1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN 24 * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "cycling_power_service_server.c" 39 40 41 #include "bluetooth.h" 42 #include "btstack_defines.h" 43 #include "bluetooth_data_types.h" 44 #include "btstack_event.h" 45 #include "ble/att_db.h" 46 #include "ble/att_server.h" 47 #include "btstack_util.h" 48 #include "bluetooth_gatt.h" 49 #include "btstack_debug.h" 50 #include "l2cap.h" 51 #include "hci.h" 52 53 #include "ble/gatt-service/cycling_power_service_server.h" 54 55 #define CYCLING_POWER_MAX_BROACAST_MSG_SIZE 31 56 #define CONTROL_POINT_PROCEDURE_TIMEOUT_MS 30 57 #define CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED 0xFFFF 58 59 typedef enum { 60 CP_MASK_BIT_PEDAL_POWER_BALANCE = 0, 61 CP_MASK_BIT_ACCUMULATED_TORQUE, 62 CP_MASK_BIT_WHEEL_REVOLUTION_DATA, 63 CP_MASK_BIT_CRANK_REVOLUTION_DATA, 64 CP_MASK_BIT_EXTREME_MAGNITUDES, 65 CP_MASK_BIT_EXTREME_ANGLES, 66 CP_MASK_BIT_TOP_DEAD_SPOT_ANGLE, 67 CP_MASK_BIT_BOTTOM_DEAD_SPOT_ANGLE, 68 CP_MASK_BIT_ACCUMULATED_ENERGY, 69 CP_MASK_BIT_RESERVED 70 } cycling_power_mask_bit_t; 71 72 typedef enum { 73 CP_OPCODE_IDLE = 0, 74 CP_OPCODE_SET_CUMULATIVE_VALUE, 75 CP_OPCODE_UPDATE_SENSOR_LOCATION, 76 CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS, 77 CP_OPCODE_SET_CRANK_LENGTH, 78 CP_OPCODE_REQUEST_CRANK_LENGTH, 79 CP_OPCODE_SET_CHAIN_LENGTH, 80 CP_OPCODE_REQUEST_CHAIN_LENGTH, 81 CP_OPCODE_SET_CHAIN_WEIGHT, 82 CP_OPCODE_REQUEST_CHAIN_WEIGHT, 83 CP_OPCODE_SET_SPAN_LENGTH, 84 CP_OPCODE_REQUEST_SPAN_LENGTH, 85 CP_OPCODE_START_OFFSET_COMPENSATION, 86 CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT, 87 CP_OPCODE_REQUEST_SAMPLING_RATE, 88 CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE, 89 CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION, 90 CP_OPCODE_RESPONSE_CODE = 32 91 } cycling_power_opcode_t; 92 93 typedef enum { 94 CP_RESPONSE_VALUE_SUCCESS = 1, 95 CP_RESPONSE_VALUE_OP_CODE_NOT_SUPPORTED, 96 CP_RESPONSE_VALUE_INVALID_PARAMETER, 97 CP_RESPONSE_VALUE_OPERATION_FAILED, 98 CP_RESPONSE_VALUE_NOT_AVAILABLE, 99 CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE 100 } cycling_power_response_value_t; 101 102 typedef enum { 103 CP_CONNECTION_INTERVAL_STATUS_NONE = 0, 104 CP_CONNECTION_INTERVAL_STATUS_RECEIVED, 105 CP_CONNECTION_INTERVAL_STATUS_ACCEPTED, 106 CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE, 107 CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE, 108 CP_CONNECTION_INTERVAL_STATUS_REJECTED 109 } cycling_power_con_interval_status_t; 110 111 typedef struct { 112 hci_con_handle_t con_handle; 113 // GATT connection management 114 uint16_t con_interval; 115 uint16_t con_interval_min; 116 uint16_t con_interval_max; 117 cycling_power_con_interval_status_t con_interval_status; 118 119 // Cycling Power Measurement 120 uint16_t measurement_value_handle; 121 int16_t instantaneous_power_watt; 122 123 cycling_power_pedal_power_balance_reference_t pedal_power_balance_reference; 124 uint8_t pedal_power_balance_percentage; // percentage, resolution 1/2, 125 // If the sensor provides the power balance referenced to the left pedal, 126 // the power balance is calculated as [LeftPower/(LeftPower + RightPower)]*100 in units of percent 127 128 cycling_power_torque_source_t torque_source; 129 uint16_t accumulated_torque_m; // meters, resolution 1/32, 130 // The Accumulated Torque value may decrease 131 // wheel revolution data: 132 uint32_t cumulative_wheel_revolutions; // CANNOT roll over 133 uint16_t last_wheel_event_time_s; // seconds, resolution 1/2048 134 // crank revolution data: 135 uint16_t cumulative_crank_revolutions; 136 uint16_t last_crank_event_time_s; // seconds, resolution 1/1024 137 // extreme force magnitudes 138 int16_t maximum_force_magnitude_newton; 139 int16_t minimum_force_magnitude_newton; 140 int16_t maximum_torque_magnitude_newton_m; // newton meters, resolution 1/32 141 int16_t minimum_torque_magnitude_newton_m; // newton meters, resolution 1/32 142 // extreme angles 143 uint16_t maximum_angle_deg; // 12bit, degrees 144 uint16_t minimum_angle_deg; // 12bit, degrees, concatenated with previous into 3 octets 145 // i.e. if the Maximum Angle is 0xABC and the Minimum Angle is 0x123, the transmitted value is 0x123ABC. 146 uint16_t top_dead_spot_angle_deg; 147 uint16_t bottom_dead_spot_angle_deg; // The Bottom Dead Spot Angle field represents the crank angle when the value of the Instantaneous Power value becomes negative. 148 uint16_t accumulated_energy_kJ; // kilojoules; CANNOT roll over 149 150 // uint8_t offset_compensation; 151 152 // CP Measurement Notification (Client Characteristic Configuration) 153 uint16_t measurement_client_configuration_descriptor_handle; 154 uint16_t measurement_client_configuration_descriptor_notify; 155 btstack_context_callback_registration_t measurement_notify_callback; 156 157 // CP Measurement Broadcast (Server Characteristic Configuration) 158 uint16_t measurement_server_configuration_descriptor_handle; 159 uint16_t measurement_server_configuration_descriptor_broadcast; 160 btstack_context_callback_registration_t measurement_broadcast_callback; 161 162 // Cycling Power Feature 163 uint16_t feature_value_handle; 164 uint32_t feature_flags; // see cycling_power_feature_flag_t 165 uint16_t masked_measurement_flags; 166 uint16_t default_measurement_flags; 167 168 // Sensor Location 169 uint16_t sensor_location_value_handle; 170 cycling_power_sensor_location_t sensor_location; // see cycling_power_sensor_location_t 171 cycling_power_sensor_location_t * supported_sensor_locations; 172 uint16_t num_supported_sensor_locations; 173 uint16_t crank_length_mm; // resolution 1/2 mm 174 uint16_t chain_length_mm; // resolution 1 mm 175 uint16_t chain_weight_g; // resolution 1 gram 176 uint16_t span_length_mm; // resolution 1 mm 177 178 gatt_date_time_t factory_calibration_date; 179 180 uint8_t sampling_rate_hz; // resolution 1 Herz 181 182 int16_t current_force_magnitude_newton; 183 int16_t current_torque_magnitude_newton_m; // newton meters, resolution 1/32 184 uint16_t manufacturer_company_id; 185 uint8_t num_manufacturer_specific_data; 186 uint8_t * manufacturer_specific_data; 187 188 // Cycling Power Vector 189 uint16_t vector_value_handle; 190 uint16_t vector_cumulative_crank_revolutions; 191 uint16_t vector_last_crank_event_time_s; // seconds, resolution 1/1024 192 uint16_t vector_first_crank_measurement_angle_deg; 193 int16_t * vector_instantaneous_force_magnitude_newton_array; // newton 194 int force_magnitude_count; 195 int16_t * vector_instantaneous_torque_magnitude_newton_per_m_array; // newton per meter, resolution 1/32 196 int torque_magnitude_count; 197 cycling_power_instantaneous_measurement_direction_t vector_instantaneous_measurement_direction; 