1 /**************************************************************************//** 2 * @file cmsis_armclang.h 3 * @brief CMSIS compiler armclang (Arm Compiler 6) header file 4 * @version V5.0.4 5 * @date 10. January 2018 6 ******************************************************************************/ 7 /* 8 * Copyright (c) 2009-2018 Arm Limited. All rights reserved. 9 * 10 * SPDX-License-Identifier: Apache-2.0 11 * 12 * Licensed under the Apache License, Version 2.0 (the License); you may 13 * not use this file except in compliance with the License. 14 * You may obtain a copy of the License at 15 * 16 * www.apache.org/licenses/LICENSE-2.0 17 * 18 * Unless required by applicable law or agreed to in writing, software 19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 21 * See the License for the specific language governing permissions and 22 * limitations under the License. 23 */ 24 25 /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */ 26 27 #ifndef __CMSIS_ARMCLANG_H 28 #define __CMSIS_ARMCLANG_H 29 30 #pragma clang system_header /* treat file as system include file */ 31 32 #ifndef __ARM_COMPAT_H 33 #include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */ 34 #endif 35 36 /* CMSIS compiler specific defines */ 37 #ifndef __ASM 38 #define __ASM __asm 39 #endif 40 #ifndef __INLINE 41 #define __INLINE __inline 42 #endif 43 #ifndef __STATIC_INLINE 44 #define __STATIC_INLINE static __inline 45 #endif 46 #ifndef __STATIC_FORCEINLINE 47 #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline 48 #endif 49 #ifndef __NO_RETURN 50 #define __NO_RETURN __attribute__((__noreturn__)) 51 #endif 52 #ifndef __USED 53 #define __USED __attribute__((used)) 54 #endif 55 #ifndef __WEAK 56 #define __WEAK __attribute__((weak)) 57 #endif 58 #ifndef __PACKED 59 #define __PACKED __attribute__((packed, aligned(1))) 60 #endif 61 #ifndef __PACKED_STRUCT 62 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) 63 #endif 64 #ifndef __PACKED_UNION 65 #define __PACKED_UNION union __attribute__((packed, aligned(1))) 66 #endif 67 #ifndef __UNALIGNED_UINT32 /* deprecated */ 68 #pragma clang diagnostic push 69 #pragma clang diagnostic ignored "-Wpacked" 70 /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */ 71 struct __attribute__((packed)) T_UINT32 { uint32_t v; }; 72 #pragma clang diagnostic pop 73 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) 74 #endif 75 #ifndef __UNALIGNED_UINT16_WRITE 76 #pragma clang diagnostic push 77 #pragma clang diagnostic ignored "-Wpacked" 78 /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */ 79 __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; 80 #pragma clang diagnostic pop 81 #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) 82 #endif 83 #ifndef __UNALIGNED_UINT16_READ 84 #pragma clang diagnostic push 85 #pragma clang diagnostic ignored "-Wpacked" 86 /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */ 87 __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; 88 #pragma clang diagnostic pop 89 #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) 90 #endif 91 #ifndef __UNALIGNED_UINT32_WRITE 92 #pragma clang diagnostic push 93 #pragma clang diagnostic ignored "-Wpacked" 94 /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */ 95 __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; 96 #pragma clang diagnostic pop 97 #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) 98 #endif 99 #ifndef __UNALIGNED_UINT32_READ 100 #pragma clang diagnostic push 101 #pragma clang diagnostic ignored "-Wpacked" 102 /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */ 103 __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; 104 #pragma clang diagnostic pop 105 #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) 106 #endif 107 #ifndef __ALIGNED 108 #define __ALIGNED(x) __attribute__((aligned(x))) 109 #endif 110 #ifndef __RESTRICT 111 #define __RESTRICT __restrict 112 #endif 113 114 115 /* ########################### Core Function Access ########################### */ 116 /** \ingroup CMSIS_Core_FunctionInterface 117 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions 118 @{ 119 */ 120 121 /** 122 \brief Enable IRQ Interrupts 123 \details Enables IRQ interrupts by clearing the I-bit in the CPSR. 124 Can only be executed in Privileged modes. 125 */ 126 /* intrinsic void __enable_irq(); see arm_compat.h */ 127 128 129 /** 130 \brief Disable IRQ Interrupts 131 \details Disables IRQ interrupts by setting the I-bit in the CPSR. 132 Can only be executed in Privileged modes. 133 */ 134 /* intrinsic void __disable_irq(); see arm_compat.h */ 135 136 137 /** 138 \brief Get Control Register 139 \details Returns the content of the Control Register. 140 \return Control Register value 141 */ 142 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void) 143 { 144 uint32_t result; 145 146 __ASM volatile ("MRS %0, control" : "=r" (result) ); 147 return(result); 148 } 149 150 151 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 152 /** 153 \brief Get Control Register (non-secure) 154 \details Returns the content of the non-secure Control Register when in secure mode. 155 \return non-secure Control Register value 156 */ 157 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) 158 { 159 uint32_t result; 160 161 __ASM volatile ("MRS %0, control_ns" : "=r" (result) ); 162 return(result); 163 } 164 #endif 165 166 167 /** 168 \brief Set Control Register 169 \details Writes the given value to the Control Register. 