get_sc_oob_data != NULL){
1164             if (IS_RESPONDER(sm_conn->sm_role)){
1165                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1166                     sm_conn->sm_peer_addr_type,
1167                     sm_conn->sm_peer_address,
1168                     setup->sm_peer_confirm,
1169                     setup->sm_ra);
1170             } else {
1171                 setup->sm_have_oob_data = (*sm_get_sc_oob_data)(
1172                     sm_conn->sm_peer_addr_type,
1173                     sm_conn->sm_peer_address,
1174                     setup->sm_peer_confirm,
1175                     setup->sm_rb);
1176             }
1177         } else {
1178             setup->sm_have_oob_data = 0;
1179         }
1180     }
1181 #endif
1182 
1183     sm_pairing_packet_t * local_packet;
1184     if (IS_RESPONDER(sm_conn->sm_role)){
1185         // slave
1186         local_packet = &setup->sm_s_pres;
1187         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1188         setup->sm_s_addr_type = sm_conn->sm_own_addr_type;
1189         (void)memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1190         (void)memcpy(setup->sm_s_address, sm_conn->sm_own_address, 6);
1191     } else {
1192         // master
1193         local_packet = &setup->sm_m_preq;
1194         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1195         setup->sm_m_addr_type = sm_conn->sm_own_addr_type;
1196         (void)memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1197         (void)memcpy(setup->sm_m_address, sm_conn->sm_own_address, 6);
1198 
1199         uint8_t key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1200         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1201         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1202     }
1203 
1204     log_info("our  address %s type %u", bd_addr_to_str(sm_conn->sm_own_address), sm_conn->sm_own_addr_type);
1205     log_info("peer address %s type %u", bd_addr_to_str(sm_conn->sm_peer_address), sm_conn->sm_peer_addr_type);
1206 
1207     uint8_t auth_req = sm_auth_req & ~SM_AUTHREQ_CT2;
1208     uint8_t max_encryption_key_size = sm_max_encryption_key_size;
1209 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1210     // enable SC for SC only mode
1211     if (sm_sc_only_mode){
1212         auth_req |= SM_AUTHREQ_SECURE_CONNECTION;
1213         max_encryption_key_size = 16;
1214     }
1215 #endif
1216 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1217 	// set CT2 if SC + Bonding + CTKD
1218 	const uint8_t auth_req_for_ct2 = SM_AUTHREQ_SECURE_CONNECTION | SM_AUTHREQ_BONDING;
1219 	if ((auth_req & auth_req_for_ct2) == auth_req_for_ct2){
1220 		auth_req |= SM_AUTHREQ_CT2;
1221 	}
1222 #endif
1223     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1224     sm_pairing_packet_set_oob_data_flag(*local_packet, setup->sm_have_oob_data);
1225     sm_pairing_packet_set_auth_req(*local_packet, auth_req);
1226     sm_pairing_packet_set_max_encryption_key_size(*local_packet, max_encryption_key_size);
1227 }
1228 
1229 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1230 
1231     sm_pairing_packet_t * remote_packet;
1232     uint8_t               keys_to_send;
1233     uint8_t               keys_to_receive;
1234     if (IS_RESPONDER(sm_conn->sm_role)){
1235         // slave / responder
1236         remote_packet   = &setup->sm_m_preq;
1237         keys_to_send    = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1238         keys_to_receive = sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq);
1239     } else {
1240         // master / initiator
1241         remote_packet   = &setup->sm_s_pres;
1242         keys_to_send    = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1243         keys_to_receive = sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres);
1244     }
1245 
1246     // check key size
1247 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1248     // SC Only mandates 128 bit key size
1249     if (sm_sc_only_mode && (sm_pairing_packet_get_max_encryption_key_size(*remote_packet) < 16)) {
1250         return SM_REASON_ENCRYPTION_KEY_SIZE;
1251     }
1252 #endif
1253     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1254     if (sm_conn->sm_actual_encryption_key_size == 0u) return SM_REASON_ENCRYPTION_KEY_SIZE;
1255 
1256     // decide on STK generation method / SC
1257     sm_setup_tk();
1258     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1259 
1260     // check if STK generation method is acceptable by client
1261     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1262 
1263 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1264     // Check LE SC Only mode
1265     if (sm_sc_only_mode && (setup->sm_use_secure_connections == false)){
1266         log_info("SC Only mode active but SC not possible");
1267         return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1268     }
1269 
1270     // LTK (= encryption information & master identification) only used exchanged for LE Legacy Connection
1271     if (setup->sm_use_secure_connections){
1272         keys_to_send &= ~SM_KEYDIST_ENC_KEY;
1273         keys_to_receive  &= ~SM_KEYDIST_ENC_KEY;
1274     }
1275 #endif
1276 
1277     // identical to responder
1278     sm_setup_key_distribution(keys_to_send, keys_to_receive);
1279 
1280     // JUST WORKS doens't provide authentication
1281     sm_conn->sm_connection_authenticated = (setup->sm_stk_generation_method == JUST_WORKS) ? 0 : 1;
1282 
1283     return 0;
1284 }
1285 
1286 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1287 
1288     // cache and reset context
1289     int matched_device_id = sm_address_resolution_test;
1290     address_resolution_mode_t mode = sm_address_resolution_mode;
1291     void * context = sm_address_resolution_context;
1292 
1293     // reset context
1294     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1295     sm_address_resolution_context = NULL;
1296     sm_address_resolution_test = -1;
1297 
1298     hci_con_handle_t con_handle = HCI_CON_HANDLE_INVALID;
1299     sm_connection_t * sm_connection;
1300     sm_key_t ltk;
1301     bool have_ltk;
1302     int authenticated;
1303 #ifdef ENABLE_LE_CENTRAL
1304     bool trigger_pairing;
1305 #endif
1306 
1307     switch (mode){
1308         case ADDRESS_RESOLUTION_GENERAL:
1309             break;
1310         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1311             sm_connection = (sm_connection_t *) context;
1312             con_handle = sm_connection->sm_handle;
1313 
1314             // have ltk -> start encryption / send security request
1315             // Core 5, Vol 3, Part C, 10.3.2 Initiating a Service Request
1316             // "When a bond has been created between two devices, any reconnection should result in the local device
1317             //  enabling or requesting encryption with the remote device before initiating any service request."
1318 
1319             switch (event){
1320                 case ADDRESS_RESOLUTION_SUCCEEDED:
1321                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1322                     sm_connection->sm_le_db_index = matched_device_id;
1323                     log_info("ADDRESS_RESOLUTION_SUCCEEDED, index %d", sm_connection->sm_le_db_index);
1324 
1325                     le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, &authenticated, NULL, NULL);
1326                     have_ltk = !sm_is_null_key(ltk);
1327 
1328                     if (IS_RESPONDER(sm_connection->sm_role)) {
1329 #ifdef ENABLE_LE_PERIPHERAL
1330                         // IRK required before, continue
1331                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1332                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
1333                             break;
1334                         }
1335                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK){
1336                             sm_connection->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
1337                             break;
1338                         }
1339                         bool trigger_security_request = sm_connection->sm_pairing_requested || sm_slave_request_security;
1340                         sm_connection->sm_pairing_requested = false;
1341 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1342                         // trigger security request for Proactive Authentication if LTK available
1343                         trigger_security_request = trigger_security_request || have_ltk;
1344 #endif
1345 
1346                         log_info("peripheral: pairing request local %u, have_ltk %u => trigger_security_request %u",
1347                                  (int) sm_connection->sm_pairing_requested, (int) have_ltk, trigger_security_request);
1348 
1349                         if (trigger_security_request){
1350                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1351                             if (have_ltk){
1352                                 sm_reencryption_started(sm_connection);
1353                             } else {
1354                                 sm_pairing_started(sm_connection);
1355                             }
1356                             sm_trigger_run();
1357                         }
1358 #endif
1359                     } else {
1360 
1361 #ifdef ENABLE_LE_CENTRAL
1362                         // check if pairing already requested and reset requests
1363                         trigger_pairing = sm_connection->sm_pairing_requested || sm_connection->sm_security_request_received;
1364                         bool auth_required = sm_auth_req & SM_AUTHREQ_MITM_PROTECTION;
1365 
1366                         log_info("central: pairing request local %u, remote %u => trigger_pairing %u. have_ltk %u",
1367                                  (int) sm_connection->sm_pairing_requested, (int) sm_connection->sm_security_request_received, (int) trigger_pairing, (int) have_ltk);
1368                         sm_connection->sm_security_request_received = false;
1369                         sm_connection->sm_pairing_requested = false;
1370                         bool trigger_reencryption = false;
1371 
1372                         if (have_ltk){
1373                             if (trigger_pairing){
1374                                 // if pairing is requested, re-encryption is sufficient, if ltk is already authenticated or we don't require authentication
1375                                 trigger_reencryption = (authenticated != 0) || (auth_required == false);
1376                             } else {
1377 #ifdef ENABLE_LE_PROACTIVE_AUTHENTICATION
1378                                 trigger_reencryption = true;
1379 #else
1380                                 log_info("central: defer enabling encryption for bonded device");
1381 #endif
1382                             }
1383                         }
1384 
1385                         if (trigger_reencryption){
1386                             log_info("central: enable encryption for bonded device");
1387                             sm_connection->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
1388                             break;
1389                         }
1390 
1391                         // pairing_request -> send pairing request
1392                         if (trigger_pairing){
1393                             sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1394                             break;
1395                         }
1396 #endif
1397                     }
1398                     break;
1399                 case ADDRESS_RESOLUTION_FAILED:
1400                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1401                     if (IS_RESPONDER(sm_connection->sm_role)) {
1402 #ifdef ENABLE_LE_PERIPHERAL
1403                         // LTK request received before, IRK required -> negative LTK reply
1404                         if (sm_connection->sm_engine_state == SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK){
1405                             sm_connection->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
1406                         }
1407                         // send security request if requested
1408                         bool trigger_security_request = sm_connection->sm_pairing_requested || sm_slave_request_security;
1409                         sm_connection->sm_pairing_requested = false;
1410                         if (trigger_security_request){
1411                             sm_connection->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
1412                             sm_pairing_started(sm_connection);
1413                         }
1414                         break;
1415 #endif
1416                     }
1417 #ifdef ENABLE_LE_CENTRAL
1418                     if ((sm_connection->sm_pairing_requested == false) && (sm_connection->sm_security_request_received == false)) break;
1419                     sm_connection->sm_security_request_received = false;
1420                     sm_connection->sm_pairing_requested = false;
1421                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1422 #endif
1423                     break;
1424 
1425                 default:
1426                     btstack_assert(false);
1427                     break;
1428             }
1429             break;
1430         default:
1431             break;
1432     }
1433 
1434     switch (event){
1435         case ADDRESS_RESOLUTION_SUCCEEDED:
1436             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1437             break;
1438         case ADDRESS_RESOLUTION_FAILED:
1439             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1440             break;
1441         default:
1442             btstack_assert(false);
1443             break;
1444     }
1445 }
1446 
1447 static void sm_store_bonding_information(sm_connection_t * sm_conn){
1448     int le_db_index = -1;
1449 
1450     // lookup device based on IRK
1451     if ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
1452         int i;
1453         for (i=0; i < le_device_db_max_count(); i++){
1454             sm_key_t irk;
1455             bd_addr_t address;
1456             int address_type = BD_ADDR_TYPE_UNKNOWN;
1457             le_device_db_info(i, &address_type, address, irk);
1458             // skip unused entries
1459             if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1460             // compare Identity Address
1461             if (memcmp(address, setup->sm_peer_address, 6) != 0) continue;
1462             // compare Identity Resolving Key
1463             if (memcmp(irk, setup->sm_peer_irk, 16) != 0) continue;
1464 
1465             log_info("sm: device found for IRK, updating");
1466             le_db_index = i;
1467             break;
1468         }
1469     } else {
1470         // assert IRK is set to zero
1471         memset(setup->sm_peer_irk, 0, 16);
1472     }
1473 
1474     // if not found, lookup via public address if possible
1475     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1476     if ((le_db_index < 0) && (setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC)){
1477         int i;
1478         for (i=0; i < le_device_db_max_count(); i++){
1479             bd_addr_t address;
1480             int address_type = BD_ADDR_TYPE_UNKNOWN;
1481             le_device_db_info(i, &address_type, address, NULL);
1482             // skip unused entries
1483             if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1484             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1485             if ((address_type == BD_ADDR_TYPE_LE_PUBLIC) && (memcmp(address, setup->sm_peer_address, 6) == 0)){
1486                 log_info("sm: device found for public address, updating");
1487                 le_db_index = i;
1488                 break;
1489             }
1490         }
1491     }
1492 
1493     // if not found, add to db
1494     bool new_to_le_device_db = false;
1495     if (le_db_index < 0) {
1496         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1497         new_to_le_device_db = true;
1498     }
1499 
1500     if (le_db_index >= 0){
1501 
1502 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1503         if (!new_to_le_device_db){
1504             hci_remove_le_device_db_entry_from_resolving_list(le_db_index);
1505         }
1506         hci_load_le_device_db_entry_into_resolving_list(le_db_index);
1507 #else
1508         UNUSED(new_to_le_device_db);
1509 #endif
1510 
1511         sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index);
1512         sm_conn->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1513         sm_conn->sm_le_db_index = le_db_index;
1514 
1515 #ifdef ENABLE_LE_SIGNED_WRITE
1516         // store local CSRK
1517         setup->sm_le_device_index = le_db_index;
1518         if ((setup->sm_key_distribution_sent_set) & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1519             log_info("sm: store local CSRK");
1520             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1521             le_device_db_local_counter_set(le_db_index, 0);
1522         }
1523 
1524         // store remote CSRK
1525         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1526             log_info("sm: store remote CSRK");
1527             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1528             le_device_db_remote_counter_set(le_db_index, 0);
1529         }
1530 #endif
1531         // store encryption information for secure connections: LTK generated by ECDH
1532         if (setup->sm_use_secure_connections){
1533             log_info("sm: store SC LTK (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1534             uint8_t zero_rand[8];
1535             memset(zero_rand, 0, 8);
1536             le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size,
1537                                         sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 1);
1538         }
1539 
1540         // store encryption information for legacy pairing: peer LTK, EDIV, RAND
1541         else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION)
1542         && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){
1543             log_info("sm: set encryption information (key size %u, authenticated %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1544             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1545                                         sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED, 0);
1546 
1547         }
1548     }
1549 }
1550 
1551 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
1552     sm_conn->sm_pairing_failed_reason = reason;
1553     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1554 }
1555 
1556 static int sm_le_device_db_index_lookup(bd_addr_type_t address_type, bd_addr_t address){
1557     int i;
1558     for (i=0; i < le_device_db_max_count(); i++){
1559         bd_addr_t db_address;
1560         int db_address_type = BD_ADDR_TYPE_UNKNOWN;
1561         le_device_db_info(i, &db_address_type, db_address, NULL);
1562         // skip unused entries
1563         if (address_type == BD_ADDR_TYPE_UNKNOWN) continue;
1564         if ((address_type == (unsigned int)db_address_type) && (memcmp(address, db_address, 6) == 0)){
1565             return i;
1566         }
1567     }
1568     return -1;
1569 }
1570 
1571 static void sm_remove_le_device_db_entry(uint16_t i) {
1572     le_device_db_remove(i);
1573 #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
1574     // to remove an entry from the resolving list requires its identity address, which was already deleted
1575     // fully reload resolving list instead
1576     gap_load_resolving_list_from_le_device_db();
1577 #endif
1578 }
1579 
1580 static uint8_t sm_key_distribution_validate_received(sm_connection_t * sm_conn){
1581     // if identity is provided, abort if we have bonding with same address but different irk
1582     if ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
1583         int index = sm_le_device_db_index_lookup(BD_ADDR_TYPE_LE_PUBLIC, setup->sm_peer_address);
1584         if (index >= 0){
1585             sm_key_t irk;
1586             le_device_db_info(index, NULL, NULL, irk);
1587             if (memcmp(irk, setup->sm_peer_irk, 16) != 0){
1588                 // IRK doesn't match, delete bonding information
1589                 log_info("New IRK for %s (type %u) does not match stored IRK -> delete bonding information", bd_addr_to_str(sm_conn->sm_peer_address), sm_conn->sm_peer_addr_type);
1590                 sm_remove_le_device_db_entry(index);
1591             }
1592         }
1593     }
1594     return 0;
1595 }
1596 
1597 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1598 
1599     // abort pairing if received keys are not valid
1600     uint8_t reason = sm_key_distribution_validate_received(sm_conn);
1601     if (reason != 0){
1602         sm_pairing_error(sm_conn, reason);
1603         return;
1604     }
1605 
1606     // only store pairing information if both sides are bondable, i.e., the bonadble flag is set
1607     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq)
1608                             & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
1609                             & SM_AUTHREQ_BONDING ) != 0u;
1610 
1611     if (bonding_enabled){
1612         sm_store_bonding_information(sm_conn);
1613     } else {
1614         log_info("Ignoring received keys, bonding not enabled");
1615     }
1616 }
1617 
1618 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
1619     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
1620 }
1621 
1622 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1623 
1624 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn);
1625 static bool sm_passkey_used(stk_generation_method_t method);
1626 static bool sm_just_works_or_numeric_comparison(stk_generation_method_t method);
1627 
1628 static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){
1629     if (setup->sm_stk_generation_method == OOB){
1630         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1631     } else {
1632         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_w2_cmac_for_confirmation, (void *)(uintptr_t) sm_conn->sm_handle);
1633     }
1634 }
1635 
1636 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
1637     if (IS_RESPONDER(sm_conn->sm_role)){
1638         // Responder
1639         if (setup->sm_stk_generation_method == OOB){
1640             // generate Nb
1641             log_info("Generate Nb");
1642             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void *)(uintptr_t) sm_conn->sm_handle);
1643         } else {
1644             sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
1645         }
1646     } else {
1647         // Initiator role
1648         switch (setup->sm_stk_generation_method){
1649             case JUST_WORKS:
1650                 sm_sc_prepare_dhkey_check(sm_conn);
1651                 break;
1652 
1653             case NUMERIC_COMPARISON:
1654                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2;
1655                 break;
1656             case PK_INIT_INPUT:
1657             case PK_RESP_INPUT:
1658             case PK_BOTH_INPUT:
1659                 if (setup->sm_passkey_bit < 20u) {
1660                     sm_sc_start_calculating_local_confirm(sm_conn);
1661                 } else {
1662                     sm_sc_prepare_dhkey_check(sm_conn);
1663                 }
1664                 break;
1665             case OOB:
1666                 sm_sc_prepare_dhkey_check(sm_conn);
1667                 break;
1668             default:
1669                 btstack_assert(false);
1670                 break;
1671         }
1672     }
1673 }
1674 
1675 static void sm_sc_cmac_done(uint8_t * hash){
1676     log_info("sm_sc_cmac_done: ");
1677     log_info_hexdump(hash, 16);
1678 
1679     if (sm_sc_oob_state == SM_SC_OOB_W4_CONFIRM){
1680         sm_sc_oob_state = SM_SC_OOB_IDLE;
1681         (*sm_sc_oob_callback)(hash, sm_sc_oob_random);
1682         return;
1683     }
1684 
1685     sm_connection_t * sm_conn = sm_cmac_connection;
1686     sm_cmac_connection = NULL;
1687 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1688     link_key_type_t link_key_type;
1689 #endif
1690 
1691     switch (sm_conn->sm_engine_state){
1692         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1693             (void)memcpy(setup->sm_local_confirm, hash, 16);
1694             sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1695             break;
1696         case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
1697             // check
1698             if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
1699                 sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
1700                 break;
1701             }
1702             sm_sc_state_after_receiving_random(sm_conn);
1703             break;
1704         case SM_SC_W4_CALCULATE_G2: {
1705             uint32_t vab = big_endian_read_32(hash, 12) % 1000000;
1706             big_endian_store_32(setup->sm_tk, 12, vab);
1707             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
1708             sm_trigger_user_response(sm_conn);
1709             break;
1710         }
1711         case SM_SC_W4_CALCULATE_F5_SALT:
1712             (void)memcpy(setup->sm_t, hash, 16);
1713             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY;
1714             break;
1715         case SM_SC_W4_CALCULATE_F5_MACKEY:
1716             (void)memcpy(setup->sm_mackey, hash, 16);
1717             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK;
1718             break;
1719         case SM_SC_W4_CALCULATE_F5_LTK:
1720             // truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk
1721             // Errata Service Release to the Bluetooth Specification: ESR09
1722             //   E6405 – Cross transport key derivation from a key of size less than 128 bits
1723             //   Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
1724             (void)memcpy(setup->sm_ltk, hash, 16);
1725             (void)memcpy(setup->sm_local_ltk, hash, 16);
1726             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1727             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
1728             break;
1729         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
1730             (void)memcpy(setup->sm_local_dhkey_check, hash, 16);
1731             if (IS_RESPONDER(sm_conn->sm_role)){
1732                 // responder
1733                 if ((setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED) != 0u){
1734                     sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
1735                 } else {
1736                     sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1737                 }
1738             } else {
1739                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1740             }
1741             break;
1742         case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
1743             if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){
1744                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1745                 break;
1746             }
1747             if (IS_RESPONDER(sm_conn->sm_role)){
1748                 // responder
1749                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1750             } else {
1751                 // initiator
1752                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
1753             }
1754             break;
1755 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
1756         case SM_SC_W4_CALCULATE_ILK:
1757             (void)memcpy(setup->sm_t, hash, 16);
1758             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY;
1759             break;
1760         case SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY:
1761             reverse_128(hash, setup->sm_t);
1762             link_key_type = sm_conn->sm_connection_authenticated ?