198 199 // CP Vector Notification (Client Characteristic Configuration) 200 uint16_t vector_client_configuration_descriptor_handle; 201 uint16_t vector_client_configuration_descriptor_notify; 202 btstack_context_callback_registration_t vector_notify_callback; 203 204 // CP Control Point 205 uint16_t control_point_value_handle; 206 // CP Control Point Indication (Client Characteristic Configuration) 207 uint16_t control_point_client_configuration_descriptor_handle; 208 uint16_t control_point_client_configuration_descriptor_indicate; 209 btstack_context_callback_registration_t control_point_indicate_callback; 210 211 cycling_power_opcode_t request_opcode; 212 cycling_power_response_value_t response_value; 213 214 btstack_packet_handler_t calibration_callback; 215 uint8_t w4_indication_complete; 216 } cycling_power_t; 217 218 static att_service_handler_t cycling_power_service; 219 static cycling_power_t cycling_power; 220 static btstack_packet_callback_registration_t hci_event_callback_registration; 221 static btstack_packet_callback_registration_t l2cap_event_callback_registration; 222 223 static uint16_t cycling_power_service_read_callback(hci_con_handle_t con_handle, uint16_t attribute_handle, uint16_t offset, uint8_t * buffer, uint16_t buffer_size){ 224 UNUSED(con_handle); 225 UNUSED(attribute_handle); 226 UNUSED(offset); 227 cycling_power_t * instance = &cycling_power; 228 229 if (attribute_handle == instance->measurement_client_configuration_descriptor_handle){ 230 if (buffer && (buffer_size >= 2u)){ 231 little_endian_store_16(buffer, 0, instance->measurement_client_configuration_descriptor_notify); 232 } 233 return 2; 234 } 235 236 if (attribute_handle == instance->measurement_server_configuration_descriptor_handle){ 237 if (buffer && (buffer_size >= 2u)){ 238 little_endian_store_16(buffer, 0, instance->measurement_server_configuration_descriptor_broadcast); 239 } 240 return 2; 241 } 242 243 if (attribute_handle == instance->vector_client_configuration_descriptor_handle){ 244 if (buffer && (buffer_size >= 2u)){ 245 little_endian_store_16(buffer, 0, instance->vector_client_configuration_descriptor_notify); 246 } 247 return 2; 248 } 249 250 if (attribute_handle == instance->control_point_client_configuration_descriptor_handle){ 251 if (buffer && (buffer_size >= 2u)){ 252 little_endian_store_16(buffer, 0, instance->control_point_client_configuration_descriptor_indicate); 253 } 254 return 2; 255 } 256 257 if (attribute_handle == instance->feature_value_handle){ 258 if (buffer && (buffer_size >= 4u)){ 259 little_endian_store_32(buffer, 0, instance->feature_flags); 260 } 261 return 4; 262 } 263 264 if (attribute_handle == instance->sensor_location_value_handle){ 265 if (buffer && (buffer_size >= 1u)){ 266 buffer[0] = instance->sensor_location; 267 } 268 return 1; 269 } 270 return 0; 271 } 272 273 static int has_feature(cycling_power_feature_flag_t feature){ 274 cycling_power_t * instance = &cycling_power; 275 return (instance->feature_flags & (1u << feature)) != 0u; 276 } 277 278 static int cycling_power_vector_instantaneous_measurement_direction(void){ 279 cycling_power_t * instance = &cycling_power; 280 return instance->vector_instantaneous_measurement_direction; 281 } 282 283 static uint16_t cycling_power_service_default_measurement_flags(void){ 284 cycling_power_t * instance = &cycling_power; 285 uint16_t measurement_flags = 0; 286 uint8_t flag[] = { 287 (uint8_t) has_feature(CP_FEATURE_FLAG_PEDAL_POWER_BALANCE_SUPPORTED), 288 (uint8_t) has_feature(CP_FEATURE_FLAG_PEDAL_POWER_BALANCE_SUPPORTED) && instance->pedal_power_balance_reference, 289 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_TORQUE_SUPPORTED), 290 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_TORQUE_SUPPORTED) && instance->torque_source, 291 (uint8_t) has_feature(CP_FEATURE_FLAG_WHEEL_REVOLUTION_DATA_SUPPORTED), 292 (uint8_t) has_feature(CP_FEATURE_FLAG_CRANK_REVOLUTION_DATA_SUPPORTED), 293 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE), 294 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE), 295 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_ANGLES_SUPPORTED), 296 (uint8_t) has_feature(CP_FEATURE_FLAG_TOP_AND_BOTTOM_DEAD_SPOT_ANGLE_SUPPORTED), 297 (uint8_t) has_feature(CP_FEATURE_FLAG_TOP_AND_BOTTOM_DEAD_SPOT_ANGLE_SUPPORTED), 298 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_ENERGY_SUPPORTED), 299 (uint8_t) has_feature(CP_FEATURE_FLAG_OFFSET_COMPENSATION_INDICATOR_SUPPORTED) 300 }; 301 302 int i; 303 for (i = CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT; i <= CP_MEASUREMENT_FLAG_OFFSET_COMPENSATION_INDICATOR; i++){ 304 measurement_flags |= flag[i] << i; 305 } 306 307 return measurement_flags; 308 } 309 310 static uint16_t cycling_power_service_get_measurement_flags(cycling_power_t * instance){ 311 if (!instance) return 0; 312 if (instance->masked_measurement_flags != CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED){ 313 return instance->masked_measurement_flags; 314 } 315 if (instance->default_measurement_flags == CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED){ 316 instance->default_measurement_flags = cycling_power_service_default_measurement_flags(); 317 } 318 return instance->default_measurement_flags; 319 } 320 321 322 uint16_t cycling_power_service_measurement_flags(void){ 323 cycling_power_t * instance = &cycling_power; 324 return cycling_power_service_get_measurement_flags(instance); 325 } 326 327 uint8_t cycling_power_service_vector_flags(void){ 328 uint8_t vector_flags = 0; 329 uint8_t flag[] = { 330 (uint8_t )has_feature(CP_FEATURE_FLAG_CRANK_REVOLUTION_DATA_SUPPORTED), 331 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_ANGLES_SUPPORTED), 332 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE), 333 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE), 334 (uint8_t )has_feature(CP_FEATURE_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION_SUPPORTED) && cycling_power_vector_instantaneous_measurement_direction() 335 }; 336 337 int i; 338 for (i = CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT; i <= CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION; i++){ 339 vector_flags |= flag[i] << i; 340 } 341 return vector_flags; 342 } 343 344 static void cycling_power_service_vector_can_send_now(void * context){ 345 cycling_power_t * instance = (cycling_power_t *) context; 346 if (!instance){ 347 log_error("cycling_power_service_measurement_can_send_now: instance is null"); 348 return; 349 } 350 uint8_t value[50]; 351 uint8_t vector_flags = cycling_power_service_vector_flags(); 352 int pos = 0; 353 354 value[pos++] = vector_flags; 355 int i; 356 for (i = CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT; i <= CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION; i++){ 