1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "cycling_power_service_server.c" 39 40 41 #include "bluetooth.h" 42 #include "btstack_defines.h" 43 #include "bluetooth_data_types.h" 44 #include "btstack_event.h" 45 #include "ble/att_db.h" 46 #include "ble/att_server.h" 47 #include "btstack_util.h" 48 #include "bluetooth_gatt.h" 49 #include "btstack_debug.h" 50 #include "l2cap.h" 51 #include "hci.h" 52 53 #include "ble/gatt-service/cycling_power_service_server.h" 54 55 #define CYCLING_POWER_MAX_BROACAST_MSG_SIZE 31 56 #define CONTROL_POINT_PROCEDURE_TIMEOUT_MS 30 57 #define CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED 0xFFFF 58 59 typedef enum { 60 CP_MASK_BIT_PEDAL_POWER_BALANCE = 0, 61 CP_MASK_BIT_ACCUMULATED_TORQUE, 62 CP_MASK_BIT_WHEEL_REVOLUTION_DATA, 63 CP_MASK_BIT_CRANK_REVOLUTION_DATA, 64 CP_MASK_BIT_EXTREME_MAGNITUDES, 65 CP_MASK_BIT_EXTREME_ANGLES, 66 CP_MASK_BIT_TOP_DEAD_SPOT_ANGLE, 67 CP_MASK_BIT_BOTTOM_DEAD_SPOT_ANGLE, 68 CP_MASK_BIT_ACCUMULATED_ENERGY, 69 CP_MASK_BIT_RESERVED 70 } cycling_power_mask_bit_t; 71 72 typedef enum { 73 CP_OPCODE_IDLE = 0, 74 CP_OPCODE_SET_CUMULATIVE_VALUE, 75 CP_OPCODE_UPDATE_SENSOR_LOCATION, 76 CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS, 77 CP_OPCODE_SET_CRANK_LENGTH, 78 CP_OPCODE_REQUEST_CRANK_LENGTH, 79 CP_OPCODE_SET_CHAIN_LENGTH, 80 CP_OPCODE_REQUEST_CHAIN_LENGTH, 81 CP_OPCODE_SET_CHAIN_WEIGHT, 82 CP_OPCODE_REQUEST_CHAIN_WEIGHT, 83 CP_OPCODE_SET_SPAN_LENGTH, 84 CP_OPCODE_REQUEST_SPAN_LENGTH, 85 CP_OPCODE_START_OFFSET_COMPENSATION, 86 CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT, 87 CP_OPCODE_REQUEST_SAMPLING_RATE, 88 CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE, 89 CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION, 90 CP_OPCODE_RESPONSE_CODE = 32 91 } cycling_power_opcode_t; 92 93 typedef enum { 94 CP_RESPONSE_VALUE_SUCCESS = 1, 95 CP_RESPONSE_VALUE_OP_CODE_NOT_SUPPORTED, 96 CP_RESPONSE_VALUE_INVALID_PARAMETER, 97 CP_RESPONSE_VALUE_OPERATION_FAILED, 98 CP_RESPONSE_VALUE_NOT_AVAILABLE, 99 CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE 100 } cycling_power_response_value_t; 101 102 typedef enum { 103 CP_CONNECTION_INTERVAL_STATUS_NONE = 0, 104 CP_CONNECTION_INTERVAL_STATUS_RECEIVED, 105 CP_CONNECTION_INTERVAL_STATUS_ACCEPTED, 106 CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE, 107 CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE, 108 CP_CONNECTION_INTERVAL_STATUS_REJECTED 109 } cycling_power_con_interval_status_t; 110 111 typedef struct { 112 hci_con_handle_t con_handle; 113 // GATT connection management 114 uint16_t con_interval; 115 uint16_t con_interval_min; 116 uint16_t con_interval_max; 117 cycling_power_con_interval_status_t con_interval_status; 118 119 // Cycling Power Measurement 120 uint16_t measurement_value_handle; 121 int16_t instantaneous_power_watt; 122 123 cycling_power_pedal_power_balance_reference_t pedal_power_balance_reference; 124 uint8_t pedal_power_balance_percentage; // percentage, resolution 1/2, 125 // If the sensor provides the power balance referenced to the left pedal, 126 // the power balance is calculated as [LeftPower/(LeftPower + RightPower)]*100 in units of percent 127 128 cycling_power_torque_source_t torque_source; 129 uint16_t accumulated_torque_m; // meters, resolution 1/32, 130 // The Accumulated Torque value may decrease 131 // wheel revolution data: 132 uint32_t cumulative_wheel_revolutions; // CANNOT roll over 133 uint16_t last_wheel_event_time_s; // seconds, resolution 1/2048 134 // crank revolution data: 135 uint16_t cumulative_crank_revolutions; 136 uint16_t last_crank_event_time_s; // seconds, resolution 1/1024 137 // extreme force magnitudes 138 int16_t maximum_force_magnitude_newton; 139 int16_t minimum_force_magnitude_newton; 140 int16_t maximum_torque_magnitude_newton_m; // newton meters, resolution 1/32 141 int16_t minimum_torque_magnitude_newton_m; // newton meters, resolution 1/32 142 // extreme angles 143 uint16_t maximum_angle_deg; // 12bit, degrees 144 uint16_t minimum_angle_deg; // 12bit, degrees, concatenated with previous into 3 octets 145 // i.e. if the Maximum Angle is 0xABC and the Minimum Angle is 0x123, the transmitted value is 0x123ABC. 146 uint16_t top_dead_spot_angle_deg; 147 uint16_t bottom_dead_spot_angle_deg; // The Bottom Dead Spot Angle field represents the crank angle when the value of the Instantaneous Power value becomes negative. 148 uint16_t accumulated_energy_kJ; // kilojoules; CANNOT roll over 149 150 // uint8_t offset_compensation; 151 152 // CP Measurement Notification (Client Characteristic Configuration) 153 uint16_t measurement_client_configuration_descriptor_handle; 154 uint16_t measurement_client_configuration_descriptor_notify; 155 btstack_context_callback_registration_t measurement_notify_callback; 156 157 // CP Measurement Broadcast (Server Characteristic Configuration) 158 uint16_t measurement_server_configuration_descriptor_handle; 159 uint16_t measurement_server_configuration_descriptor_broadcast; 160 btstack_context_callback_registration_t measurement_broadcast_callback; 161 162 // Cycling Power Feature 163 uint16_t feature_value_handle; 164 uint32_t feature_flags; // see cycling_power_feature_flag_t 165 uint16_t masked_measurement_flags; 166 uint16_t default_measurement_flags; 167 168 // Sensor Location 169 uint16_t sensor_location_value_handle; 170 cycling_power_sensor_location_t sensor_location; // see cycling_power_sensor_location_t 171 cycling_power_sensor_location_t * supported_sensor_locations; 172 uint16_t num_supported_sensor_locations; 173 uint16_t crank_length_mm; // resolution 1/2 mm 174 uint16_t chain_length_mm; // resolution 1 mm 175 uint16_t chain_weight_g; // resolution 1 gram 176 uint16_t span_length_mm; // resolution 1 mm 177 178 gatt_date_time_t factory_calibration_date; 179 180 uint8_t sampling_rate_hz; // resolution 1 Herz 181 182 int16_t current_force_magnitude_newton; 183 int16_t current_torque_magnitude_newton_m; // newton meters, resolution 1/32 184 uint16_t manufacturer_company_id; 185 uint8_t num_manufacturer_specific_data; 186 uint8_t * manufacturer_specific_data; 187 188 // Cycling Power Vector 189 uint16_t vector_value_handle; 190 uint16_t vector_cumulative_crank_revolutions; 191 uint16_t vector_last_crank_event_time_s; // seconds, resolution 1/1024 192 uint16_t vector_first_crank_measurement_angle_deg; 193 int16_t * vector_instantaneous_force_magnitude_newton_array; // newton 194 int force_magnitude_count; 195 int16_t * vector_instantaneous_torque_magnitude_newton_per_m_array; // newton per meter, resolution 1/32 196 int torque_magnitude_count; 197 cycling_power_instantaneous_measurement_direction_t vector_instantaneous_measurement_direction; 198 199 // CP Vector Notification (Client Characteristic Configuration) 200 uint16_t vector_client_configuration_descriptor_handle; 201 uint16_t vector_client_configuration_descriptor_notify; 202 