1763                 AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1764             log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type);
1765 			gap_store_link_key_for_bd_addr(setup->sm_peer_address, setup->sm_t, link_key_type);
1766             if (IS_RESPONDER(sm_conn->sm_role)){
1767                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
1768             } else {
1769                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
1770             }
1771             sm_pairing_complete(sm_conn, ERROR_CODE_SUCCESS, 0);
1772             sm_done_for_handle(sm_conn->sm_handle);
1773             break;
1774         case SM_BR_EDR_W4_CALCULATE_ILK:
1775             (void)memcpy(setup->sm_t, hash, 16);
1776             sm_conn->sm_engine_state = SM_BR_EDR_W2_CALCULATE_LE_LTK;
1777             break;
1778         case SM_BR_EDR_W4_CALCULATE_LE_LTK:
1779             log_info("Derived LE LTK from BR/EDR Link Key");
1780             log_info_key("Link Key", hash);
1781             (void)memcpy(setup->sm_ltk, hash, 16);
1782             sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
1783             sm_conn->sm_connection_authenticated = setup->sm_link_key_type == AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
1784             sm_store_bonding_information(sm_conn);
1785             sm_done_for_handle(sm_conn->sm_handle);
1786             break;
1787 #endif
1788         default:
1789             log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state);
1790             break;
1791     }
1792     sm_trigger_run();
1793 }
1794 
1795 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1796     const uint16_t message_len = 65;
1797     sm_cmac_connection = sm_conn;
1798     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1799     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1800     sm_cmac_sc_buffer[64] = z;
1801     log_info("f4 key");
1802     log_info_hexdump(x, 16);
1803     log_info("f4 message");
1804     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1805     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1806 }
1807 
1808 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
1809 static const uint8_t f5_length[] = { 0x01, 0x00};
1810 
1811 static void f5_calculate_salt(sm_connection_t * sm_conn){
1812 
1813     static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
1814 
1815     log_info("f5_calculate_salt");
1816     // calculate salt for f5
1817     const uint16_t message_len = 32;
1818     sm_cmac_connection = sm_conn;
1819     (void)memcpy(sm_cmac_sc_buffer, setup->sm_dhkey, message_len);
1820     sm_cmac_message_start(f5_salt, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1821 }
1822 
1823 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
1824     const uint16_t message_len = 53;
1825     sm_cmac_connection = sm_conn;
1826 
1827     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
1828     sm_cmac_sc_buffer[0] = 0;
1829     (void)memcpy(sm_cmac_sc_buffer + 01, f5_key_id, 4);
1830     (void)memcpy(sm_cmac_sc_buffer + 05, n1, 16);
1831     (void)memcpy(sm_cmac_sc_buffer + 21, n2, 16);
1832     (void)memcpy(sm_cmac_sc_buffer + 37, a1, 7);
1833     (void)memcpy(sm_cmac_sc_buffer + 44, a2, 7);
1834     (void)memcpy(sm_cmac_sc_buffer + 51, f5_length, 2);
1835     log_info("f5 key");
1836     log_info_hexdump(t, 16);
1837     log_info("f5 message for MacKey");
1838     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1839     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1840 }
1841 
1842 static void f5_calculate_mackey(sm_connection_t * sm_conn){
1843     sm_key56_t bd_addr_master, bd_addr_slave;
1844     bd_addr_master[0] =  setup->sm_m_addr_type;
1845     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1846     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1847     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1848     if (IS_RESPONDER(sm_conn->sm_role)){
1849         // responder
1850         f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1851     } else {
1852         // initiator
1853         f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1854     }
1855 }
1856 
1857 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused
1858 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){
1859     const uint16_t message_len = 53;
1860     sm_cmac_connection = sm_conn;
1861     sm_cmac_sc_buffer[0] = 1;
1862     // 1..52 setup before
1863     log_info("f5 key");
1864     log_info_hexdump(t, 16);
1865     log_info("f5 message for LTK");
1866     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1867     sm_cmac_message_start(t, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1868 }
1869 
1870 static void f5_calculate_ltk(sm_connection_t * sm_conn){
1871     f5_ltk(sm_conn, setup->sm_t);
1872 }
1873 
1874 static void f6_setup(const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
1875     (void)memcpy(sm_cmac_sc_buffer, n1, 16);
1876     (void)memcpy(sm_cmac_sc_buffer + 16, n2, 16);
1877     (void)memcpy(sm_cmac_sc_buffer + 32, r, 16);
1878     (void)memcpy(sm_cmac_sc_buffer + 48, io_cap, 3);
1879     (void)memcpy(sm_cmac_sc_buffer + 51, a1, 7);
1880     (void)memcpy(sm_cmac_sc_buffer + 58, a2, 7);
1881 }
1882 
1883 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w){
1884     const uint16_t message_len = 65;
1885     sm_cmac_connection = sm_conn;
1886     log_info("f6 key");
1887     log_info_hexdump(w, 16);
1888     log_info("f6 message");
1889     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1890     sm_cmac_message_start(w, 65, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1891 }
1892 
1893 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
1894 // - U is 256 bits
1895 // - V is 256 bits
1896 // - X is 128 bits
1897 // - Y is 128 bits
1898 static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
1899     const uint16_t message_len = 80;
1900     sm_cmac_connection = sm_conn;
1901     (void)memcpy(sm_cmac_sc_buffer, u, 32);
1902     (void)memcpy(sm_cmac_sc_buffer + 32, v, 32);
1903     (void)memcpy(sm_cmac_sc_buffer + 64, y, 16);
1904     log_info("g2 key");
1905     log_info_hexdump(x, 16);
1906     log_info("g2 message");
1907     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1908     sm_cmac_message_start(x, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
1909 }
1910 
1911 static void g2_calculate(sm_connection_t * sm_conn) {
1912     // calc Va if numeric comparison
1913     if (IS_RESPONDER(sm_conn->sm_role)){
1914         // responder
1915         g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);;
1916     } else {
1917         // initiator
1918         g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce);
1919     }
1920 }
1921 
1922 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1923     uint8_t z = 0;
1924     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1925         // some form of passkey
1926         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1927         z = 0x80u | ((pk >> setup->sm_passkey_bit) & 1u);
1928         setup->sm_passkey_bit++;
1929     }
1930     f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z);
1931 }
1932 
1933 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
1934     // OOB
1935     if (setup->sm_stk_generation_method == OOB){
1936         if (IS_RESPONDER(sm_conn->sm_role)){
1937             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_ra, 0);
1938         } else {
1939             f4_engine(sm_conn, setup->sm_peer_q, setup->sm_peer_q, setup->sm_rb, 0);
1940         }
1941         return;
1942     }
1943 
1944     uint8_t z = 0;
1945     if (sm_passkey_entry(setup->sm_stk_generation_method)){
1946         // some form of passkey
1947         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1948         // sm_passkey_bit was increased before sending confirm value
1949         z = 0x80u | ((pk >> (setup->sm_passkey_bit-1u)) & 1u);
1950     }
1951     f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z);
1952 }
1953 
1954 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){
1955     log_info("sm_sc_prepare_dhkey_check, DHKEY calculated %u", (setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) != 0 ? 1 : 0);
1956 
1957     if ((setup->sm_state_vars & SM_STATE_VAR_DHKEY_CALCULATED) != 0u){
1958         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1959     } else {
1960         sm_conn->sm_engine_state = SM_SC_W4_CALCULATE_DHKEY;
1961     }
1962 }
1963 
1964 static void sm_sc_dhkey_calculated(void * arg){
1965     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
1966     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
1967     if (sm_conn == NULL) return;
1968 
1969     // check for invalid public key detected by Controller
1970     if (sm_is_ff(setup->sm_dhkey, 32)){
1971         log_info("sm: peer public key invalid");
1972         sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
1973         return;
1974     }
1975 
1976     log_info("dhkey");
1977     log_info_hexdump(&setup->sm_dhkey[0], 32);
1978     setup->sm_state_vars |= SM_STATE_VAR_DHKEY_CALCULATED;
1979     // trigger next step
1980     if (sm_conn->sm_engine_state == SM_SC_W4_CALCULATE_DHKEY){
1981         sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1982     }
1983     sm_trigger_run();
1984 }
1985 
1986 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){
1987     // calculate DHKCheck
1988     sm_key56_t bd_addr_master, bd_addr_slave;
1989     bd_addr_master[0] =  setup->sm_m_addr_type;
1990     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1991     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1992     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
1993     uint8_t iocap_a[3];
1994     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1995     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1996     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1997     uint8_t iocap_b[3];
1998     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1999     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2000     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2001     if (IS_RESPONDER(sm_conn->sm_role)){
2002         // responder
2003         f6_setup(setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2004         f6_engine(sm_conn, setup->sm_mackey);
2005     } else {
2006         // initiator
2007         f6_setup( setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2008         f6_engine(sm_conn, setup->sm_mackey);
2009     }
2010 }
2011 
2012 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){
2013     // validate E = f6()
2014     sm_key56_t bd_addr_master, bd_addr_slave;
2015     bd_addr_master[0] =  setup->sm_m_addr_type;
2016     bd_addr_slave[0]  =  setup->sm_s_addr_type;
2017     (void)memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
2018     (void)memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
2019 
2020     uint8_t iocap_a[3];
2021     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2022     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2023     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2024     uint8_t iocap_b[3];
2025     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2026     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2027     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2028     if (IS_RESPONDER(sm_conn->sm_role)){
2029         // responder
2030         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2031         f6_engine(sm_conn, setup->sm_mackey);
2032     } else {
2033         // initiator
2034         f6_setup(setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2035         f6_engine(sm_conn, setup->sm_mackey);
2036     }
2037 }
2038 
2039 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2040 
2041 //
2042 // Link Key Conversion Function h6
2043 //
2044 // h6(W, keyID) = AES-CMAC_W(keyID)
2045 // - W is 128 bits
2046 // - keyID is 32 bits
2047 static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){
2048     const uint16_t message_len = 4;
2049     sm_cmac_connection = sm_conn;
2050     big_endian_store_32(sm_cmac_sc_buffer, 0, key_id);
2051     log_info("h6 key");
2052     log_info_hexdump(w, 16);
2053     log_info("h6 message");
2054     log_info_hexdump(sm_cmac_sc_buffer, message_len);
2055     sm_cmac_message_start(w, message_len, sm_cmac_sc_buffer, &sm_sc_cmac_done);
2056 }
2057 //
2058 // Link Key Conversion Function h7
2059 //
2060 // h7(SALT, W) = AES-CMAC_SALT(W)
2061 // - SALT is 128 bits
2062 // - W    is 128 bits
2063 static void h7_engine(sm_connection_t * sm_conn, const sm_key_t salt, const sm_key_t w) {
2064 	const uint16_t message_len = 16;
2065 	sm_cmac_connection = sm_conn;
2066 	log_info("h7 key");
2067 	log_info_hexdump(salt, 16);
2068 	log_info("h7 message");
2069 	log_info_hexdump(w, 16);
2070 	sm_cmac_message_start(salt, message_len, w, &sm_sc_cmac_done);
2071 }
2072 
2073 // For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated)
2074 // Errata Service Release to the Bluetooth Specification: ESR09
2075 //   E6405 – Cross transport key derivation from a key of size less than 128 bits
2076 //   "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
2077 
2078 static void h6_calculate_ilk_from_le_ltk(sm_connection_t * sm_conn){
2079     h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031);    // "tmp1"
2080 }
2081 
2082 static void h6_calculate_ilk_from_br_edr(sm_connection_t * sm_conn){
2083     h6_engine(sm_conn, setup->sm_link_key, 0x746D7032);    // "tmp2"
2084 }
2085 
2086 static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){
2087     h6_engine(sm_conn, setup->sm_t, 0x6c656272);    // "lebr"
2088 }
2089 
2090 static void h6_calculate_le_ltk(sm_connection_t * sm_conn){
2091     h6_engine(sm_conn, setup->sm_t, 0x62726C65);    // "brle"
2092 }
2093 
2094 static void h7_calculate_ilk_from_le_ltk(sm_connection_t * sm_conn){
2095 	const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x31};  // "tmp1"
2096 	h7_engine(sm_conn, salt, setup->sm_local_ltk);
2097 }
2098 
2099 static void h7_calculate_ilk_from_br_edr(sm_connection_t * sm_conn){
2100     const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x32};  // "tmp2"
2101     h7_engine(sm_conn, salt, setup->sm_link_key);
2102 }
2103 
2104 static void sm_ctkd_fetch_br_edr_link_key(sm_connection_t * sm_conn){
2105     hci_connection_t * hci_connection = hci_connection_for_handle(sm_conn->sm_handle);
2106     btstack_assert(hci_connection != NULL);
2107     reverse_128(hci_connection->link_key, setup->sm_link_key);
2108     setup->sm_link_key_type =  hci_connection->link_key_type;
2109 }
2110 
2111 static void sm_ctkd_start_from_br_edr(sm_connection_t * sm_conn){
2112     // only derive LTK if EncKey is set by both
2113     bool derive_ltk = (sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres) &
2114                               sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres) & SM_KEYDIST_ENC_KEY) != 0;
2115     if (derive_ltk){
2116         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2117         sm_conn->sm_engine_state = use_h7 ? SM_BR_EDR_W2_CALCULATE_ILK_USING_H7 : SM_BR_EDR_W2_CALCULATE_ILK_USING_H6;
2118     } else {
2119         sm_done_for_handle(sm_conn->sm_handle);
2120     }
2121 }
2122 
2123 #endif
2124 
2125 #endif
2126 
2127 // key management legacy connections:
2128 // - potentially two different LTKs based on direction. each device stores LTK provided by peer
2129 // - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect)
2130 // - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder
2131 // - responder  reconnects: responder uses LTK receveived from master
2132 
2133 // key management secure connections:
2134 // - both devices store same LTK from ECDH key exchange.
2135 
2136 #if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL)
2137 static void sm_load_security_info(sm_connection_t * sm_connection){
2138     int encryption_key_size;
2139     int authenticated;
2140     int authorized;
2141     int secure_connection;
2142 
2143     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
2144     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
2145                                 &encryption_key_size, &authenticated, &authorized, &secure_connection);
2146     log_info("db index %u, key size %u, authenticated %u, authorized %u, secure connetion %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized, secure_connection);
2147     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
2148     sm_connection->sm_connection_authenticated = authenticated;
2149     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
2150     sm_connection->sm_connection_sc = secure_connection != 0;
2151 }
2152 #endif
2153 
2154 #ifdef ENABLE_LE_PERIPHERAL
2155 static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){
2156     (void)memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
2157     setup->sm_local_ediv = sm_connection->sm_local_ediv;
2158     // re-establish used key encryption size
2159     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2160     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7u] & 0x0fu) + 1u;
2161     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
2162     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7u] & 0x10u) >> 4u;
2163     // Legacy paring -> not SC
2164     sm_connection->sm_connection_sc = false;
2165     log_info("sm: received ltk request with key size %u, authenticated %u",
2166             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
2167 }
2168 #endif
2169 
2170 // distributed key generation
2171 static bool sm_run_dpkg(void){
2172     switch (dkg_state){
2173         case DKG_CALC_IRK:
2174             // already busy?
2175             if (sm_aes128_state == SM_AES128_IDLE) {
2176                 log_info("DKG_CALC_IRK started");
2177                 // IRK = d1(IR, 1, 0)
2178                 sm_d1_d_prime(1, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2179                 sm_aes128_state = SM_AES128_ACTIVE;
2180                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_irk, sm_handle_encryption_result_dkg_irk, NULL);
2181                 return true;
2182             }
2183             break;
2184         case DKG_CALC_DHK:
2185             // already busy?
2186             if (sm_aes128_state == SM_AES128_IDLE) {
2187                 log_info("DKG_CALC_DHK started");
2188                 // DHK = d1(IR, 3, 0)
2189                 sm_d1_d_prime(3, 0, sm_aes128_plaintext);  // plaintext = d1 prime
2190                 sm_aes128_state = SM_AES128_ACTIVE;
2191                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_ir, sm_aes128_plaintext, sm_persistent_dhk, sm_handle_encryption_result_dkg_dhk, NULL);
2192                 return true;
2193             }
2194             break;
2195         default:
2196             break;
2197     }
2198     return false;
2199 }
2200 
2201 // random address updates
2202 static bool sm_run_rau(void){
2203     switch (rau_state){
2204         case RAU_GET_RANDOM:
2205             rau_state = RAU_W4_RANDOM;
2206             btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_address, 6, &sm_handle_random_result_rau, NULL);
2207             return true;
2208         case RAU_GET_ENC:
2209             // already busy?
