1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "cycling_power_service_server.c" 39 40 41 #include "bluetooth.h" 42 #include "btstack_defines.h" 43 #include "bluetooth_data_types.h" 44 #include "btstack_event.h" 45 #include "ble/att_db.h" 46 #include "ble/att_server.h" 47 #include "btstack_util.h" 48 #include "bluetooth_gatt.h" 49 #include "btstack_debug.h" 50 #include "l2cap.h" 51 #include "hci.h" 52 53 #include "ble/gatt-service/cycling_power_service_server.h" 54 55 #define CYCLING_POWER_MAX_BROACAST_MSG_SIZE 31 56 #define CONTROL_POINT_PROCEDURE_TIMEOUT_MS 30 57 #define CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED 0xFFFF 58 59 typedef enum { 60 CP_MASK_BIT_PEDAL_POWER_BALANCE = 0, 61 CP_MASK_BIT_ACCUMULATED_TORQUE, 62 CP_MASK_BIT_WHEEL_REVOLUTION_DATA, 63 CP_MASK_BIT_CRANK_REVOLUTION_DATA, 64 CP_MASK_BIT_EXTREME_MAGNITUDES, 65 CP_MASK_BIT_EXTREME_ANGLES, 66 CP_MASK_BIT_TOP_DEAD_SPOT_ANGLE, 67 CP_MASK_BIT_BOTTOM_DEAD_SPOT_ANGLE, 68 CP_MASK_BIT_ACCUMULATED_ENERGY, 69 CP_MASK_BIT_RESERVED 70 } cycling_power_mask_bit_t; 71 72 typedef enum { 73 CP_OPCODE_IDLE = 0, 74 CP_OPCODE_SET_CUMULATIVE_VALUE, 75 CP_OPCODE_UPDATE_SENSOR_LOCATION, 76 CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS, 77 CP_OPCODE_SET_CRANK_LENGTH, 78 CP_OPCODE_REQUEST_CRANK_LENGTH, 79 CP_OPCODE_SET_CHAIN_LENGTH, 80 CP_OPCODE_REQUEST_CHAIN_LENGTH, 81 CP_OPCODE_SET_CHAIN_WEIGHT, 82 CP_OPCODE_REQUEST_CHAIN_WEIGHT, 83 CP_OPCODE_SET_SPAN_LENGTH, 84 CP_OPCODE_REQUEST_SPAN_LENGTH, 85 CP_OPCODE_START_OFFSET_COMPENSATION, 86 CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT, 87 CP_OPCODE_REQUEST_SAMPLING_RATE, 88 CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE, 89 CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION, 90 CP_OPCODE_RESPONSE_CODE = 32 91 } cycling_power_opcode_t; 92 93 typedef enum { 94 CP_RESPONSE_VALUE_SUCCESS = 1, 95 CP_RESPONSE_VALUE_OP_CODE_NOT_SUPPORTED, 96 CP_RESPONSE_VALUE_INVALID_PARAMETER, 97 CP_RESPONSE_VALUE_OPERATION_FAILED, 98 CP_RESPONSE_VALUE_NOT_AVAILABLE, 99 CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE 100 } cycling_power_response_value_t; 101 102 typedef enum { 103 CP_CONNECTION_INTERVAL_STATUS_NONE = 0, 104 CP_CONNECTION_INTERVAL_STATUS_RECEIVED, 105 CP_CONNECTION_INTERVAL_STATUS_ACCEPTED, 106 CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE, 107 CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE, 108 CP_CONNECTION_INTERVAL_STATUS_REJECTED 109 } cycling_power_con_interval_status_t; 110 111 typedef struct { 112 hci_con_handle_t con_handle; 113 // GATT connection management 114 uint16_t con_interval; 115 uint16_t con_interval_min; 116 uint16_t con_interval_max; 117 cycling_power_con_interval_status_t con_interval_status; 118 119 // Cycling Power Measurement 120 uint16_t measurement_value_handle; 121 int16_t instantaneous_power_watt; 122 123 cycling_power_pedal_power_balance_reference_t pedal_power_balance_reference; 124 uint8_t pedal_power_balance_percentage; // percentage, resolution 1/2, 125 // If the sensor provides the power balance referenced to the left pedal, 126 // the power balance is calculated as [LeftPower/(LeftPower + RightPower)]*100 in units of percent 127 128 cycling_power_torque_source_t torque_source; 129 uint16_t accumulated_torque_m; // meters, resolution 1/32, 130 // The Accumulated Torque value may decrease 131 // wheel revolution data: 132 uint32_t cumulative_wheel_revolutions; // CANNOT roll over 133 uint16_t last_wheel_event_time_s; // seconds, resolution 1/2048 134 // crank revolution data: 135 uint16_t cumulative_crank_revolutions; 136 uint16_t last_crank_event_time_s; // seconds, resolution 1/1024 137 // extreme force magnitudes 138 int16_t maximum_force_magnitude_newton; 139 int16_t minimum_force_magnitude_newton; 140 int16_t maximum_torque_magnitude_newton_m; // newton meters, resolution 1/32 141 int16_t minimum_torque_magnitude_newton_m; // newton meters, resolution 1/32 142 // extreme angles 143 uint16_t maximum_angle_deg; // 12bit, degrees 144 uint16_t minimum_angle_deg; // 12bit, degrees, concatenated with previous into 3 octets 145 // i.e. if the Maximum Angle is 0xABC and the Minimum Angle is 0x123, the transmitted value is 0x123ABC. 146 uint16_t top_dead_spot_angle_deg; 147 uint16_t bottom_dead_spot_angle_deg; // The Bottom Dead Spot Angle field represents the crank angle when the value of the Instantaneous Power value becomes negative. 148 uint16_t accumulated_energy_kJ; // kilojoules; CANNOT roll over 149 150 // uint8_t offset_compensation; 151 152 // CP Measurement Notification (Client Characteristic Configuration) 153 uint16_t measurement_client_configuration_descriptor_handle; 154 uint16_t measurement_client_configuration_descriptor_notify; 155 btstack_context_callback_registration_t measurement_notify_callback; 156 157 // CP Measurement Broadcast (Server Characteristic Configuration) 158 uint16_t measurement_server_configuration_descriptor_handle; 159 uint16_t measurement_server_configuration_descriptor_broadcast; 160 btstack_context_callback_registration_t measurement_broadcast_callback; 161 162 // Cycling Power Feature 163 uint16_t feature_value_handle; 164 uint32_t feature_flags; // see cycling_power_feature_flag_t 165 uint16_t masked_measurement_flags; 166 uint16_t default_measurement_flags; 167 168 // Sensor Location 169 uint16_t sensor_location_value_handle; 170 cycling_power_sensor_location_t sensor_location; // see cycling_power_sensor_location_t 171 cycling_power_sensor_location_t * supported_sensor_locations; 172 uint16_t num_supported_sensor_locations; 173 uint16_t crank_length_mm; // resolution 1/2 mm 174 uint16_t chain_length_mm; // resolution 1 mm 175 uint16_t chain_weight_g; // resolution 1 gram 176 uint16_t span_length_mm; // resolution 1 mm 177 178 gatt_date_time_t factory_calibration_date; 179 180 uint8_t sampling_rate_hz; // resolution 1 Herz 181 182 int16_t current_force_magnitude_newton; 183 int16_t current_torque_magnitude_newton_m; // newton meters, resolution 1/32 184 uint16_t manufacturer_company_id; 185 uint8_t num_manufacturer_specific_data; 186 uint8_t * manufacturer_specific_data; 187 188 // Cycling Power Vector 189 uint16_t vector_value_handle; 190 uint16_t vector_cumulative_crank_revolutions; 191 uint16_t vector_last_crank_event_time_s; // seconds, resolution 1/1024 192 uint16_t vector_first_crank_measurement_angle_deg; 193 int16_t * vector_instantaneous_force_magnitude_newton_array; // newton 194 int force_magnitude_count; 195 int16_t * vector_instantaneous_torque_magnitude_newton_per_m_array; // newton per meter, resolution 1/32 196 int torque_magnitude_count; 197 cycling_power_instantaneous_measurement_direction_t vector_instantaneous_measurement_direction; 198 199 // CP Vector Notification (Client Characteristic Configuration) 200 uint16_t vector_client_configuration_descriptor_handle; 201 uint16_t vector_client_configuration_descriptor_notify; 202 