357 if ((vector_flags & (1u << i)) == 0u) continue; 358 switch ((cycling_power_vector_flag_t) i){ 359 case CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 360 little_endian_store_16(value, pos, instance->cumulative_crank_revolutions); 361 pos += 2; 362 little_endian_store_16(value, pos, instance->last_crank_event_time_s); 363 pos += 2; 364 break; 365 case CP_VECTOR_FLAG_INSTANTANEOUS_FORCE_MAGNITUDE_ARRAY_PRESENT:{ 366 uint16_t att_mtu = att_server_get_mtu(instance->con_handle); 367 uint16_t bytes_left = 0; 368 if (att_mtu > (pos + 3u)){ 369 bytes_left = btstack_min(sizeof(value), att_mtu - 3u - pos); 370 } 371 while ((bytes_left > 2u) && instance->force_magnitude_count){ 372 little_endian_store_16(value, pos, instance->vector_instantaneous_force_magnitude_newton_array[0]); 373 pos += 2; 374 bytes_left -= 2u; 375 instance->vector_instantaneous_force_magnitude_newton_array++; 376 instance->force_magnitude_count--; 377 } 378 break; 379 } 380 case CP_VECTOR_FLAG_INSTANTANEOUS_TORQUE_MAGNITUDE_ARRAY_PRESENT:{ 381 uint16_t att_mtu = att_server_get_mtu(instance->con_handle); 382 uint16_t bytes_left = 0; 383 if (att_mtu > (pos + 3u)){ 384 bytes_left = btstack_min(sizeof(value), att_mtu - 3u - pos); 385 } 386 387 while ((bytes_left > 2u) && instance->torque_magnitude_count){ 388 little_endian_store_16(value, pos, instance->vector_instantaneous_torque_magnitude_newton_per_m_array[0]); 389 pos += 2; 390 bytes_left -= 2u; 391 instance->vector_instantaneous_torque_magnitude_newton_per_m_array++; 392 instance->torque_magnitude_count--; 393 } 394 break; 395 } 396 case CP_VECTOR_FLAG_FIRST_CRANK_MEASUREMENT_ANGLE_PRESENT: 397 little_endian_store_16(value, pos, instance->vector_first_crank_measurement_angle_deg); 398 pos += 2; 399 break; 400 case CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION: 401 break; 402 default: 403 break; 404 } 405 } 406 407 att_server_notify(instance->con_handle, instance->vector_value_handle, &value[0], pos); 408 } 409 410 static int cycling_power_measurement_flag_value_size(cycling_power_measurement_flag_t flag){ 411 switch (flag){ 412 case CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT: 413 return 1; 414 case CP_MEASUREMENT_FLAG_WHEEL_REVOLUTION_DATA_PRESENT: 415 return 6; 416 case CP_MEASUREMENT_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 417 case CP_MEASUREMENT_FLAG_EXTREME_FORCE_MAGNITUDES_PRESENT: 418 case CP_MEASUREMENT_FLAG_EXTREME_TORQUE_MAGNITUDES_PRESENT: 419 return 4; 420 case CP_MEASUREMENT_FLAG_EXTREME_ANGLES_PRESENT: 421 return 3; 422 case CP_MEASUREMENT_FLAG_ACCUMULATED_TORQUE_PRESENT: 423 case CP_MEASUREMENT_FLAG_TOP_DEAD_SPOT_ANGLE_PRESENT: 424 case CP_MEASUREMENT_FLAG_BOTTOM_DEAD_SPOT_ANGLE_PRESENT: 425 case CP_MEASUREMENT_FLAG_ACCUMULATED_ENERGY_PRESENT: 426 return 2; 427 default: 428 return 0; 429 } 430 } 431 432 static int cycling_power_store_measurement_flag_value(cycling_power_t * instance, cycling_power_measurement_flag_t flag, uint8_t * value){ 433 if (!instance) return 0; 434 435 int pos = 0; 436 switch (flag){ 437 case CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT: 438 value[pos++] = instance->pedal_power_balance_percentage; 439 break; 440 case CP_MEASUREMENT_FLAG_ACCUMULATED_TORQUE_PRESENT: 441 little_endian_store_16(value, pos, instance->accumulated_torque_m); 442 pos += 2; 443 break; 444 case CP_MEASUREMENT_FLAG_WHEEL_REVOLUTION_DATA_PRESENT: 445 little_endian_store_32(value, pos, instance->cumulative_wheel_revolutions); 446 pos += 4; 447 little_endian_store_16(value, pos, instance->last_wheel_event_time_s); 448 pos += 2; 449 break; 450 case CP_MEASUREMENT_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 451 little_endian_store_16(value, pos, instance->cumulative_crank_revolutions); 452 pos += 2; 453 little_endian_store_16(value, pos, instance->last_crank_event_time_s); 454 pos += 2; 455 break; 456 case CP_MEASUREMENT_FLAG_EXTREME_FORCE_MAGNITUDES_PRESENT: 457 little_endian_store_16(value, pos, (uint16_t)instance->maximum_force_magnitude_newton); 458 pos += 2; 459 little_endian_store_16(value, pos, (uint16_t)instance->minimum_force_magnitude_newton); 460 pos += 2; 461 break; 462 case CP_MEASUREMENT_FLAG_EXTREME_TORQUE_MAGNITUDES_PRESENT: 463 little_endian_store_16(value, pos, (uint16_t)instance->maximum_torque_magnitude_newton_m); 464 pos += 2; 465 little_endian_store_16(value, pos, (uint16_t)instance->minimum_torque_magnitude_newton_m); 466 pos += 2; 467 break; 468 case CP_MEASUREMENT_FLAG_EXTREME_ANGLES_PRESENT: 469 little_endian_store_24(value, pos, (instance->maximum_angle_deg << 12) | instance->minimum_angle_deg); 470 pos += 3; 471 break; 472 case CP_MEASUREMENT_FLAG_TOP_DEAD_SPOT_ANGLE_PRESENT: 473 little_endian_store_16(value, pos, (uint16_t)instance->top_dead_spot_angle_deg); 474 pos += 2; 475 break; 476 case CP_MEASUREMENT_FLAG_BOTTOM_DEAD_SPOT_ANGLE_PRESENT: 477 little_endian_store_16(value, pos, (uint16_t)instance->bottom_dead_spot_angle_deg); 478 pos += 2; 479 break; 480 case CP_MEASUREMENT_FLAG_ACCUMULATED_ENERGY_PRESENT: 481 little_endian_store_16(value, pos, (uint16_t)instance->accumulated_energy_kJ); 482 pos += 2; 483 break; 484 default: 485 break; 486 } 487 return pos; 488 } 489 490 491 static int cycling_power_store_measurement(cycling_power_t * instance, uint8_t * value, uint16_t max_value_size){ 492 if (max_value_size < 4u) return 0u; 493 if (!instance) return 0; 494 495 uint16_t measurement_flags = cycling_power_service_get_measurement_flags(instance); 496 int pos = 0; 497 little_endian_store_16(value, 0, measurement_flags); 498 pos += 2; 499 little_endian_store_16(value, 2, instance->instantaneous_power_watt); 500 pos += 2; 501 int flag_index; 502 uint16_t bytes_left = max_value_size - pos; 503 for (flag_index = 0; flag_index < CP_MEASUREMENT_FLAG_RESERVED; flag_index++){ 504 if ((measurement_flags & (1u << flag_index)) == 0u) continue; 505 cycling_power_measurement_flag_t flag = (cycling_power_measurement_flag_t) flag_index; 506 uint16_t value_size = cycling_power_measurement_flag_value_size(flag); 507 if (value_size > bytes_left ) return pos; 508 cycling_power_store_measurement_flag_value(instance, flag, &value[pos]); 509 pos += value_size; 510 bytes_left -= value_size; 511 } 512 return pos; 513 } 514 515 int cycling_power_get_measurement_adv(uint16_t adv_interval, uint8_t * broadcast_adv, uint16_t max_value_size){ 516 if (max_value_size < 12u) return 0u; 517 cycling_power_t * instance = &cycling_power; 518 int pos = 0; 519 // adv flags 520 broadcast_adv[pos++] = 2; 521 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_FLAGS; 522 broadcast_adv[pos++] = 0x4; 523 524 // adv interval 525 broadcast_adv[pos++] = 3; 526 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_ADVERTISING_INTERVAL; 527 little_endian_store_16(broadcast_adv, pos, adv_interval); 