2210             if (sm_aes128_state == SM_AES128_IDLE) {
2211                 sm_ah_r_prime(sm_random_address, sm_aes128_plaintext);
2212                 sm_aes128_state = SM_AES128_ACTIVE;
2213                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_irk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_rau, NULL);
2214                 return true;
2215             }
2216             break;
2217         default:
2218             break;
2219     }
2220     return false;
2221 }
2222 
2223 // device lookup with IRK
2224 static bool sm_run_irk_lookup(void){
2225     btstack_linked_list_iterator_t it;
2226 
2227     // -- if IRK lookup ready, find connection that require csrk lookup
2228     if (sm_address_resolution_idle()){
2229         hci_connections_get_iterator(&it);
2230         while(btstack_linked_list_iterator_has_next(&it)){
2231             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2232             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
2233             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
2234                 // and start lookup
2235                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
2236                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
2237                 break;
2238             }
2239         }
2240     }
2241 
2242     // -- if csrk lookup ready, resolved addresses for received addresses
2243     if (sm_address_resolution_idle()) {
2244         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
2245             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
2246             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
2247             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
2248             btstack_memory_sm_lookup_entry_free(entry);
2249         }
2250     }
2251 
2252     // -- Continue with device lookup by public or resolvable private address
2253     if (!sm_address_resolution_idle()){
2254         while (sm_address_resolution_test < le_device_db_max_count()){
2255             int addr_type = BD_ADDR_TYPE_UNKNOWN;
2256             bd_addr_t addr;
2257             sm_key_t irk;
2258             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
2259 
2260             // skip unused entries
2261             if (addr_type == BD_ADDR_TYPE_UNKNOWN){
2262                 sm_address_resolution_test++;
2263                 continue;
2264             }
2265 
2266             log_info("LE Device Lookup: device %u of %u - type %u, %s", sm_address_resolution_test,
2267                      le_device_db_max_count(), addr_type, bd_addr_to_str(addr));
2268 
2269             // map resolved identity addresses to regular addresses
2270             int regular_addr_type = sm_address_resolution_addr_type & 1;
2271             if ((regular_addr_type == addr_type) && (memcmp(addr, sm_address_resolution_address, 6) == 0)){
2272                 log_info("LE Device Lookup: found by { addr_type, address} ");
2273                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
2274                 break;
2275             }
2276 
2277             // if connection type is not random (i.e. public or resolved identity), it must be a different entry
2278             if (sm_address_resolution_addr_type != BD_ADDR_TYPE_LE_RANDOM){
2279                 sm_address_resolution_test++;
2280                 continue;
2281             }
2282 
2283             // skip AH if no IRK
2284             if (sm_is_null_key(irk)){
2285                 sm_address_resolution_test++;
2286                 continue;
2287             }
2288 
2289             if (sm_aes128_state == SM_AES128_ACTIVE) break;
2290 
2291             log_info("LE Device Lookup: calculate AH");
2292             log_info_key("IRK", irk);
2293 
2294             (void)memcpy(sm_aes128_key, irk, 16);
2295             sm_ah_r_prime(sm_address_resolution_address, sm_aes128_plaintext);
2296             sm_aes128_state = SM_AES128_ACTIVE;
2297             btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_aes128_key, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_address_resolution, NULL);
2298             return true;
2299         }
2300 
2301         if (sm_address_resolution_test >= le_device_db_max_count()){
2302             log_info("LE Device Lookup: not found");
2303             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
2304         }
2305     }
2306     return false;
2307 }
2308 
2309 // SC OOB
2310 static bool sm_run_oob(void){
2311 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2312     switch (sm_sc_oob_state){
2313         case SM_SC_OOB_W2_CALC_CONFIRM:
2314             if (!sm_cmac_ready()) break;
2315             sm_sc_oob_state = SM_SC_OOB_W4_CONFIRM;
2316             f4_engine(NULL, ec_q, ec_q, sm_sc_oob_random, 0);
2317             return true;
2318         default:
2319             break;
2320     }
2321 #endif
2322     return false;
2323 }
2324 
2325 static void sm_send_connectionless(sm_connection_t * sm_connection, const uint8_t * buffer, uint16_t size){
2326     l2cap_send_connectionless(sm_connection->sm_handle, sm_connection->sm_cid, (uint8_t*) buffer, size);
2327 }
2328 
2329 // handle basic actions that don't requires the full context
2330 static bool sm_run_basic(void){
2331     btstack_linked_list_iterator_t it;
2332     hci_connections_get_iterator(&it);
2333     while(btstack_linked_list_iterator_has_next(&it)){
2334         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2335         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2336         switch(sm_connection->sm_engine_state){
2337 
2338             // general
2339             case SM_GENERAL_SEND_PAIRING_FAILED: {
2340                 uint8_t buffer[2];
2341                 buffer[0] = SM_CODE_PAIRING_FAILED;
2342                 buffer[1] = sm_connection->sm_pairing_failed_reason;
2343                 sm_connection->sm_engine_state = sm_connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2344                 sm_send_connectionless(sm_connection, (uint8_t*) buffer, sizeof(buffer));
2345                 sm_pairing_complete(sm_connection, ERROR_CODE_AUTHENTICATION_FAILURE, sm_connection->sm_pairing_failed_reason);
2346                 sm_done_for_handle(sm_connection->sm_handle);
2347                 break;
2348             }
2349 
2350             // responder side
2351             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
2352                 sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2353                 hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2354                 return true;
2355 
2356 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2357             case SM_SC_RECEIVED_LTK_REQUEST:
2358                 switch (sm_connection->sm_irk_lookup_state){
2359                     case IRK_LOOKUP_FAILED:
2360                         log_info("LTK Request: IRK Lookup Failed)");
2361                         sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
2362                         hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
2363                         return true;
2364                     default:
2365                         break;
2366                 }
2367                 break;
2368 #endif
2369             default:
2370                 break;
2371         }
2372     }
2373     return false;
2374 }
2375 
2376 static void sm_run_activate_connection(void){
2377     // Find connections that requires setup context and make active if no other is locked
2378     btstack_linked_list_iterator_t it;
2379     hci_connections_get_iterator(&it);
2380     while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
2381         hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
2382         sm_connection_t  * sm_connection = &hci_connection->sm_connection;
2383         // - if no connection locked and we're ready/waiting for setup context, fetch it and start
2384         bool done = true;
2385         int err;
2386         UNUSED(err);
2387 
2388 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2389         // assert ec key is ready
2390         if (   (sm_connection->sm_engine_state == SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED)
2391             || (sm_connection->sm_engine_state == SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST)
2392 			|| (sm_connection->sm_engine_state == SM_RESPONDER_SEND_SECURITY_REQUEST)){
2393             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
2394                 sm_ec_generate_new_key();
2395             }
2396             if (ec_key_generation_state != EC_KEY_GENERATION_DONE){
2397                 continue;
2398             }
2399         }
2400 #endif
2401 
2402         switch (sm_connection->sm_engine_state) {
2403 #ifdef ENABLE_LE_PERIPHERAL
2404             case SM_RESPONDER_SEND_SECURITY_REQUEST:
2405             case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2406             case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
2407 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2408             case SM_SC_RECEIVED_LTK_REQUEST:
2409 #endif
2410 #endif
2411 #ifdef ENABLE_LE_CENTRAL
2412             case SM_INITIATOR_PH4_HAS_LTK:
2413 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2414 #endif
2415 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2416             case SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED:
2417             case SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST:
2418 #endif
2419 				// just lock context
2420 				break;
2421             default:
2422                 done = false;
2423                 break;
2424         }
2425         if (done){
2426             sm_active_connection_handle = sm_connection->sm_handle;
2427             log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state);
2428         }
2429     }
2430 }
2431 
2432 static void sm_run_send_keypress_notification(sm_connection_t * connection){
2433     int i;
2434     uint8_t flags       = setup->sm_keypress_notification & 0x1fu;
2435     uint8_t num_actions = setup->sm_keypress_notification >> 5;
2436     uint8_t action = 0;
2437     for (i=SM_KEYPRESS_PASSKEY_ENTRY_STARTED;i<=SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED;i++){
2438         if ((flags & (1u<<i)) != 0u){
2439             bool clear_flag = true;
2440             switch (i){
2441                 case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
2442                 case SM_KEYPRESS_PASSKEY_CLEARED:
2443                 case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
2444                 default:
2445                     break;
2446                 case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
2447                 case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
2448                     num_actions--;
2449                     clear_flag = num_actions == 0u;
2450                     break;
2451             }
2452             if (clear_flag){
2453                 flags &= ~(1<<i);
2454             }
2455             action = i;
2456             break;
2457         }
2458     }
2459     setup->sm_keypress_notification = (num_actions << 5) | flags;
2460 
2461     // send keypress notification
2462     uint8_t buffer[2];
2463     buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION;
2464     buffer[1] = action;
2465     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2466 
2467     // try
2468     l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, connection->sm_cid);
2469 }
2470 
2471 static void sm_run_distribute_keys(sm_connection_t * connection){
2472     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION) != 0u){
2473         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2474         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2475         uint8_t buffer[17];
2476         buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2477         reverse_128(setup->sm_ltk, &buffer[1]);
2478         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2479         sm_timeout_reset(connection);
2480         return;
2481     }
2482     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION) != 0u){
2483         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2484         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2485         uint8_t buffer[11];
2486         buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2487         little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2488         reverse_64(setup->sm_local_rand, &buffer[3]);
2489         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2490         sm_timeout_reset(connection);
2491         return;
2492     }
2493     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION) != 0u){
2494         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2495         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2496         uint8_t buffer[17];
2497         buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2498         reverse_128(sm_persistent_irk, &buffer[1]);
2499         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2500         sm_timeout_reset(connection);
2501         return;
2502     }
2503     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0u){
2504         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2505         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2506         bd_addr_t local_address;
2507         uint8_t buffer[8];
2508         buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2509         switch (gap_random_address_get_mode()){
2510             case GAP_RANDOM_ADDRESS_TYPE_OFF:
2511             case GAP_RANDOM_ADDRESS_TYPE_STATIC:
2512                 // public or static random
2513                 gap_le_get_own_address(&buffer[1], local_address);
2514                 break;
2515             case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2516             case GAP_RANDOM_ADDRESS_RESOLVABLE:
2517                 // fallback to public
2518                 gap_local_bd_addr(local_address);
2519                 buffer[1] = 0;
2520                 break;
2521             default:
2522                 btstack_assert(false);
2523                 break;
2524         }
2525         reverse_bd_addr(local_address, &buffer[2]);
2526         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2527         sm_timeout_reset(connection);
2528         return;
2529     }
2530     if ((setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION) != 0u){
2531         setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2532         setup->sm_key_distribution_sent_set |=  SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2533 
2534 #ifdef ENABLE_LE_SIGNED_WRITE
2535         // hack to reproduce test runs
2536                     if (test_use_fixed_local_csrk){
2537                         memset(setup->sm_local_csrk, 0xcc, 16);
2538                     }
2539 
2540                     // store local CSRK
2541                     if (setup->sm_le_device_index >= 0){
2542                         log_info("sm: store local CSRK");
2543                         le_device_db_local_csrk_set(setup->sm_le_device_index, setup->sm_local_csrk);
2544                         le_device_db_local_counter_set(setup->sm_le_device_index, 0);
2545                     }
2546 #endif
2547 
2548         uint8_t buffer[17];
2549         buffer[0] = SM_CODE_SIGNING_INFORMATION;
2550         reverse_128(setup->sm_local_csrk, &buffer[1]);
2551         sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2552         sm_timeout_reset(connection);
2553         return;
2554     }
2555     btstack_assert(false);
2556 }
2557 
2558 static bool sm_ctkd_from_le(sm_connection_t *sm_connection) {
2559 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2560     // requirements to derive link key from  LE:
2561     // - use secure connections
2562     if (setup->sm_use_secure_connections == 0) return false;
2563     // - bonding needs to be enabled:
2564     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_BONDING ) != 0u;
2565     if (!bonding_enabled) return false;
2566     // - need identity address / public addr
2567     bool have_identity_address_info = ((setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION) != 0) || (setup->sm_peer_addr_type == 0);
2568     if (!have_identity_address_info) return false;
2569     // - there is no stored BR/EDR link key or the derived key has at least the same level of authentication (bail if stored key has higher authentication)
2570     //   this requirement is motivated by BLURtooth paper. The paper recommends to not overwrite keys at all.
2571     //      If SC is authenticated, we consider it safe to overwrite a stored key.
2572     //      If stored link key is not authenticated, it could already be compromised by a MITM attack. Allowing overwrite by unauthenticated derived key does not make it worse.
2573     uint8_t link_key[16];
2574     link_key_type_t link_key_type;
2575     bool have_link_key             = gap_get_link_key_for_bd_addr(setup->sm_peer_address, link_key, &link_key_type);
2576     bool link_key_authenticated    = gap_authenticated_for_link_key_type(link_key_type);
2577     bool derived_key_authenticated = sm_connection->sm_connection_authenticated != 0;
2578     if (have_link_key && link_key_authenticated && !derived_key_authenticated) {
2579         return false;
2580     }
2581     // get started (all of the above are true)
2582     return true;
2583 #else
2584     UNUSED(sm_connection);
2585 	return false;
2586 #endif
2587 }
2588 
2589 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
2590 static bool sm_ctkd_from_classic(sm_connection_t * sm_connection){
2591     hci_connection_t * hci_connection = hci_connection_for_handle(sm_connection->sm_handle);
2592     btstack_assert(hci_connection != NULL);
2593     // requirements to derive ltk from BR/EDR:
2594     // - BR/EDR uses secure connections
2595     if (gap_secure_connection_for_link_key_type(hci_connection->link_key_type) == false) return false;
2596     // - bonding needs to be enabled:
2597     bool bonding_enabled = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_BONDING ) != 0u;
2598     if (!bonding_enabled) return false;
2599     // - there is no stored LTK or the derived key has at least the same level of authentication (bail if LTK is authenticated but Link Key isn't)
2600     bool link_key_authenticated = gap_authenticated_for_link_key_type(hci_connection->link_key_type);
2601     if (link_key_authenticated) return true;
2602     int index = sm_le_device_db_index_lookup(BD_ADDR_TYPE_LE_PUBLIC, hci_connection->address);
2603     if (index >= 0){
2604         int ltk_authenticated;
2605         sm_key_t ltk;
2606         le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, &ltk_authenticated, NULL, NULL);
2607         bool have_ltk = !sm_is_null_key(ltk);
2608         if (have_ltk && ltk_authenticated) return false;
2609     }
2610     return true;
2611 }
2612 #endif
2613 
2614 static void sm_key_distribution_complete_responder(sm_connection_t * connection){
2615     if (sm_ctkd_from_le(connection)){
2616         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2617         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2618     } else {
2619         connection->sm_engine_state = SM_RESPONDER_IDLE;
2620         sm_pairing_complete(connection, ERROR_CODE_SUCCESS, 0);
2621         sm_done_for_handle(connection->sm_handle);
2622     }
2623 }
2624 
2625 static void sm_key_distribution_complete_initiator(sm_connection_t * connection){
2626     if (sm_ctkd_from_le(connection)){
2627         bool use_h7 = (sm_pairing_packet_get_auth_req(setup->sm_m_preq) & sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_CT2) != 0;
2628         connection->sm_engine_state = use_h7 ? SM_SC_W2_CALCULATE_ILK_USING_H7 : SM_SC_W2_CALCULATE_ILK_USING_H6;
2629     } else {
2630         sm_master_pairing_success(connection);
2631     }
2632 }
2633 
2634 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2635 static void sm_run_state_sc_send_confirmation(sm_connection_t *connection) {
2636     uint8_t buffer[17];
2637     buffer[0] = SM_CODE_PAIRING_CONFIRM;
2638     reverse_128(setup->sm_local_confirm, &buffer[1]);
2639     if (IS_RESPONDER(connection->sm_role)){
2640         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2641     } else {
2642         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2643     }
2644     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2645     sm_timeout_reset(connection);
2646 }
2647 
2648 static void sm_run_state_sc_send_pairing_random(sm_connection_t *connection) {
2649     uint8_t buffer[17];
2650     buffer[0] = SM_CODE_PAIRING_RANDOM;
2651     reverse_128(setup->sm_local_nonce, &buffer[1]);
2652     log_info("stk method %u, bit num: %u", setup->sm_stk_generation_method, setup->sm_passkey_bit);
2653     if (sm_passkey_entry(setup->sm_stk_generation_method) && (setup->sm_passkey_bit < 20u)){
2654         log_info("SM_SC_SEND_PAIRING_RANDOM A");
2655         if (IS_RESPONDER(connection->sm_role)){
2656             // responder
2657             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2658         } else {
2659             // initiator
2660             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2661         }
2662     } else {
2663         log_info("SM_SC_SEND_PAIRING_RANDOM B");
2664         if (IS_RESPONDER(connection->sm_role)){
2665             // responder
2666             if (setup->sm_stk_generation_method == NUMERIC_COMPARISON){
2667                 log_info("SM_SC_SEND_PAIRING_RANDOM B1");
2668                 connection->sm_engine_state = SM_SC_W2_CALCULATE_G2;
2669             } else {
2670                 log_info("SM_SC_SEND_PAIRING_RANDOM B2");
2671                 sm_sc_prepare_dhkey_check(connection);
2672             }
2673         } else {
2674             // initiator
2675             connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2676         }
2677     }
2678     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2679     sm_timeout_reset(connection);
2680 }
2681 
2682 static void sm_run_state_sc_send_dhkey_check_command(sm_connection_t *connection) {
2683     uint8_t buffer[17];
2684     buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
2685     reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
2686 
2687     if (IS_RESPONDER(connection->sm_role)){
2688         connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
2689     } else {
2690         connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
2691     }
2692 
2693     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2694     sm_timeout_reset(connection);
2695 }
2696 
2697 static void sm_run_state_sc_send_public_key_command(sm_connection_t *connection) {
2698     bool trigger_user_response   = false;
2699     bool trigger_start_calculating_local_confirm = false;
2700     uint8_t buffer[65];
2701     buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
2702     //
2703     reverse_256(&ec_q[0],  &buffer[1]);
2704     reverse_256(&ec_q[32], &buffer[33]);
2705 
2706 #ifdef ENABLE_TESTING_SUPPORT
2707     if (test_pairing_failure == SM_REASON_DHKEY_CHECK_FAILED){
2708             log_info("testing_support: invalidating public key");
2709             // flip single bit of public key coordinate
2710             buffer[1] ^= 1;
2711         }
2712 #endif
2713 
2714     // stk generation method
2715 // passkey entry: notify app to show passkey or to request passkey
2716     switch (setup->sm_stk_generation_method){
2717         case JUST_WORKS:
2718         case NUMERIC_COMPARISON:
2719             if (IS_RESPONDER(connection->sm_role)){
2720                 // responder
2721                 trigger_start_calculating_local_confirm = true;
2722                 connection->sm_engine_state = SM_SC_W4_LOCAL_NONCE;
2723             } else {
2724                 // initiator
2725                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2726             }
2727             break;
2728         case PK_INIT_INPUT:
2729         case PK_RESP_INPUT:
2730         case PK_BOTH_INPUT:
2731             // use random TK for display
2732             (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
2733             (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
2734             setup->sm_passkey_bit = 0;
2735 
2736             if (IS_RESPONDER(connection->sm_role)){
2737                 // responder
2738                 connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2739             } else {
2740                 // initiator
2741                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2742             }
2743             trigger_user_response = true;
2744             break;
2745         case OOB:
2746             if (IS_RESPONDER(connection->sm_role)){
2747                 // responder
2748                 connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2749             } else {
2750                 // initiator
2751                 connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2752             }
2753             break;