btstack_context_callback_registration_t vector_notify_callback; 203 204 // CP Control Point 205 uint16_t control_point_value_handle; 206 // CP Control Point Indication (Client Characteristic Configuration) 207 uint16_t control_point_client_configuration_descriptor_handle; 208 uint16_t control_point_client_configuration_descriptor_indicate; 209 btstack_context_callback_registration_t control_point_indicate_callback; 210 211 cycling_power_opcode_t request_opcode; 212 cycling_power_response_value_t response_value; 213 214 btstack_packet_handler_t calibration_callback; 215 uint8_t w4_indication_complete; 216 } cycling_power_t; 217 218 static att_service_handler_t cycling_power_service; 219 static cycling_power_t cycling_power; 220 static btstack_packet_callback_registration_t hci_event_callback_registration; 221 222 static uint16_t cycling_power_service_read_callback(hci_con_handle_t con_handle, uint16_t attribute_handle, uint16_t offset, uint8_t * buffer, uint16_t buffer_size){ 223 UNUSED(con_handle); 224 UNUSED(attribute_handle); 225 UNUSED(offset); 226 cycling_power_t * instance = &cycling_power; 227 228 if (attribute_handle == instance->measurement_client_configuration_descriptor_handle){ 229 if (buffer && buffer_size >= 2){ 230 little_endian_store_16(buffer, 0, instance->measurement_client_configuration_descriptor_notify); 231 } 232 return 2; 233 } 234 235 if (attribute_handle == instance->measurement_server_configuration_descriptor_handle){ 236 if (buffer && buffer_size >= 2){ 237 little_endian_store_16(buffer, 0, instance->measurement_server_configuration_descriptor_broadcast); 238 } 239 return 2; 240 } 241 242 if (attribute_handle == instance->vector_client_configuration_descriptor_handle){ 243 if (buffer && buffer_size >= 2){ 244 little_endian_store_16(buffer, 0, instance->vector_client_configuration_descriptor_notify); 245 } 246 return 2; 247 } 248 249 if (attribute_handle == instance->control_point_client_configuration_descriptor_handle){ 250 if (buffer && buffer_size >= 2){ 251 little_endian_store_16(buffer, 0, instance->control_point_client_configuration_descriptor_indicate); 252 } 253 return 2; 254 } 255 256 if (attribute_handle == instance->feature_value_handle){ 257 if (buffer && buffer_size >= 4){ 258 little_endian_store_32(buffer, 0, instance->feature_flags); 259 } 260 return 4; 261 } 262 263 if (attribute_handle == instance->sensor_location_value_handle){ 264 if (buffer && buffer_size >= 1){ 265 buffer[0] = instance->sensor_location; 266 } 267 return 1; 268 } 269 return 0; 270 } 271 272 static int has_feature(cycling_power_feature_flag_t feature){ 273 cycling_power_t * instance = &cycling_power; 274 return (instance->feature_flags & (1 << feature)) != 0; 275 } 276 277 static int cycling_power_vector_instantaneous_measurement_direction(void){ 278 cycling_power_t * instance = &cycling_power; 279 return instance->vector_instantaneous_measurement_direction; 280 } 281 282 static uint16_t cycling_power_service_default_measurement_flags(void){ 283 cycling_power_t * instance = &cycling_power; 284 uint16_t measurement_flags = 0; 285 uint8_t flag[] = { 286 (uint8_t) has_feature(CP_FEATURE_FLAG_PEDAL_POWER_BALANCE_SUPPORTED), 287 (uint8_t) has_feature(CP_FEATURE_FLAG_PEDAL_POWER_BALANCE_SUPPORTED) && instance->pedal_power_balance_reference, 288 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_TORQUE_SUPPORTED), 289 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_TORQUE_SUPPORTED) && instance->torque_source, 290 (uint8_t) has_feature(CP_FEATURE_FLAG_WHEEL_REVOLUTION_DATA_SUPPORTED), 291 (uint8_t) has_feature(CP_FEATURE_FLAG_CRANK_REVOLUTION_DATA_SUPPORTED), 292 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE), 293 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE), 294 (uint8_t) has_feature(CP_FEATURE_FLAG_EXTREME_ANGLES_SUPPORTED), 295 (uint8_t) has_feature(CP_FEATURE_FLAG_TOP_AND_BOTTOM_DEAD_SPOT_ANGLE_SUPPORTED), 296 (uint8_t) has_feature(CP_FEATURE_FLAG_TOP_AND_BOTTOM_DEAD_SPOT_ANGLE_SUPPORTED), 297 (uint8_t) has_feature(CP_FEATURE_FLAG_ACCUMULATED_ENERGY_SUPPORTED), 298 (uint8_t) has_feature(CP_FEATURE_FLAG_OFFSET_COMPENSATION_INDICATOR_SUPPORTED) 299 }; 300 301 int i; 302 for (i = CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT; i <= CP_MEASUREMENT_FLAG_OFFSET_COMPENSATION_INDICATOR; i++){ 303 measurement_flags |= flag[i] << i; 304 } 305 306 return measurement_flags; 307 } 308 309 static uint16_t cycling_power_service_get_measurement_flags(cycling_power_t * instance){ 310 if (!instance) return 0; 311 if (instance->masked_measurement_flags != CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED){ 312 return instance->masked_measurement_flags; 313 } 314 if (instance->default_measurement_flags == CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED){ 315 instance->default_measurement_flags = cycling_power_service_default_measurement_flags(); 316 } 317 return instance->default_measurement_flags; 318 } 319 320 321 uint16_t cycling_power_service_measurement_flags(void){ 322 cycling_power_t * instance = &cycling_power; 323 return cycling_power_service_get_measurement_flags(instance); 324 } 325 326 uint8_t cycling_power_service_vector_flags(void){ 327 uint8_t vector_flags = 0; 328 uint8_t flag[] = { 329 (uint8_t )has_feature(CP_FEATURE_FLAG_CRANK_REVOLUTION_DATA_SUPPORTED), 330 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_ANGLES_SUPPORTED), 331 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE), 332 (uint8_t )has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE), 333 (uint8_t )has_feature(CP_FEATURE_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION_SUPPORTED) && cycling_power_vector_instantaneous_measurement_direction() 334 }; 335 336 int i; 337 for (i = CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT; i <= CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION; i++){ 338 vector_flags |= flag[i] << i; 339 } 340 return vector_flags; 341 } 342 343 static void cycling_power_service_vector_can_send_now(void * context){ 344 cycling_power_t * instance = (cycling_power_t *) context; 345 if (!instance){ 346 log_error("cycling_power_service_measurement_can_send_now: instance is null"); 347 return; 348 } 349 uint8_t value[50]; 350 uint8_t vector_flags = cycling_power_service_vector_flags(); 351 int pos = 0; 352 353 value[pos++] = vector_flags; 354 int i; 355 for (i = CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT; i <= CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION; i++){ 356 if ((vector_flags & (1 << i)) == 0) continue; 357 switch ((cycling_power_vector_flag_t) i){ 358 case CP_VECTOR_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 359 little_endian_store_16(value, pos, instance->cumulative_crank_revolutions); 360 pos += 2; 361 little_endian_store_16(value, pos, instance->last_crank_event_time_s); 362 pos += 2; 363 break; 364 case CP_VECTOR_FLAG_INSTANTANEOUS_FORCE_MAGNITUDE_ARRAY_PRESENT:{ 365 uint16_t