170 \param [in] control Control Register value to set 171 */ 172 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) 173 { 174 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); 175 } 176 177 178 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 179 /** 180 \brief Set Control Register (non-secure) 181 \details Writes the given value to the non-secure Control Register when in secure state. 182 \param [in] control Control Register value to set 183 */ 184 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) 185 { 186 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory"); 187 } 188 #endif 189 190 191 /** 192 \brief Get IPSR Register 193 \details Returns the content of the IPSR Register. 194 \return IPSR Register value 195 */ 196 __STATIC_FORCEINLINE uint32_t __get_IPSR(void) 197 { 198 uint32_t result; 199 200 __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); 201 return(result); 202 } 203 204 205 /** 206 \brief Get APSR Register 207 \details Returns the content of the APSR Register. 208 \return APSR Register value 209 */ 210 __STATIC_FORCEINLINE uint32_t __get_APSR(void) 211 { 212 uint32_t result; 213 214 __ASM volatile ("MRS %0, apsr" : "=r" (result) ); 215 return(result); 216 } 217 218 219 /** 220 \brief Get xPSR Register 221 \details Returns the content of the xPSR Register. 222 \return xPSR Register value 223 */ 224 __STATIC_FORCEINLINE uint32_t __get_xPSR(void) 225 { 226 uint32_t result; 227 228 __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); 229 return(result); 230 } 231 232 233 /** 234 \brief Get Process Stack Pointer 235 \details Returns the current value of the Process Stack Pointer (PSP). 236 \return PSP Register value 237 */ 238 __STATIC_FORCEINLINE uint32_t __get_PSP(void) 239 { 240 uint32_t result; 241 242 __ASM volatile ("MRS %0, psp" : "=r" (result) ); 243 return(result); 244 } 245 246 247 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 248 /** 249 \brief Get Process Stack Pointer (non-secure) 250 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state. 251 \return PSP Register value 252 */ 253 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) 254 { 255 uint32_t result; 256 257 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) ); 258 return(result); 259 } 260 #endif 261 262 263 /** 264 \brief Set Process Stack Pointer 265 \details Assigns the given value to the Process Stack Pointer (PSP). 266 \param [in] topOfProcStack Process Stack Pointer value to set 267 */ 268 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) 269 { 270 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : ); 271 } 272 273 274 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 275 /** 276 \brief Set Process Stack Pointer (non-secure) 277 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state. 278 \param [in] topOfProcStack Process Stack Pointer value to set 279 */ 280 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) 281 { 282 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : ); 283 } 284 #endif 285 286 287 /** 288 \brief Get Main Stack Pointer 289 \details Returns the current value of the Main Stack Pointer (MSP). 290 \return MSP Register value 291 */ 292 __STATIC_FORCEINLINE uint32_t __get_MSP(void) 293 { 294 uint32_t result; 295 296 __ASM volatile ("MRS %0, msp" : "=r" (result) ); 297 return(result); 298 } 299 300 301 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 302 /** 303 \brief Get Main Stack Pointer (non-secure) 304 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state. 305 \return MSP Register value 306 */ 307 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) 308 { 309 uint32_t result; 310 311 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) ); 312 return(result); 313 } 314 #endif 315 316 317 /** 318 \brief Set Main Stack Pointer 319 \details Assigns the given value to the Main Stack Pointer (MSP). 320 \param [in] topOfMainStack Main Stack Pointer value to set 321 */ 322 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) 323 { 324 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : ); 325 } 326 327 328 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 329 /** 330 \brief Set Main Stack Pointer (non-secure) 331 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state. 332 \param [in] topOfMainStack Main Stack Pointer value to set 333 */ 334 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) 335 { 336 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : ); 337 } 338 #endif 339 340 341 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 342 /** 343 \brief Get Stack Pointer (non-secure) 344 \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state. 345 \return SP Register value 346 */ 347 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) 348 { 349 uint32_t result; 350 351 __ASM volatile ("MRS %0, sp_ns" : "=r" (result) ); 352 return(result); 353 } 354 355 356 /** 357 \brief Set Stack Pointer (non-secure) 358 \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state. 