2754         default:
2755             btstack_assert(false);
2756             break;
2757     }
2758 
2759     sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
2760     sm_timeout_reset(connection);
2761 
2762     // trigger user response and calc confirm after sending pdu
2763     if (trigger_user_response){
2764         sm_trigger_user_response(connection);
2765     }
2766     if (trigger_start_calculating_local_confirm){
2767         sm_sc_start_calculating_local_confirm(connection);
2768     }
2769 }
2770 #endif
2771 
2772 static bool sm_run_non_connection_logic(void){
2773     bool done;;
2774 
2775     done = sm_run_dpkg();
2776     if (done) return true;
2777 
2778     done = sm_run_rau();
2779     if (done) return true;
2780 
2781     done = sm_run_irk_lookup();
2782     if (done) return true;
2783 
2784     done = sm_run_oob();
2785     return done;
2786 }
2787 
2788 static void sm_run(void){
2789 
2790     // assert that stack has already bootet
2791     if (hci_get_state() != HCI_STATE_WORKING) return;
2792 
2793     // assert that we can send at least commands
2794     if (!hci_can_send_command_packet_now()) return;
2795 
2796     // pause until IR/ER are ready
2797     if (sm_persistent_keys_random_active) return;
2798 
2799     // non-connection related behaviour
2800     bool done = sm_run_non_connection_logic();
2801     if (done) return;
2802 
2803     // assert that we can send at least commands - cmd might have been sent by crypto engine
2804     if (!hci_can_send_command_packet_now()) return;
2805 
2806     // handle basic actions that don't requires the full context
2807     done = sm_run_basic();
2808     if (done) return;
2809 
2810     //
2811     // active connection handling
2812     // -- use loop to handle next connection if lock on setup context is released
2813 
2814     while (true) {
2815 
2816         sm_run_activate_connection();
2817 
2818         if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return;
2819 
2820         //
2821         // active connection handling
2822         //
2823 
2824         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle);
2825         if (!connection) {
2826             log_info("no connection for handle 0x%04x", sm_active_connection_handle);
2827             return;
2828         }
2829 
2830         // assert that we could send a SM PDU - not needed for all of the following
2831         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, connection->sm_cid)) {
2832             log_info("cannot send now, requesting can send now event");
2833             l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, connection->sm_cid);
2834             return;
2835         }
2836 
2837         // send keypress notifications
2838         if (setup->sm_keypress_notification != 0u){
2839             sm_run_send_keypress_notification(connection);
2840             return;
2841         }
2842 
2843 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2844         // assert that sm cmac engine is ready
2845         if (sm_cmac_ready() == false){
2846             break;
2847         }
2848 #endif
2849 
2850         int key_distribution_flags;
2851         UNUSED(key_distribution_flags);
2852 #ifdef ENABLE_LE_PERIPHERAL
2853         int err;
2854         bool have_ltk;
2855         uint8_t ltk[16];
2856 #endif
2857 
2858         log_info("sm_run: state %u", connection->sm_engine_state);
2859         switch (connection->sm_engine_state){
2860 
2861             // secure connections, initiator + responding states
2862 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2863             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
2864                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
2865                 sm_sc_calculate_local_confirm(connection);
2866                 break;
2867             case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
2868                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
2869                 sm_sc_calculate_remote_confirm(connection);
2870                 break;
2871             case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
2872                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK;
2873                 sm_sc_calculate_f6_for_dhkey_check(connection);
2874                 break;
2875             case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
2876                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
2877                 sm_sc_calculate_f6_to_verify_dhkey_check(connection);
2878                 break;
2879             case SM_SC_W2_CALCULATE_F5_SALT:
2880                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT;
2881                 f5_calculate_salt(connection);
2882                 break;
2883             case SM_SC_W2_CALCULATE_F5_MACKEY:
2884                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY;
2885                 f5_calculate_mackey(connection);
2886                 break;
2887             case SM_SC_W2_CALCULATE_F5_LTK:
2888                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK;
2889                 f5_calculate_ltk(connection);
2890                 break;
2891             case SM_SC_W2_CALCULATE_G2:
2892                 connection->sm_engine_state = SM_SC_W4_CALCULATE_G2;
2893                 g2_calculate(connection);
2894                 break;
2895 #endif
2896 
2897 #ifdef ENABLE_LE_CENTRAL
2898             // initiator side
2899 
2900             case SM_INITIATOR_PH4_HAS_LTK: {
2901 				sm_reset_setup();
2902 				sm_load_security_info(connection);
2903 
2904                 sm_key_t peer_ltk_flipped;
2905                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
2906                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
2907                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
2908                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
2909                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
2910                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
2911 
2912                 // notify after sending
2913                 sm_reencryption_started(connection);
2914                 return;
2915             }
2916 
2917 			case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
2918 				sm_reset_setup();
2919 				sm_init_setup(connection);
2920 
2921                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
2922                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
2923                 sm_send_connectionless(connection, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
2924                 sm_timeout_reset(connection);
2925 
2926                 // notify after sending
2927                 sm_pairing_started(connection);
2928                 break;
2929 #endif
2930 
2931 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2932             case SM_SC_SEND_PUBLIC_KEY_COMMAND:
2933                 sm_run_state_sc_send_public_key_command(connection);
2934                 break;
2935             case SM_SC_SEND_CONFIRMATION:
2936                 sm_run_state_sc_send_confirmation(connection);
2937                 break;
2938             case SM_SC_SEND_PAIRING_RANDOM:
2939                 sm_run_state_sc_send_pairing_random(connection);
2940                 break;
2941             case SM_SC_SEND_DHKEY_CHECK_COMMAND:
2942                 sm_run_state_sc_send_dhkey_check_command(connection);
2943                 break;
2944 #endif
2945 
2946 #ifdef ENABLE_LE_PERIPHERAL
2947 
2948 			case SM_RESPONDER_SEND_SECURITY_REQUEST: {
2949 				const uint8_t buffer[2] = {SM_CODE_SECURITY_REQUEST, sm_auth_req};
2950 				connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
2951 				sm_send_connectionless(connection,  (uint8_t *) buffer, sizeof(buffer));
2952 				sm_timeout_start(connection);
2953 				break;
2954 			}
2955 
2956 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2957 			case SM_SC_RECEIVED_LTK_REQUEST:
2958 				switch (connection->sm_irk_lookup_state){
2959 					case IRK_LOOKUP_SUCCEEDED:
2960 						// assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null
2961 						// start using context by loading security info
2962 						sm_reset_setup();
2963 						sm_load_security_info(connection);
2964 						if ((setup->sm_peer_ediv == 0u) && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){
2965 							(void)memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16);
2966 							connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
2967                             sm_reencryption_started(connection);
2968                             sm_trigger_run();
2969 							break;
2970 						}
2971 						log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)");
2972 						connection->sm_engine_state = SM_RESPONDER_IDLE;
2973 						hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
2974 						return;
2975 					default:
2976 						// just wait until IRK lookup is completed
2977 						break;
2978 				}
2979 				break;
2980 #endif /* ENABLE_LE_SECURE_CONNECTIONS */
2981 
2982 			case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
2983                 sm_reset_setup();
2984 
2985 			    // handle Pairing Request with LTK available
2986                 switch (connection->sm_irk_lookup_state) {
2987                     case IRK_LOOKUP_SUCCEEDED:
2988                         le_device_db_encryption_get(connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
2989                         have_ltk = !sm_is_null_key(ltk);
2990                         if (have_ltk){
2991                             log_info("pairing request but LTK available");
2992                             // emit re-encryption start/fail sequence
2993                             sm_reencryption_started(connection);
2994                             sm_reencryption_complete(connection, ERROR_CODE_PIN_OR_KEY_MISSING);
2995                         }
2996                         break;
2997                     default:
2998                         break;
2999                 }
3000 
3001 				sm_init_setup(connection);
3002 
3003 				// recover pairing request
3004 				(void)memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
3005 				err = sm_stk_generation_init(connection);
3006 
3007 #ifdef ENABLE_TESTING_SUPPORT
3008 				if ((0 < test_pairing_failure) && (test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED)){
3009                         log_info("testing_support: respond with pairing failure %u", test_pairing_failure);
3010                         err = test_pairing_failure;
3011                     }
3012 #endif
3013 				if (err != 0){
3014                     // emit pairing started/failed sequence
3015                     sm_pairing_started(connection);
3016                     sm_pairing_error(connection, err);
3017 					sm_trigger_run();
3018 					break;
3019 				}
3020 
3021 				sm_timeout_start(connection);
3022 
3023 				// generate random number first, if we need to show passkey, otherwise send response
3024 				if (setup->sm_stk_generation_method == PK_INIT_INPUT){
3025 					btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk, (void *)(uintptr_t) connection->sm_handle);
3026 					break;
3027 				}
3028 
3029 				/* fall through */
3030 
3031             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
3032                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
3033 
3034                 // start with initiator key dist flags
3035                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
3036 
3037 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3038                 // LTK (= encryption information & master identification) only exchanged for LE Legacy Connection
3039                 if (setup->sm_use_secure_connections){
3040                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
3041                 }
3042 #endif
3043                 // setup in response
3044                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
3045                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
3046 
3047                 // update key distribution after ENC was dropped
3048                 sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres), sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
3049 
3050                 if (setup->sm_use_secure_connections){
3051                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
3052                 } else {
3053                     connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
3054                 }
3055 
3056                 sm_send_connectionless(connection, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
3057                 sm_timeout_reset(connection);
3058 
3059                 // notify after sending
3060                 sm_pairing_started(connection);
3061 
3062                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
3063                 if (!setup->sm_use_secure_connections || (setup->sm_stk_generation_method == JUST_WORKS)){
3064                     sm_trigger_user_response(connection);
3065                 }
3066                 return;
3067 #endif
3068 
3069             case SM_PH2_SEND_PAIRING_RANDOM: {
3070                 uint8_t buffer[17];
3071                 buffer[0] = SM_CODE_PAIRING_RANDOM;
3072                 reverse_128(setup->sm_local_random, &buffer[1]);
3073                 if (IS_RESPONDER(connection->sm_role)){
3074                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
3075                 } else {
3076                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
3077                 }
3078                 sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
3079                 sm_timeout_reset(connection);
3080                 break;
3081             }
3082 
3083             case SM_PH2_C1_GET_ENC_A:
3084                 // already busy?
3085                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3086                 // calculate confirm using aes128 engine - step 1
3087                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
3088                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_A;
3089                 sm_aes128_state = SM_AES128_ACTIVE;
3090                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_a, (void *)(uintptr_t) connection->sm_handle);
3091                 break;
3092 
3093             case SM_PH2_C1_GET_ENC_C:
3094                 // already busy?
3095                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3096                 // calculate m_confirm using aes128 engine - step 1
3097                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, sm_aes128_plaintext);
3098                 connection->sm_engine_state = SM_PH2_C1_W4_ENC_C;
3099                 sm_aes128_state = SM_AES128_ACTIVE;
3100                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_c, (void *)(uintptr_t) connection->sm_handle);
3101                 break;
3102 
3103             case SM_PH2_CALC_STK:
3104                 // already busy?
3105                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3106                 // calculate STK
3107                 if (IS_RESPONDER(connection->sm_role)){
3108                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, sm_aes128_plaintext);
3109                 } else {
3110                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3111                 }
3112                 connection->sm_engine_state = SM_PH2_W4_STK;
3113                 sm_aes128_state = SM_AES128_ACTIVE;
3114                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3115                 break;
3116 
3117             case SM_PH3_Y_GET_ENC:
3118                 // already busy?
3119                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3120                 // PH3B2 - calculate Y from      - enc
3121 
3122                 // dm helper (was sm_dm_r_prime)
3123                 // r' = padding || r
3124                 // r - 64 bit value
3125                 memset(&sm_aes128_plaintext[0], 0, 8);
3126                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
3127 
3128                 // Y = dm(DHK, Rand)
3129                 connection->sm_engine_state = SM_PH3_Y_W4_ENC;
3130                 sm_aes128_state = SM_AES128_ACTIVE;
3131                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph3_y, (void *)(uintptr_t) connection->sm_handle);
3132                 break;
3133 
3134             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
3135                 uint8_t buffer[17];
3136                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
3137                 reverse_128(setup->sm_local_confirm, &buffer[1]);
3138                 if (IS_RESPONDER(connection->sm_role)){
3139                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
3140                 } else {
3141                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
3142                 }
3143                 sm_send_connectionless(connection, (uint8_t*) buffer, sizeof(buffer));
3144                 sm_timeout_reset(connection);
3145                 return;
3146             }
3147 #ifdef ENABLE_LE_PERIPHERAL
3148             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
3149                 // cache key before using
3150                 sm_cache_ltk(connection, setup->sm_ltk);
3151                 sm_key_t stk_flipped;
3152                 reverse_128(setup->sm_ltk, stk_flipped);
3153                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3154                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
3155                 return;
3156             }
3157             case SM_RESPONDER_PH4_SEND_LTK_REPLY: {
3158                 // allow to override LTK
3159                 if (sm_get_ltk_callback != NULL){
3160                     (void)(*sm_get_ltk_callback)(connection->sm_handle, connection->sm_peer_addr_type, connection->sm_peer_address, setup->sm_ltk);
3161                 }
3162                 // cache key before using
3163                 sm_cache_ltk(connection, setup->sm_ltk);
3164                 sm_key_t ltk_flipped;
3165                 reverse_128(setup->sm_ltk, ltk_flipped);
3166                 connection->sm_engine_state = SM_PH4_W4_CONNECTION_ENCRYPTED;
3167                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
3168                 return;
3169             }
3170 
3171 			case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
3172                 // already busy?
3173                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
3174                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
3175 
3176 				sm_reset_setup();
3177 				sm_start_calculating_ltk_from_ediv_and_rand(connection);
3178 
3179 				sm_reencryption_started(connection);
3180 
3181                 // dm helper (was sm_dm_r_prime)
3182                 // r' = padding || r
3183                 // r - 64 bit value
3184                 memset(&sm_aes128_plaintext[0], 0, 8);
3185                 (void)memcpy(&sm_aes128_plaintext[8], setup->sm_local_rand, 8);
3186 
3187                 // Y = dm(DHK, Rand)
3188                 connection->sm_engine_state = SM_RESPONDER_PH4_Y_W4_ENC;
3189                 sm_aes128_state = SM_AES128_ACTIVE;
3190                 btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_dhk, sm_aes128_plaintext, sm_aes128_ciphertext, sm_handle_encryption_result_enc_ph4_y, (void *)(uintptr_t) connection->sm_handle);
3191                 return;
3192 #endif
3193 #ifdef ENABLE_LE_CENTRAL
3194             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
3195                 sm_key_t stk_flipped;
3196                 reverse_128(setup->sm_ltk, stk_flipped);
3197                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
3198                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
3199                 return;
3200             }
3201 #endif
3202 
3203             case SM_PH3_DISTRIBUTE_KEYS:
3204                 // send next key
3205                 if (setup->sm_key_distribution_send_set != 0){
3206                     sm_run_distribute_keys(connection);
3207                 }
3208 
3209                 // more to send?
3210                 if (setup->sm_key_distribution_send_set != 0){
3211                     return;
3212                 }
3213 
3214                 // keys are sent
3215                 if (IS_RESPONDER(connection->sm_role)){
3216                     // slave -> receive master keys if any
3217                     if (sm_key_distribution_all_received()){
3218                         sm_key_distribution_handle_all_received(connection);
3219                         sm_key_distribution_complete_responder(connection);
3220                         // start CTKD right away
3221                         continue;
3222                     } else {
3223                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3224                     }
3225                 } else {
3226                     sm_master_pairing_success(connection);
3227                 }
3228                 break;
3229 
3230 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3231             case SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST:
3232                 // fill in sm setup (lite version of sm_init_setup)
3233                 sm_reset_setup();
3234                 setup->sm_peer_addr_type = connection->sm_peer_addr_type;
3235                 setup->sm_m_addr_type = connection->sm_peer_addr_type;
3236                 setup->sm_s_addr_type = connection->sm_own_addr_type;
3237                 (void) memcpy(setup->sm_peer_address, connection->sm_peer_address, 6);
3238                 (void) memcpy(setup->sm_m_address, connection->sm_peer_address, 6);
3239                 (void) memcpy(setup->sm_s_address, connection->sm_own_address, 6);
3240                 setup->sm_use_secure_connections = true;
3241                 sm_ctkd_fetch_br_edr_link_key(connection);
3242 
3243                 // Enc Key and IRK if requested
3244                 key_distribution_flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_ENC_KEY;
3245 #ifdef ENABLE_LE_SIGNED_WRITE
3246                 // Plus signing key if supported
3247                 key_distribution_flags |= SM_KEYDIST_ID_KEY;
3248 #endif
3249                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
3250                 sm_pairing_packet_set_io_capability(setup->sm_m_preq, 0);
3251                 sm_pairing_packet_set_oob_data_flag(setup->sm_m_preq, 0);
3252                 sm_pairing_packet_set_auth_req(setup->sm_m_preq, SM_AUTHREQ_CT2);
3253                 sm_pairing_packet_set_max_encryption_key_size(setup->sm_m_preq, sm_max_encryption_key_size);
3254                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
3255                 sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
3256 
3257                 // set state and send pairing response
3258                 sm_timeout_start(connection);
3259                 connection->sm_engine_state = SM_BR_EDR_INITIATOR_W4_PAIRING_RESPONSE;
3260                 sm_send_connectionless(connection, (uint8_t *) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
3261                 break;
3262 
3263             case SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED:
3264                 // fill in sm setup (lite version of sm_init_setup)
3265                 sm_reset_setup();
3266                 setup->sm_peer_addr_type = connection->sm_peer_addr_type;
3267                 setup->sm_m_addr_type = connection->sm_peer_addr_type;
3268                 setup->sm_s_addr_type = connection->sm_own_addr_type;
3269                 (void) memcpy(setup->sm_peer_address, connection->sm_peer_address, 6);
3270                 (void) memcpy(setup->sm_m_address, connection->sm_peer_address, 6);
3271                 (void) memcpy(setup->sm_s_address, connection->sm_own_address, 6);
3272                 setup->sm_use_secure_connections = true;
3273                 sm_ctkd_fetch_br_edr_link_key(connection);
3274                 (void) memcpy(&setup->sm_m_preq, &connection->sm_m_preq, sizeof(sm_pairing_packet_t));
3275 
3276                 // Enc Key and IRK if requested
3277                 key_distribution_flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_ENC_KEY;
3278 #ifdef ENABLE_LE_SIGNED_WRITE
3279                 // Plus signing key if supported
3280                 key_distribution_flags |= SM_KEYDIST_ID_KEY;
3281 #endif
3282                 // drop flags not requested by initiator
3283                 key_distribution_flags &= sm_pairing_packet_get_initiator_key_distribution(connection->sm_m_preq);
3284 
3285                 // If Secure Connections pairing has been initiated over BR/EDR, the following fields of the SM Pairing Request PDU are reserved for future use:
3286                 // - the IO Capability field,
3287                 // - the OOB data flag field, and
3288                 // - all bits in the Auth Req field except the CT2 bit.