btstack_context_callback_registration_t vector_notify_callback; 203 204 // CP Control Point 205 uint16_t control_point_value_handle; 206 // CP Control Point Indication (Client Characteristic Configuration) 207 uint16_t control_point_client_configuration_descriptor_handle; 208 uint16_t control_point_client_configuration_descriptor_indicate; 209 btstack_context_callback_registration_t control_point_indicate_callback; 210 211 cycling_power_opcode_t request_opcode; 212 cycling_power_response_value_t response_value; 213 214 btstack_packet_handler_t calibration_callback; 215 uint8_t w4_indication_complete; 216 } cycling_power_t; 217 218 static att_service_handler_t cycling_power_service; 219 static cycling_power_t cycling_power; 220 static btstack_packet_callback_registration_t hci_event_callback_registration; 221 222 static uint16_t cycling_power_service_read_callback(hci_con_handle_t con_handle, uint16_t attribute_handle, uint16_t offset, uint8_t * buffer, uint16_t buffer_size){ 223 UNUSED(con_handle); 224 UNUSED(attribute_handle); 225 UNUSED(offset); 226 cycling_power_t * instance = &cycling_power; 227 228 if (attribute_handle == instance->measurement_client_configuration_descriptor_handle){ 229 if (buffer && (buffer_size >= 2)){ 230 little_endian_store_16(buffer, 0, instance->measurement_client_configuration_descriptor_notify); 231 } 232 return 2; 233 } 234 235 if (attribute_handle == instance->measurement_server_configuration_descriptor_handle){ 236 if (buffer && (buffer_size >= 2)){ 237 little_endian_store_16(buffer, 0, instance->measurement_server_configuration_descriptor_broadcast); 238 } 239 return 2; 240 } 241 242 if (attribute_handle == instance->vector_client_configuration_descriptor_handle){ 243 if (buffer && (buffer_size >= 2)){ 244 little_endian_store_16(buffer, 0, instance->vector_client_configuration_descriptor_notify); 245 } 246 return 2; 247 } 248 249 if (attribute_handle == instance->control_point_client_configuration_descriptor_handle){ 250 if (buffer && (buffer_size >= 2)){ 251 little_endian_store_16(buffer, 0, instance->control_point_client_configuration_descriptor_indicate); 252 } 253 return 2; 254 } 255 256 if (attribute_handle == instance->feature_value_handle){ 257 if (buffer && (buffer_size >= 4)){ 258 little_endian_store_32(buffer, 0, instance->feature_flags); 259 } 260 return 4; 261 } 262 263 if (attribute_handle == instance->sensor_location_value_handle){ 264 if (buffer && (buffer_size >= 1)){ 265 buffer[0] = instance->sensor_location; 266 } 267 return 1; 268 } 269 return 0; 270 } 271 272 static int has_feature(cycling_power_feature_flag_t feature){ 273 cycling_power_t * instance = &cycling_power; 274 return (instance->feature_flags & (1 << feature)) != 0; 275 } 276 277 static int cycling_power_vector_instantaneous_measurement_direction(void){ 278 cycling_power_t * instance = &cycling_power; 279 return instance->vector_instantaneous_measurement_direction; 280 } 281 282 static uint16_t cycling_power_service_default_measurement_flags(void){ 283 cycling_power_t * instance = &cycling_power; 284 uint16_t measurement_flags = 0; 285 uint8_t flag[] = { 286 (uint8_t) has_feature(CP_FEATURE_FLAG_PEDAL_POWER_BALANCE_SUPPORTED), 287 (uint8_t) has_feature(CP_FEATURE_FLAG_PEDAL_POWER_BALANCE_SUPPORTED) && instance->pedal_power_balance_reference, 288 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_TORQUE_SUPPORTED), 289 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_TORQUE_SUPPORTED) && instance->torque_source, 290 (uint8_t) has_feature(CP_FEATURE_FLAG_WHEEL_REVOLUTION_DATA_SUPPORTED), 291 (uint8_t) has_feature(CP_FEATURE_FLAG_CRANK_REVOLUTION_DATA_SUPPORTED), 292 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE), 293 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE), 294 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_ANGLES_SUPPORTED), 295 (uint8_t) has_feature(CP_FEATURE_FLAG_TOP_AND_BOTTOM_DEAD_SPOT_ANGLE_SUPPORTED), 296 (uint8_t) has_feature(CP_FEATURE_FLAG_TOP_AND_BOTTOM_DEAD_SPOT_ANGLE_SUPPORTED), 297 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_ENERGY_SUPPORTED), 298 (uint8_t) has_feature(CP_FEATURE_FLAG_OFFSET_COMPENSATION_INDICATOR_SUPPORTED) 299 }; 300 301 int i; 302 for (i = CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT; i <= CP_MEASUREMENT_FLAG_OFFSET_COMPENSATION_INDICATOR; i++){ 303 measurement_flags |= flag[i] << i; 304 } 305 306 return measurement_flags; 307 } 308 309 static uint16_t cycling_power_service_get_measurement_flags(cycling_power_t * instance){ 310 if (!instance) return 0; 311 if (instance->masked_measurement_flags != CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED){ 312 return instance->masked_measurement_flags; 313 } 314 if (instance->default_measurement_flags == CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED){ 315 instance->default_measurement_flags = cycling_power_service_default_measurement_flags(); 316 } 317 return instance->default_measurement_flags; 318 } 319 320 321 uint16_t cycling_power_service_measurement_flags(void){ 322 cycling_power_t * instance = &cycling_power; 323 return cycling_power_service_get_measurement_flags(instance); 324 } 325 326 uint8_t cycling_power_service_vector_flags(void){ 327 uint8_t vector_flags = 0; 328 uint8_t flag[] = { 329 (uint8_t )has_feature(CP_FEATURE_FLAG_CRANK_REVOLUTION_DATA_SUPPORTED), 330 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_ANGLES_SUPPORTED), 331 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE), 332 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE), 333 (uint8_t )has_feature(CP_FEATURE_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION_SUPPORTED) && cycling_power_vector_instantaneous_measurement_direction() 334 }; 335 336 int i; 337 for (i = CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT; i <= CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION; i++){ 338 vector_flags |= flag[i] << i; 339 } 340 return vector_flags; 341 } 342 343 static void cycling_power_service_vector_can_send_now(void * context){ 344 cycling_power_t * instance = (cycling_power_t *) context; 345 if (!instance){ 346 log_error("cycling_power_service_measurement_can_send_now: instance is null"); 347 return; 348 } 349 uint8_t value[50]; 350 uint8_t vector_flags = cycling_power_service_vector_flags(); 351 int pos = 0; 352 353 value[pos++] = vector_flags; 354 int i; 355 for (i = CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT; i <= CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION; i++){ 356 if ((vector_flags & (1 << i)) == 0) continue; 357 switch ((cycling_power_vector_flag_t) i){ 358 case CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 359 little_endian_store_16(value, pos, instance->cumulative_crank_revolutions); 360 pos += 2; 361 little_endian_store_16(value, pos, instance->last_crank_event_time_s); 362 pos += 2; 363 break; 364 case CP_VECTOR_FLAG_INSTANTANEOUS_FORCE_MAGNITUDE_ARRAY_PRESENT:{ 365 uint16_t