att_mtu = att_server_get_mtu(instance->con_handle); 366 uint16_t bytes_left = 0; 367 if (att_mtu > pos + 3){ 368 bytes_left = btstack_min(sizeof(value), att_mtu - 3 - pos); 369 } 370 while (bytes_left > 2 && instance->force_magnitude_count){ 371 little_endian_store_16(value, pos, instance->vector_instantaneous_force_magnitude_newton_array[0]); 372 pos += 2; 373 bytes_left -= 2; 374 instance->vector_instantaneous_force_magnitude_newton_array++; 375 instance->force_magnitude_count--; 376 } 377 break; 378 } 379 case CP_VECTOR_FLAG_INSTANTANEOUS_TORQUE_MAGNITUDE_ARRAY_PRESENT:{ 380 uint16_t att_mtu = att_server_get_mtu(instance->con_handle); 381 uint16_t bytes_left = 0; 382 if (att_mtu > pos + 3){ 383 bytes_left = btstack_min(sizeof(value), att_mtu - 3 - pos); 384 } 385 386 while (bytes_left > 2 && instance->torque_magnitude_count){ 387 little_endian_store_16(value, pos, instance->vector_instantaneous_torque_magnitude_newton_per_m_array[0]); 388 pos += 2; 389 bytes_left -= 2; 390 instance->vector_instantaneous_torque_magnitude_newton_per_m_array++; 391 instance->torque_magnitude_count--; 392 } 393 break; 394 } 395 case CP_VECTOR_FLAG_FIRST_CRANK_MEASUREMENT_ANGLE_PRESENT: 396 // printf("CP_VECTOR_FLAG_FIRST_CRANK_MEASUREMENT_ANGLE_PRESENT \n"); 397 little_endian_store_16(value, pos, instance->vector_first_crank_measurement_angle_deg); 398 pos += 2; 399 break; 400 case CP_VECTOR_FLAG_INSTANTANEOUS_MEASUREMENT_DIRECTION: 401 break; 402 default: 403 break; 404 } 405 } 406 407 att_server_notify(instance->con_handle, instance->vector_value_handle, &value[0], pos); 408 } 409 410 static int cycling_power_measurement_flag_value_size(cycling_power_measurement_flag_t flag){ 411 switch (flag){ 412 case CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT: 413 return 1; 414 case CP_MEASUREMENT_FLAG_WHEEL_REVOLUTION_DATA_PRESENT: 415 return 6; 416 case CP_MEASUREMENT_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 417 case CP_MEASUREMENT_FLAG_EXTREME_FORCE_MAGNITUDES_PRESENT: 418 case CP_MEASUREMENT_FLAG_EXTREME_TORQUE_MAGNITUDES_PRESENT: 419 return 4; 420 case CP_MEASUREMENT_FLAG_EXTREME_ANGLES_PRESENT: 421 return 3; 422 case CP_MEASUREMENT_FLAG_ACCUMULATED_TORQUE_PRESENT: 423 case CP_MEASUREMENT_FLAG_TOP_DEAD_SPOT_ANGLE_PRESENT: 424 case CP_MEASUREMENT_FLAG_BOTTOM_DEAD_SPOT_ANGLE_PRESENT: 425 case CP_MEASUREMENT_FLAG_ACCUMULATED_ENERGY_PRESENT: 426 return 2; 427 default: 428 return 0; 429 } 430 } 431 432 static int cycling_power_store_measurement_flag_value(cycling_power_t * instance, cycling_power_measurement_flag_t flag, uint8_t * value){ 433 if (!instance) return 0; 434 435 int pos = 0; 436 switch (flag){ 437 case CP_MEASUREMENT_FLAG_PEDAL_POWER_BALANCE_PRESENT: 438 value[pos++] = instance->pedal_power_balance_percentage; 439 break; 440 case CP_MEASUREMENT_FLAG_ACCUMULATED_TORQUE_PRESENT: 441 little_endian_store_16(value, pos, instance->accumulated_torque_m); 442 pos += 2; 443 break; 444 case CP_MEASUREMENT_FLAG_WHEEL_REVOLUTION_DATA_PRESENT: 445 little_endian_store_32(value, pos, instance->cumulative_wheel_revolutions); 446 pos += 4; 447 little_endian_store_16(value, pos, instance->last_wheel_event_time_s); 448 pos += 2; 449 break; 450 case CP_MEASUREMENT_FLAG_CRANK_REVOLUTION_DATA_PRESENT: 451 little_endian_store_16(value, pos, instance->cumulative_crank_revolutions); 452 pos += 2; 453 little_endian_store_16(value, pos, instance->last_crank_event_time_s); 454 pos += 2; 455 break; 456 case CP_MEASUREMENT_FLAG_EXTREME_FORCE_MAGNITUDES_PRESENT: 457 little_endian_store_16(value, pos, (uint16_t)instance->maximum_force_magnitude_newton); 458 pos += 2; 459 little_endian_store_16(value, pos, (uint16_t)instance->minimum_force_magnitude_newton); 460 pos += 2; 461 break; 462 case CP_MEASUREMENT_FLAG_EXTREME_TORQUE_MAGNITUDES_PRESENT: 463 little_endian_store_16(value, pos, (uint16_t)instance->maximum_torque_magnitude_newton_m); 464 pos += 2; 465 little_endian_store_16(value, pos, (uint16_t)instance->minimum_torque_magnitude_newton_m); 466 pos += 2; 467 break; 468 case CP_MEASUREMENT_FLAG_EXTREME_ANGLES_PRESENT: 469 little_endian_store_24(value, pos, (instance->maximum_angle_deg << 12) | instance->minimum_angle_deg); 470 pos += 3; 471 break; 472 case CP_MEASUREMENT_FLAG_TOP_DEAD_SPOT_ANGLE_PRESENT: 473 little_endian_store_16(value, pos, (uint16_t)instance->top_dead_spot_angle_deg); 474 pos += 2; 475 break; 476 case CP_MEASUREMENT_FLAG_BOTTOM_DEAD_SPOT_ANGLE_PRESENT: 477 little_endian_store_16(value, pos, (uint16_t)instance->bottom_dead_spot_angle_deg); 478 pos += 2; 479 break; 480 case CP_MEASUREMENT_FLAG_ACCUMULATED_ENERGY_PRESENT: 481 little_endian_store_16(value, pos, (uint16_t)instance->accumulated_energy_kJ); 482 pos += 2; 483 break; 484 default: 485 break; 486 } 487 return pos; 488 } 489 490 491 static int cycling_power_store_measurement(cycling_power_t * instance, uint8_t * value, uint16_t max_value_size){ 492 if (max_value_size < 4) return 0; 493 if (!instance) return 0; 494 495 uint16_t measurement_flags = cycling_power_service_get_measurement_flags(instance); 496 int pos = 0; 497 little_endian_store_16(value, 0, measurement_flags); 498 pos += 2; 499 little_endian_store_16(value, 2, instance->instantaneous_power_watt); 500 pos += 2; 501 int flag_index; 502 uint16_t bytes_left = max_value_size - pos; 503 for (flag_index = 0; flag_index < CP_MEASUREMENT_FLAG_RESERVED; flag_index++){ 504 if ((measurement_flags & (1 << flag_index)) == 0) continue; 505 cycling_power_measurement_flag_t flag = (cycling_power_measurement_flag_t) flag_index; 506 uint16_t value_size = cycling_power_measurement_flag_value_size(flag); 507 if (value_size > bytes_left ) return pos; 508 cycling_power_store_measurement_flag_value(instance, flag, &value[pos]); 509 pos += value_size; 510 bytes_left -= value_size; 511 } 512 return pos; 513 } 514 515 int cycling_power_get_measurement_adv(uint16_t adv_interval, uint8_t * broadcast_adv, uint16_t max_value_size){ 516 if (max_value_size < 12) return 0; 517 cycling_power_t * instance = &cycling_power; 518 int pos = 0; 519 // adv flags 520 broadcast_adv[pos++] = 2; 521 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_FLAGS; 522 broadcast_adv[pos++] = 0x4; 523 524 // adv interval 525 broadcast_adv[pos++] = 3; 526 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_ADVERTISING_INTERVAL; 527 little_endian_store_16(broadcast_adv, pos, adv_interval); 528 pos += 2; 529 // 530 int value_len = cycling_power_store_measurement(instance, &broadcast_adv[pos+4], CYCLING_POWER_MAX_BROACAST_MSG_SIZE - (pos + 4)); 531 broadcast_adv[pos++] = 3 + value_len; 532 broadcast_adv[pos++] = BLUETOOTH_DATA_TYPE_SERVICE_DATA_16_BIT_UUID; 533 little_endian_store_16(broadcast_adv, pos, ORG_BLUETOOTH_SERVICE_CYCLING_POWER); 534 pos += 2; 535 // value data already in place cycling_power_get_measurement 536 pos += value_len; 537 // set ADV_NONCONN_IND 538 return pos; 539 } 540 541 static void