359 \param [in] topOfStack Stack Pointer value to set 360 */ 361 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) 362 { 363 __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : ); 364 } 365 #endif 366 367 368 /** 369 \brief Get Priority Mask 370 \details Returns the current state of the priority mask bit from the Priority Mask Register. 371 \return Priority Mask value 372 */ 373 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) 374 { 375 uint32_t result; 376 377 __ASM volatile ("MRS %0, primask" : "=r" (result) ); 378 return(result); 379 } 380 381 382 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 383 /** 384 \brief Get Priority Mask (non-secure) 385 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state. 386 \return Priority Mask value 387 */ 388 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) 389 { 390 uint32_t result; 391 392 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) ); 393 return(result); 394 } 395 #endif 396 397 398 /** 399 \brief Set Priority Mask 400 \details Assigns the given value to the Priority Mask Register. 401 \param [in] priMask Priority Mask 402 */ 403 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) 404 { 405 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); 406 } 407 408 409 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 410 /** 411 \brief Set Priority Mask (non-secure) 412 \details Assigns the given value to the non-secure Priority Mask Register when in secure state. 413 \param [in] priMask Priority Mask 414 */ 415 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) 416 { 417 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory"); 418 } 419 #endif 420 421 422 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 423 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 424 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) 425 /** 426 \brief Enable FIQ 427 \details Enables FIQ interrupts by clearing the F-bit in the CPSR. 428 Can only be executed in Privileged modes. 429 */ 430 #define __enable_fault_irq __enable_fiq /* see arm_compat.h */ 431 432 433 /** 434 \brief Disable FIQ 435 \details Disables FIQ interrupts by setting the F-bit in the CPSR. 436 Can only be executed in Privileged modes. 437 */ 438 #define __disable_fault_irq __disable_fiq /* see arm_compat.h */ 439 440 441 /** 442 \brief Get Base Priority 443 \details Returns the current value of the Base Priority register. 444 \return Base Priority register value 445 */ 446 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) 447 { 448 uint32_t result; 449 450 __ASM volatile ("MRS %0, basepri" : "=r" (result) ); 451 return(result); 452 } 453 454 455 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 456 /** 457 \brief Get Base Priority (non-secure) 458 \details Returns the current value of the non-secure Base Priority register when in secure state. 459 \return Base Priority register value 460 */ 461 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) 462 { 463 uint32_t result; 464 465 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) ); 466 return(result); 467 } 468 #endif 469 470 471 /** 472 \brief Set Base Priority 473 \details Assigns the given value to the Base Priority register. 474 \param [in] basePri Base Priority value to set 475 */ 476 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) 477 { 478 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory"); 479 } 480 481 482 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 483 /** 484 \brief Set Base Priority (non-secure) 485 \details Assigns the given value to the non-secure Base Priority register when in secure state. 486 \param [in] basePri Base Priority value to set 487 */ 488 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) 489 { 490 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory"); 491 } 492 #endif 493 494 495 /** 496 \brief Set Base Priority with condition 497 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, 498 or the new value increases the BASEPRI priority level. 499 \param [in] basePri Base Priority value to set 500 */ 501 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) 502 { 503 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory"); 504 } 505 506 507 /** 508 \brief Get Fault Mask 509 \details Returns the current value of the Fault Mask register. 510 \return Fault Mask register value 511 */ 512 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) 513 { 514 uint32_t result; 515 516 __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); 517 return(result); 518 } 519 520 521 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 522 /** 523 \brief Get Fault Mask (non-secure) 524 \details Returns the current value of the non-secure Fault Mask register when in secure state. 525 \return Fault Mask register value 526 */ 527 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) 528 { 529 uint32_t result; 530 531 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) ); 532 return(result); 533 } 534 #endif 535 536 537 /** 538 \brief Set Fault Mask 539 \details Assigns the given value to the Fault Mask register. 540 \param [in] faultMask Fault Mask value to set 541 */ 542 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) 543 { 544 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); 545 } 546 547 548 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 549 /** 550 \brief Set Fault Mask (non-secure) 551 \details Assigns the given value to the non-secure Fault Mask register when in secure state. 