3289                 sm_pairing_packet_set_code(setup->sm_s_pres, SM_CODE_PAIRING_RESPONSE);
3290                 sm_pairing_packet_set_io_capability(setup->sm_s_pres, 0);
3291                 sm_pairing_packet_set_oob_data_flag(setup->sm_s_pres, 0);
3292                 sm_pairing_packet_set_auth_req(setup->sm_s_pres, SM_AUTHREQ_CT2);
3293                 sm_pairing_packet_set_max_encryption_key_size(setup->sm_s_pres, connection->sm_actual_encryption_key_size);
3294                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, key_distribution_flags);
3295                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, key_distribution_flags);
3296 
3297                 // configure key distribution, LTK is derived locally
3298                 key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
3299                 sm_setup_key_distribution(key_distribution_flags, key_distribution_flags);
3300 
3301                 // set state and send pairing response
3302                 sm_timeout_start(connection);
3303                 connection->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
3304                 sm_send_connectionless(connection, (uint8_t *) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
3305                 break;
3306             case SM_BR_EDR_DISTRIBUTE_KEYS:
3307                 if (setup->sm_key_distribution_send_set != 0) {
3308                     sm_run_distribute_keys(connection);
3309                     return;
3310                 }
3311                 // keys are sent
3312                 if (IS_RESPONDER(connection->sm_role)) {
3313                     // responder -> receive master keys if there are any
3314                     if (!sm_key_distribution_all_received()){
3315                         connection->sm_engine_state = SM_BR_EDR_RECEIVE_KEYS;
3316                         break;
3317                     }
3318                 }
3319                 // otherwise start CTKD right away (responder and no keys to receive / initiator)
3320                 sm_ctkd_start_from_br_edr(connection);
3321                 continue;
3322             case SM_SC_W2_CALCULATE_ILK_USING_H6:
3323                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
3324                 h6_calculate_ilk_from_le_ltk(connection);
3325                 break;
3326             case SM_SC_W2_CALCULATE_BR_EDR_LINK_KEY:
3327                 connection->sm_engine_state = SM_SC_W4_CALCULATE_BR_EDR_LINK_KEY;
3328                 h6_calculate_br_edr_link_key(connection);
3329                 break;
3330             case SM_SC_W2_CALCULATE_ILK_USING_H7:
3331                 connection->sm_engine_state = SM_SC_W4_CALCULATE_ILK;
3332                 h7_calculate_ilk_from_le_ltk(connection);
3333                 break;
3334             case SM_BR_EDR_W2_CALCULATE_ILK_USING_H6:
3335                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_ILK;
3336                 h6_calculate_ilk_from_br_edr(connection);
3337                 break;
3338             case SM_BR_EDR_W2_CALCULATE_LE_LTK:
3339                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_LE_LTK;
3340                 h6_calculate_le_ltk(connection);
3341                 break;
3342             case SM_BR_EDR_W2_CALCULATE_ILK_USING_H7:
3343                 connection->sm_engine_state = SM_BR_EDR_W4_CALCULATE_ILK;
3344                 h7_calculate_ilk_from_br_edr(connection);
3345                 break;
3346 #endif
3347 
3348             default:
3349                 break;
3350         }
3351 
3352         // check again if active connection was released
3353         if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break;
3354     }
3355 }
3356 
3357 // sm_aes128_state stays active
3358 static void sm_handle_encryption_result_enc_a(void *arg){
3359     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3360     sm_aes128_state = SM_AES128_IDLE;
3361 
3362     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3363     if (connection == NULL) return;
3364 
3365     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3366     sm_aes128_state = SM_AES128_ACTIVE;
3367     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, setup->sm_local_confirm, sm_handle_encryption_result_enc_b, (void *)(uintptr_t) connection->sm_handle);
3368 }
3369 
3370 static void sm_handle_encryption_result_enc_b(void *arg){
3371     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3372     sm_aes128_state = SM_AES128_IDLE;
3373 
3374     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3375     if (connection == NULL) return;
3376 
3377     log_info_key("c1!", setup->sm_local_confirm);
3378     connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
3379     sm_trigger_run();
3380 }
3381 
3382 // sm_aes128_state stays active
3383 static void sm_handle_encryption_result_enc_c(void *arg){
3384     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3385     sm_aes128_state = SM_AES128_IDLE;
3386 
3387     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3388     if (connection == NULL) return;
3389 
3390     sm_c1_t3(sm_aes128_ciphertext, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
3391     sm_aes128_state = SM_AES128_ACTIVE;
3392     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, setup->sm_c1_t3_value, sm_aes128_ciphertext, sm_handle_encryption_result_enc_d, (void *)(uintptr_t) connection->sm_handle);
3393 }
3394 
3395 static void sm_handle_encryption_result_enc_d(void * arg){
3396     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3397     sm_aes128_state = SM_AES128_IDLE;
3398 
3399     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3400     if (connection == NULL) return;
3401 
3402     log_info_key("c1!", sm_aes128_ciphertext);
3403     if (memcmp(setup->sm_peer_confirm, sm_aes128_ciphertext, 16) != 0){
3404         sm_pairing_error(connection, SM_REASON_CONFIRM_VALUE_FAILED);
3405         sm_trigger_run();
3406         return;
3407     }
3408     if (IS_RESPONDER(connection->sm_role)){
3409         connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
3410         sm_trigger_run();
3411     } else {
3412         sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, sm_aes128_plaintext);
3413         sm_aes128_state = SM_AES128_ACTIVE;
3414         btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, setup->sm_tk, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_stk, (void *)(uintptr_t) connection->sm_handle);
3415     }
3416 }
3417 
3418 static void sm_handle_encryption_result_enc_stk(void *arg){
3419     sm_aes128_state = SM_AES128_IDLE;
3420     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3421 
3422     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3423     if (connection == NULL) return;
3424 
3425     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3426     log_info_key("stk", setup->sm_ltk);
3427     if (IS_RESPONDER(connection->sm_role)){
3428         connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
3429     } else {
3430         connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
3431     }
3432     sm_trigger_run();
3433 }
3434 
3435 // sm_aes128_state stays active
3436 static void sm_handle_encryption_result_enc_ph3_y(void *arg){
3437     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3438     sm_aes128_state = SM_AES128_IDLE;
3439 
3440     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3441     if (connection == NULL) return;
3442 
3443     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3444     log_info_hex16("y", setup->sm_local_y);
3445     // PH3B3 - calculate EDIV
3446     setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
3447     log_info_hex16("ediv", setup->sm_local_ediv);
3448     // PH3B4 - calculate LTK         - enc
3449     // LTK = d1(ER, DIV, 0))
3450     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3451     sm_aes128_state = SM_AES128_ACTIVE;
3452     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph3_ltk, (void *)(uintptr_t) connection->sm_handle);
3453 }
3454 
3455 #ifdef ENABLE_LE_PERIPHERAL
3456 // sm_aes128_state stays active
3457 static void sm_handle_encryption_result_enc_ph4_y(void *arg){
3458     sm_aes128_state = SM_AES128_IDLE;
3459     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3460 
3461     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3462     if (connection == NULL) return;
3463 
3464     setup->sm_local_y = big_endian_read_16(sm_aes128_ciphertext, 14);
3465     log_info_hex16("y", setup->sm_local_y);
3466 
3467     // PH3B3 - calculate DIV
3468     setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
3469     log_info_hex16("ediv", setup->sm_local_ediv);
3470     // PH3B4 - calculate LTK         - enc
3471     // LTK = d1(ER, DIV, 0))
3472     sm_d1_d_prime(setup->sm_local_div, 0, sm_aes128_plaintext);
3473     sm_aes128_state = SM_AES128_ACTIVE;
3474     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_ltk, sm_handle_encryption_result_enc_ph4_ltk, (void *)(uintptr_t) connection->sm_handle);
3475 }
3476 #endif
3477 
3478 // sm_aes128_state stays active
3479 static void sm_handle_encryption_result_enc_ph3_ltk(void *arg){
3480     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3481     sm_aes128_state = SM_AES128_IDLE;
3482 
3483     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3484     if (connection == NULL) return;
3485 
3486     log_info_key("ltk", setup->sm_ltk);
3487     // calc CSRK next
3488     sm_d1_d_prime(setup->sm_local_div, 1, sm_aes128_plaintext);
3489     sm_aes128_state = SM_AES128_ACTIVE;
3490     btstack_crypto_aes128_encrypt(&sm_crypto_aes128_request, sm_persistent_er, sm_aes128_plaintext, setup->sm_local_csrk, sm_handle_encryption_result_enc_csrk, (void *)(uintptr_t) connection->sm_handle);
3491 }
3492 
3493 static void sm_handle_encryption_result_enc_csrk(void *arg){
3494     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3495     sm_aes128_state = SM_AES128_IDLE;
3496 
3497     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3498     if (connection == NULL) return;
3499 
3500     sm_aes128_state = SM_AES128_IDLE;
3501     log_info_key("csrk", setup->sm_local_csrk);
3502     if (setup->sm_key_distribution_send_set != 0u){
3503         connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3504     } else {
3505         // no keys to send, just continue
3506         if (IS_RESPONDER(connection->sm_role)){
3507             if (sm_key_distribution_all_received()){
3508                 sm_key_distribution_handle_all_received(connection);
3509                 sm_key_distribution_complete_responder(connection);
3510             } else {
3511                 // slave -> receive master keys
3512                 connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
3513             }
3514         } else {
3515             sm_key_distribution_complete_initiator(connection);
3516         }
3517     }
3518     sm_trigger_run();
3519 }
3520 
3521 #ifdef ENABLE_LE_PERIPHERAL
3522 static void sm_handle_encryption_result_enc_ph4_ltk(void *arg){
3523     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3524     sm_aes128_state = SM_AES128_IDLE;
3525 
3526     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3527     if (connection == NULL) return;
3528 
3529     sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
3530     log_info_key("ltk", setup->sm_ltk);
3531     connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
3532     sm_trigger_run();
3533 }
3534 #endif
3535 
3536 static void sm_handle_encryption_result_address_resolution(void *arg){
3537     UNUSED(arg);
3538     sm_aes128_state = SM_AES128_IDLE;
3539 
3540     // compare calulated address against connecting device
3541     uint8_t * hash = &sm_aes128_ciphertext[13];
3542     if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
3543         log_info("LE Device Lookup: matched resolvable private address");
3544         sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCCEEDED);
3545         sm_trigger_run();
3546         return;
3547     }
3548     // no match, try next
3549     sm_address_resolution_test++;
3550     sm_trigger_run();
3551 }
3552 
3553 static void sm_handle_encryption_result_dkg_irk(void *arg){
3554     UNUSED(arg);
3555     sm_aes128_state = SM_AES128_IDLE;
3556 
3557     log_info_key("irk", sm_persistent_irk);
3558     dkg_state = DKG_CALC_DHK;
3559     sm_trigger_run();
3560 }
3561 
3562 static void sm_handle_encryption_result_dkg_dhk(void *arg){
3563     UNUSED(arg);
3564     sm_aes128_state = SM_AES128_IDLE;
3565 
3566     log_info_key("dhk", sm_persistent_dhk);
3567     dkg_state = DKG_READY;
3568     sm_trigger_run();
3569 }
3570 
3571 static void sm_handle_encryption_result_rau(void *arg){
3572     UNUSED(arg);
3573     sm_aes128_state = SM_AES128_IDLE;
3574 
3575     (void)memcpy(&sm_random_address[3], &sm_aes128_ciphertext[13], 3);
3576     rau_state = RAU_IDLE;
3577     hci_le_random_address_set(sm_random_address);
3578 
3579     sm_trigger_run();
3580 }
3581 
3582 static void sm_handle_random_result_rau(void * arg){
3583     UNUSED(arg);
3584     // non-resolvable vs. resolvable
3585     switch (gap_random_adress_type){
3586         case GAP_RANDOM_ADDRESS_RESOLVABLE:
3587             // resolvable: use random as prand and calc address hash
3588             // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
3589             sm_random_address[0u] &= 0x3fu;
3590             sm_random_address[0u] |= 0x40u;
3591             rau_state = RAU_GET_ENC;
3592             break;
3593         case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
3594         default:
3595             // "The two most significant bits of the address shall be equal to ‘0’""
3596             sm_random_address[0u] &= 0x3fu;
3597             rau_state = RAU_IDLE;
3598             hci_le_random_address_set(sm_random_address);
3599             break;
3600     }
3601     sm_trigger_run();
3602 }
3603 
3604 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3605 static void sm_handle_random_result_sc_next_send_pairing_random(void * arg){
3606     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3607     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3608     if (connection == NULL) return;
3609 
3610     connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
3611     sm_trigger_run();
3612 }
3613 
3614 static void sm_handle_random_result_sc_next_w2_cmac_for_confirmation(void * arg){
3615     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3616     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3617     if (connection == NULL) return;
3618 
3619     connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
3620     sm_trigger_run();
3621 }
3622 #endif
3623 
3624 static void sm_handle_random_result_ph2_random(void * arg){
3625     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3626     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3627     if (connection == NULL) return;
3628 
3629     connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
3630     sm_trigger_run();
3631 }
3632 
3633 static void sm_handle_random_result_ph2_tk(void * arg){
3634     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3635     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3636     if (connection == NULL) return;
3637 
3638     sm_reset_tk();
3639     uint32_t tk;
3640     if (sm_fixed_passkey_in_display_role == 0xffffffffU){
3641         // map random to 0-999999 without speding much cycles on a modulus operation
3642         tk = little_endian_read_32(sm_random_data,0);
3643         tk = tk & 0xfffff;  // 1048575
3644         if (tk >= 999999u){
3645             tk = tk - 999999u;
3646         }
3647     } else {
3648         // override with pre-defined passkey
3649         tk = sm_fixed_passkey_in_display_role;
3650     }
3651     big_endian_store_32(setup->sm_tk, 12, tk);
3652     if (IS_RESPONDER(connection->sm_role)){
3653         connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
3654     } else {
3655         if (setup->sm_use_secure_connections){
3656             connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3657         } else {
3658             connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3659             sm_trigger_user_response(connection);
3660             // response_idle == nothing <--> sm_trigger_user_response() did not require response
3661             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
3662                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) connection->sm_handle);
3663             }
3664         }
3665     }
3666     sm_trigger_run();
3667 }
3668 
3669 static void sm_handle_random_result_ph3_div(void * arg){
3670     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3671     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3672     if (connection == NULL) return;
3673 
3674     // use 16 bit from random value as div
3675     setup->sm_local_div = big_endian_read_16(sm_random_data, 0);
3676     log_info_hex16("div", setup->sm_local_div);
3677     connection->sm_engine_state = SM_PH3_Y_GET_ENC;
3678     sm_trigger_run();
3679 }
3680 
3681 static void sm_handle_random_result_ph3_random(void * arg){
3682     hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) arg;
3683     sm_connection_t * connection = sm_get_connection_for_handle(con_handle);
3684     if (connection == NULL) return;
3685 
3686     reverse_64(sm_random_data, setup->sm_local_rand);
3687     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
3688     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xf0u) + (connection->sm_actual_encryption_key_size - 1u);
3689     // no db for authenticated flag hack: store flag in bit 4 of LSB
3690     setup->sm_local_rand[7u] = (setup->sm_local_rand[7u] & 0xefu) + (connection->sm_connection_authenticated << 4u);
3691     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 2, &sm_handle_random_result_ph3_div, (void *)(uintptr_t) connection->sm_handle);
3692 }
3693 static void sm_validate_er_ir(void){
3694     // warn about default ER/IR
3695     bool warning = false;
3696     if (sm_ir_is_default()){
3697         warning = true;
3698         log_error("Persistent IR not set with sm_set_ir. Use of private addresses will cause pairing issues");
3699     }
3700     if (sm_er_is_default()){
3701         warning = true;
3702         log_error("Persistent ER not set with sm_set_er. Legacy Pairing LTK is not secure");
3703     }
3704     if (warning) {
3705         log_error("Please configure btstack_tlv to let BTstack setup ER and IR keys");
3706     }
3707 }
3708 
3709 static void sm_handle_random_result_ir(void *arg){
3710     sm_persistent_keys_random_active = false;
3711     if (arg != NULL){
3712         // key generated, store in tlv
3713         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3714         log_info("Generated IR key. Store in TLV status: %d", status);
3715         UNUSED(status);
3716     }
3717     log_info_key("IR", sm_persistent_ir);
3718     dkg_state = DKG_CALC_IRK;
3719 
3720     if (test_use_fixed_local_irk){
3721         log_info_key("IRK", sm_persistent_irk);
3722         dkg_state = DKG_CALC_DHK;
3723     }
3724 
3725     sm_trigger_run();
3726 }
3727 
3728 static void sm_handle_random_result_er(void *arg){
3729     sm_persistent_keys_random_active = false;
3730     if (arg != 0){
3731         // key generated, store in tlv
3732         int status = sm_tlv_impl->store_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3733         log_info("Generated ER key. Store in TLV status: %d", status);
3734         UNUSED(status);
3735     }
3736     log_info_key("ER", sm_persistent_er);
3737 
3738     // try load ir
3739     int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','I','R'), sm_persistent_ir, 16u);
3740     if (key_size == 16){
3741         // ok, let's continue
3742         log_info("IR from TLV");
3743         sm_handle_random_result_ir( NULL );
3744     } else {
3745         // invalid, generate new random one
3746         sm_persistent_keys_random_active = true;
3747         btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_ir, 16, &sm_handle_random_result_ir, &sm_persistent_ir);
3748     }
3749 }
3750 
3751 static void sm_connection_init(sm_connection_t * sm_conn, hci_con_handle_t con_handle, uint8_t role, uint8_t peer_addr_type, bd_addr_t peer_address){
3752 
3753     // connection info
3754     sm_conn->sm_handle = con_handle;
3755     sm_conn->sm_role = role;
3756     sm_conn->sm_peer_addr_type = peer_addr_type;
3757     memcpy(sm_conn->sm_peer_address, peer_address, 6);
3758 
3759     // security properties
3760     sm_conn->sm_connection_encrypted = 0;
3761     sm_conn->sm_connection_authenticated = 0;
3762     sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
3763     sm_conn->sm_le_db_index = -1;
3764     sm_conn->sm_reencryption_active = false;
3765 
3766     // prepare CSRK lookup (does not involve setup)
3767     sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
3768 
3769     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
3770 }
3771 
3772 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3773 static void sm_event_handle_classic_encryption_event(sm_connection_t * sm_conn, hci_con_handle_t con_handle){
3774     // CTKD requires BR/EDR Secure Connection
3775     if (sm_conn->sm_connection_encrypted != 2) return;
3776     // prepare for pairing request
3777     if (IS_RESPONDER(sm_conn->sm_role)){
3778         sm_conn->sm_engine_state = SM_BR_EDR_RESPONDER_W4_PAIRING_REQUEST;
3779     } else if (sm_conn->sm_pairing_requested){
3780         // check if remote supports fixed channels
3781         bool defer = true;
3782         const hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
3783         if (hci_connection->l2cap_state.information_state == L2CAP_INFORMATION_STATE_DONE){
3784             // check if remote supports SMP over BR/EDR
3785             if ((hci_connection->l2cap_state.fixed_channels_supported & (1 << L2CAP_CID_BR_EDR_SECURITY_MANAGER)) != 0){
3786                 log_info("CTKD: SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST");
3787                 sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST;
3788             } else {
3789                 defer = false;
3790             }
3791         } else {
3792             // wait for fixed channel info
3793             log_info("CTKD: SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK");
3794             sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK;
3795         }
3796         if (defer){
3797             hci_dedicated_bonding_defer_disconnect(con_handle, true);
3798         }
3799     }
3800 }
3801 #endif
3802 
3803 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
3804 
3805     UNUSED(channel);    // ok: there is no channel
3806     UNUSED(size);       // ok: fixed format HCI events
3807 
3808     sm_connection_t * sm_conn;
3809     hci_con_handle_t  con_handle;
3810     uint8_t           status;
3811     bd_addr_t         addr;
3812     bd_addr_type_t    addr_type;
3813 
3814     switch (packet_type) {
3815 
3816 		case HCI_EVENT_PACKET:
3817 			switch (hci_event_packet_get_type(packet)) {
3818 
3819                 case BTSTACK_EVENT_STATE:
3820                     switch (btstack_event_state_get_state(packet)){
3821                         case HCI_STATE_WORKING:
3822                             log_info("HCI Working!");
3823                             // setup IR/ER with TLV
3824                             btstack_tlv_get_instance(&sm_tlv_impl, &sm_tlv_context);
3825                             if (sm_tlv_impl != NULL){
3826                                 int key_size = sm_tlv_impl->get_tag(sm_tlv_context, BTSTACK_TAG32('S','M','E','R'), sm_persistent_er, 16u);
3827                                 if (key_size == 16){
3828                                     // ok, let's continue
3829                                     log_info("ER from TLV");
3830                                     sm_handle_random_result_er( NULL );
3831                                 } else {
3832                                     // invalid, generate random one
3833                                     sm_persistent_keys_random_active = true;
3834                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_persistent_er, 16, &sm_handle_random_result_er, &sm_persistent_er);
3835                                 }
3836                             } else {
3837                                 sm_validate_er_ir();
3838                                 dkg_state = DKG_CALC_IRK;
3839 
3840                                 if (test_use_fixed_local_irk){
3841                                     log_info_key("IRK", sm_persistent_irk);
3842                                     dkg_state = DKG_CALC_DHK;
3843                                 }
3844                             }
3845 
3846 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3847                             // trigger ECC key generation
3848                             if (ec_key_generation_state == EC_KEY_GENERATION_IDLE){
3849                                 sm_ec_generate_new_key();
3850                             }
3851 #endif
3852 
3853                             // restart random address updates after power cycle
3854                             if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_STATIC){
3855                                 gap_random_address_set(sm_random_address);
3856                             } else {
3857                                 gap_random_address_set_mode(gap_random_adress_type);
3858                             }
3859                             break;
3860 
3861                         case HCI_STATE_OFF:
3862                         case HCI_STATE_HALTING:
3863                             log_info("SM: reset state");
3864                             // stop random address update