att_mtu = att_server_get_mtu(instance->con_handle); 366 uint16_t bytes_left = 0; 367 if (att_mtu > (pos + 3)){ 368 bytes_left = btstack_min(sizeof(value), att_mtu - 3 - pos); 369 } 370 while ((bytes_left > 2) && instance->force_magnitude_count){ 371 little_endian_store_16(value, pos, instance->vector_instantaneous_force_magnitude_newton_array[0]); 372 pos += 2; 373 bytes_left -= 2; 374 instance->vector_instantaneous_force_magnitude_newton_array++; 375 instance->force_magnitude_count--; 376 } 377 break; 378 } 379 case CP_VECTOR_FLAG_INSTANTANEOUS_TORQUE_MAGNITUDE_ARRAY_PRESENT:{ 380 uint16_t att_mtu = att_server_get_mtu(instance->con_handle); 381 uint16_t bytes_left = 0; 382 if (att_mtu > (pos + 3)){ 383 bytes_left = btstack_min(sizeof(value), att_mtu - 3 - pos); 384 } 385 386 while ((bytes_left > 2) && instance->torque_magnitude_count){ 387 little_endian_store_16(value, pos, instance->vector_instantaneous_torque_magnitude_newton_per_m_array[0]); 388 pos += 2; 389 bytes_left -= 2; 390 instance->vector_instantaneous_torque_magnitude_newton_per_m_array++; 391 instance->torque_magnitude_count--; 392 } 393 break; 394 } 395 case CP_VECTOR_FLAG_FIRST_CRANK_MEASUREMENT_ANGLE_PRESENT: 396 // printf("CP_VECTOR_FLAG_FIRST_CRANK_MEASUREMENT_ANGLE_PRESENT \n"); 397 little_endian_store_16(value, pos, instance->vector_first_crank_measurement_angle_deg); 398 pos += 2; 399 break; 400 case CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION: 401 break; 402 default: 403 break; 404 } 405 } 406 407 att_server_notify(instance->con_handle, instance->vector_value_handle, &value[0], pos); 408 } 409 410 static int cycling_power_measurement_flag_value_size(cycling_power_measurement_flag_t flag){ 411 switch (flag){ 412 case CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT: 413 return 1; 414 case CP_MEASUREMENT_FLAG_WHEEL_REVOLUTION_DATA_PRESENT: 415 return 6; 416 case CP_MEASUREMENT_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 417 case CP_MEASUREMENT_FLAG_EXTREME_FORCE_MAGNITUDES_PRESENT: 418 case CP_MEASUREMENT_FLAG_EXTREME_TORQUE_MAGNITUDES_PRESENT: 419 return 4; 420 case CP_MEASUREMENT_FLAG_EXTREME_ANGLES_PRESENT: 421 return 3; 422 case CP_MEASUREMENT_FLAG_ACCUMULATED_TORQUE_PRESENT: 423 case CP_MEASUREMENT_FLAG_TOP_DEAD_SPOT_ANGLE_PRESENT: 424 case CP_MEASUREMENT_FLAG_BOTTOM_DEAD_SPOT_ANGLE_PRESENT: 425 case CP_MEASUREMENT_FLAG_ACCUMULATED_ENERGY_PRESENT: 426 return 2; 427 default: 428 return 0; 429 } 430 } 431 432 static int cycling_power_store_measurement_flag_value(cycling_power_t * instance, cycling_power_measurement_flag_t flag, uint8_t * value){ 433 if (!instance) return 0; 434 435 int pos = 0; 436 switch (flag){ 437 case CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT: 438 value[pos++] = instance->pedal_power_balance_percentage; 439 break; 440 case CP_MEASUREMENT_FLAG_ACCUMULATED_TORQUE_PRESENT: 441 little_endian_store_16(value, pos, instance->accumulated_torque_m); 442 pos += 2; 443 break; 444 case CP_MEASUREMENT_FLAG_WHEEL_REVOLUTION_DATA_PRESENT: 445 little_endian_store_32(value, pos, instance->cumulative_wheel_revolutions); 446 pos += 4; 447 little_endian_store_16(value, pos, instance->last_wheel_event_time_s); 448 pos += 2; 449 break; 450 case CP_MEASUREMENT_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 451 little_endian_store_16(value, pos, instance->cumulative_crank_revolutions); 452 pos += 2; 453 little_endian_store_16(value, pos, instance->last_crank_event_time_s); 454 pos += 2; 455 break; 456 case CP_MEASUREMENT_FLAG_EXTREME_FORCE_MAGNITUDES_PRESENT: 457 little_endian_store_16(value, pos, (uint16_t)instance->maximum_force_magnitude_newton); 458 pos += 2; 459 little_endian_store_16(value, pos, (uint16_t)instance->minimum_force_magnitude_newton); 460 pos += 2; 461 break; 462 case CP_MEASUREMENT_FLAG_EXTREME_TORQUE_MAGNITUDES_PRESENT: 463 little_endian_store_16(value, pos, (uint16_t)instance->maximum_torque_magnitude_newton_m); 464 pos += 2; 465 little_endian_store_16(value, pos, (uint16_t)instance->minimum_torque_magnitude_newton_m); 466 pos += 2; 467 break; 468 case CP_MEASUREMENT_FLAG_EXTREME_ANGLES_PRESENT: 469 little_endian_store_24(value, pos, (instance->maximum_angle_deg << 12) | instance->minimum_angle_deg); 470 pos += 3; 471 break; 472 case CP_MEASUREMENT_FLAG_TOP_DEAD_SPOT_ANGLE_PRESENT: 473 little_endian_store_16(value, pos, (uint16_t)instance->top_dead_spot_angle_deg); 474 pos += 2; 475 break; 476 case CP_MEASUREMENT_FLAG_BOTTOM_DEAD_SPOT_ANGLE_PRESENT: 477 little_endian_store_16(value, pos, (uint16_t)instance->bottom_dead_spot_angle_deg); 478 pos += 2; 479 break; 480 case CP_MEASUREMENT_FLAG_ACCUMULATED_ENERGY_PRESENT: 481 little_endian_store_16(value, pos, (uint16_t)instance->accumulated_energy_kJ); 482 pos += 2; 483 break; 484 default: 485 break; 486 } 487 return pos; 488 } 489 490 491 static int cycling_power_store_measurement(cycling_power_t * instance, uint8_t * value, uint16_t max_value_size){ 492 if (max_value_size < 4) return 0; 493 if (!instance) return 0; 494 495 uint16_t measurement_flags = cycling_power_service_get_measurement_flags(instance); 496 int pos = 0; 497 little_endian_store_16(value, 0, measurement_flags); 498 pos += 2; 499 little_endian_store_16(value, 2, instance->instantaneous_power_watt); 500 pos += 2; 501 int flag_index; 502 uint16_t bytes_left = max_value_size - pos; 503 for (flag_index = 0; flag_index < CP_MEASUREMENT_FLAG_RESERVED; flag_index++){ 504 if ((measurement_flags & (1 << flag_index)) == 0) continue; 505 cycling_power_measurement_flag_t flag = (cycling_power_measurement_flag_t) flag_index; 506 uint16_t value_size = cycling_power_measurement_flag_value_size(flag); 507 if (value_size > bytes_left ) return pos; 508 cycling_power_store_measurement_flag_value(instance, flag, &value[pos]); 509 pos += value_size; 510 bytes_left -= value_size; 511 } 512 return pos; 513 } 514 515 int cycling_power_get_measurement_adv(uint16_t adv_interval, uint8_t * broadcast_adv, uint16_t max_value_size){ 516 if (max_value_size < 12) return 0; 517 cycling_power_t * instance = &cycling_power; 518 int pos = 0; 519 // adv flags 520 broadcast_adv[pos++] = 2; 521 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_FLAGS; 522 broadcast_adv[pos++] = 0x4; 523 524 // adv interval 525 broadcast_adv[pos++] = 3; 526 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_ADVERTISING_INTERVAL; 527 little_endian_store_16(broadcast_adv, pos, adv_interval); 528 pos += 2; 529 // 530 int value_len = cycling_power_store_measurement(instance, &broadcast_adv[pos+4], CYCLING_POWER_MAX_BROACAST_MSG_SIZE - (pos + 4)); 531 broadcast_adv[pos++] = 3 + value_len; 532 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_SERVICE_DATA_16_BIT_UUID; 533 little_endian_store_16(broadcast_adv, pos, ORG_BLUETOOTH_SERVICE_CYCLING_POWER); 534 pos += 2; 535 // value data already in place cycling_power_get_measurement 536 pos += value_len; 537 // set ADV_NONCONN_IND 538 return