528 pos += 2; 529 // 530 int value_len = cycling_power_store_measurement(instance, &broadcast_adv[pos+4], CYCLING_POWER_MAX_BROACAST_MSG_SIZE - (pos + 4)); 531 broadcast_adv[pos++] = 3 + value_len; 532 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_SERVICE_DATA_16_BIT_UUID; 533 little_endian_store_16(broadcast_adv, pos, ORG_BLUETOOTH_SERVICE_CYCLING_POWER); 534 pos += 2; 535 // value data already in place cycling_power_get_measurement 536 pos += value_len; 537 // set ADV_NONCONN_IND 538 return pos; 539 } 540 541 static void cycling_power_service_broadcast_can_send_now(void * context){ 542 cycling_power_t * instance = (cycling_power_t *) context; 543 if (!instance){ 544 log_error("cycling_power_service_broadcast_can_send_now: instance is null"); 545 return; 546 } 547 uint8_t value[CYCLING_POWER_MAX_BROACAST_MSG_SIZE]; 548 int pos = cycling_power_store_measurement(instance, &value[0], sizeof(value)); 549 att_server_notify(instance->con_handle, instance->measurement_value_handle, &value[0], pos); 550 } 551 552 static void cycling_power_service_measurement_can_send_now(void * context){ 553 cycling_power_t * instance = (cycling_power_t *) context; 554 if (!instance){ 555 log_error("cycling_power_service_measurement_can_send_now: instance is null"); 556 return; 557 } 558 uint8_t value[40]; 559 int pos = cycling_power_store_measurement(instance, &value[0], sizeof(value)); 560 att_server_notify(instance->con_handle, instance->measurement_value_handle, &value[0], pos); 561 } 562 563 static void cycling_power_service_response_can_send_now(void * context){ 564 cycling_power_t * instance = (cycling_power_t *) context; 565 if (!instance){ 566 log_error("cycling_power_service_response_can_send_now: instance is null"); 567 return; 568 } 569 570 if (instance->response_value == CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE){ 571 log_error("cycling_power_service_response_can_send_now: CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE"); 572 return; 573 } 574 575 // use preprocessor instead of btstack_max to get compile-time constant 576 #if (CP_SENSOR_LOCATION_RESERVED > (CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE + 5)) 577 #define MAX_RESPONSE_PAYLOAD CP_SENSOR_LOCATION_RESERVED 578 #else 579 #define MAX_RESPONSE_PAYLOAD (CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE + 5) 580 #endif 581 582 uint8_t value[3 + MAX_RESPONSE_PAYLOAD]; 583 int pos = 0; 584 value[pos++] = CP_OPCODE_RESPONSE_CODE; 585 value[pos++] = instance->request_opcode; 586 value[pos++] = instance->response_value; 587 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 588 switch (instance->request_opcode){ 589 case CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS:{ 590 int i; 591 for (i=0; i<instance->num_supported_sensor_locations; i++){ 592 value[pos++] = instance->supported_sensor_locations[i]; 593 } 594 break; 595 } 596 case CP_OPCODE_REQUEST_CRANK_LENGTH: 597 little_endian_store_16(value, pos, instance->crank_length_mm); 598 pos += 2; 599 break; 600 case CP_OPCODE_REQUEST_CHAIN_LENGTH: 601 little_endian_store_16(value, pos, instance->chain_length_mm); 602 pos += 2; 603 break; 604 case CP_OPCODE_REQUEST_CHAIN_WEIGHT: 605 little_endian_store_16(value, pos, instance->chain_weight_g); 606 pos += 2; 607 break; 608 case CP_OPCODE_REQUEST_SPAN_LENGTH: 609 little_endian_store_16(value, pos, instance->span_length_mm); 610 pos += 2; 611 break; 612 case CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE: 613 little_endian_store_16(value, pos, instance->factory_calibration_date.year); 614 pos += 2; 615 value[pos++] = instance->factory_calibration_date.month; 616 value[pos++] = instance->factory_calibration_date.day; 617 value[pos++] = instance->factory_calibration_date.hours; 618 value[pos++] = instance->factory_calibration_date.minutes; 619 value[pos++] = instance->factory_calibration_date.seconds; 620 break; 621 case CP_OPCODE_REQUEST_SAMPLING_RATE: 622 value[pos++] = instance->sampling_rate_hz; 623 break; 624 case CP_OPCODE_START_OFFSET_COMPENSATION: 625 case CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION:{ 626 uint16_t calibrated_value = 0xffff; 627 if (has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED)){ 628 if (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE) { 629 calibrated_value = instance->current_force_magnitude_newton; 630 } else if (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE){ 631 calibrated_value = instance->current_torque_magnitude_newton_m; 632 } 633 } 634 635 if (calibrated_value == CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION){ 636 value[pos++] = calibrated_value; 637 // do not include manufacturer ID and data 638 break; 639 } else if (calibrated_value == CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS){ 640 value[pos++] = calibrated_value; 641 } else { 642 little_endian_store_16(value, pos, calibrated_value); 643 pos += 2; 644 645 } 646 647 if (instance->request_opcode == CP_OPCODE_START_OFFSET_COMPENSATION) break; 648 little_endian_store_16(value, pos, instance->manufacturer_company_id); 649 pos += 2; 650 int data_len = (instance->num_manufacturer_specific_data < CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE) ? instance->num_manufacturer_specific_data : (CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE - 1); 651 value[pos++] = data_len; 652 (void)memcpy(&value[pos], 653 instance->manufacturer_specific_data, data_len); 654 pos += data_len; 655 value[pos++] = 0; 656 break; 657 } 658 case CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT: 659 break; 660 default: 661 break; 662 } 663 } 664 uint8_t status = att_server_indicate(instance->con_handle, instance->control_point_value_handle, &value[0], pos); 665 if (status == ERROR_CODE_SUCCESS){ 666 instance->w4_indication_complete = 1; 667 instance->request_opcode = CP_OPCODE_IDLE; 668 } else { 669 log_error("can_send_now failed 0x%2x", status); 670 } 671 } 672 673 static int cycling_power_service_write_callback(hci_con_handle_t con_handle, uint16_t attribute_handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size){ 674 UNUSED(con_handle); 675 UNUSED(transaction_mode); 676 UNUSED(offset); 677 UNUSED(buffer_size); 678 int i; 679 cycling_power_sensor_location_t location; 680 cycling_power_t * instance = &cycling_power; 681 682 if (attribute_handle == instance->measurement_client_configuration_descriptor_handle){ 683 if (buffer_size < 2u){ 684 return ATT_ERROR_INVALID_OFFSET; 685 } 686 instance->measurement_client_configuration_descriptor_notify = little_endian_read_16(buffer, 0); 687 instance->con_handle = con_handle; 688 log_info("cycling_power_service_write_callback: measurement enabled %d", instance->measurement_client_configuration_descriptor_notify); 689 return 0; 690 } 691 692 if (attribute_handle == instance->measurement_server_configuration_descriptor_handle){ 693 if (buffer_size < 2u){ 694 return ATT_ERROR_INVALID_OFFSET; 695 } 696 instance->measurement_server_configuration_descriptor_broadcast = little_endian_read_16(buffer, 0); 697 instance->con_handle = con_handle; 698 uint8_t event[5]; 699 int index = 0; 700 event[index++] = HCI_EVENT_GATTSERVICE_META; 701 event[index++] = sizeof(event) - 2u; 702 703 if (instance->measurement_server_configuration_descriptor_broadcast){ 704 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_START; 705 log_info("cycling_power_service_write_callback: start broadcast"); 706 } else { 707 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_STOP; 708 log_info("cycling_power_service_write_callback: stop broadcast"); 709 } 710 little_endian_store_16(event, index, con_handle); 711 index += 2; 712 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 713 return 0; 714 } 715 716 if (attribute_handle == instance->vector_client_configuration_descriptor_handle){ 717 if (buffer_size < 2u){ 718 return ATT_ERROR_INVALID_OFFSET; 719 } 720 instance->con_handle = con_handle; 721 722 #ifdef ENABLE_ATT_DELAYED_RESPONSE 723 switch (instance->con_interval_status){ 724 case CP_CONNECTION_INTERVAL_STATUS_REJECTED: 725 return CYCLING_POWER_ERROR_CODE_INAPPROPRIATE_CONNECTION_PARAMETERS; 726 727 case CP_CONNECTION_INTERVAL_STATUS_ACCEPTED: 728 case CP_CONNECTION_INTERVAL_STATUS_RECEIVED: 729 if ((instance->con_interval > instance->con_interval_max) || (instance->con_interval < instance->con_interval_min)){ 730 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE; 731 gap_request_connection_parameter_update(instance->con_handle, instance->con_interval_min, instance->con_interval_max, 4, 100); // 15 ms, 4, 1s 732 return ATT_ERROR_WRITE_RESPONSE_PENDING; 733 } 734 instance->vector_client_configuration_descriptor_notify = little_endian_read_16(buffer, 0); 735 return 0; 736 default: 737 return ATT_ERROR_WRITE_RESPONSE_PENDING; 738 739 } 740 #endif 741 } 742 743 if (attribute_handle == instance->control_point_client_configuration_descriptor_handle){ 744 if (buffer_size < 2u){ 745 return ATT_ERROR_INVALID_OFFSET; 746 } 747 instance->control_point_client_configuration_descriptor_indicate = little_endian_read_16(buffer, 0); 748 instance->con_handle = con_handle; 749 log_info("cycling_power_service_write_callback: indication enabled %d", instance->control_point_client_configuration_descriptor_indicate); 750 return 0; 751 } 752 753 if (attribute_handle == instance->feature_value_handle){ 754 if (buffer_size < 4u){ 755 return ATT_ERROR_INVALID_OFFSET; 756 } 757 instance->feature_flags = little_endian_read_32(buffer, 0); 758 return 0; 759 } 760 761 if (attribute_handle == instance->control_point_value_handle){ 762 if (instance->control_point_client_configuration_descriptor_indicate == 0u) return CYCLING_POWER_ERROR_CODE_CCC_DESCRIPTOR_IMPROPERLY_CONFIGURED; 763 if (instance->w4_indication_complete != 0u){ 764 return CYCLING_POWER_ERROR_CODE_PROCEDURE_ALREADY_IN_PROGRESS; 765 } 766 int pos = 0; 767 instance->request_opcode = (cycling_power_opcode_t) buffer[pos++]; 768 instance->response_value = CP_RESPONSE_VALUE_OP_CODE_NOT_SUPPORTED; 769 770 switch (instance->request_opcode){ 771 case CP_OPCODE_SET_CUMULATIVE_VALUE: 772 if (!has_feature(CP_FEATURE_FLAG_WHEEL_REVOLUTION_DATA_SUPPORTED)) break; 773 instance->cumulative_wheel_revolutions = little_endian_read_32(buffer, pos); 774 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 775 break; 776 777 case CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS: 778 if (!has_feature(CP_FEATURE_FLAG_MULTIPLE_SENSOR_LOCATIONS_SUPPORTED)) break; 779 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 780 break; 781 782 case CP_OPCODE_UPDATE_SENSOR_LOCATION: 783 if (!has_feature(CP_FEATURE_FLAG_MULTIPLE_SENSOR_LOCATIONS_SUPPORTED)) break; 784 location = (cycling_power_sensor_location_t) buffer[pos]; 785 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 786 for (i=0; i<instance->num_supported_sensor_locations; i++){ 787 if (instance->supported_sensor_locations[i] == location){ 788 instance->sensor_location = location; 789 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 790 break; 791 } 792 } 793 break; 794 795 case CP_OPCODE_REQUEST_CRANK_LENGTH: 796 if (!has_feature(CP_FEATURE_FLAG_CRANK_LENGTH_ADJUSTMENT_SUPPORTED)) break; 797 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 798 break; 799 case CP_OPCODE_SET_CRANK_LENGTH: 800 if (!has_feature(CP_FEATURE_FLAG_CRANK_LENGTH_ADJUSTMENT_SUPPORTED)) break; 801 instance->crank_length_mm = little_endian_read_16(buffer, pos); 802 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 803 break; 804 805 case CP_OPCODE_REQUEST_CHAIN_LENGTH: 806 if (!has_feature(CP_FEATURE_FLAG_CHAIN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 807 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 808 break; 809 case CP_OPCODE_SET_CHAIN_LENGTH: 810 if (!has_feature(CP_FEATURE_FLAG_CHAIN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 811 instance->chain_length_mm = little_endian_read_16(buffer, pos); 812 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 813 break; 814 815 case CP_OPCODE_REQUEST_CHAIN_WEIGHT: 816 if (!has_feature(CP_FEATURE_FLAG_CHAIN_WEIGHT_ADJUSTMENT_SUPPORTED)) break; 817 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 818 break; 819 case CP_OPCODE_SET_CHAIN_WEIGHT: 820 if (!has_feature(CP_FEATURE_FLAG_CHAIN_WEIGHT_ADJUSTMENT_SUPPORTED)) break; 821 instance->chain_weight_g = little_endian_read_16(buffer, pos); 822 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 823 break; 824 825 case CP_OPCODE_REQUEST_SPAN_LENGTH: 826 if (!has_feature(CP_FEATURE_FLAG_SPAN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 827 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 828 break; 829 case CP_OPCODE_SET_SPAN_LENGTH: 830 if (!has_feature(CP_FEATURE_FLAG_SPAN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 831 instance->span_length_mm = little_endian_read_16(buffer, pos); 832 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 833 break; 834 835 case CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE: 836 if (!has_feature(CP_FEATURE_FLAG_FACTORY_CALIBRATION_DATE_SUPPORTED)) break; 837 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 838 break; 839 840 case CP_OPCODE_REQUEST_SAMPLING_RATE: 841 if (!instance->vector_value_handle) break; 842 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 843 break; 844 845 case CP_OPCODE_START_OFFSET_COMPENSATION: 846 case CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION: 847 if (!has_feature(CP_FEATURE_FLAG_OFFSET_COMPENSATION_SUPPORTED)){ 848 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 849 break; 850 } 851 