3865                             gap_random_address_update_stop();
3866                             // reset state
3867                             sm_state_reset();
3868                             break;
3869 
3870                         default:
3871                             break;
3872                     }
3873 					break;
3874 
3875 #ifdef ENABLE_CLASSIC
3876 			    case HCI_EVENT_CONNECTION_COMPLETE:
3877 			        // ignore if connection failed
3878 			        if (hci_event_connection_complete_get_status(packet)) return;
3879 
3880 			        con_handle = hci_event_connection_complete_get_connection_handle(packet);
3881 			        sm_conn = sm_get_connection_for_handle(con_handle);
3882 			        if (!sm_conn) break;
3883 
3884                     hci_event_connection_complete_get_bd_addr(packet, addr);
3885 			        sm_connection_init(sm_conn,
3886                                        con_handle,
3887                                        (uint8_t) gap_get_role(con_handle),
3888                                        BD_ADDR_TYPE_LE_PUBLIC,
3889                                        addr);
3890 			        // classic connection corresponds to public le address
3891 			        sm_conn->sm_own_addr_type = BD_ADDR_TYPE_LE_PUBLIC;
3892                     gap_local_bd_addr(sm_conn->sm_own_address);
3893                     sm_conn->sm_cid = L2CAP_CID_BR_EDR_SECURITY_MANAGER;
3894                     sm_conn->sm_engine_state = SM_BR_EDR_W4_ENCRYPTION_COMPLETE;
3895 			        break;
3896 #endif
3897 
3898 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
3899 			    case HCI_EVENT_SIMPLE_PAIRING_COMPLETE:
3900 			        if (hci_event_simple_pairing_complete_get_status(packet) != ERROR_CODE_SUCCESS) break;
3901                     hci_event_simple_pairing_complete_get_bd_addr(packet, addr);
3902                     sm_conn = sm_get_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
3903                     if (sm_conn == NULL) break;
3904                     sm_conn->sm_pairing_requested = true;
3905 			        break;
3906 #endif
3907 
3908 			    case HCI_EVENT_META_GAP:
3909 			        switch (hci_event_gap_meta_get_subevent_code(packet)) {
3910 			            case GAP_SUBEVENT_LE_CONNECTION_COMPLETE:
3911 			                // ignore if connection failed
3912 			                if (gap_subevent_le_connection_complete_get_status(packet) != ERROR_CODE_SUCCESS) break;
3913 
3914 			                con_handle = gap_subevent_le_connection_complete_get_connection_handle(packet);
3915 			                sm_conn = sm_get_connection_for_handle(con_handle);
3916 			                if (!sm_conn) break;
3917 
3918                             // Get current peer address
3919                             addr_type = gap_subevent_le_connection_complete_get_peer_address_type(packet);
3920                             if (hci_is_le_identity_address_type(addr_type)){
3921                                 addr_type = BD_ADDR_TYPE_LE_RANDOM;
3922                                 gap_subevent_le_connection_complete_get_peer_resolvable_private_address(packet, addr);
3923                             } else {
3924                                 gap_subevent_le_connection_complete_get_peer_address(packet, addr);
3925                             }
3926 			                sm_connection_init(sm_conn,
3927                                                con_handle,
3928                                                gap_subevent_le_connection_complete_get_role(packet),
3929                                                addr_type,
3930                                                addr);
3931 			                sm_conn->sm_cid = L2CAP_CID_SECURITY_MANAGER_PROTOCOL;
3932 
3933 			                // track our addr used for this connection and set state
3934     #ifdef ENABLE_LE_PERIPHERAL
3935 			                if (gap_subevent_le_connection_complete_get_role(packet) != 0){
3936 			                    // responder - use own address from advertisements
3937 			                    gap_le_get_own_advertisements_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address);
3938 			                    sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3939 			                }
3940     #endif
3941     #ifdef ENABLE_LE_CENTRAL
3942 			                if (gap_subevent_le_connection_complete_get_role(packet) == 0){
3943 			                    // initiator - use own address from create connection
3944 			                    gap_le_get_own_connection_address(&sm_conn->sm_own_addr_type, sm_conn->sm_own_address);
3945 			                    sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
3946 			                }
3947     #endif
3948 			                break;
3949 			            default:
3950 			                break;
3951 			        }
3952 			        break;
3953                 case HCI_EVENT_LE_META:
3954                     switch (hci_event_le_meta_get_subevent_code(packet)) {
3955                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
3956                             con_handle = hci_subevent_le_long_term_key_request_get_connection_handle(packet);
3957                             sm_conn = sm_get_connection_for_handle(con_handle);
3958                             if (!sm_conn) break;
3959 
3960                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
3961                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
3962                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
3963                                 break;
3964                             }
3965                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
3966                                 // PH2 SEND LTK as we need to exchange keys in PH3
3967                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
3968                                 break;
3969                             }
3970 
3971                             // store rand and ediv
3972                             reverse_64(&packet[5], sm_conn->sm_local_rand);
3973                             sm_conn->sm_local_ediv = hci_subevent_le_long_term_key_request_get_encryption_diversifier(packet);
3974 
3975                             // For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a
3976                             // potentially stored LTK is from the master
3977                             if ((sm_conn->sm_local_ediv != 0u) || !sm_is_null_random(sm_conn->sm_local_rand)){
3978                                 if (sm_reconstruct_ltk_without_le_device_db_entry){
3979                                     sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
3980                                     break;
3981                                 }
3982                                 // additionally check if remote is in LE Device DB if requested
3983                                 switch(sm_conn->sm_irk_lookup_state){
3984                                     case IRK_LOOKUP_FAILED:
3985                                         log_info("LTK Request: device not in device db");
3986                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
3987                                         break;
3988                                     case IRK_LOOKUP_SUCCEEDED:
3989                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
3990                                         break;
3991                                     default:
3992                                         // wait for irk look doen
3993                                         sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_W4_IRK;
3994                                         break;
3995                                 }
3996                                 break;
3997                             }
3998 
3999 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4000                             sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST;
4001 #else
4002                             log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported");
4003                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
4004 #endif
4005                             break;
4006 
4007                         default:
4008                             break;
4009                     }
4010                     break;
4011 
4012                 case HCI_EVENT_ENCRYPTION_CHANGE:
4013                 case HCI_EVENT_ENCRYPTION_CHANGE_V2:
4014                 	con_handle = hci_event_encryption_change_get_connection_handle(packet);
4015                     sm_conn = sm_get_connection_for_handle(con_handle);
4016                     if (!sm_conn) break;
4017 
4018                     sm_conn->sm_connection_encrypted = hci_event_encryption_change_get_encryption_enabled(packet);
4019                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
4020                         sm_conn->sm_actual_encryption_key_size);
4021                     log_info("event handler, state %u", sm_conn->sm_engine_state);
4022 
4023                     switch (sm_conn->sm_engine_state){
4024 
4025                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4026                             // encryption change event concludes re-encryption for bonded devices (even if it fails)
4027                             if (sm_conn->sm_connection_encrypted != 0u) {
4028                                 status = ERROR_CODE_SUCCESS;
4029                                 if (IS_RESPONDER(sm_conn->sm_role)){
4030                                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
4031                                 } else {
4032                                     sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4033                                 }
4034                             } else {
4035                                 status = hci_event_encryption_change_get_status(packet);
4036                                 // set state to 'RE-ENCRYPTION FAILED' to allow pairing but prevent other interactions
4037                                 // also, gap_reconnect_security_setup_active will return true
4038                                 sm_conn->sm_engine_state = SM_GENERAL_REENCRYPTION_FAILED;
4039                             }
4040 
4041                             // emit re-encryption complete
4042                             sm_reencryption_complete(sm_conn, status);
4043 
4044                             // notify client, if pairing was requested before
4045                             if (sm_conn->sm_pairing_requested){
4046                                 sm_conn->sm_pairing_requested = false;
4047                                 sm_pairing_complete(sm_conn, status, 0);
4048                             }
4049 
4050                             sm_done_for_handle(sm_conn->sm_handle);
4051                             break;
4052 
4053                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4054                             if (!sm_conn->sm_connection_encrypted) break;
4055                             // handler for HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE
4056                             // contains the same code for this state
4057                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
4058                             if (IS_RESPONDER(sm_conn->sm_role)){
4059                                 // slave
4060                                 if (sm_conn->sm_connection_sc){
4061                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4062                                 } else {
4063                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4064                                 }
4065                             } else {
4066                                 // master
4067                                 if (sm_key_distribution_all_received()){
4068                                     // skip receiving keys as there are none
4069                                     sm_key_distribution_handle_all_received(sm_conn);
4070                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4071                                 } else {
4072                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
4073                                 }
4074                             }
4075                             break;
4076 
4077 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4078                         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4079                             sm_event_handle_classic_encryption_event(sm_conn, con_handle);
4080                             break;
4081 #endif
4082                         default:
4083                             break;
4084                     }
4085                     break;
4086 
4087                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
4088                     con_handle = little_endian_read_16(packet, 3);
4089                     sm_conn = sm_get_connection_for_handle(con_handle);
4090                     if (!sm_conn) break;
4091 
4092                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
4093                     log_info("event handler, state %u", sm_conn->sm_engine_state);
4094                     // continue if part of initial pairing
4095                     switch (sm_conn->sm_engine_state){
4096                         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4097                             if (IS_RESPONDER(sm_conn->sm_role)){
4098                                 sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
4099                             } else {
4100                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4101                             }
4102                             sm_done_for_handle(sm_conn->sm_handle);
4103                             break;
4104                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4105                             // handler for HCI_EVENT_ENCRYPTION_CHANGE
4106                             // contains the same code for this state
4107                             sm_conn->sm_connection_sc = setup->sm_use_secure_connections;
4108                             if (IS_RESPONDER(sm_conn->sm_role)){
4109                                 // slave
4110                                 if (sm_conn->sm_connection_sc){
4111                                     sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4112                                 } else {
4113                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4114                                 }
4115                             } else {
4116                                 // master
4117                                 if (sm_key_distribution_all_received()){
4118                                     // skip receiving keys as there are none
4119                                     sm_key_distribution_handle_all_received(sm_conn);
4120                                     btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4121                                 } else {
4122                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
4123                                 }
4124                             }
4125                             break;
4126 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4127                         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4128                             sm_event_handle_classic_encryption_event(sm_conn, con_handle);
4129                             break;
4130 #endif
4131                         default:
4132                             break;
4133                     }
4134                     break;
4135 
4136 
4137                 case HCI_EVENT_DISCONNECTION_COMPLETE:
4138                     con_handle = little_endian_read_16(packet, 3);
4139                     sm_done_for_handle(con_handle);
4140                     sm_conn = sm_get_connection_for_handle(con_handle);
4141                     if (!sm_conn) break;
4142 
4143                     // pairing failed, if it was ongoing
4144                     switch (sm_conn->sm_engine_state){
4145                         case SM_GENERAL_IDLE:
4146                         case SM_INITIATOR_CONNECTED:
4147                         case SM_RESPONDER_IDLE:
4148                             break;
4149                         default:
4150                             sm_reencryption_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
4151                             sm_pairing_complete(sm_conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION, 0);
4152                             break;
4153                     }
4154 
4155                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
4156                     sm_conn->sm_handle = 0;
4157                     break;
4158 
4159                 case HCI_EVENT_COMMAND_COMPLETE:
4160                     if (hci_event_command_complete_get_command_opcode(packet) == HCI_OPCODE_HCI_READ_BD_ADDR) {
4161                         // set local addr for le device db
4162                         reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr);
4163                         le_device_db_set_local_bd_addr(addr);
4164                     }
4165                     break;
4166 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4167                 case L2CAP_EVENT_INFORMATION_RESPONSE:
4168                     con_handle = l2cap_event_information_response_get_con_handle(packet);
4169                     sm_conn = sm_get_connection_for_handle(con_handle);
4170                     if (!sm_conn) break;
4171                     if (sm_conn->sm_engine_state == SM_BR_EDR_INITIATOR_W4_FIXED_CHANNEL_MASK){
4172                         // check if remote supports SMP over BR/EDR
4173                         const hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
4174                         if ((hci_connection->l2cap_state.fixed_channels_supported & (1 << L2CAP_CID_BR_EDR_SECURITY_MANAGER)) != 0){
4175                             sm_conn->sm_engine_state = SM_BR_EDR_INITIATOR_SEND_PAIRING_REQUEST;
4176                         } else {
4177                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
4178                             hci_dedicated_bonding_defer_disconnect(con_handle, false);
4179                         }
4180                     }
4181                     break;
4182 #endif
4183                 default:
4184                     break;
4185 			}
4186             break;
4187         default:
4188             break;
4189 	}
4190 
4191     sm_run();
4192 }
4193 
4194 static inline int sm_calc_actual_encryption_key_size(int other){
4195     if (other < sm_min_encryption_key_size) return 0;
4196     if (other < sm_max_encryption_key_size) return other;
4197     return sm_max_encryption_key_size;
4198 }
4199 
4200 
4201 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4202 static bool sm_just_works_or_numeric_comparison(stk_generation_method_t method){
4203     switch (method){
4204         case JUST_WORKS:
4205         case NUMERIC_COMPARISON:
4206             return true;
4207         default:
4208             return false;
4209     }
4210 }
4211 // responder
4212 
4213 static bool sm_passkey_used(stk_generation_method_t method){
4214     switch (method){
4215         case PK_RESP_INPUT:
4216             return true;
4217         default:
4218             return 0;
4219     }
4220 }
4221 
4222 static bool sm_passkey_entry(stk_generation_method_t method){
4223     switch (method){
4224         case PK_RESP_INPUT:
4225         case PK_INIT_INPUT:
4226         case PK_BOTH_INPUT:
4227             return true;
4228         default:
4229             return false;
4230     }
4231 }
4232 
4233 #endif
4234 
4235 /**
4236  * @return ok
4237  */
4238 static int sm_validate_stk_generation_method(void){
4239     // check if STK generation method is acceptable by client
4240     switch (setup->sm_stk_generation_method){
4241         case JUST_WORKS:
4242             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0u;
4243         case PK_RESP_INPUT:
4244         case PK_INIT_INPUT:
4245         case PK_BOTH_INPUT:
4246             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0u;
4247         case OOB:
4248             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0u;
4249         case NUMERIC_COMPARISON:
4250             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0u;
4251         default:
4252             return 0;
4253     }
4254 }
4255 
4256 #ifdef ENABLE_LE_CENTRAL
4257 static void sm_initiator_connected_handle_security_request(sm_connection_t * sm_conn, const uint8_t *packet){
4258 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4259     if (sm_sc_only_mode){
4260         uint8_t auth_req = packet[1];
4261         if ((auth_req & SM_AUTHREQ_SECURE_CONNECTION) == 0){
4262             sm_pairing_error(sm_conn, SM_REASON_AUTHENTHICATION_REQUIREMENTS);
4263             return;
4264         }
4265     }
4266 #else
4267     UNUSED(packet);
4268 #endif
4269 
4270     int have_ltk;
4271     uint8_t ltk[16];
4272 
4273     // IRK complete?
4274     switch (sm_conn->sm_irk_lookup_state){
4275         case IRK_LOOKUP_FAILED:
4276             // start pairing
4277             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4278             break;
4279         case IRK_LOOKUP_SUCCEEDED:
4280             le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
4281             have_ltk = !sm_is_null_key(ltk);
4282             log_info("central: security request - have_ltk %u, encryption %u", have_ltk, sm_conn->sm_connection_encrypted);
4283             if (have_ltk && (sm_conn->sm_connection_encrypted == 0)){
4284                 // start re-encrypt if we have LTK and the connection is not already encrypted
4285                 sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
4286             } else {
4287                 // start pairing
4288                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
4289             }
4290             break;
4291         default:
4292             // otherwise, store security request
4293             sm_conn->sm_security_request_received = true;
4294             break;
4295     }
4296 }
4297 #endif
4298 
4299 static uint8_t sm_pdu_validate_and_get_opcode(uint8_t packet_type, const uint8_t *packet, uint16_t size){
4300 
4301     // size of complete sm_pdu used to validate input
4302     static const uint8_t sm_pdu_size[] = {
4303             0,  // 0x00 invalid opcode
4304             7,  // 0x01 pairing request
4305             7,  // 0x02 pairing response
4306             17, // 0x03 pairing confirm
4307             17, // 0x04 pairing random
4308             2,  // 0x05 pairing failed
4309             17, // 0x06 encryption information
4310             11, // 0x07 master identification
4311             17, // 0x08 identification information
4312             8,  // 0x09 identify address information
4313             17, // 0x0a signing information
4314             2,  // 0x0b security request
4315             65, // 0x0c pairing public key
4316             17, // 0x0d pairing dhk check
4317             2,  // 0x0e keypress notification
4318     };
4319 
4320     if (packet_type != SM_DATA_PACKET) return 0;
4321     if (size == 0u) return 0;
4322 
4323     uint8_t sm_pdu_code = packet[0];
4324 
4325     // validate pdu size
4326     if (sm_pdu_code >= sizeof(sm_pdu_size)) return 0;
4327     if (sm_pdu_size[sm_pdu_code] != size)   return 0;
4328 
4329     return sm_pdu_code;
4330 }
4331 
4332 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
4333 
4334     if ((packet_type == HCI_EVENT_PACKET) && (packet[0] == L2CAP_EVENT_CAN_SEND_NOW)){
4335         sm_run();
4336     }
4337 
4338     uint8_t sm_pdu_code = sm_pdu_validate_and_get_opcode(packet_type, packet, size);
4339     if (sm_pdu_code == 0) return;
4340 
4341     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
4342     if (!sm_conn) return;
4343 
4344     if (sm_pdu_code == SM_CODE_PAIRING_FAILED){
4345         sm_reencryption_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE);
4346         sm_pairing_complete(sm_conn, ERROR_CODE_AUTHENTICATION_FAILURE, packet[1]);
4347         sm_done_for_handle(con_handle);
4348         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
4349         return;
4350     }
4351 
4352     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, sm_pdu_code);
4353 
4354     int err;
4355     uint8_t max_encryption_key_size;
4356     UNUSED(err);
4357 
4358     if (sm_pdu_code == SM_CODE_KEYPRESS_NOTIFICATION){
4359         uint8_t buffer[5];
4360         buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION;
4361         buffer[1] = 3;
4362         little_endian_store_16(buffer, 2, con_handle);
4363         buffer[4] = packet[1];
4364         sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer));
4365         return;
4366     }
4367 
4368     switch (sm_conn->sm_engine_state){
4369 
4370         // a sm timeout requires a new physical connection
4371         case SM_GENERAL_TIMEOUT:
4372             return;
4373 
4374 #ifdef ENABLE_LE_CENTRAL
4375 
4376         // Initiator
4377         case SM_INITIATOR_CONNECTED:
4378             if ((sm_pdu_code != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
4379                 sm_pdu_received_in_wrong_state(sm_conn);
4380                 break;
4381             }
4382             sm_initiator_connected_handle_security_request(sm_conn, packet);
4383             break;
4384 
4385         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
4386             // Core 5, Vol 3, Part H, 2.4.6:
4387             // "The master shall ignore the slave’s Security Request if the master has sent a Pairing Request
4388             //  without receiving a Pairing Response from the slave or if the master has initiated encryption mode setup."