pos; 539 } 540 541 static void cycling_power_service_broadcast_can_send_now(void * context){ 542 cycling_power_t * instance = (cycling_power_t *) context; 543 if (!instance){ 544 log_error("cycling_power_service_broadcast_can_send_now: instance is null"); 545 return; 546 } 547 uint8_t value[CYCLING_POWER_MAX_BROACAST_MSG_SIZE]; 548 int pos = cycling_power_store_measurement(instance, &value[0], sizeof(value)); 549 att_server_notify(instance->con_handle, instance->measurement_value_handle, &value[0], pos); 550 } 551 552 static void cycling_power_service_measurement_can_send_now(void * context){ 553 cycling_power_t * instance = (cycling_power_t *) context; 554 if (!instance){ 555 log_error("cycling_power_service_measurement_can_send_now: instance is null"); 556 return; 557 } 558 uint8_t value[40]; 559 int pos = cycling_power_store_measurement(instance, &value[0], sizeof(value)); 560 att_server_notify(instance->con_handle, instance->measurement_value_handle, &value[0], pos); 561 } 562 563 static void cycling_power_service_response_can_send_now(void * context){ 564 cycling_power_t * instance = (cycling_power_t *) context; 565 if (!instance){ 566 log_error("cycling_power_service_response_can_send_now: instance is null"); 567 return; 568 } 569 570 if (instance->response_value == CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE){ 571 log_error("cycling_power_service_response_can_send_now: CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE"); 572 return; 573 } 574 575 // if (instance->w4_indication_complete){ 576 // printf("cycling_power_service_response_can_send_now: w4_indication_complete\n"); 577 // return; 578 // } 579 580 // use preprocessor instead of btstack_max to get compile-time constant 581 #if (CP_SENSOR_LOCATION_RESERVED > (CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE + 5)) 582 #define MAX_RESPONSE_PAYLOAD CP_SENSOR_LOCATION_RESERVED 583 #else 584 #define MAX_RESPONSE_PAYLOAD (CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE + 5) 585 #endif 586 587 uint8_t value[3 + MAX_RESPONSE_PAYLOAD]; 588 int pos = 0; 589 value[pos++] = CP_OPCODE_RESPONSE_CODE; 590 value[pos++] = instance->request_opcode; 591 value[pos++] = instance->response_value; 592 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 593 switch (instance->request_opcode){ 594 case CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS:{ 595 int i; 596 for (i=0; i<instance->num_supported_sensor_locations; i++){ 597 value[pos++] = instance->supported_sensor_locations[i]; 598 } 599 break; 600 } 601 case CP_OPCODE_REQUEST_CRANK_LENGTH: 602 little_endian_store_16(value, pos, instance->crank_length_mm); 603 pos += 2; 604 break; 605 case CP_OPCODE_REQUEST_CHAIN_LENGTH: 606 little_endian_store_16(value, pos, instance->chain_length_mm); 607 pos += 2; 608 break; 609 case CP_OPCODE_REQUEST_CHAIN_WEIGHT: 610 little_endian_store_16(value, pos, instance->chain_weight_g); 611 pos += 2; 612 break; 613 case CP_OPCODE_REQUEST_SPAN_LENGTH: 614 little_endian_store_16(value, pos, instance->span_length_mm); 615 pos += 2; 616 break; 617 case CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE: 618 little_endian_store_16(value, pos, instance->factory_calibration_date.year); 619 pos += 2; 620 value[pos++] = instance->factory_calibration_date.month; 621 value[pos++] = instance->factory_calibration_date.day; 622 value[pos++] = instance->factory_calibration_date.hours; 623 value[pos++] = instance->factory_calibration_date.minutes; 624 value[pos++] = instance->factory_calibration_date.seconds; 625 break; 626 case CP_OPCODE_REQUEST_SAMPLING_RATE: 627 value[pos++] = instance->sampling_rate_hz; 628 break; 629 case CP_OPCODE_START_OFFSET_COMPENSATION: 630 case CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION:{ 631 uint16_t calibrated_value = 0xffff; 632 if (has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED)){ 633 if (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE) { 634 calibrated_value = instance->current_force_magnitude_newton; 635 } else if (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE){ 636 calibrated_value = instance->current_torque_magnitude_newton_m; 637 } 638 } 639 640 if (calibrated_value == CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION){ 641 value[pos++] = calibrated_value; 642 // do not include manufacturer ID and data 643 break; 644 } else if (calibrated_value == CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS){ 645 value[pos++] = calibrated_value; 646 } else { 647 little_endian_store_16(value, pos, calibrated_value); 648 pos += 2; 649 650 } 651 652 if (instance->request_opcode == CP_OPCODE_START_OFFSET_COMPENSATION) break; 653 little_endian_store_16(value, pos, instance->manufacturer_company_id); 654 pos += 2; 655 int data_len = (instance->num_manufacturer_specific_data < CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE) ? instance->num_manufacturer_specific_data : (CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE - 1); 656 value[pos++] = data_len; 657 memcpy(&value[pos], instance->manufacturer_specific_data, data_len); 658 pos += data_len; 659 value[pos++] = 0; 660 break; 661 } 662 case CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT: 663 break; 664 default: 665 break; 666 } 667 } 668 uint8_t status = att_server_indicate(instance->con_handle, instance->control_point_value_handle, &value[0], pos); 669 if (status == ERROR_CODE_SUCCESS){ 670 instance->w4_indication_complete = 1; 671 // printf("cycling_power_service_response_can_send_now: set w4_indication_complete\n"); 672 // printf("can_send_now set opcode to CP_OPCODE_IDLE\n"); 673 instance->request_opcode = CP_OPCODE_IDLE; 674 } else { 675 log_error("can_send_now failed 0x%2x", status); 676 } 677 } 678 679 static int cycling_power_service_write_callback(hci_con_handle_t con_handle, uint16_t attribute_handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size){ 680 UNUSED(con_handle); 681 UNUSED(transaction_mode); 682 UNUSED(offset); 683 UNUSED(buffer_size); 684 int i; 685 cycling_power_sensor_location_t location; 686 cycling_power_t * instance = &cycling_power; 687 688 // printf("cycling_power_service_write_callback: attr handle 0x%02x\n", attribute_handle); 689 if (attribute_handle == instance->measurement_client_configuration_descriptor_handle){ 690 if (buffer_size < 2){ 691 return ATT_ERROR_INVALID_OFFSET; 692 } 693 instance->measurement_client_configuration_descriptor_notify = little_endian_read_16(buffer, 0); 694 instance->con_handle = con_handle; 695 log_info("cycling_power_service_write_callback: measurement enabled %d", instance->measurement_client_configuration_descriptor_notify); 696 return 0; 697 } 698 699 if (attribute_handle == instance->measurement_server_configuration_descriptor_handle){ 700 if (buffer_size < 2){ 701 return ATT_ERROR_INVALID_OFFSET; 702 } 703 instance->measurement_server_configuration_descriptor_broadcast = little_endian_read_16(buffer, 0); 704 