if (has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && 852 ((has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE) || 853 (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE)) 854 ){ 855 uint8_t event[7]; 856 int index = 0; 857 event[index++] = HCI_EVENT_GATTSERVICE_META; 858 event[index++] = sizeof(event) - 2u; 859 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_START_CALIBRATION; 860 little_endian_store_16(event, index, con_handle); 861 index += 2; 862 event[index++] = has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE; 863 event[index++] = (instance->request_opcode == CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION); 864 instance->response_value = CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE; 865 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 866 return 0; 867 } 868 instance->current_force_magnitude_newton = 0xffff; 869 instance->current_torque_magnitude_newton_m = 0xffff; 870 break; 871 872 case CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT:{ 873 if (!has_feature(CP_FEATURE_FLAG_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT_MASKING_SUPPORTED)) break; 874 uint16_t mask_bitmap = little_endian_read_16(buffer, pos); 875 uint16_t masked_measurement_flags = instance->default_measurement_flags; 876 uint16_t index = 0; 877 878 for (i = 0; i < CP_MASK_BIT_RESERVED; i++){ 879 uint8_t clear_bit = (mask_bitmap & (1u << i)) ? 1u : 0u; 880 881 masked_measurement_flags &= ~(clear_bit << index); 882 index++; 883 // following measurement flags have additional flag 884 switch ((cycling_power_mask_bit_t)i){ 885 case CP_MASK_BIT_PEDAL_POWER_BALANCE: 886 case CP_MASK_BIT_ACCUMULATED_TORQUE: 887 case CP_MASK_BIT_EXTREME_MAGNITUDES: 888 masked_measurement_flags &= ~(clear_bit << index); 889 index++; 890 break; 891 default: 892 break; 893 } 894 } 895 instance->masked_measurement_flags = masked_measurement_flags; 896 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 897 break; 898 } 899 default: 900 break; 901 } 902 903 if (instance->control_point_client_configuration_descriptor_indicate){ 904 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 905 instance->control_point_indicate_callback.context = (void*) instance; 906 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 907 } 908 return 0; 909 } 910 return 0; 911 } 912 913 static void packet_handler(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 914 UNUSED(channel); 915 UNUSED(size); 916 cycling_power_t * instance = &cycling_power; 917 uint8_t event_type = hci_event_packet_get_type(packet); 918 uint16_t con_handle; 919 920 if (packet_type != HCI_EVENT_PACKET) return; 921 switch (event_type){ 922 case HCI_EVENT_LE_META: 923 switch (hci_event_le_meta_get_subevent_code(packet)){ 924 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 925 instance->con_handle = hci_subevent_le_connection_complete_get_connection_handle(packet); 926 // print connection parameters (without using float operations) 927 instance->con_interval = hci_subevent_le_connection_complete_get_conn_interval(packet); 928 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_RECEIVED; 929 break; 930 931 #ifdef ENABLE_ATT_DELAYED_RESPONSE 932 case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE: 933 if (instance->con_interval_status != CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE) return; 934 935 if ((instance->con_interval > instance->con_interval_max) || (instance->con_interval < instance->con_interval_min)){ 936 instance->con_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet); 937 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_ACCEPTED; 938 } else { 939 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_REJECTED; 940 } 941 att_server_response_ready(l2cap_event_connection_parameter_update_response_get_handle(packet)); 942 break; 943 #endif 944 default: 945 break; 946 } 947 break; 948 949 #ifdef ENABLE_ATT_DELAYED_RESPONSE 950 case L2CAP_EVENT_CONNECTION_PARAMETER_UPDATE_RESPONSE: 951 if (instance->con_interval_status != CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE) return; 952 953 if (l2cap_event_connection_parameter_update_response_get_result(packet) == ERROR_CODE_SUCCESS){ 954 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE; 955 } else { 956 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_REJECTED; 957 att_server_response_ready(l2cap_event_connection_parameter_update_response_get_handle(packet)); 958 } 959 break; 960 #endif 961 962 case HCI_EVENT_DISCONNECTION_COMPLETE:{ 963 if (!instance) return; 964 con_handle = hci_event_disconnection_complete_get_connection_handle(packet); 965 if (con_handle == HCI_CON_HANDLE_INVALID) return; 966 967 instance->masked_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 968 instance->w4_indication_complete = 0; 969 970 uint8_t event[5]; 971 int index = 0; 972 event[index++] = HCI_EVENT_GATTSERVICE_META; 973 event[index++] = sizeof(event) - 2u; 974 975 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_STOP; 976 little_endian_store_16(event, index, con_handle); 977 index += 2; 978 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 979 980 break; 981 } 982 case ATT_EVENT_HANDLE_VALUE_INDICATION_COMPLETE: 983 instance->w4_indication_complete = 0; 984 break; 985 default: 986 break; 987 } 988 } 989 990 void cycling_power_service_server_init(uint32_t feature_flags, 991 cycling_power_pedal_power_balance_reference_t reference, cycling_power_torque_source_t torque_source, 992 cycling_power_sensor_location_t * supported_sensor_locations, uint16_t num_supported_sensor_locations, 993 cycling_power_sensor_location_t current_sensor_location){ 994 995 cycling_power_t * instance = &cycling_power; 996 // TODO: remove hardcoded initialization 997 instance->con_interval_min = 6; 998 instance->con_interval_max = 6; 999 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_NONE; 1000 instance->w4_indication_complete = 0; 1001 1002 hci_event_callback_registration.callback = &packet_handler; 1003 hci_add_event_handler(&hci_event_callback_registration); 1004 1005 l2cap_event_callback_registration.callback = &packet_handler; 1006 l2cap_add_event_handler(&l2cap_event_callback_registration); 1007 1008 instance->sensor_location = current_sensor_location; 1009 instance->num_supported_sensor_locations = 0; 1010 if (supported_sensor_locations != NULL){ 1011 instance->num_supported_sensor_locations = num_supported_sensor_locations; 1012 instance->supported_sensor_locations = supported_sensor_locations; 1013 } 1014 1015 instance->feature_flags = feature_flags; 1016 instance->default_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 1017 instance->masked_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 1018 instance->pedal_power_balance_reference = reference; 1019 instance->torque_source = torque_source; 1020 1021 // get service handle range 1022 uint16_t start_handle = 0; 1023 uint16_t end_handle = 0xffff; 1024 int service_found = gatt_server_get_handle_range_for_service_with_uuid16(ORG_BLUETOOTH_SERVICE_CYCLING_POWER, &start_handle, &end_handle); 1025 btstack_assert(service_found != 0); 1026 UNUSED(service_found); 1027 1028 // get CP Mesurement characteristic value handle and client configuration handle 1029 instance->measurement_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1030 instance->measurement_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1031 instance->measurement_server_configuration_descriptor_handle = gatt_server_get_server_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1032 1033 // get CP Feature characteristic value handle and client configuration handle 1034 instance->feature_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_FEATURE); 1035 // get CP Sensor Location characteristic value handle and client configuration handle 1036 instance->sensor_location_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_SENSOR_LOCATION); 1037 1038 // get CP Vector characteristic value handle and client configuration handle 1039 instance->vector_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_VECTOR); 1040 instance->vector_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_VECTOR); 1041 1042 // get Body Sensor Location characteristic value handle and client configuration handle 1043 instance->sensor_location_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_SENSOR_LOCATION); 1044 1045 // get SP Control Point characteristic value handle and client configuration handle 1046 instance->control_point_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_CONTROL_POINT); 1047 instance->control_point_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_CONTROL_POINT); 1048 1049 log_info("Measurement value handle 0x%02x", instance->measurement_value_handle); 1050 log_info("M. Client Cfg value handle 0x%02x", instance->measurement_client_configuration_descriptor_handle); 1051 log_info("M. Server Cfg value handle 0x%02x", instance->measurement_server_configuration_descriptor_handle); 1052 1053 log_info("Feature value handle 0x%02x", instance->feature_value_handle); 1054 log_info("Sensor location value handle 0x%02x", instance->sensor_location_value_handle); 1055 1056 log_info("Vector value handle 0x%02x", instance->vector_value_handle); 1057 log_info("Vector Cfg. value handle 0x%02x", instance->vector_client_configuration_descriptor_handle); 1058 1059 log_info("Control Point value handle 0x%02x", instance->control_point_value_handle); 1060 log_info("Control P. Cfg. value handle 0x%02x", instance->control_point_client_configuration_descriptor_handle); 1061 1062 cycling_power_service.start_handle = start_handle; 1063 cycling_power_service.end_handle = end_handle; 1064 cycling_power_service.read_callback = &cycling_power_service_read_callback; 1065 cycling_power_service.write_callback = &cycling_power_service_write_callback; 1066 cycling_power_service.packet_handler = &packet_handler; 1067 att_server_register_service_handler(&cycling_power_service); 1068 } 1069 1070 1071 void cycling_power_service_server_add_torque(int16_t torque_m){ 1072 cycling_power_t * instance = &cycling_power; 1073 instance->accumulated_torque_m += torque_m; 1074 } 1075 1076 void cycling_power_service_server_add_wheel_revolution(int32_t wheel_revolution, uint16_t wheel_event_time_s){ 1077 cycling_power_t * instance = &cycling_power; 1078 instance->last_wheel_event_time_s = wheel_event_time_s; 1079 if (wheel_revolution < 0){ 1080 if (instance->cumulative_wheel_revolutions > -wheel_revolution){ 1081 instance->cumulative_wheel_revolutions += wheel_revolution; 1082 } else { 1083 instance->cumulative_wheel_revolutions = 0; 1084 } 1085 } else { 1086 if (instance->cumulative_wheel_revolutions < (0xffffffff - wheel_revolution)){ 1087 instance->cumulative_wheel_revolutions += wheel_revolution; 1088 } else { 1089 instance->cumulative_wheel_revolutions = 0xffffffff; 1090 } 1091 } 1092 } 1093 1094 void cycling_power_service_server_add_crank_revolution(uint16_t crank_revolution, uint16_t crank_event_time_s){ 1095 cycling_power_t * instance = &cycling_power; 1096 instance->last_crank_event_time_s = crank_event_time_s; 1097 instance->cumulative_crank_revolutions += crank_revolution; 1098 } 1099 1100 void cycling_power_service_add_energy(uint16_t energy_kJ){ 1101 cycling_power_t * instance = &cycling_power; 1102 if (instance->accumulated_energy_kJ <= (0xffffu - energy_kJ)){ 1103 instance->accumulated_energy_kJ += energy_kJ; 1104 } else { 1105 instance->accumulated_energy_kJ = 0xffff; 1106 } 1107 } 1108 1109 void cycling_power_service_server_set_instantaneous_power(int16_t instantaneous_power_watt){ 1110 cycling_power_t * instance = &cycling_power; 1111 instance->instantaneous_power_watt = instantaneous_power_watt; 1112 } 1113 1114 void cycling_power_service_server_set_pedal_power_balance(uint8_t pedal_power_balance_percentage){ 1115 cycling_power_t * instance = &cycling_power; 1116 instance->pedal_power_balance_percentage = pedal_power_balance_percentage; 1117 } 1118 1119 void cycling_power_service_server_set_force_magnitude_values(int force_magnitude_count, int16_t * force_magnitude_newton_array){ 1120 cycling_power_t * instance = &cycling_power; 1121 instance->force_magnitude_count = force_magnitude_count; 1122 instance->vector_instantaneous_force_magnitude_newton_array = force_magnitude_newton_array; 1123 } 1124 1125 void cycling_power_service_server_set_torque_magnitude_values(int torque_magnitude_count, int16_t * torque_magnitude_newton_array){ 1126 cycling_power_t * instance = &cycling_power; 1127 instance->torque_magnitude_count = torque_magnitude_count; 1128 instance->vector_instantaneous_torque_magnitude_newton_per_m_array = torque_magnitude_newton_array; 1129 } 1130 1131 void cycling_power_service_server_set_first_crank_measurement_angle(uint16_t first_crank_measurement_angle_deg){ 1132 cycling_power_t * instance = &cycling_power; 1133 instance->vector_first_crank_measurement_angle_deg = first_crank_measurement_angle_deg; 1134 } 1135 1136 void cycling_power_service_server_set_instantaneous_measurement_direction(cycling_power_instantaneous_measurement_direction_t direction){ 1137 cycling_power_t * instance = &cycling_power; 1138 instance->vector_instantaneous_measurement_direction = direction; 1139 } 1140 1141 void cycling_power_service_server_set_force_magnitude(int16_t min_force_magnitude_newton, int16_t max_force_magnitude_newton){ 1142 cycling_power_t * instance = &cycling_power; 1143 instance->minimum_force_magnitude_newton = min_force_magnitude_newton; 1144 instance->maximum_force_magnitude_newton = max_force_magnitude_newton; 