cycling_power_service_broadcast_can_send_now(void * context){ 542 cycling_power_t * instance = (cycling_power_t *) context; 543 if (!instance){ 544 log_error("cycling_power_service_broadcast_can_send_now: instance is null"); 545 return; 546 } 547 uint8_t value[CYCLING_POWER_MAX_BROACAST_MSG_SIZE]; 548 int pos = cycling_power_store_measurement(instance, &value[0], sizeof(value)); 549 att_server_notify(instance->con_handle, instance->measurement_value_handle, &value[0], pos); 550 } 551 552 static void cycling_power_service_measurement_can_send_now(void * context){ 553 cycling_power_t * instance = (cycling_power_t *) context; 554 if (!instance){ 555 log_error("cycling_power_service_measurement_can_send_now: instance is null"); 556 return; 557 } 558 uint8_t value[40]; 559 int pos = cycling_power_store_measurement(instance, &value[0], sizeof(value)); 560 att_server_notify(instance->con_handle, instance->measurement_value_handle, &value[0], pos); 561 } 562 563 static void cycling_power_service_response_can_send_now(void * context){ 564 cycling_power_t * instance = (cycling_power_t *) context; 565 if (!instance){ 566 log_error("cycling_power_service_response_can_send_now: instance is null"); 567 return; 568 } 569 570 if (instance->response_value == CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE){ 571 log_error("cycling_power_service_response_can_send_now: CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE"); 572 return; 573 } 574 575 // if (instance->w4_indication_complete){ 576 // printf("cycling_power_service_response_can_send_now: w4_indication_complete\n"); 577 // return; 578 // } 579 580 uint8_t value[3 + btstack_max(CP_SENSOR_LOCATION_RESERVED, CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE + 5)]; 581 int pos = 0; 582 value[pos++] = CP_OPCODE_RESPONSE_CODE; 583 value[pos++] = instance->request_opcode; 584 value[pos++] = instance->response_value; 585 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 586 switch (instance->request_opcode){ 587 case CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS:{ 588 int i; 589 for (i=0; i<instance->num_supported_sensor_locations; i++){ 590 value[pos++] = instance->supported_sensor_locations[i]; 591 } 592 break; 593 } 594 case CP_OPCODE_REQUEST_CRANK_LENGTH: 595 little_endian_store_16(value, pos, instance->crank_length_mm); 596 pos += 2; 597 break; 598 case CP_OPCODE_REQUEST_CHAIN_LENGTH: 599 little_endian_store_16(value, pos, instance->chain_length_mm); 600 pos += 2; 601 break; 602 case CP_OPCODE_REQUEST_CHAIN_WEIGHT: 603 little_endian_store_16(value, pos, instance->chain_weight_g); 604 pos += 2; 605 break; 606 case CP_OPCODE_REQUEST_SPAN_LENGTH: 607 little_endian_store_16(value, pos, instance->span_length_mm); 608 pos += 2; 609 break; 610 case CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE: 611 little_endian_store_16(value, pos, instance->factory_calibration_date.year); 612 pos += 2; 613 value[pos++] = instance->factory_calibration_date.month; 614 value[pos++] = instance->factory_calibration_date.day; 615 value[pos++] = instance->factory_calibration_date.hours; 616 value[pos++] = instance->factory_calibration_date.minutes; 617 value[pos++] = instance->factory_calibration_date.seconds; 618 break; 619 case CP_OPCODE_REQUEST_SAMPLING_RATE: 620 value[pos++] = instance->sampling_rate_hz; 621 break; 622 case CP_OPCODE_START_OFFSET_COMPENSATION: 623 case CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION:{ 624 uint16_t calibrated_value = 0xffff; 625 if (has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED)){ 626 if (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE) { 627 calibrated_value = instance->current_force_magnitude_newton; 628 } else if (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE){ 629 calibrated_value = instance->current_torque_magnitude_newton_m; 630 } 631 } 632 633 if (calibrated_value == CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION){ 634 value[pos++] = calibrated_value; 635 // do not include manufacturer ID and data 636 break; 637 } else if (calibrated_value == CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS){ 638 value[pos++] = calibrated_value; 639 } else { 640 little_endian_store_16(value, pos, calibrated_value); 641 pos += 2; 642 643 } 644 645 if (instance->request_opcode == CP_OPCODE_START_OFFSET_COMPENSATION) break; 646 little_endian_store_16(value, pos, instance->manufacturer_company_id); 647 pos += 2; 648 int data_len = instance->num_manufacturer_specific_data < CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE ? instance->num_manufacturer_specific_data : (CYCLING_POWER_MANUFACTURER_SPECIFIC_DATA_MAX_SIZE - 1); 649 value[pos++] = data_len; 650 memcpy(&value[pos], instance->manufacturer_specific_data, data_len); 651 pos += data_len; 652 value[pos++] = 0; 653 break; 654 } 655 case CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT: 656 break; 657 default: 658 break; 659 } 660 } 661 uint8_t status = att_server_indicate(instance->con_handle, instance->control_point_value_handle, &value[0], pos); 662 if (status == ERROR_CODE_SUCCESS){ 663 instance->w4_indication_complete = 1; 664 // printf("cycling_power_service_response_can_send_now: set w4_indication_complete\n"); 665 // printf("can_send_now set opcode to CP_OPCODE_IDLE\n"); 666 instance->request_opcode = CP_OPCODE_IDLE; 667 } else { 668 log_error("can_send_now failed 0x%2x", status); 669 } 670 } 671 672 static int cycling_power_service_write_callback(hci_con_handle_t con_handle, uint16_t attribute_handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size){ 673 UNUSED(con_handle); 674 UNUSED(transaction_mode); 675 UNUSED(offset); 676 UNUSED(buffer_size); 677 int i; 678 cycling_power_sensor_location_t location; 679 cycling_power_t * instance = &cycling_power; 680 681 // printf("cycling_power_service_write_callback: attr handle 0x%02x\n", attribute_handle); 682 if (attribute_handle == instance->measurement_client_configuration_descriptor_handle){ 683 if (buffer_size < 2){ 684 return ATT_ERROR_INVALID_OFFSET; 685 } 686 instance->measurement_client_configuration_descriptor_notify = little_endian_read_16(buffer, 0); 687 instance->con_handle = con_handle; 688 log_info("cycling_power_service_write_callback: measurement enabled %d", instance->measurement_client_configuration_descriptor_notify); 689 return 0; 690 } 691 692 if (attribute_handle == instance->measurement_server_configuration_descriptor_handle){ 693 if (buffer_size < 2){ 694 return ATT_ERROR_INVALID_OFFSET; 695 } 696 instance->measurement_server_configuration_descriptor_broadcast = little_endian_read_16(buffer, 0); 697 instance->con_handle = con_handle; 698 uint8_t event[5]; 699 int index = 0; 700 event[index++] = HCI_EVENT_GATTSERVICE_META; 701 event[index++] = sizeof(event) - 2; 702 703 if (instance->measurement_server_configuration_descriptor_broadcast){ 704 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_START; 705 