instance->con_handle = con_handle; 705 uint8_t event[5]; 706 int index = 0; 707 event[index++] = HCI_EVENT_GATTSERVICE_META; 708 event[index++] = sizeof(event) - 2; 709 710 if (instance->measurement_server_configuration_descriptor_broadcast){ 711 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_START; 712 log_info("cycling_power_service_write_callback: start broadcast"); 713 } else { 714 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_STOP; 715 log_info("cycling_power_service_write_callback: stop broadcast"); 716 } 717 little_endian_store_16(event, index, con_handle); 718 index += 2; 719 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 720 return 0; 721 } 722 723 if (attribute_handle == instance->vector_client_configuration_descriptor_handle){ 724 if (buffer_size < 2){ 725 return ATT_ERROR_INVALID_OFFSET; 726 } 727 instance->con_handle = con_handle; 728 729 #ifdef ENABLE_ATT_DELAYED_RESPONSE 730 switch (instance->con_interval_status){ 731 case CP_CONNECTION_INTERVAL_STATUS_REJECTED: 732 return CYCLING_POWER_ERROR_CODE_INAPPROPRIATE_CONNECTION_PARAMETERS; 733 734 case CP_CONNECTION_INTERVAL_STATUS_ACCEPTED: 735 case CP_CONNECTION_INTERVAL_STATUS_RECEIVED: 736 if ((instance->con_interval > instance->con_interval_max) || (instance->con_interval < instance->con_interval_min)){ 737 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE; 738 gap_request_connection_parameter_update(instance->con_handle, instance->con_interval_min, instance->con_interval_max, 4, 100); // 15 ms, 4, 1s 739 return ATT_ERROR_WRITE_RESPONSE_PENDING; 740 } 741 instance->vector_client_configuration_descriptor_notify = little_endian_read_16(buffer, 0); 742 return 0; 743 default: 744 return ATT_ERROR_WRITE_RESPONSE_PENDING; 745 746 } 747 #endif 748 } 749 750 if (attribute_handle == instance->control_point_client_configuration_descriptor_handle){ 751 if (buffer_size < 2){ 752 return ATT_ERROR_INVALID_OFFSET; 753 } 754 instance->control_point_client_configuration_descriptor_indicate = little_endian_read_16(buffer, 0); 755 instance->con_handle = con_handle; 756 log_info("cycling_power_service_write_callback: indication enabled %d", instance->control_point_client_configuration_descriptor_indicate); 757 return 0; 758 } 759 760 if (attribute_handle == instance->feature_value_handle){ 761 if (buffer_size < 4){ 762 return ATT_ERROR_INVALID_OFFSET; 763 } 764 instance->feature_flags = little_endian_read_32(buffer, 0); 765 return 0; 766 } 767 768 if (attribute_handle == instance->control_point_value_handle){ 769 if (instance->control_point_client_configuration_descriptor_indicate == 0) return CYCLING_POWER_ERROR_CODE_CCC_DESCRIPTOR_IMPROPERLY_CONFIGURED; 770 if (instance->w4_indication_complete != 0){ 771 return CYCLING_POWER_ERROR_CODE_PROCEDURE_ALREADY_IN_PROGRESS; 772 } 773 int pos = 0; 774 instance->request_opcode = (cycling_power_opcode_t) buffer[pos++]; 775 instance->response_value = CP_RESPONSE_VALUE_OP_CODE_NOT_SUPPORTED; 776 777 switch (instance->request_opcode){ 778 case CP_OPCODE_SET_CUMULATIVE_VALUE: 779 if (!has_feature(CP_FEATURE_FLAG_WHEEL_REVOLUTION_DATA_SUPPORTED)) break; 780 instance->cumulative_wheel_revolutions = little_endian_read_32(buffer, pos); 781 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 782 break; 783 784 case CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS: 785 if (!has_feature(CP_FEATURE_FLAG_MULTIPLE_SENSOR_LOCATIONS_SUPPORTED)) break; 786 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 787 break; 788 789 case CP_OPCODE_UPDATE_SENSOR_LOCATION: 790 if (!has_feature(CP_FEATURE_FLAG_MULTIPLE_SENSOR_LOCATIONS_SUPPORTED)) break; 791 location = (cycling_power_sensor_location_t) buffer[pos]; 792 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 793 for (i=0; i<instance->num_supported_sensor_locations; i++){ 794 if (instance->supported_sensor_locations[i] == location){ 795 instance->sensor_location = location; 796 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 797 break; 798 } 799 } 800 break; 801 802 case CP_OPCODE_REQUEST_CRANK_LENGTH: 803 if (!has_feature(CP_FEATURE_FLAG_CRANK_LENGTH_ADJUSTMENT_SUPPORTED)) break; 804 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 805 break; 806 case CP_OPCODE_SET_CRANK_LENGTH: 807 if (!has_feature(CP_FEATURE_FLAG_CRANK_LENGTH_ADJUSTMENT_SUPPORTED)) break; 808 instance->crank_length_mm = little_endian_read_16(buffer, pos); 809 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 810 break; 811 812 case CP_OPCODE_REQUEST_CHAIN_LENGTH: 813 if (!has_feature(CP_FEATURE_FLAG_CHAIN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 814 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 815 break; 816 case CP_OPCODE_SET_CHAIN_LENGTH: 817 if (!has_feature(CP_FEATURE_FLAG_CHAIN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 818 instance->chain_length_mm = little_endian_read_16(buffer, pos); 819 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 820 break; 821 822 case CP_OPCODE_REQUEST_CHAIN_WEIGHT: 823 if (!has_feature(CP_FEATURE_FLAG_CHAIN_WEIGHT_ADJUSTMENT_SUPPORTED)) break; 824 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 825 break; 826 case CP_OPCODE_SET_CHAIN_WEIGHT: 827 if (!has_feature(CP_FEATURE_FLAG_CHAIN_WEIGHT_ADJUSTMENT_SUPPORTED)) break; 828 instance->chain_weight_g = little_endian_read_16(buffer, pos); 829 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 830 break; 831 832 case CP_OPCODE_REQUEST_SPAN_LENGTH: 833 if (!has_feature(CP_FEATURE_FLAG_SPAN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 834 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 835 break; 836 case CP_OPCODE_SET_SPAN_LENGTH: 837 if (!has_feature(CP_FEATURE_FLAG_SPAN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 838 instance->span_length_mm = little_endian_read_16(buffer, pos); 839 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 840 break; 841 842 case CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE: 843 if (!has_feature(CP_FEATURE_FLAG_FACTORY_CALIBRATION_DATE_SUPPORTED)) break; 844 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 845 break; 846 847 case CP_OPCODE_REQUEST_SAMPLING_RATE: 848 if (!instance->vector_value_handle) break; 849 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 850 break; 851 852 case CP_OPCODE_START_OFFSET_COMPENSATION: 853 case CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION: 854 if (!has_feature(CP_FEATURE_FLAG_OFFSET_COMPENSATION_SUPPORTED)){ 855 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 856 break; 857 } 858 if (has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && 859 ((has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE) || 860 (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE)) 861 ){ 862 // printf("start offset compensation procedure, enhanced %d\n", (instance->request_opcode == CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION)); 863 uint8_t event[7]; 864 int index = 0; 865 event[index++] = HCI_EVENT_GATTSERVICE_META; 