552 \param [in] faultMask Fault Mask value to set 553 */ 554 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) 555 { 556 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory"); 557 } 558 #endif 559 560 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 561 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 562 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ 563 564 565 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 566 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) 567 568 /** 569 \brief Get Process Stack Pointer Limit 570 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 571 Stack Pointer Limit register hence zero is returned always in non-secure 572 mode. 573 574 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM). 575 \return PSPLIM Register value 576 */ 577 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) 578 { 579 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ 580 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) 581 // without main extensions, the non-secure PSPLIM is RAZ/WI 582 return 0U; 583 #else 584 uint32_t result; 585 __ASM volatile ("MRS %0, psplim" : "=r" (result) ); 586 return result; 587 #endif 588 } 589 590 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3)) 591 /** 592 \brief Get Process Stack Pointer Limit (non-secure) 593 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 594 Stack Pointer Limit register hence zero is returned always in non-secure 595 mode. 596 597 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. 598 \return PSPLIM Register value 599 */ 600 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) 601 { 602 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) 603 // without main extensions, the non-secure PSPLIM is RAZ/WI 604 return 0U; 605 #else 606 uint32_t result; 607 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) ); 608 return result; 609 #endif 610 } 611 #endif 612 613 614 /** 615 \brief Set Process Stack Pointer Limit 616 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 617 Stack Pointer Limit register hence the write is silently ignored in non-secure 618 mode. 619 620 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM). 621 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set 622 */ 623 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) 624 { 625 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ 626 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) 627 // without main extensions, the non-secure PSPLIM is RAZ/WI 628 (void)ProcStackPtrLimit; 629 #else 630 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit)); 631 #endif 632 } 633 634 635 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 636 /** 637 \brief Set Process Stack Pointer (non-secure) 638 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 639 Stack Pointer Limit register hence the write is silently ignored in non-secure 640 mode. 641 642 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. 643 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set 644 */ 645 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) 646 { 647 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) 648 // without main extensions, the non-secure PSPLIM is RAZ/WI 649 (void)ProcStackPtrLimit; 650 #else 651 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit)); 652 #endif 653 } 654 #endif 655 656 657 /** 658 \brief Get Main Stack Pointer Limit 659 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 660 Stack Pointer Limit register hence zero is returned always. 661 662 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM). 663 \return MSPLIM Register value 664 */ 665 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) 666 { 667 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ 668 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) 669 // without main extensions, the non-secure MSPLIM is RAZ/WI 670 return 0U; 671 #else 672 uint32_t result; 673 __ASM volatile ("MRS %0, msplim" : "=r" (result) ); 674 return result; 675 #endif 676 } 677 678 679 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 680 /** 681 \brief Get Main Stack Pointer Limit (non-secure) 682 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 683 Stack Pointer Limit register hence zero is returned always. 684 685 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state. 686 \return MSPLIM Register value 687 */ 688 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) 689 { 690 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) 691 // without main extensions, the non-secure MSPLIM is RAZ/WI 692 return 0U; 693 #else 694 uint32_t result; 695 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) ); 696 return result; 697 #endif 698 } 699 #endif 700 701 702 /** 703 \brief Set Main Stack Pointer Limit 704 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 705 Stack Pointer Limit register hence the write is silently ignored. 706 707 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM). 