log_info("cycling_power_service_write_callback: start broadcast"); 706 } else { 707 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_STOP; 708 log_info("cycling_power_service_write_callback: stop broadcast"); 709 } 710 little_endian_store_16(event, index, con_handle); 711 index += 2; 712 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 713 return 0; 714 } 715 716 if (attribute_handle == instance->vector_client_configuration_descriptor_handle){ 717 if (buffer_size < 2){ 718 return ATT_ERROR_INVALID_OFFSET; 719 } 720 instance->con_handle = con_handle; 721 722 #ifdef ENABLE_ATT_DELAYED_RESPONSE 723 switch (instance->con_interval_status){ 724 case CP_CONNECTION_INTERVAL_STATUS_REJECTED: 725 return CYCLING_POWER_ERROR_CODE_INAPPROPRIATE_CONNECTION_PARAMETERS; 726 727 case CP_CONNECTION_INTERVAL_STATUS_ACCEPTED: 728 case CP_CONNECTION_INTERVAL_STATUS_RECEIVED: 729 if (instance->con_interval > instance->con_interval_max || instance->con_interval < instance->con_interval_min){ 730 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE; 731 gap_request_connection_parameter_update(instance->con_handle, instance->con_interval_min, instance->con_interval_max, 4, 100); // 15 ms, 4, 1s 732 return ATT_ERROR_WRITE_RESPONSE_PENDING; 733 } 734 instance->vector_client_configuration_descriptor_notify = little_endian_read_16(buffer, 0); 735 return 0; 736 default: 737 return ATT_ERROR_WRITE_RESPONSE_PENDING; 738 739 } 740 #endif 741 } 742 743 if (attribute_handle == instance->control_point_client_configuration_descriptor_handle){ 744 if (buffer_size < 2){ 745 return ATT_ERROR_INVALID_OFFSET; 746 } 747 instance->control_point_client_configuration_descriptor_indicate = little_endian_read_16(buffer, 0); 748 instance->con_handle = con_handle; 749 log_info("cycling_power_service_write_callback: indication enabled %d", instance->control_point_client_configuration_descriptor_indicate); 750 return 0; 751 } 752 753 if (attribute_handle == instance->feature_value_handle){ 754 if (buffer_size < 4){ 755 return ATT_ERROR_INVALID_OFFSET; 756 } 757 instance->feature_flags = little_endian_read_32(buffer, 0); 758 return 0; 759 } 760 761 if (attribute_handle == instance->control_point_value_handle){ 762 if (instance->control_point_client_configuration_descriptor_indicate == 0) return CYCLING_POWER_ERROR_CODE_CCC_DESCRIPTOR_IMPROPERLY_CONFIGURED; 763 if (instance->w4_indication_complete != 0){ 764 return CYCLING_POWER_ERROR_CODE_PROCEDURE_ALREADY_IN_PROGRESS; 765 } 766 int pos = 0; 767 instance->request_opcode = (cycling_power_opcode_t) buffer[pos++]; 768 instance->response_value = CP_RESPONSE_VALUE_OP_CODE_NOT_SUPPORTED; 769 770 switch (instance->request_opcode){ 771 case CP_OPCODE_SET_CUMULATIVE_VALUE: 772 if (!has_feature(CP_FEATURE_FLAG_WHEEL_REVOLUTION_DATA_SUPPORTED)) break; 773 instance->cumulative_wheel_revolutions = little_endian_read_32(buffer, pos); 774 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 775 break; 776 777 case CP_OPCODE_REQUEST_SUPPORTED_SENSOR_LOCATIONS: 778 if (!has_feature(CP_FEATURE_FLAG_MULTIPLE_SENSOR_LOCATIONS_SUPPORTED)) break; 779 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 780 break; 781 782 case CP_OPCODE_UPDATE_SENSOR_LOCATION: 783 if (!has_feature(CP_FEATURE_FLAG_MULTIPLE_SENSOR_LOCATIONS_SUPPORTED)) break; 784 location = (cycling_power_sensor_location_t) buffer[pos]; 785 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 786 for (i=0; i<instance->num_supported_sensor_locations; i++){ 787 if (instance->supported_sensor_locations[i] == location){ 788 instance->sensor_location = location; 789 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 790 break; 791 } 792 } 793 break; 794 795 case CP_OPCODE_REQUEST_CRANK_LENGTH: 796 if (!has_feature(CP_FEATURE_FLAG_CRANK_LENGTH_ADJUSTMENT_SUPPORTED)) break; 797 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 798 break; 799 case CP_OPCODE_SET_CRANK_LENGTH: 800 if (!has_feature(CP_FEATURE_FLAG_CRANK_LENGTH_ADJUSTMENT_SUPPORTED)) break; 801 instance->crank_length_mm = little_endian_read_16(buffer, pos); 802 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 803 break; 804 805 case CP_OPCODE_REQUEST_CHAIN_LENGTH: 806 if (!has_feature(CP_FEATURE_FLAG_CHAIN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 807 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 808 break; 809 case CP_OPCODE_SET_CHAIN_LENGTH: 810 if (!has_feature(CP_FEATURE_FLAG_CHAIN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 811 instance->chain_length_mm = little_endian_read_16(buffer, pos); 812 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 813 break; 814 815 case CP_OPCODE_REQUEST_CHAIN_WEIGHT: 816 if (!has_feature(CP_FEATURE_FLAG_CHAIN_WEIGHT_ADJUSTMENT_SUPPORTED)) break; 817 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 818 break; 819 case CP_OPCODE_SET_CHAIN_WEIGHT: 820 if (!has_feature(CP_FEATURE_FLAG_CHAIN_WEIGHT_ADJUSTMENT_SUPPORTED)) break; 821 instance->chain_weight_g = little_endian_read_16(buffer, pos); 822 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 823 break; 824 825 case CP_OPCODE_REQUEST_SPAN_LENGTH: 826 if (!has_feature(CP_FEATURE_FLAG_SPAN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 827 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 828 break; 829 case CP_OPCODE_SET_SPAN_LENGTH: 830 if (!has_feature(CP_FEATURE_FLAG_SPAN_LENGTH_ADJUSTMENT_SUPPORTED)) break; 831 instance->span_length_mm = little_endian_read_16(buffer, pos); 832 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 833 break; 834 835 case CP_OPCODE_REQUEST_FACTORY_CALIBRATION_DATE: 836 if (!has_feature(CP_FEATURE_FLAG_FACTORY_CALIBRATION_DATE_SUPPORTED)) break; 837 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 838 break; 839 840 case CP_OPCODE_REQUEST_SAMPLING_RATE: 841 if (!instance->vector_value_handle) break; 842 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 843 break; 844 845 case CP_OPCODE_START_OFFSET_COMPENSATION: 846 case CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION: 847 if (!has_feature(CP_FEATURE_FLAG_OFFSET_COMPENSATION_SUPPORTED)){ 848 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 849 break; 850 } 851 if (has_feature(CP_FEATURE_FLAG_EXTREME_MAGNITUDES_SUPPORTED) && 852 ((has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_FORCE) || 853 (has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE)) 854 ){ 855 // printf("start offset compensation procedure, enhanced %d\n", (instance->request_opcode == CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION)); 856 uint8_t event[7]; 857 int index = 0; 858 event[index++] = HCI_EVENT_GATTSERVICE_META; 859 event[index++] = sizeof(event) - 2; 860 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_START_CALIBRATION; 861 little_endian_store_16(event, index, con_handle); 862 index += 2; 863 event[index++] = has_feature(CP_FEATURE_FLAG_SENSOR_MEASUREMENT_CONTEXT) == CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE; 864 event[index++] = (instance->request_opcode == CP_OPCODE_START_ENHANCED_OFFSET_COMPENSATION); 865 instance->response_value = CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE; 866 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 867 return 0; 868 } 869 instance->current_force_magnitude_newton = 0xffff; 870 instance->current_torque_magnitude_newton_m = 0xffff; 871 break; 872 873 case CP_OPCODE_MASK_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT:{ 874 if (!has_feature(CP_FEATURE_FLAG_CYCLING_POWER_MEASUREMENT_CHARACTERISTIC_CONTENT_MASKING_SUPPORTED)) break; 875 uint16_t mask_bitmap = little_endian_read_16(buffer, pos); 876 uint16_t masked_measurement_flags = instance->default_measurement_flags; 877 uint16_t index = 0; 878 879 for (i = 0; i < CP_MASK_BIT_RESERVED; i++){ 880 uint8_t clear_bit = mask_bitmap & (1 << i) ? 