866 event[index++] = sizeof(event) - 2; 867 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_START_CALIBRATION; 868 little_endian_store_16(event, index, con_handle); 869 index += 2; 870 event[index++] = has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE; 871 event[index++] = (instance->request_opcode == CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION); 872 instance->response_value = CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE; 873 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 874 return 0; 875 } 876 instance->current_force_magnitude_newton = 0xffff; 877 instance->current_torque_magnitude_newton_m = 0xffff; 878 break; 879 880 case CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT:{ 881 if (!has_feature(CP_FEATURE_FLAG_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT_MASKING_SUPPORTED)) break; 882 uint16_t mask_bitmap = little_endian_read_16(buffer, pos); 883 uint16_t masked_measurement_flags = instance->default_measurement_flags; 884 uint16_t index = 0; 885 886 for (i = 0; i < CP_MASK_BIT_RESERVED; i++){ 887 uint8_t clear_bit = (mask_bitmap & (1 << i)) ? 1 : 0; 888 889 masked_measurement_flags &= ~(clear_bit << index); 890 index++; 891 // following measurement flags have additional flag 892 switch ((cycling_power_mask_bit_t)i){ 893 case CP_MASK_BIT_PEDAL_POWER_BALANCE: 894 case CP_MASK_BIT_ACCUMULATED_TORQUE: 895 case CP_MASK_BIT_EXTREME_MAGNITUDES: 896 masked_measurement_flags &= ~(clear_bit << index); 897 index++; 898 break; 899 default: 900 break; 901 } 902 } 903 instance->masked_measurement_flags = masked_measurement_flags; 904 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 905 break; 906 } 907 default: 908 break; 909 } 910 911 if (instance->control_point_client_configuration_descriptor_indicate){ 912 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 913 instance->control_point_indicate_callback.context = (void*) instance; 914 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 915 } 916 return 0; 917 } 918 return 0; 919 } 920 921 static void packet_handler(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 922 UNUSED(channel); 923 UNUSED(size); 924 cycling_power_t * instance = &cycling_power; 925 uint8_t event_type = hci_event_packet_get_type(packet); 926 uint16_t con_handle; 927 928 if (packet_type != HCI_EVENT_PACKET) return; 929 switch (event_type){ 930 case HCI_EVENT_LE_META: 931 switch (hci_event_le_meta_get_subevent_code(packet)){ 932 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 933 instance->con_handle = hci_subevent_le_connection_complete_get_connection_handle(packet); 934 // print connection parameters (without using float operations) 935 instance->con_interval = hci_subevent_le_connection_complete_get_conn_interval(packet); 936 // printf("Initial Connection Interval: %u, %u.%02u ms\n", instance->con_interval, instance->con_interval * 125 / 100, 25 * (instance->con_interval & 3)); 937 // printf("Initial Connection Latency: %u\n", hci_subevent_le_connection_complete_get_conn_latency(packet)); 938 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_RECEIVED; 939 break; 940 case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE: 941 if (instance->con_interval_status != CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE) return; 942 943 if ((instance->con_interval > instance->con_interval_max) || (instance->con_interval < instance->con_interval_min)){ 944 instance->con_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet); 945 // printf("Updated Connection Interval: %u, %u.%02u ms\n", instance->con_interval, instance->con_interval * 125 / 100, 25 * (instance->con_interval & 3)); 946 // printf("Updated Connection Latency: %u\n", hci_subevent_le_connection_update_complete_get_conn_latency(packet)); 947 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_ACCEPTED; 948 } else { 949 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_REJECTED; 950 } 951 att_server_response_ready(l2cap_event_connection_parameter_update_response_get_handle(packet)); 952 break; 953 default: 954 break; 955 } 956 break; 957 case L2CAP_EVENT_CONNECTION_PARAMETER_UPDATE_RESPONSE: 958 if (instance->con_interval_status != CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE) return; 959 960 // printf("L2CAP Connection Parameter Update Complete, response: %x\n", l2cap_event_connection_parameter_update_response_get_result(packet)); 961 if (l2cap_event_connection_parameter_update_response_get_result(packet) == ERROR_CODE_SUCCESS){ 962 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE; 963 } else { 964 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_REJECTED; 965 att_server_response_ready(l2cap_event_connection_parameter_update_response_get_handle(packet)); 966 } 967 break; 968 969 case HCI_EVENT_DISCONNECTION_COMPLETE:{ 970 if (!instance) return; 971 con_handle = hci_event_disconnection_complete_get_connection_handle(packet); 972 if (con_handle == HCI_CON_HANDLE_INVALID) return; 973 974 instance->masked_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 975 instance->w4_indication_complete = 0; 976 977 uint8_t event[5]; 978 int index = 0; 979 event[index++] = HCI_EVENT_GATTSERVICE_META; 980 event[index++] = sizeof(event) - 2; 981 982 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_STOP; 983 little_endian_store_16(event, index, con_handle); 984 index += 2; 985 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 986 987 break; 988 } 989 case ATT_EVENT_HANDLE_VALUE_INDICATION_COMPLETE: 990 instance->w4_indication_complete = 0; 991 break; 992 default: 993 break; 994 } 995 } 996 997 void cycling_power_service_server_init(uint32_t feature_flags, 998 cycling_power_pedal_power_balance_reference_t reference, cycling_power_torque_source_t torque_source, 999 cycling_power_sensor_location_t * supported_sensor_locations, uint16_t num_supported_sensor_locations, 1000 cycling_power_sensor_location_t current_sensor_location){ 1001 1002 cycling_power_t * instance = &cycling_power; 1003 // TODO: remove hardcoded initialization 1004 instance->con_interval_min = 6; 1005 instance->con_interval_max = 6; 1006 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_NONE; 1007 instance->w4_indication_complete = 0; 1008 hci_event_callback_registration.callback = &packet_handler; 1009 hci_add_event_handler(&hci_event_callback_registration); 1010 l2cap_register_packet_handler(&packet_handler); 1011 1012 instance->sensor_location = current_sensor_location; 1013 instance->num_supported_sensor_locations = 0; 1014 if (supported_sensor_locations != NULL){ 1015 instance->num_supported_sensor_locations = num_supported_sensor_locations; 1016 instance->supported_sensor_locations = supported_sensor_locations; 1017 } 1018 1019 instance->feature_flags = feature_flags; 1020 instance->default_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 1021 instance->masked_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 1022 