4389             if (sm_pdu_code == SM_CODE_SECURITY_REQUEST){
4390                 log_info("Ignoring Security Request");
4391                 break;
4392             }
4393 
4394             // all other pdus are incorrect
4395             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
4396                 sm_pdu_received_in_wrong_state(sm_conn);
4397                 break;
4398             }
4399 
4400             // store pairing request
4401             (void)memcpy(&setup->sm_s_pres, packet,
4402                          sizeof(sm_pairing_packet_t));
4403 
4404             // validate encryption key size
4405             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_s_pres);
4406             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4407                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4408                 break;
4409             }
4410 
4411             err = sm_stk_generation_init(sm_conn);
4412 
4413 #ifdef ENABLE_TESTING_SUPPORT
4414             if (0 < test_pairing_failure && test_pairing_failure < SM_REASON_DHKEY_CHECK_FAILED){
4415                 log_info("testing_support: abort with pairing failure %u", test_pairing_failure);
4416                 err = test_pairing_failure;
4417             }
4418 #endif
4419 
4420             if (err != 0){
4421                 sm_pairing_error(sm_conn, err);
4422                 break;
4423             }
4424 
4425             // generate random number first, if we need to show passkey
4426             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
4427                 btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph2_tk,  (void *)(uintptr_t) sm_conn->sm_handle);
4428                 break;
4429             }
4430 
4431 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4432             if (setup->sm_use_secure_connections){
4433                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
4434                 if (setup->sm_stk_generation_method == JUST_WORKS){
4435                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4436                     sm_trigger_user_response(sm_conn);
4437                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
4438                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4439                     }
4440                 } else {
4441                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4442                 }
4443                 break;
4444             }
4445 #endif
4446             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4447             sm_trigger_user_response(sm_conn);
4448             // response_idle == nothing <--> sm_trigger_user_response() did not require response
4449             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
4450                 btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4451             }
4452             break;
4453 
4454         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
4455             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4456                 sm_pdu_received_in_wrong_state(sm_conn);
4457                 break;
4458             }
4459 
4460             // store s_confirm
4461             reverse_128(&packet[1], setup->sm_peer_confirm);
4462 
4463             // abort if s_confirm matches m_confirm
4464             if (memcmp(setup->sm_local_confirm, setup->sm_peer_confirm, 16) == 0){
4465                 sm_pdu_received_in_wrong_state(sm_conn);
4466                 break;
4467             }
4468 
4469 #ifdef ENABLE_TESTING_SUPPORT
4470             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4471                 log_info("testing_support: reset confirm value");
4472                 memset(setup->sm_peer_confirm, 0, 16);
4473             }
4474 #endif
4475             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
4476             break;
4477 
4478         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
4479             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4480                 sm_pdu_received_in_wrong_state(sm_conn);
4481                 break;;
4482             }
4483 
4484             // received random value
4485             reverse_128(&packet[1], setup->sm_peer_random);
4486             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4487             break;
4488 
4489         case SM_PH4_W4_CONNECTION_ENCRYPTED:
4490             // ignore Security Request, see SM_INITIATOR_PH1_W4_PAIRING_RESPONSE above
4491             if (sm_pdu_code != SM_CODE_SECURITY_REQUEST){
4492                 sm_pdu_received_in_wrong_state(sm_conn);
4493             }
4494             break;
4495 #endif
4496 
4497 #ifdef ENABLE_LE_PERIPHERAL
4498         // Responder
4499         case SM_RESPONDER_IDLE:
4500         case SM_RESPONDER_SEND_SECURITY_REQUEST:
4501         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
4502             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
4503                 sm_pdu_received_in_wrong_state(sm_conn);
4504                 break;;
4505             }
4506 
4507             // store pairing request
4508             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
4509 
4510             // validation encryption key size
4511             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(sm_conn->sm_m_preq);
4512             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4513                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4514                 break;
4515             }
4516 
4517             // check if IRK completed
4518             switch (sm_conn->sm_irk_lookup_state){
4519                 case IRK_LOOKUP_SUCCEEDED:
4520                 case IRK_LOOKUP_FAILED:
4521                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
4522                     break;
4523                 default:
4524                     sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED_W4_IRK;
4525                     break;
4526             }
4527             break;
4528 #endif
4529 
4530 #ifdef ENABLE_LE_SECURE_CONNECTIONS
4531         case SM_SC_W4_PUBLIC_KEY_COMMAND:
4532             if (sm_pdu_code != SM_CODE_PAIRING_PUBLIC_KEY){
4533                 sm_pdu_received_in_wrong_state(sm_conn);
4534                 break;
4535             }
4536 
4537             // store public key for DH Key calculation
4538             reverse_256(&packet[01], &setup->sm_peer_q[0]);
4539             reverse_256(&packet[33], &setup->sm_peer_q[32]);
4540 
4541             // CVE-2020-26558: abort pairing if remote uses the same public key
4542             if (memcmp(&setup->sm_peer_q, ec_q, 64) == 0){
4543                 log_info("Remote PK matches ours");
4544                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4545                 break;
4546             }
4547 
4548             // validate public key
4549             err = btstack_crypto_ecc_p256_validate_public_key(setup->sm_peer_q);
4550             if (err != 0){
4551                 log_info("sm: peer public key invalid %x", err);
4552                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
4553                 break;
4554             }
4555 
4556             // start calculating dhkey
4557             btstack_crypto_ecc_p256_calculate_dhkey(&sm_crypto_ecc_p256_request, setup->sm_peer_q, setup->sm_dhkey, sm_sc_dhkey_calculated, (void*)(uintptr_t) sm_conn->sm_handle);
4558 
4559 
4560             log_info("public key received, generation method %u", setup->sm_stk_generation_method);
4561             if (IS_RESPONDER(sm_conn->sm_role)){
4562                 // responder
4563                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
4564             } else {
4565                 // initiator
4566                 // stk generation method
4567                 // passkey entry: notify app to show passkey or to request passkey
4568                 switch (setup->sm_stk_generation_method){
4569                     case JUST_WORKS:
4570                     case NUMERIC_COMPARISON:
4571                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
4572                         break;
4573                     case PK_RESP_INPUT:
4574                         sm_sc_start_calculating_local_confirm(sm_conn);
4575                         break;
4576                     case PK_INIT_INPUT:
4577                     case PK_BOTH_INPUT:
4578                         if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4579                             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4580                             break;
4581                         }
4582                         sm_sc_start_calculating_local_confirm(sm_conn);
4583                         break;
4584                     case OOB:
4585                         // generate Nx
4586                         log_info("Generate Na");
4587                         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4588                         break;
4589                     default:
4590                         btstack_assert(false);
4591                         break;
4592                 }
4593             }
4594             break;
4595 
4596         case SM_SC_W4_CONFIRMATION:
4597             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4598                 sm_pdu_received_in_wrong_state(sm_conn);
4599                 break;
4600             }
4601             // received confirm value
4602             reverse_128(&packet[1], setup->sm_peer_confirm);
4603 
4604 #ifdef ENABLE_TESTING_SUPPORT
4605             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4606                 log_info("testing_support: reset confirm value");
4607                 memset(setup->sm_peer_confirm, 0, 16);
4608             }
4609 #endif
4610             if (IS_RESPONDER(sm_conn->sm_role)){
4611                 // responder
4612                 if (sm_passkey_used(setup->sm_stk_generation_method)){
4613                     if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
4614                         // still waiting for passkey
4615                         sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
4616                         break;
4617                     }
4618                 }
4619                 sm_sc_start_calculating_local_confirm(sm_conn);
4620             } else {
4621                 // initiator
4622                 if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
4623                     btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_nonce, 16, &sm_handle_random_result_sc_next_send_pairing_random, (void*)(uintptr_t) sm_conn->sm_handle);
4624                 } else {
4625                     sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
4626                 }
4627             }
4628             break;
4629 
4630         case SM_SC_W4_PAIRING_RANDOM:
4631             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4632                 sm_pdu_received_in_wrong_state(sm_conn);
4633                 break;
4634             }
4635 
4636             // received random value
4637             reverse_128(&packet[1], setup->sm_peer_nonce);
4638 
4639             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
4640             // only check for JUST WORK/NC in initiator role OR passkey entry
4641             log_info("SM_SC_W4_PAIRING_RANDOM, responder: %u, just works: %u, passkey used %u, passkey entry %u",
4642                      IS_RESPONDER(sm_conn->sm_role), sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method),
4643                      sm_passkey_used(setup->sm_stk_generation_method), sm_passkey_entry(setup->sm_stk_generation_method));
4644             if ( (!IS_RESPONDER(sm_conn->sm_role) && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method))
4645             ||   (sm_passkey_entry(setup->sm_stk_generation_method)) ) {
4646                  sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4647                  break;
4648             }
4649 
4650             // OOB
4651             if (setup->sm_stk_generation_method == OOB){
4652 
4653                 // setup local random, set to zero if remote did not receive our data
4654                 log_info("Received nonce, setup local random ra/rb for dhkey check");
4655                 if (IS_RESPONDER(sm_conn->sm_role)){
4656                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq) == 0u){
4657                         log_info("Reset rb as A does not have OOB data");
4658                         memset(setup->sm_rb, 0, 16);
4659                     } else {
4660                         (void)memcpy(setup->sm_rb, sm_sc_oob_random, 16);
4661                         log_info("Use stored rb");
4662                         log_info_hexdump(setup->sm_rb, 16);
4663                     }
4664                 }  else {
4665                     if (sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres) == 0u){
4666                         log_info("Reset ra as B does not have OOB data");
4667                         memset(setup->sm_ra, 0, 16);
4668                     } else {
4669                         (void)memcpy(setup->sm_ra, sm_sc_oob_random, 16);
4670                         log_info("Use stored ra");
4671                         log_info_hexdump(setup->sm_ra, 16);
4672                     }
4673                 }
4674 
4675                 // validate confirm value if Cb = f4(PKb, Pkb, rb, 0) for OOB if data received
4676                 if (setup->sm_have_oob_data){
4677                      sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
4678                      break;
4679                 }
4680             }
4681 
4682             // TODO: we only get here for Responder role with JW/NC
4683             sm_sc_state_after_receiving_random(sm_conn);
4684             break;
4685 
4686         case SM_SC_W2_CALCULATE_G2:
4687         case SM_SC_W4_CALCULATE_G2:
4688         case SM_SC_W4_CALCULATE_DHKEY:
4689         case SM_SC_W2_CALCULATE_F5_SALT:
4690         case SM_SC_W4_CALCULATE_F5_SALT:
4691         case SM_SC_W2_CALCULATE_F5_MACKEY:
4692         case SM_SC_W4_CALCULATE_F5_MACKEY:
4693         case SM_SC_W2_CALCULATE_F5_LTK:
4694         case SM_SC_W4_CALCULATE_F5_LTK:
4695         case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
4696         case SM_SC_W4_DHKEY_CHECK_COMMAND:
4697         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
4698         case SM_SC_W4_USER_RESPONSE:
4699             if (sm_pdu_code != SM_CODE_PAIRING_DHKEY_CHECK){
4700                 sm_pdu_received_in_wrong_state(sm_conn);
4701                 break;
4702             }
4703             // store DHKey Check
4704             setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED;
4705             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
4706 
4707             // have we been only waiting for dhkey check command?
4708             if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){
4709                 sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
4710             }
4711             break;
4712 #endif
4713 
4714 #ifdef ENABLE_LE_PERIPHERAL
4715         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
4716             if (sm_pdu_code != SM_CODE_PAIRING_CONFIRM){
4717                 sm_pdu_received_in_wrong_state(sm_conn);
4718                 break;
4719             }
4720 
4721             // received confirm value
4722             reverse_128(&packet[1], setup->sm_peer_confirm);
4723 
4724 #ifdef ENABLE_TESTING_SUPPORT
4725             if (test_pairing_failure == SM_REASON_CONFIRM_VALUE_FAILED){
4726                 log_info("testing_support: reset confirm value");
4727                 memset(setup->sm_peer_confirm, 0, 16);
4728             }
4729 #endif
4730             // notify client to hide shown passkey
4731             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
4732                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
4733             }
4734 
4735             // handle user cancel pairing?
4736             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
4737                 sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
4738                 break;
4739             }
4740 
4741             // wait for user action?
4742             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
4743                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
4744                 break;
4745             }
4746 
4747             // calculate and send local_confirm
4748             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
4749             break;
4750 
4751         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
4752             if (sm_pdu_code != SM_CODE_PAIRING_RANDOM){
4753                 sm_pdu_received_in_wrong_state(sm_conn);
4754                 break;;
4755             }
4756 
4757             // received random value
4758             reverse_128(&packet[1], setup->sm_peer_random);
4759             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
4760             break;
4761 #endif
4762 
4763         case SM_PH2_W4_CONNECTION_ENCRYPTED:
4764         case SM_PH3_RECEIVE_KEYS:
4765             switch(sm_pdu_code){
4766                 case SM_CODE_ENCRYPTION_INFORMATION:
4767                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
4768                     reverse_128(&packet[1], setup->sm_peer_ltk);
4769                     break;
4770 
4771                 case SM_CODE_MASTER_IDENTIFICATION:
4772                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
4773                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
4774                     reverse_64(&packet[3], setup->sm_peer_rand);
4775                     break;
4776 
4777                 case SM_CODE_IDENTITY_INFORMATION:
4778                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4779                     reverse_128(&packet[1], setup->sm_peer_irk);
4780                     break;
4781 
4782                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4783                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4784                     setup->sm_peer_addr_type = packet[1];
4785                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4786                     break;
4787 
4788                 case SM_CODE_SIGNING_INFORMATION:
4789                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4790                     reverse_128(&packet[1], setup->sm_peer_csrk);
4791                     break;
4792                 default:
4793                     // Unexpected PDU
4794                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4795                     break;
4796             }
4797             // done with key distribution?
4798             if (sm_key_distribution_all_received()){
4799 
4800                 sm_key_distribution_handle_all_received(sm_conn);
4801 
4802                 if (IS_RESPONDER(sm_conn->sm_role)){
4803                     sm_key_distribution_complete_responder(sm_conn);
4804                 } else {
4805                     if (setup->sm_use_secure_connections){
4806                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
4807                     } else {
4808                         btstack_crypto_random_generate(&sm_crypto_random_request, sm_random_data, 8, &sm_handle_random_result_ph3_random, (void *)(uintptr_t) sm_conn->sm_handle);
4809                     }
4810                 }
4811             }
4812             break;
4813 
4814 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
4815 
4816         case SM_BR_EDR_W4_ENCRYPTION_COMPLETE:
4817             // GAP/DM/LEP/BI-02-C - reject CTKD if P-192 encryption is used
4818             if (sm_pdu_code == SM_CODE_PAIRING_REQUEST){
4819                 sm_pairing_error(sm_conn, SM_REASON_CROSS_TRANSPORT_KEY_DERIVATION_NOT_ALLOWED);
4820             }
4821             break;
4822 
4823         case SM_BR_EDR_INITIATOR_W4_PAIRING_RESPONSE:
4824 
4825             // dedicated bonding complete
4826             hci_dedicated_bonding_defer_disconnect(sm_conn->sm_handle, false);
4827 
4828             if (sm_pdu_code != SM_CODE_PAIRING_RESPONSE){
4829                 sm_pdu_received_in_wrong_state(sm_conn);
4830                 break;
4831             }
4832             // store pairing response
4833             (void)memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
4834 
4835             // validate encryption key size
4836             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_s_pres);
4837             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4838                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4839                 break;
4840             }
4841             sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(max_encryption_key_size);
4842             // SC Only mandates 128 bit key size
4843             if (sm_sc_only_mode && (sm_conn->sm_actual_encryption_key_size < 16)) {
4844                 sm_conn->sm_actual_encryption_key_size  = 0;
4845             }
4846             if (sm_conn->sm_actual_encryption_key_size == 0){
4847                 sm_pairing_error(sm_conn, SM_REASON_ENCRYPTION_KEY_SIZE);
4848                 break;
4849             }
4850 
4851             // prepare key exchange, LTK is derived locally
4852             sm_setup_key_distribution(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres) & ~SM_KEYDIST_ENC_KEY,
4853                                       sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres) & ~SM_KEYDIST_ENC_KEY);
4854 
4855             // skip receive if there are none
4856             if (sm_key_distribution_all_received()){
4857                 // distribute keys in run handles 'no keys to send'
4858                 sm_conn->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
4859             } else {
4860                 sm_conn->sm_engine_state = SM_BR_EDR_RECEIVE_KEYS;
4861             }
4862             break;
4863 
4864         case SM_BR_EDR_RESPONDER_W4_PAIRING_REQUEST:
4865             if (sm_pdu_code != SM_CODE_PAIRING_REQUEST){
4866                 sm_pdu_received_in_wrong_state(sm_conn);
4867                 break;
4868             }
4869 
4870             // store pairing request
4871             (void)memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
4872 
4873             // validate encryption key size
4874             max_encryption_key_size = sm_pairing_packet_get_max_encryption_key_size(setup->sm_m_preq);
4875             if ((max_encryption_key_size < 7) || (max_encryption_key_size > 16)){
4876                 sm_pairing_error(sm_conn, SM_REASON_INVALID_PARAMETERS);
4877                 break;
4878             }
4879             sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(max_encryption_key_size);
4880             // SC Only mandates 128 bit key size
4881             if (sm_sc_only_mode && (sm_conn->sm_actual_encryption_key_size < 16)) {
4882                 sm_conn->sm_actual_encryption_key_size  = 0;
4883             }
4884             if (sm_conn->sm_actual_encryption_key_size == 0){
4885                 sm_pairing_error(sm_conn, SM_REASON_ENCRYPTION_KEY_SIZE);
4886                 break;
4887             }
4888             // trigger response
4889             if (sm_ctkd_from_classic(sm_conn)){
4890                 sm_conn->sm_engine_state = SM_BR_EDR_RESPONDER_PAIRING_REQUEST_RECEIVED;
4891             } else {
4892                 sm_pairing_error(sm_conn, SM_REASON_CROSS_TRANSPORT_KEY_DERIVATION_NOT_ALLOWED);
4893             }
4894             break;
4895 
4896         case SM_BR_EDR_RECEIVE_KEYS:
4897             switch(sm_pdu_code){
4898                 case SM_CODE_IDENTITY_INFORMATION:
4899                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
4900                     reverse_128(&packet[1], setup->sm_peer_irk);
4901                     break;
4902                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
4903                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
4904                     setup->sm_peer_addr_type = packet[1];
4905                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
4906                     break;
4907                 case SM_CODE_SIGNING_INFORMATION:
4908                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
4909                     reverse_128(&packet[1], setup->sm_peer_csrk);
4910                     break;
4911                 default:
4912                     // Unexpected PDU
4913                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
4914                     break;
4915             }
4916 
4917             // all keys received
4918             if (sm_key_distribution_all_received()){
4919                 if (IS_RESPONDER(sm_conn->sm_role)){
4920                     // responder -> keys exchanged, derive LE LTK
4921                     sm_ctkd_start_from_br_edr(sm_conn);
4922                 } else {
4923                     // initiator -> send our keys if any
4924                     sm_conn->sm_engine_state = SM_BR_EDR_DISTRIBUTE_KEYS;
4925                 }
4926             }
4927             break;
4928 #endif
4929 
4930         default:
4931             // Unexpected PDU
4932             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