1 : 0; 881 882 masked_measurement_flags &= ~(clear_bit << index); 883 index++; 884 // following measurement flags have additional flag 885 switch ((cycling_power_mask_bit_t)i){ 886 case CP_MASK_BIT_PEDAL_POWER_BALANCE: 887 case CP_MASK_BIT_ACCUMULATED_TORQUE: 888 case CP_MASK_BIT_EXTREME_MAGNITUDES: 889 masked_measurement_flags &= ~(clear_bit << index); 890 index++; 891 break; 892 default: 893 break; 894 } 895 } 896 instance->masked_measurement_flags = masked_measurement_flags; 897 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 898 break; 899 } 900 default: 901 break; 902 } 903 904 if (instance->control_point_client_configuration_descriptor_indicate){ 905 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 906 instance->control_point_indicate_callback.context = (void*) instance; 907 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 908 } 909 return 0; 910 } 911 return 0; 912 } 913 914 static void packet_handler(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 915 UNUSED(channel); 916 UNUSED(size); 917 cycling_power_t * instance = &cycling_power; 918 uint8_t event_type = hci_event_packet_get_type(packet); 919 uint16_t con_handle; 920 921 if (packet_type != HCI_EVENT_PACKET) return; 922 switch (event_type){ 923 case HCI_EVENT_LE_META: 924 switch (hci_event_le_meta_get_subevent_code(packet)){ 925 case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: 926 instance->con_handle = hci_subevent_le_connection_complete_get_connection_handle(packet); 927 // print connection parameters (without using float operations) 928 instance->con_interval = hci_subevent_le_connection_complete_get_conn_interval(packet); 929 // printf("Initial Connection Interval: %u, %u.%02u ms\n", instance->con_interval, instance->con_interval * 125 / 100, 25 * (instance->con_interval & 3)); 930 // printf("Initial Connection Latency: %u\n", hci_subevent_le_connection_complete_get_conn_latency(packet)); 931 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_RECEIVED; 932 break; 933 case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE: 934 if (instance->con_interval_status != CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE) return; 935 936 if (instance->con_interval > instance->con_interval_max || instance->con_interval < instance->con_interval_min){ 937 instance->con_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet); 938 // printf("Updated Connection Interval: %u, %u.%02u ms\n", instance->con_interval, instance->con_interval * 125 / 100, 25 * (instance->con_interval & 3)); 939 // printf("Updated Connection Latency: %u\n", hci_subevent_le_connection_update_complete_get_conn_latency(packet)); 940 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_ACCEPTED; 941 } else { 942 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_REJECTED; 943 } 944 att_server_response_ready(l2cap_event_connection_parameter_update_response_get_handle(packet)); 945 break; 946 default: 947 break; 948 } 949 break; 950 case L2CAP_EVENT_CONNECTION_PARAMETER_UPDATE_RESPONSE: 951 if (instance->con_interval_status != CP_CONNECTION_INTERVAL_STATUS_W4_L2CAP_RESPONSE) return; 952 953 // printf("L2CAP Connection Parameter Update Complete, response: %x\n", l2cap_event_connection_parameter_update_response_get_result(packet)); 954 if (l2cap_event_connection_parameter_update_response_get_result(packet) == ERROR_CODE_SUCCESS){ 955 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_W4_UPDATE; 956 } else { 957 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_REJECTED; 958 att_server_response_ready(l2cap_event_connection_parameter_update_response_get_handle(packet)); 959 } 960 break; 961 962 case HCI_EVENT_DISCONNECTION_COMPLETE:{ 963 if (!instance) return; 964 con_handle = hci_event_disconnection_complete_get_connection_handle(packet); 965 if (con_handle == HCI_CON_HANDLE_INVALID) return; 966 967 instance->masked_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 968 instance->w4_indication_complete = 0; 969 970 uint8_t event[5]; 971 int index = 0; 972 event[index++] = HCI_EVENT_GATTSERVICE_META; 973 event[index++] = sizeof(event) - 2; 974 975 event[index++] = GATTSERVICE_SUBEVENT_CYCLING_POWER_BROADCAST_STOP; 976 little_endian_store_16(event, index, con_handle); 977 index += 2; 978 (*instance->calibration_callback)(HCI_EVENT_PACKET, 0, event, sizeof(event)); 979 980 break; 981 } 982 case ATT_EVENT_HANDLE_VALUE_INDICATION_COMPLETE: 983 instance->w4_indication_complete = 0; 984 break; 985 default: 986 break; 987 } 988 } 989 990 void cycling_power_service_server_init(uint32_t feature_flags, 991 cycling_power_pedal_power_balance_reference_t reference, cycling_power_torque_source_t torque_source, 992 cycling_power_sensor_location_t * supported_sensor_locations, uint16_t num_supported_sensor_locations, 993 cycling_power_sensor_location_t current_sensor_location){ 994 995 cycling_power_t * instance = &cycling_power; 996 // TODO: remove hardcoded initialization 997 instance->con_interval_min = 6; 998 instance->con_interval_max = 6; 999 instance->con_interval_status = CP_CONNECTION_INTERVAL_STATUS_NONE; 1000 instance->w4_indication_complete = 0; 1001 hci_event_callback_registration.callback = &packet_handler; 1002 hci_add_event_handler(&hci_event_callback_registration); 1003 l2cap_register_packet_handler(&packet_handler); 1004 1005 instance->sensor_location = current_sensor_location; 1006 instance->num_supported_sensor_locations = 0; 1007 if (supported_sensor_locations != NULL){ 1008 instance->num_supported_sensor_locations = num_supported_sensor_locations; 1009 instance->supported_sensor_locations = supported_sensor_locations; 1010 } 1011 1012 instance->feature_flags = feature_flags; 1013 instance->default_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 1014 instance->masked_measurement_flags = CYCLING_POWER_MEASUREMENT_FLAGS_CLEARED; 1015 instance->pedal_power_balance_reference = reference; 1016 instance->torque_source = torque_source; 1017 1018 // get service handle range 1019 uint16_t start_handle = 0; 1020 uint16_t end_handle = 0xffff; 1021 int service_found = gatt_server_get_get_handle_range_for_service_with_uuid16(ORG_BLUETOOTH_SERVICE_CYCLING_POWER, &start_handle, &end_handle); 1022 if (!service_found){ 1023 log_error("no service found\n"); 1024 return; 1025 } 1026 // get CP Mesurement characteristic value handle and client configuration handle 1027 instance->measurement_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1028 instance->measurement_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1029 instance->measurement_server_configuration_descriptor_handle = gatt_server_get_server_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_MEASUREMENT); 1030 1031 // get CP Feature characteristic value handle and client configuration handle 1032 instance->feature_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_FEATURE); 1033 // get CP Sensor Location characteristic value handle and client configuration handle 1034 instance->sensor_location_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_SENSOR_LOCATION); 1035 1036 // get CP Vector characteristic value handle and client configuration handle 1037 instance->vector_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_VECTOR); 1038 instance->vector_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_VECTOR); 1039 1040 // get Body Sensor Location characteristic value handle and client configuration handle 1041 instance->sensor_location_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_SENSOR_LOCATION); 1042 1043 // get SP Control Point characteristic value handle and client configuration handle 1044 instance->control_point_value_handle = gatt_server_get_value_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_CONTROL_POINT); 1045 instance->control_point_client_configuration_descriptor_handle = gatt_server_get_client_configuration_handle_for_characteristic_with_uuid16(start_handle, end_handle, ORG_BLUETOOTH_CHARACTERISTIC_CYCLING_POWER_CONTROL_POINT); 1046 1047 log_info("Measurement value handle 0x%02x", instance->measurement_value_handle); 1048 log_info("M. Client Cfg value handle 0x%02x", instance->measurement_client_configuration_descriptor_handle); 1049 log_info("M. Server Cfg value handle 0x%02x", instance->measurement_server_configuration_descriptor_handle); 1050 1051 log_info("Feature value handle 0x%02x", instance->feature_value_handle); 1052 log_info("Sensor location value handle 0x%02x", instance->sensor_location_value_handle); 1053 1054 log_info("Vector value handle 0x%02x", instance->vector_value_handle); 1055 log_info("Vector Cfg. value handle 0x%02x", instance->vector_client_configuration_descriptor_handle); 1056 1057 log_info("Control Point value handle 0x%02x", instance->control_point_value_handle); 1058 log_info("Control P. Cfg. value handle 0x%02x", instance->control_point_client_configuration_descriptor_handle); 1059 1060 cycling_power_service.start_handle = start_handle; 1061 cycling_power_service.end_handle = end_handle; 1062 cycling_power_service.read_callback = &cycling_power_service_read_callback; 1063 cycling_power_service.write_callback = &cycling_power_service_write_callback; 1064 cycling_power_service.packet_handler = &packet_handler; 1065 att_server_register_service_handler(&cycling_power_service); 1066 } 1067 1068 1069 void cycling_power_service_server_add_torque(int16_t torque_m){ 1070 cycling_power_t * instance = &cycling_power; 1071 instance->accumulated_torque_m += torque_m; 1072 } 1073 1074 void cycling_power_service_server_add_wheel_revolution(int32_t wheel_revolution, uint16_t wheel_event_time_s){ 1075 cycling_power_t * instance = &cycling_power; 1076 instance->last_wheel_event_time_s = wheel_event_time_s; 1077 if (wheel_revolution < 0){ 1078 if (instance->cumulative_wheel_revolutions > -wheel_revolution){ 1079 instance->cumulative_wheel_revolutions += wheel_revolution; 1080 } else { 1081 instance->cumulative_wheel_revolutions = 0; 1082 } 1083 } else { 1084 if (instance->cumulative_wheel_revolutions < 0xffffffff - wheel_revolution){ 1085 instance->cumulative_wheel_revolutions += wheel_revolution; 1086 } else { 1087 instance->cumulative_wheel_revolutions = 0xffffffff; 1088 } 1089 } 1090 } 1091 1092 void cycling_power_service_server_add_crank_revolution(uint16_t crank_revolution, uint16_t crank_event_time_s){ 1093 cycling_power_t * instance = &cycling_power; 1094 instance->last_crank_event_time_s = crank_event_time_s; 1095 instance->cumulative_crank_revolutions += crank_revolution; 1096 } 1097 1098 void cycling_power_service_add_energy(uint16_t energy_kJ){ 1099 cycling_power_t * instance = &cycling_power; 1100 if (instance->accumulated_energy_kJ <= 0xffff - energy_kJ){ 1101 instance->accumulated_energy_kJ += energy_kJ; 1102 } else { 1103 instance->accumulated_energy_kJ = 0xffff; 1104 } 1105 // printf("energy %d\n", instance->accumulated_energy_kJ); 1106 } 1107 1108 void cycling_power_service_server_set_instantaneous_power(int16_t instantaneous_power_watt){ 1109 cycling_power_t * instance = &cycling_power; 1110 instance->instantaneous_power_watt = instantaneous_power_watt; 1111 } 1112 1113 void cycling_power_service_server_set_pedal_power_balance(uint8_t pedal_power_balance_percentage){ 1114 cycling_power_t * instance = &cycling_power; 1115 instance->pedal_power_balance_percentage = pedal_power_balance_percentage; 1116 } 1117 1118 void cycling_power_service_server_set_force_magnitude_values(int force_magnitude_count, int16_t * force_magnitude_newton_array){ 1119 cycling_power_t * instance = &cycling_power; 1120 instance->force_magnitude_count = force_magnitude_count; 1121 instance->vector_instantaneous_force_magnitude_newton_array = force_magnitude_newton_array; 1122 } 1123 1124 void cycling_power_service_server_set_torque_magnitude_values(int torque_magnitude_count, int16_t * torque_magnitude_newton_array){ 1125 cycling_power_t * instance = &cycling_power; 1126 instance->torque_magnitude_count = torque_magnitude_count; 1127 instance->vector_instantaneous_torque_magnitude_newton_per_m_array = torque_magnitude_newton_array; 1128 } 1129 1130 void cycling_power_service_server_set_first_crank_measurement_angle(uint16_t first_crank_measurement_angle_deg){ 1131 cycling_power_t * instance = &cycling_power; 1132 instance->vector_first_crank_measurement_angle_deg = first_crank_measurement_angle_deg; 1133 } 1134 1135 void cycling_power_service_server_set_instantaneous_measurement_direction(cycling_power_instantaneous_measurement_direction_t direction){ 1136 cycling_power_t * instance = &cycling_power; 1137 instance->vector_instantaneous_measurement_direction = direction; 1138 } 1139 1140 void cycling_power_service_server_set_force_magnitude(int16_t min_force_magnitude_newton, int16_t max_force_magnitude_newton){ 1141 cycling_power_t * instance = &cycling_power; 1142 instance->minimum_force_magnitude_newton = min_force_magnitude_newton; 1143 instance->maximum_force_magnitude_newton = max_force_magnitude_newton; 1144 } 1145 1146 void cycling_power_service_server_set_torque_magnitude(int16_t