instance->pedal_power_balance_reference = reference; 1023 instance->torque_source = torque_source; 1024 1025 // get service handle range 1026 uint16_t start_handle = 0; 1027 uint16_t end_handle = 0xffff; 1028 int service_found = gatt_server_get_get_handle_range_for_service_with_uuid16(ORG_BLUETOOTH_SERVICE_CYCLING_POWER, &start_handle, &end_handle); 1029 if (!service_found){ 1030 log_error("no service found\n"); 1031 return; 1032 } 1033 // get CP Mesurement characteristic value handle and client configuration handle 1034 instance->measurement_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1035 instance->measurement_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1036 instance->measurement_server_configuration_descriptor_handle = gatt_server_get_server_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1037 1038 // get CP Feature characteristic value handle and client configuration handle 1039 instance->feature_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_FEATURE); 1040 // get CP Sensor Location characteristic value handle and client configuration handle 1041 instance->sensor_location_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_SENSOR_LOCATION); 1042 1043 // get CP Vector characteristic value handle and client configuration handle 1044 instance->vector_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_VECTOR); 1045 instance->vector_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_VECTOR); 1046 1047 // get Body Sensor Location characteristic value handle and client configuration handle 1048 instance->sensor_location_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_SENSOR_LOCATION); 1049 1050 // get SP Control Point characteristic value handle and client configuration handle 1051 instance->control_point_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_CONTROL_POINT); 1052 instance->control_point_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_CONTROL_POINT); 1053 1054 log_info("Measurement value handle 0x%02x", instance->measurement_value_handle); 1055 log_info("M. Client Cfg value handle 0x%02x", instance->measurement_client_configuration_descriptor_handle); 1056 log_info("M. Server Cfg value handle 0x%02x", instance->measurement_server_configuration_descriptor_handle); 1057 1058 log_info("Feature value handle 0x%02x", instance->feature_value_handle); 1059 log_info("Sensor location value handle 0x%02x", instance->sensor_location_value_handle); 1060 1061 log_info("Vector value handle 0x%02x", instance->vector_value_handle); 1062 log_info("Vector Cfg. value handle 0x%02x", instance->vector_client_configuration_descriptor_handle); 1063 1064 log_info("Control Point value handle 0x%02x", instance->control_point_value_handle); 1065 log_info("Control P. Cfg. value handle 0x%02x", instance->control_point_client_configuration_descriptor_handle); 1066 1067 cycling_power_service.start_handle = start_handle; 1068 cycling_power_service.end_handle = end_handle; 1069 cycling_power_service.read_callback = &cycling_power_service_read_callback; 1070 cycling_power_service.write_callback = &cycling_power_service_write_callback; 1071 cycling_power_service.packet_handler = &packet_handler; 1072 att_server_register_service_handler(&cycling_power_service); 1073 } 1074 1075 1076 void cycling_power_service_server_add_torque(int16_t torque_m){ 1077 cycling_power_t * instance = &cycling_power; 1078 instance->accumulated_torque_m += torque_m; 1079 } 1080 1081 void cycling_power_service_server_add_wheel_revolution(int32_t wheel_revolution, uint16_t wheel_event_time_s){ 1082 cycling_power_t * instance = &cycling_power; 1083 instance->last_wheel_event_time_s = wheel_event_time_s; 1084 if (wheel_revolution < 0){ 1085 if (instance->cumulative_wheel_revolutions > -wheel_revolution){ 1086 instance->cumulative_wheel_revolutions += wheel_revolution; 1087 } else { 1088 instance->cumulative_wheel_revolutions = 0; 1089 } 1090 } else { 1091 if (instance->cumulative_wheel_revolutions < (0xffffffff - wheel_revolution)){ 1092 instance->cumulative_wheel_revolutions += wheel_revolution; 1093 } else { 1094 instance->cumulative_wheel_revolutions = 0xffffffff; 1095 } 1096 } 1097 } 1098 1099 void cycling_power_service_server_add_crank_revolution(uint16_t crank_revolution, uint16_t crank_event_time_s){ 1100 cycling_power_t * instance = &cycling_power; 1101 instance->last_crank_event_time_s = crank_event_time_s; 1102 instance->cumulative_crank_revolutions += crank_revolution; 1103 } 1104 1105 void cycling_power_service_add_energy(uint16_t energy_kJ){ 1106 cycling_power_t * instance = &cycling_power; 1107 if (instance->accumulated_energy_kJ <= (0xffff - energy_kJ)){ 1108 instance->accumulated_energy_kJ += energy_kJ; 1109 } else { 1110 instance->accumulated_energy_kJ = 0xffff; 1111 } 1112 // printf("energy %d\n", instance->accumulated_energy_kJ); 1113 } 1114 1115 void cycling_power_service_server_set_instantaneous_power(int16_t instantaneous_power_watt){ 1116 cycling_power_t * instance = &cycling_power; 1117 instance->instantaneous_power_watt = instantaneous_power_watt; 1118 } 1119 1120 void cycling_power_service_server_set_pedal_power_balance(uint8_t pedal_power_balance_percentage){ 1121 cycling_power_t * instance = &cycling_power; 1122 instance->pedal_power_balance_percentage = pedal_power_balance_percentage; 1123 } 1124 1125 void cycling_power_service_server_set_force_magnitude_values(int force_magnitude_count, int16_t * force_magnitude_newton_array){ 1126 cycling_power_t * instance = &cycling_power; 1127 instance->force_magnitude_count = force_magnitude_count; 1128 instance->vector_instantaneous_force_magnitude_newton_array = force_magnitude_newton_array; 1129 } 1130 1131 void cycling_power_service_server_set_torque_magnitude_values(int torque_magnitude_count, int16_t * torque_magnitude_newton_array){ 1132 cycling_power_t * instance = &cycling_power; 1133 instance->torque_magnitude_count = torque_magnitude_count; 1134 instance->vector_instantaneous_torque_magnitude_newton_per_m_array = torque_magnitude_newton_array; 1135 } 1136 1137 void cycling_power_service_server_set_first_crank_measurement_angle(uint16_t first_crank_measurement_angle_deg){ 1138 cycling_power_t * instance = &cycling_power; 1139 instance->vector_first_crank_measurement_angle_deg = first_crank_measurement_angle_deg; 1140 } 1141 1142 void cycling_power_service_server_set_instantaneous_measurement_direction(cycling_power_instantaneous_measurement_direction_t direction){ 1143 cycling_power_t * instance = &cycling_power; 1144 instance->vector_instantaneous_measurement_direction = direction; 1145 } 1146 1147 void cycling_power_service_server_set_force_magnitude(int16_t min_force_magnitude_newton, int16_t max_force_magnitude_newton){ 1148 cycling_power_t * instance = &cycling_power; 1149 instance->minimum_force_magnitude_newton = min_force_magnitude_newton; 1150 instance->maximum_force_magnitude_newton = max_force_magnitude_newton; 