1145 } 1146 1147 void cycling_power_service_server_set_torque_magnitude(int16_t min_torque_magnitude_newton, int16_t max_torque_magnitude_newton){ 1148 cycling_power_t * instance = &cycling_power; 1149 instance->minimum_torque_magnitude_newton_m = min_torque_magnitude_newton; 1150 instance->maximum_torque_magnitude_newton_m = max_torque_magnitude_newton; 1151 } 1152 1153 void cycling_power_service_server_set_angle(uint16_t min_angle_deg, uint16_t max_angle_deg){ 1154 cycling_power_t * instance = &cycling_power; 1155 instance->minimum_angle_deg = min_angle_deg; 1156 instance->maximum_angle_deg = max_angle_deg; 1157 } 1158 1159 void cycling_power_service_server_set_top_dead_spot_angle(uint16_t top_dead_spot_angle_deg){ 1160 cycling_power_t * instance = &cycling_power; 1161 instance->top_dead_spot_angle_deg = top_dead_spot_angle_deg; 1162 } 1163 1164 void cycling_power_service_server_set_bottom_dead_spot_angle(uint16_t bottom_dead_spot_angle_deg){ 1165 cycling_power_t * instance = &cycling_power; 1166 instance->bottom_dead_spot_angle_deg = bottom_dead_spot_angle_deg; 1167 } 1168 1169 static int gatt_date_is_valid(gatt_date_time_t date){ 1170 if ((date.year != 0u) && ((date.year < 1582u) || (date.year > 9999u))) return 0u; 1171 if ((date.month != 0u) && (date.month > 12u)) return 0u; 1172 if ((date.day != 0u) && (date.day > 31u)) return 0u; 1173 1174 if (date.hours > 23u) return 0u; 1175 if (date.minutes > 59u) return 0u; 1176 if (date.seconds > 59u) return 0u; 1177 return 1; 1178 } 1179 1180 int cycling_power_service_server_set_factory_calibration_date(gatt_date_time_t date){ 1181 if (!gatt_date_is_valid(date)) return 0; 1182 1183 cycling_power_t * instance = &cycling_power; 1184 instance->factory_calibration_date = date; 1185 return 1; 1186 } 1187 1188 void cycling_power_service_server_set_sampling_rate(uint8_t sampling_rate_hz){ 1189 cycling_power_t * instance = &cycling_power; 1190 instance->sampling_rate_hz = sampling_rate_hz; 1191 } 1192 1193 1194 void cycling_power_service_server_update_values(void){ 1195 cycling_power_t * instance = &cycling_power; 1196 1197 if (instance->measurement_server_configuration_descriptor_broadcast){ 1198 instance->measurement_broadcast_callback.callback = &cycling_power_service_broadcast_can_send_now; 1199 instance->measurement_broadcast_callback.context = (void*) instance; 1200 att_server_register_can_send_now_callback(&instance->measurement_broadcast_callback, instance->con_handle); 1201 } 1202 1203 if (instance->measurement_client_configuration_descriptor_notify){ 1204 instance->measurement_notify_callback.callback = &cycling_power_service_measurement_can_send_now; 1205 instance->measurement_notify_callback.context = (void*) instance; 1206 att_server_register_can_send_now_callback(&instance->measurement_notify_callback, instance->con_handle); 1207 } 1208 1209 if (instance->vector_client_configuration_descriptor_notify){ 1210 instance->vector_notify_callback.callback = &cycling_power_service_vector_can_send_now; 1211 instance->vector_notify_callback.context = (void*) instance; 1212 att_server_register_can_send_now_callback(&instance->vector_notify_callback, instance->con_handle); 1213 } 1214 } 1215 1216 void cycling_power_service_server_packet_handler(btstack_packet_handler_t callback){ 1217 if (callback == NULL){ 1218 log_error("cycling_power_service_server_packet_handler called with NULL callback"); 1219 return; 1220 } 1221 cycling_power_t * instance = &cycling_power; 1222 instance->calibration_callback = callback; 1223 } 1224 1225 void cycling_power_server_calibration_done(cycling_power_sensor_measurement_context_t measurement_type, uint16_t calibrated_value){ 1226 cycling_power_t * instance = &cycling_power; 1227 if (instance->response_value != CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE){ 1228 return; 1229 } 1230 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 1231 1232 switch (measurement_type){ 1233 case CP_SENSOR_MEASUREMENT_CONTEXT_FORCE: 1234 instance->current_force_magnitude_newton = calibrated_value; 1235 break; 1236 case CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE: 1237 instance->current_torque_magnitude_newton_m = calibrated_value; 1238 break; 1239 default: 1240 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 1241 break; 1242 } 1243 1244 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 1245 switch (calibrated_value){ 1246 case CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION: 1247 case CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS: 1248 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1249 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1250 break; 1251 default: 1252 break; 1253 } 1254 } 1255 1256 if (instance->control_point_client_configuration_descriptor_indicate){ 1257 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 1258 instance->control_point_indicate_callback.context = (void*) instance; 1259 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 1260 } 1261 } 1262 1263 void cycling_power_server_enhanced_calibration_done(cycling_power_sensor_measurement_context_t measurement_type, 1264 uint16_t calibrated_value, uint16_t manufacturer_company_id, 1265 uint8_t num_manufacturer_specific_data, uint8_t * manufacturer_specific_data){ 1266 cycling_power_t * instance = &cycling_power; 1267 if (instance->response_value != CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE) return; 1268 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 1269 1270 switch (measurement_type){ 1271 case CP_SENSOR_MEASUREMENT_CONTEXT_FORCE: 1272 instance->current_force_magnitude_newton = calibrated_value; 1273 break; 1274 case CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE: 1275 instance->current_torque_magnitude_newton_m = calibrated_value; 1276 break; 1277 default: 1278 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 1279 break; 1280 } 1281 1282 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 1283 switch (calibrated_value){ 1284 case CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION: 1285 case CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS: 1286 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1287 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1288 break; 1289 default: 1290 break; 1291 } 1292 instance->manufacturer_company_id = manufacturer_company_id; 1293 instance->num_manufacturer_specific_data = num_manufacturer_specific_data; 1294 instance->manufacturer_specific_data = manufacturer_specific_data; 1295 } 1296 1297 if (instance->control_point_client_configuration_descriptor_indicate){ 1298 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 1299 instance->control_point_indicate_callback.context = (void*) instance; 1300 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 1301 } 1302 } 1303