min_torque_magnitude_newton, int16_t max_torque_magnitude_newton){ 1147 cycling_power_t * instance = &cycling_power; 1148 instance->minimum_torque_magnitude_newton_m = min_torque_magnitude_newton; 1149 instance->maximum_torque_magnitude_newton_m = max_torque_magnitude_newton; 1150 } 1151 1152 void cycling_power_service_server_set_angle(uint16_t min_angle_deg, uint16_t max_angle_deg){ 1153 cycling_power_t * instance = &cycling_power; 1154 instance->minimum_angle_deg = min_angle_deg; 1155 instance->maximum_angle_deg = max_angle_deg; 1156 } 1157 1158 void cycling_power_service_server_set_top_dead_spot_angle(uint16_t top_dead_spot_angle_deg){ 1159 cycling_power_t * instance = &cycling_power; 1160 instance->top_dead_spot_angle_deg = top_dead_spot_angle_deg; 1161 } 1162 1163 void cycling_power_service_server_set_bottom_dead_spot_angle(uint16_t bottom_dead_spot_angle_deg){ 1164 cycling_power_t * instance = &cycling_power; 1165 instance->bottom_dead_spot_angle_deg = bottom_dead_spot_angle_deg; 1166 } 1167 1168 static int gatt_date_is_valid(gatt_date_time_t date){ 1169 if (date.year != 0 && (date.year < 1582 || date.year > 9999)) return 0; 1170 if (date.month != 0 && date.month > 12) return 0; 1171 if (date.day != 0 && date.day > 31) return 0; 1172 1173 if (date.hours > 23) return 0; 1174 if (date.minutes > 59) return 0; 1175 if (date.seconds > 59) return 0; 1176 return 1; 1177 } 1178 1179 int cycling_power_service_server_set_factory_calibration_date(gatt_date_time_t date){ 1180 if (!gatt_date_is_valid(date)) return 0; 1181 1182 cycling_power_t * instance = &cycling_power; 1183 instance->factory_calibration_date = date; 1184 return 1; 1185 } 1186 1187 void cycling_power_service_server_set_sampling_rate(uint8_t sampling_rate_hz){ 1188 cycling_power_t * instance = &cycling_power; 1189 instance->sampling_rate_hz = sampling_rate_hz; 1190 } 1191 1192 1193 void cycling_power_service_server_update_values(void){ 1194 cycling_power_t * instance = &cycling_power; 1195 1196 if (instance->measurement_server_configuration_descriptor_broadcast){ 1197 instance->measurement_broadcast_callback.callback = &cycling_power_service_broadcast_can_send_now; 1198 instance->measurement_broadcast_callback.context = (void*) instance; 1199 att_server_register_can_send_now_callback(&instance->measurement_broadcast_callback, instance->con_handle); 1200 } 1201 1202 if (instance->measurement_client_configuration_descriptor_notify){ 1203 instance->measurement_notify_callback.callback = &cycling_power_service_measurement_can_send_now; 1204 instance->measurement_notify_callback.context = (void*) instance; 1205 att_server_register_can_send_now_callback(&instance->measurement_notify_callback, instance->con_handle); 1206 } 1207 1208 if (instance->vector_client_configuration_descriptor_notify){ 1209 instance->vector_notify_callback.callback = &cycling_power_service_vector_can_send_now; 1210 instance->vector_notify_callback.context = (void*) instance; 1211 att_server_register_can_send_now_callback(&instance->vector_notify_callback, instance->con_handle); 1212 } 1213 } 1214 1215 void cycling_power_service_server_packet_handler(btstack_packet_handler_t callback){ 1216 if (callback == NULL){ 1217 log_error("cycling_power_service_server_packet_handler called with NULL callback"); 1218 return; 1219 } 1220 cycling_power_t * instance = &cycling_power; 1221 instance->calibration_callback = callback; 1222 } 1223 1224 void cycling_power_server_calibration_done(cycling_power_sensor_measurement_context_t measurement_type, uint16_t calibrated_value){ 1225 cycling_power_t * instance = &cycling_power; 1226 if (instance->response_value != CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE){ 1227 printf("cycling_power_server_calibration_done : CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE con_handle 0x%02x\n", instance->con_handle); 1228 return; 1229 } 1230 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 1231 1232 switch (measurement_type){ 1233 case CP_SENSOR_MEASUREMENT_CONTEXT_FORCE: 1234 instance->current_force_magnitude_newton = calibrated_value; 1235 break; 1236 case CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE: 1237 instance->current_torque_magnitude_newton_m = calibrated_value; 1238 break; 1239 default: 1240 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 1241 break; 1242 } 1243 1244 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 1245 switch (calibrated_value){ 1246 case CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION: 1247 case CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS: 1248 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1249 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1250 break; 1251 default: 1252 break; 1253 } 1254 } 1255 1256 if (instance->control_point_client_configuration_descriptor_indicate){ 1257 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 1258 instance->control_point_indicate_callback.context = (void*) instance; 1259 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 1260 } 1261 } 1262 1263 void cycling_power_server_enhanced_calibration_done(cycling_power_sensor_measurement_context_t measurement_type, 1264 uint16_t calibrated_value, uint16_t manufacturer_company_id, 1265 uint8_t num_manufacturer_specific_data, uint8_t * manufacturer_specific_data){ 1266 cycling_power_t * instance = &cycling_power; 1267 if (instance->response_value != CP_RESPONSE_VALUE_W4_VALUE_AVAILABLE) return; 1268 instance->response_value = CP_RESPONSE_VALUE_SUCCESS; 1269 1270 switch (measurement_type){ 1271 case CP_SENSOR_MEASUREMENT_CONTEXT_FORCE: 1272 instance->current_force_magnitude_newton = calibrated_value; 1273 break; 1274 case CP_SENSOR_MEASUREMENT_CONTEXT_TORQUE: 1275 instance->current_torque_magnitude_newton_m = calibrated_value; 1276 break; 1277 default: 1278 instance->response_value = CP_RESPONSE_VALUE_INVALID_PARAMETER; 1279 break; 1280 } 1281 1282 if (instance->response_value == CP_RESPONSE_VALUE_SUCCESS){ 1283 switch (calibrated_value){ 1284 case CP_CALIBRATION_STATUS_INCORRECT_CALIBRATION_POSITION: 1285 case CP_CALIBRATION_STATUS_MANUFACTURER_SPECIFIC_ERROR_FOLLOWS: 1286 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1287 instance->response_value = CP_RESPONSE_VALUE_OPERATION_FAILED; 1288 break; 1289 default: 1290 break; 1291 } 1292 instance->manufacturer_company_id = manufacturer_company_id; 1293 instance->num_manufacturer_specific_data = num_manufacturer_specific_data; 1294 instance->manufacturer_specific_data = manufacturer_specific_data; 1295 } 1296 1297 if (instance->control_point_client_configuration_descriptor_indicate){ 1298 instance->control_point_indicate_callback.callback = &cycling_power_service_response_can_send_now; 1299 instance->control_point_indicate_callback.context = (void*) instance; 1300 att_server_register_can_send_now_callback(&instance->control_point_indicate_callback, instance->con_handle); 1301 } 1302 } 1303