1151 } 1152 1153 void cycling_power_service_server_set_torque_magnitude(int16_t min_torque_magnitude_newton, int16_t max_torque_magnitude_newton){ 1154 cycling_power_t * instance = &cycling_power; 1155 instance->minimum_torque_magnitude_newton_m = min_torque_magnitude_newton; 1156 instance->maximum_torque_magnitude_newton_m = max_torque_magnitude_newton; 1157 } 1158 1159 void cycling_power_service_server_set_angle(uint16_t min_angle_deg, uint16_t max_angle_deg){ 1160 cycling_power_t * instance = &cycling_power; 1161 instance->minimum_angle_deg = min_angle_deg; 1162 instance->maximum_angle_deg = max_angle_deg; 1163 } 1164 1165 void cycling_power_service_server_set_top_dead_spot_angle(uint16_t top_dead_spot_angle_deg){ 1166 cycling_power_t * instance = &cycling_power; 1167 instance->top_dead_spot_angle_deg = top_dead_spot_angle_deg; 1168 } 1169 1170 void cycling_power_service_server_set_bottom_dead_spot_angle(uint16_t bottom_dead_spot_angle_deg){ 1171 cycling_power_t * instance = &cycling_power; 1172 instance->bottom_dead_spot_angle_deg = bottom_dead_spot_angle_deg; 1173 } 1174 1175 static int gatt_date_is_valid(gatt_date_time_t date){ 1176 if ((date.year != 0) && ((date.year < 1582) || (date.year > 9999))) return 0; 1177 if ((date.month != 0) && (date.month > 12)) return 0; 1178 if ((date.day != 0) && (date.day > 31)) return 0; 1179 1180 if (date.hours > 23) return 0; 1181 if (date.minutes > 59) return 0; 1182 if (date.seconds > 59) return 0; 1183 return 1; 1184 } 1185 1186 int cycling_power_service_server_set_factory_calibration_date(gatt_date_time_t date){ 1187 if (!gatt_date_is_valid(date)) return 0; 1188 1189 cycling_power_t * instance = &cycling_power; 1190 instance->factory_calibration_date = date; 1191 return 1; 1192 } 1193 1194 void cycling_power_service_server_set_sampling_rate(uint8_t sampling_rate_hz){ 1195 cycling_power_t * instance = &cycling_power; 1196 instance->sampling_rate_hz = sampling_rate_hz; 1197 } 1198 1199 1200 void cycling_power_service_server_update_values(void){ 1201 cycling_power_t * instance = &cycling_power; 1202 1203 if (instance->measurement_server_configuration_descriptor_broadcast){ 1204 instance->measurement_broadcast_callback.callback = &cycling_power_service_broadcast_can_send_now; 1205 instance->measurement_broadcast_callback.context = (void*) instance; 1206 att_server_register_can_send_now_callback(&instance->measurement_broadcast_callback, instance->con_handle); 1207 } 1208 1209 if (instance->measurement_client_configuration_descriptor_notify){ 1210 instance->measurement_notify_callback.callback = &cycling_power_service_measurement_can_send_now; 1211 instance->measurement_notify_callback.context = (void*) instance; 1212 att_server_register_can_send_now_callback(&instance->measurement_notify_callback, instance->con_handle); 1213 } 1214 1215 if (instance->vector_client_configuration_descriptor_notify){ 1216 instance->vector_notify_callback.callback = &cycling_power_service_vector_can_send_now; 1217 instance->vector_notify_callback.context = (void*) instance; 1218 att_server_register_can_send_now_callback(&instance->vector_notify_callback, instance->con_handle); 1219 } 1220 } 1221 1222 void cycling_power_service_server_packet_handler(btstack_packet_handler_t callback){ 1223 if (callback == NULL){ 1224 log_error("cycling_power_service_server_packet_handler called with NULL callback"); 1225 return; 1226 } 1227 cycling_power_t * instance = &cycling_power; 1228 instance->calibration_callback = callback; 1229 } 1230 1231 void cycling_power_server_calibration_done(cycling_power_sensor_measurement_context_t measurement_type, uint16_t calibrated_value){ 1232 cycling_power_t * instance = &cycling_power; 1233 if (instance->response_value != CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE){ 1234 printf("cycling_power_server_calibration_done : CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE con_handle 0x%02x\n", instance->con_handle); 1235 return; 1236 } 1237 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 1238 1239 switch (measurement_type){ 1240 case CP_SENSOR_MEASUREMENT_CONTEXT_FORCE: 1241 instance->current_force_magnitude_newton = calibrated_value; 1242 break; 1243 case CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE: 1244 instance->current_torque_magnitude_newton_m = calibrated_value; 1245 break; 1246 default: 1247 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 1248 break; 1249 } 1250 1251 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 1252 switch (calibrated_value){ 1253 case CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION: 1254 case CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS: 1255 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1256 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1257 break; 1258 default: 1259 break; 1260 } 1261 } 1262 1263 if (instance->control_point_client_configuration_descriptor_indicate){ 1264 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 1265 instance->control_point_indicate_callback.context = (void*) instance; 1266 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 1267 } 1268 } 1269 1270 void cycling_power_server_enhanced_calibration_done(cycling_power_sensor_measurement_context_t measurement_type, 1271 uint16_t calibrated_value, uint16_t manufacturer_company_id, 1272 uint8_t num_manufacturer_specific_data, uint8_t * manufacturer_specific_data){ 1273 cycling_power_t * instance = &cycling_power; 1274 if (instance->response_value != CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE) return; 1275 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 1276 1277 switch (measurement_type){ 1278 case CP_SENSOR_MEASUREMENT_CONTEXT_FORCE: 1279 instance->current_force_magnitude_newton = calibrated_value; 1280 break; 1281 case CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE: 1282 instance->current_torque_magnitude_newton_m = calibrated_value; 1283 break; 1284 default: 1285 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 1286 break; 1287 } 1288 1289 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 1290 switch (calibrated_value){ 1291 case CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION: 1292 case CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS: 1293 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1294 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1295 break; 1296 default: 1297 break; 1298 } 1299 instance->manufacturer_company_id = manufacturer_company_id; 1300 instance->num_manufacturer_specific_data = num_manufacturer_specific_data; 1301 instance->manufacturer_specific_data = manufacturer_specific_data; 1302 } 1303 1304 if (instance->control_point_client_configuration_descriptor_indicate){ 1305 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 1306 instance->control_point_indicate_callback.context = (void*) instance; 1307 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 1308 } 1309 } 1310