4933             sm_pdu_received_in_wrong_state(sm_conn);
4934             break;
4935     }
4936 
4937     // try to send next pdu
4938     sm_trigger_run();
4939 }
4940 
4941 // Security Manager Client API
4942 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_data)){
4943     sm_get_oob_data = get_oob_data_callback;
4944 }
4945 
4946 void sm_register_sc_oob_data_callback( int (*get_sc_oob_data_callback)(uint8_t address_type, bd_addr_t addr, uint8_t * oob_sc_peer_confirm, uint8_t * oob_sc_peer_random)){
4947     sm_get_sc_oob_data = get_sc_oob_data_callback;
4948 }
4949 
4950 void sm_register_ltk_callback( bool (*get_ltk_callback)(hci_con_handle_t con_handle, uint8_t address_type, bd_addr_t addr, uint8_t * ltk)){
4951     sm_get_ltk_callback = get_ltk_callback;
4952 }
4953 
4954 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
4955     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
4956 }
4957 
4958 void sm_remove_event_handler(btstack_packet_callback_registration_t * callback_handler){
4959     btstack_linked_list_remove(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
4960 }
4961 
4962 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
4963     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
4964 }
4965 
4966 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
4967 	sm_min_encryption_key_size = min_size;
4968 	sm_max_encryption_key_size = max_size;
4969 }
4970 
4971 void sm_set_authentication_requirements(uint8_t auth_req){
4972 #ifndef ENABLE_LE_SECURE_CONNECTIONS
4973     if (auth_req & SM_AUTHREQ_SECURE_CONNECTION){
4974         log_error("ENABLE_LE_SECURE_CONNECTIONS not defined, but requested by app. Dropping SC flag");
4975         auth_req &= ~SM_AUTHREQ_SECURE_CONNECTION;
4976     }
4977 #endif
4978     sm_auth_req = auth_req;
4979 }
4980 
4981 void sm_set_io_capabilities(io_capability_t io_capability){
4982     sm_io_capabilities = io_capability;
4983 }
4984 
4985 #ifdef ENABLE_LE_PERIPHERAL
4986 void sm_set_request_security(bool enable){
4987     sm_slave_request_security = enable;
4988 }
4989 #endif
4990 
4991 void sm_set_er(sm_key_t er){
4992     (void)memcpy(sm_persistent_er, er, 16);
4993 }
4994 
4995 void sm_set_ir(sm_key_t ir){
4996     (void)memcpy(sm_persistent_ir, ir, 16);
4997 }
4998 
4999 // Testing support only
5000 void sm_test_set_irk(sm_key_t irk){
5001     (void)memcpy(sm_persistent_irk, irk, 16);
5002     dkg_state = DKG_CALC_DHK;
5003     test_use_fixed_local_irk = true;
5004 }
5005 
5006 void sm_test_use_fixed_local_csrk(void){
5007     test_use_fixed_local_csrk = true;
5008 }
5009 
5010 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5011 static void sm_ec_generated(void * arg){
5012     UNUSED(arg);
5013     ec_key_generation_state = EC_KEY_GENERATION_DONE;
5014     // trigger pairing if pending for ec key
5015     sm_trigger_run();
5016 }
5017 static void sm_ec_generate_new_key(void) {
5018     log_info("sm: generate new ec key");
5019 #ifdef ENABLE_LE_SECURE_CONNECTIONS_DEBUG_KEY
5020     // LE Secure Connections Debug Key
5021     const uint8_t debug_key_public[64] = {
5022         0x20, 0xb0, 0x03, 0xd2, 0xf2, 0x97, 0xbe, 0x2c, 0x5e, 0x2c, 0x83, 0xa7, 0xe9, 0xf9, 0xa5, 0xb9,
5023         0xef, 0xf4, 0x91, 0x11, 0xac, 0xf4, 0xfd, 0xdb, 0xcc, 0x03, 0x01, 0x48, 0x0e, 0x35, 0x9d, 0xe6,
5024         0xdc, 0x80, 0x9c, 0x49, 0x65, 0x2a, 0xeb, 0x6d, 0x63, 0x32, 0x9a, 0xbf, 0x5a, 0x52, 0x15, 0x5c,
5025         0x76, 0x63, 0x45, 0xc2, 0x8f, 0xed, 0x30, 0x24, 0x74, 0x1c, 0x8e, 0xd0, 0x15, 0x89, 0xd2, 0x8b
5026     };
5027     const uint8_t debug_key_private[32] = {
5028         0x3f, 0x49, 0xf6, 0xd4, 0xa3, 0xc5, 0x5f, 0x38, 0x74, 0xc9, 0xb3, 0xe3, 0xd2, 0x10, 0x3f, 0x50,
5029         0x4a, 0xff, 0x60, 0x7b, 0xeb, 0x40, 0xb7, 0x99, 0x58, 0x99, 0xb8, 0xa6, 0xcd, 0x3c, 0x1a, 0xbd
5030     };
5031     if (sm_sc_debug_keys_enabled) {
5032         memcpy(ec_q, debug_key_public, 64);
5033         btstack_crypto_ecc_p256_set_key(debug_key_public, debug_key_private);
5034         ec_key_generation_state = EC_KEY_GENERATION_DONE;
5035     } else
5036 #endif
5037     {
5038         ec_key_generation_state = EC_KEY_GENERATION_ACTIVE;
5039         btstack_crypto_ecc_p256_generate_key(&sm_crypto_ecc_p256_request, ec_q, &sm_ec_generated, NULL);
5040     }
5041 }
5042 #endif
5043 
5044 #ifdef ENABLE_TESTING_SUPPORT
5045 void sm_test_set_pairing_failure(int reason){
5046     test_pairing_failure = reason;
5047 }
5048 #endif
5049 
5050 static void sm_state_reset(void) {
5051 #ifdef USE_CMAC_ENGINE
5052     sm_cmac_active  = 0;
5053 #endif
5054     dkg_state = DKG_W4_WORKING;
5055     rau_state = RAU_IDLE;
5056     sm_aes128_state = SM_AES128_IDLE;
5057     sm_address_resolution_test = -1;    // no private address to resolve yet
5058     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
5059     sm_address_resolution_general_queue = NULL;
5060     sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
5061     sm_persistent_keys_random_active = false;
5062 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5063     ec_key_generation_state = EC_KEY_GENERATION_IDLE;
5064 #endif
5065 }
5066 
5067 void sm_init(void){
5068 
5069     if (sm_initialized) return;
5070 
5071     // set default ER and IR values (should be unique - set by app or sm later using TLV)
5072     sm_er_ir_set_default();
5073 
5074     // defaults
5075     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
5076                                        | SM_STK_GENERATION_METHOD_OOB
5077                                        | SM_STK_GENERATION_METHOD_PASSKEY
5078                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
5079 
5080     sm_max_encryption_key_size = 16;
5081     sm_min_encryption_key_size = 7;
5082 
5083     sm_fixed_passkey_in_display_role = 0xffffffffU;
5084     sm_reconstruct_ltk_without_le_device_db_entry = true;
5085 
5086     gap_random_adress_update_period = 15 * 60 * 1000L;
5087 
5088     test_use_fixed_local_csrk = false;
5089 
5090     // other
5091     btstack_run_loop_set_timer_handler(&sm_run_timer, &sm_run_timer_handler);
5092 
5093     // register for HCI Events
5094     hci_event_callback_registration.callback = &sm_event_packet_handler;
5095     hci_add_event_handler(&hci_event_callback_registration);
5096 
5097 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
5098     // register for L2CAP events
5099     l2cap_event_callback_registration.callback = &sm_event_packet_handler;
5100     l2cap_add_event_handler(&l2cap_event_callback_registration);
5101 #endif
5102 
5103     //
5104     btstack_crypto_init();
5105 
5106     // init le_device_db
5107     le_device_db_init();
5108 
5109     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
5110     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
5111 #ifdef ENABLE_CLASSIC
5112     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_BR_EDR_SECURITY_MANAGER);
5113 #endif
5114 
5115     // state
5116     sm_state_reset();
5117 
5118     sm_initialized = true;
5119 }
5120 
5121 void sm_deinit(void){
5122     sm_initialized = false;
5123     btstack_run_loop_remove_timer(&sm_run_timer);
5124 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined (ENABLE_LE_SECURE_CONNECTION_DEBUG_KEY)
5125     sm_sc_debug_keys_enabled = false;
5126 #endif
5127 }
5128 
5129 void sm_use_fixed_passkey_in_display_role(uint32_t passkey){
5130     sm_fixed_passkey_in_display_role = passkey;
5131 }
5132 
5133 void sm_allow_ltk_reconstruction_without_le_device_db_entry(int allow){
5134     sm_reconstruct_ltk_without_le_device_db_entry = allow != 0;
5135 }
5136 
5137 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
5138     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
5139     if (!hci_con) return NULL;
5140     return &hci_con->sm_connection;
5141 }
5142 
5143 static void sm_cache_ltk(sm_connection_t * connection, const sm_key_t ltk){
5144     hci_connection_t * hci_con = hci_connection_for_handle(connection->sm_handle);
5145     btstack_assert(hci_con != NULL);
5146     memcpy(hci_con->link_key, ltk, 16);
5147     hci_con->link_key_type = 1;
5148 }
5149 
5150 #ifdef ENABLE_CROSS_TRANSPORT_KEY_DERIVATION
5151 static sm_connection_t * sm_get_connection_for_bd_addr_and_type(bd_addr_t address, bd_addr_type_t addr_type){
5152     hci_connection_t * hci_con = hci_connection_for_bd_addr_and_type(address, addr_type);
5153     if (!hci_con) return NULL;
5154     return &hci_con->sm_connection;
5155 }
5156 #endif
5157 
5158 // @deprecated: map onto sm_request_pairing
5159 void sm_send_security_request(hci_con_handle_t con_handle){
5160     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5161     if (!sm_conn) return;
5162     if (!IS_RESPONDER(sm_conn->sm_role)) return;
5163     sm_request_pairing(con_handle);
5164 }
5165 
5166 // request pairing
5167 void sm_request_pairing(hci_con_handle_t con_handle){
5168     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5169     if (!sm_conn) return;     // wrong connection
5170 
5171     bool have_ltk;
5172     uint8_t ltk[16];
5173     bool auth_required;
5174     int authenticated;
5175     bool trigger_reencryption;
5176     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
5177     if (IS_RESPONDER(sm_conn->sm_role)){
5178         switch (sm_conn->sm_engine_state){
5179             case SM_GENERAL_IDLE:
5180             case SM_RESPONDER_IDLE:
5181                 switch (sm_conn->sm_irk_lookup_state){
5182                     case IRK_LOOKUP_SUCCEEDED:
5183                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL, NULL);
5184                         have_ltk = !sm_is_null_key(ltk);
5185                         log_info("have ltk %u", have_ltk);
5186                         if (have_ltk){
5187                             sm_conn->sm_pairing_requested = true;
5188                             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
5189                             sm_reencryption_started(sm_conn);
5190                             break;
5191                         }
5192                         /* fall through */
5193 
5194                     case IRK_LOOKUP_FAILED:
5195                         sm_conn->sm_pairing_requested = true;
5196                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
5197                         sm_pairing_started(sm_conn);
5198                         break;
5199                     default:
5200                         log_info("irk lookup pending");
5201                         sm_conn->sm_pairing_requested = true;
5202                         break;
5203                 }
5204                 break;
5205             default:
5206                 break;
5207         }
5208     } else {
5209         // used as a trigger to start central/master/initiator security procedures
5210         switch (sm_conn->sm_engine_state){
5211             case SM_INITIATOR_CONNECTED:
5212                 switch (sm_conn->sm_irk_lookup_state){
5213                     case IRK_LOOKUP_SUCCEEDED:
5214                         le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, &authenticated, NULL, NULL);
5215                         have_ltk = !sm_is_null_key(ltk);
5216                         auth_required = sm_auth_req & SM_AUTHREQ_MITM_PROTECTION;
5217                         // re-encrypt is sufficient if we have ltk and that is either already authenticated or we don't require authentication
5218                         trigger_reencryption = have_ltk && ((authenticated != 0) || (auth_required == false));
5219                         log_info("have ltk %u, authenticated %u, auth required %u => reencrypt %u", have_ltk, authenticated, auth_required, trigger_reencryption);
5220                         if (trigger_reencryption){
5221                             sm_conn->sm_pairing_requested = true;
5222                             sm_conn->sm_engine_state = SM_INITIATOR_PH4_HAS_LTK;
5223                             break;
5224                         }
5225                         /* fall through */
5226 
5227                     case IRK_LOOKUP_FAILED:
5228                         sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
5229                         break;
5230                     default:
5231                         log_info("irk lookup pending");
5232                         sm_conn->sm_pairing_requested = true;
5233                         break;
5234                 }
5235                 break;
5236             case SM_GENERAL_REENCRYPTION_FAILED:
5237                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
5238                 break;
5239             case SM_GENERAL_IDLE:
5240                 sm_conn->sm_pairing_requested = true;
5241                 break;
5242             default:
5243                 break;
5244         }
5245     }
5246     sm_trigger_run();
5247 }
5248 
5249 // called by client app on authorization request
5250 void sm_authorization_decline(hci_con_handle_t con_handle){
5251     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5252     if (!sm_conn) return;     // wrong connection
5253     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
5254     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
5255 }
5256 
5257 void sm_authorization_grant(hci_con_handle_t con_handle){
5258     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5259     if (!sm_conn) return;     // wrong connection
5260     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
5261     sm_notify_client_status(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
5262 }
5263 
5264 // GAP Bonding API
5265 
5266 void sm_bonding_decline(hci_con_handle_t con_handle){
5267     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5268     if (!sm_conn) return;     // wrong connection
5269     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
5270     log_info("decline, state %u", sm_conn->sm_engine_state);
5271     switch(sm_conn->sm_engine_state){
5272 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5273         case SM_SC_W4_USER_RESPONSE:
5274         case SM_SC_W4_CONFIRMATION:
5275         case SM_SC_W4_PUBLIC_KEY_COMMAND:
5276 #endif
5277         case SM_PH1_W4_USER_RESPONSE:
5278             switch (setup->sm_stk_generation_method){
5279                 case PK_RESP_INPUT:
5280                 case PK_INIT_INPUT:
5281                 case PK_BOTH_INPUT:
5282                     sm_pairing_error(sm_conn, SM_REASON_PASSKEY_ENTRY_FAILED);
5283                     break;
5284                 case NUMERIC_COMPARISON:
5285                     sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
5286                     break;
5287                 case JUST_WORKS:
5288                 case OOB:
5289                     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
5290                     break;
5291                 default:
5292                     btstack_assert(false);
5293                     break;
5294             }
5295             break;
5296         default:
5297             break;
5298     }
5299     sm_trigger_run();
5300 }
5301 
5302 void sm_just_works_confirm(hci_con_handle_t con_handle){
5303     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5304     if (!sm_conn) return;     // wrong connection
5305     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
5306     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
5307         if (setup->sm_use_secure_connections){
5308             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
5309         } else {
5310             btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
5311         }
5312     }
5313 
5314 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5315     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
5316         sm_sc_prepare_dhkey_check(sm_conn);
5317     }
5318 #endif
5319 
5320     sm_trigger_run();
5321 }
5322 
5323 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
5324     // for now, it's the same
5325     sm_just_works_confirm(con_handle);
5326 }
5327 
5328 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
5329     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5330     if (!sm_conn) return;     // wrong connection
5331     sm_reset_tk();
5332     big_endian_store_32(setup->sm_tk, 12, passkey);
5333     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
5334     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
5335         btstack_crypto_random_generate(&sm_crypto_random_request, setup->sm_local_random, 16, &sm_handle_random_result_ph2_random, (void *)(uintptr_t) sm_conn->sm_handle);
5336     }
5337 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5338     (void)memcpy(setup->sm_ra, setup->sm_tk, 16);
5339     (void)memcpy(setup->sm_rb, setup->sm_tk, 16);
5340     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
5341         sm_sc_start_calculating_local_confirm(sm_conn);
5342     }
5343 #endif
5344     sm_trigger_run();
5345 }
5346 
5347 void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){
5348     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5349     if (!sm_conn) return;     // wrong connection
5350     if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return;
5351     uint8_t num_actions = setup->sm_keypress_notification >> 5;
5352     uint8_t flags = setup->sm_keypress_notification & 0x1fu;
5353     switch (action){
5354         case SM_KEYPRESS_PASSKEY_ENTRY_STARTED:
5355         case SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED:
5356             flags |= (1u << action);
5357             break;
5358         case SM_KEYPRESS_PASSKEY_CLEARED:
5359             // clear counter, keypress & erased flags + set passkey cleared
5360             flags = (flags & 0x19u) | (1u << SM_KEYPRESS_PASSKEY_CLEARED);
5361             break;
5362         case SM_KEYPRESS_PASSKEY_DIGIT_ENTERED:
5363             if ((flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED)) != 0u){
5364                 // erase actions queued
5365                 num_actions--;
5366                 if (num_actions == 0u){
5367                     // clear counter, keypress & erased flags
5368                     flags &= 0x19u;
5369                 }
5370                 break;
5371             }
5372             num_actions++;
5373             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED);
5374             break;
5375         case SM_KEYPRESS_PASSKEY_DIGIT_ERASED:
5376             if ((flags & (1u << SM_KEYPRESS_PASSKEY_DIGIT_ENTERED)) != 0u){
5377                 // enter actions queued
5378                 num_actions--;
5379                 if (num_actions == 0u){
5380                     // clear counter, keypress & erased flags
5381                     flags &= 0x19u;
5382                 }
5383                 break;
5384             }
5385             num_actions++;
5386             flags |= (1u << SM_KEYPRESS_PASSKEY_DIGIT_ERASED);
5387             break;
5388         default:
5389             break;
5390     }
5391     setup->sm_keypress_notification = (num_actions << 5) | flags;
5392     sm_trigger_run();
5393 }
5394 
5395 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5396 static void sm_handle_random_result_oob(void * arg){
5397     UNUSED(arg);
5398     sm_sc_oob_state = SM_SC_OOB_W2_CALC_CONFIRM;
5399     sm_trigger_run();
5400 }
5401 uint8_t sm_generate_sc_oob_data(void (*callback)(const uint8_t * confirm_value, const uint8_t * random_value)){
5402 
5403     static btstack_crypto_random_t   sm_crypto_random_oob_request;
5404 
5405     if (sm_sc_oob_state != SM_SC_OOB_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
5406     sm_sc_oob_callback = callback;
5407     sm_sc_oob_state = SM_SC_OOB_W4_RANDOM;
5408     btstack_crypto_random_generate(&sm_crypto_random_oob_request, sm_sc_oob_random, 16, &sm_handle_random_result_oob, NULL);
5409     return 0;
5410 }
5411 #endif
5412 
5413 /**
5414  * @brief Get Identity Resolving state
5415  * @param con_handle
5416  * @return irk_lookup_state_t
5417  */
5418 irk_lookup_state_t sm_identity_resolving_state(hci_con_handle_t con_handle){
5419     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5420     if (!sm_conn) return IRK_LOOKUP_IDLE;
5421     return sm_conn->sm_irk_lookup_state;
5422 }
5423 
5424 /**
5425  * @brief Identify device in LE Device DB
5426  * @param handle
5427  * @return index from le_device_db or -1 if not found/identified
5428  */
5429 int sm_le_device_index(hci_con_handle_t con_handle ){
5430     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5431     if (!sm_conn) return -1;
5432     return sm_conn->sm_le_db_index;
5433 }
5434 
5435 uint8_t sm_get_ltk(hci_con_handle_t con_handle, sm_key_t ltk){
5436     hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
5437     if (hci_connection == NULL){
5438         return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
5439     }
5440     if (hci_connection->link_key_type == 0){
5441         return ERROR_CODE_PIN_OR_KEY_MISSING;
5442     }
5443     memcpy(ltk, hci_connection->link_key, 16);
5444     return ERROR_CODE_SUCCESS;
5445 }
5446 
5447 static int gap_random_address_type_requires_updates(void){
5448     switch (gap_random_adress_type){
5449         case GAP_RANDOM_ADDRESS_TYPE_OFF:
5450         case GAP_RANDOM_ADDRESS_TYPE_STATIC:
5451             return 0;
5452         default:
5453             return 1;
5454     }
5455 }
5456 
5457 static uint8_t own_address_type(void){
5458     switch (gap_random_adress_type){
5459         case GAP_RANDOM_ADDRESS_TYPE_OFF:
5460             return BD_ADDR_TYPE_LE_PUBLIC;
5461         default:
5462             return BD_ADDR_TYPE_LE_RANDOM;
5463     }
5464 }
5465 
5466 // GAP LE API
5467 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
5468     gap_random_address_update_stop();
5469     gap_random_adress_type = random_address_type;
5470     hci_le_set_own_address_type(own_address_type());
5471     if (!gap_random_address_type_requires_updates()) return;
5472     gap_random_address_update_start();
5473     gap_random_address_trigger();
5474 }
5475 
5476 gap_random_address_type_t gap_random_address_get_mode(void){
5477     return gap_random_adress_type;
5478 }
5479 
5480 void gap_random_address_set_update_period(int period_ms){
5481     gap_random_adress_update_period = period_ms;
5482     if (!gap_random_address_type_requires_updates()) return;
5483     gap_random_address_update_stop();
5484     gap_random_address_update_start();
5485 }
5486 
5487 void gap_random_address_set(const bd_addr_t addr){
5488     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC);
5489     (void)memcpy(sm_random_address, addr, 6);
5490     // assert msb bits are set to '11'
5491     sm_random_address[0] |= 0xc0;
5492     hci_le_random_address_set(sm_random_address);
5493 }
5494 
5495 #ifdef ENABLE_LE_PERIPHERAL
5496 /*
5497  * @brief Set Advertisement Paramters
5498  * @param adv_int_min
5499  * @param adv_int_max
5500  * @param adv_type
5501  * @param direct_address_type
5502  * @param direct_address
5503  * @param channel_map
5504  * @param filter_policy
5505  *
5506  * @note own_address_type is used from gap_random_address_set_mode
5507  */
5508 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
5509     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
5510     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type,
5511         direct_address_typ, direct_address, channel_map, filter_policy);
5512 }
5513 #endif
5514 
5515 bool gap_reconnect_security_setup_active(hci_con_handle_t con_handle){
5516     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
5517      // wrong connection
5518     if (!sm_conn) return false;
5519     // already encrypted
5520     if (sm_conn->sm_connection_encrypted) return false;
5521     // irk status?
5522     switch(sm_conn->sm_irk_lookup_state){
5523         case IRK_LOOKUP_FAILED:
5524             // done, cannot setup encryption
5525             return false;
5526         case IRK_LOOKUP_SUCCEEDED:
5527             break;
5528         default:
5529             // IR Lookup pending
5530             return true;
5531     }
5532     // IRK Lookup Succeeded, re-encryption should be initiated. When done, state gets reset or indicates failure
5533     if (sm_conn->sm_engine_state == SM_GENERAL_REENCRYPTION_FAILED) return false;
5534     if (sm_conn->sm_role != 0){
5535         return sm_conn->sm_engine_state != SM_RESPONDER_IDLE;
5536     } else {
5537         return sm_conn->sm_engine_state != SM_INITIATOR_CONNECTED;
5538     }
5539 }
5540 
5541 void sm_set_secure_connections_only_mode(bool enable){
5542 #ifdef ENABLE_LE_SECURE_CONNECTIONS
5543     sm_sc_only_mode = enable;
5544 #else
5545     // SC Only mode not possible without support for SC
5546     btstack_assert(enable == false);
5547 #endif
5548 }
5549 
5550 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && defined (ENABLE_LE_SECURE_CONNECTION_DEBUG_KEY)
5551 void sm_test_enable_secure_connections_debug_keys(void) {
5552     log_info("Enable LE Secure Connection Debug Keys for testing");
5553     sm_sc_debug_keys_enabled = true;
5554     // set debug key
5555     sm_ec_generate_new_key();
5556 }
5557 #endif
5558 
5559 const uint8_t * gap_get_persistent_irk(void){
5560     return sm_persistent_irk;
5561 }
5562 
5563 void gap_delete_bonding(bd_addr_type_t address_type, bd_addr_t address){
5564     int index = sm_le_device_db_index_lookup(address_type, address);
5565     if (index >= 0){
5566         sm_remove_le_device_db_entry(index);
5567     }
5568 }
5569