708 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set 709 */ 710 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) 711 { 712 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ 713 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) 714 // without main extensions, the non-secure MSPLIM is RAZ/WI 715 (void)MainStackPtrLimit; 716 #else 717 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit)); 718 #endif 719 } 720 721 722 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 723 /** 724 \brief Set Main Stack Pointer Limit (non-secure) 725 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 726 Stack Pointer Limit register hence the write is silently ignored. 727 728 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state. 729 \param [in] MainStackPtrLimit Main Stack Pointer value to set 730 */ 731 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) 732 { 733 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) 734 // without main extensions, the non-secure MSPLIM is RAZ/WI 735 (void)MainStackPtrLimit; 736 #else 737 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit)); 738 #endif 739 } 740 #endif 741 742 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 743 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ 744 745 /** 746 \brief Get FPSCR 747 \details Returns the current value of the Floating Point Status/Control register. 748 \return Floating Point Status/Control register value 749 */ 750 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ 751 (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) 752 #define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr 753 #else 754 #define __get_FPSCR() ((uint32_t)0U) 755 #endif 756 757 /** 758 \brief Set FPSCR 759 \details Assigns the given value to the Floating Point Status/Control register. 760 \param [in] fpscr Floating Point Status/Control value to set 761 */ 762 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ 763 (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) 764 #define __set_FPSCR __builtin_arm_set_fpscr 765 #else 766 #define __set_FPSCR(x) ((void)(x)) 767 #endif 768 769 770 /*@} end of CMSIS_Core_RegAccFunctions */ 771 772 773 /* ########################## Core Instruction Access ######################### */ 774 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface 775 Access to dedicated instructions 776 @{ 777 */ 778 779 /* Define macros for porting to both thumb1 and thumb2. 780 * For thumb1, use low register (r0-r7), specified by constraint "l" 781 * Otherwise, use general registers, specified by constraint "r" */ 782 #if defined (__thumb__) && !defined (__thumb2__) 783 #define __CMSIS_GCC_OUT_REG(r) "=l" (r) 784 #define __CMSIS_GCC_USE_REG(r) "l" (r) 785 #else 786 #define __CMSIS_GCC_OUT_REG(r) "=r" (r) 787 #define __CMSIS_GCC_USE_REG(r) "r" (r) 788 #endif 789 790 /** 791 \brief No Operation 792 \details No Operation does nothing. This instruction can be used for code alignment purposes. 793 */ 794 #define __NOP __builtin_arm_nop 795 796 /** 797 \brief Wait For Interrupt 798 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. 799 */ 800 #define __WFI __builtin_arm_wfi 801 802 803 /** 804 \brief Wait For Event 805 \details Wait For Event is a hint instruction that permits the processor to enter 806 a low-power state until one of a number of events occurs. 807 */ 808 #define __WFE __builtin_arm_wfe 809 810 811 /** 812 \brief Send Event 813 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. 814 */ 815 #define __SEV __builtin_arm_sev 816 817 818 /** 819 \brief Instruction Synchronization Barrier 820 \details Instruction Synchronization Barrier flushes the pipeline in the processor, 821 so that all instructions following the ISB are fetched from cache or memory, 822 after the instruction has been completed. 823 */ 824 #define __ISB() __builtin_arm_isb(0xF); 825 826 /** 827 \brief Data Synchronization Barrier 828 \details Acts as a special kind of Data Memory Barrier. 829 It completes when all explicit memory accesses before this instruction complete. 830 */ 831 #define __DSB() __builtin_arm_dsb(0xF); 832 833 834 /** 835 \brief Data Memory Barrier 836 \details Ensures the apparent order of the explicit memory operations before 837 and after the instruction, without ensuring their completion. 838 */ 839 #define __DMB() __builtin_arm_dmb(0xF); 840 841 842 /** 843 \brief Reverse byte order (32 bit) 844 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. 845 \param [in] value Value to reverse 846 \return Reversed value 847 */ 848 #define __REV(value) __builtin_bswap32(value) 849 850 851 /** 852 \brief Reverse byte order (16 bit) 853 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. 854 \param [in] value Value to reverse 855 \return Reversed value 856 */ 857 #define __REV16(value) __ROR(__REV(value), 16) 858 859 860 /** 861 \brief Reverse byte order (16 bit) 862 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. 863 \param [in] value Value to reverse 864 \return Reversed value 865 */ 866 #define __REVSH(value) (int16_t)__builtin_bswap16(value) 867 868 869 /** 870 \brief Rotate Right in unsigned value (32 bit) 871 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. 872 \param [in] op1 Value to rotate 873 \param [in] op2 Number of Bits to rotate 874 \return Rotated value 875 */ 876 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) 877 { 878 op2 %= 32U; 879 if (op2 == 0U) 880 { 881 return op1; 882 } 883 return (op1 >> op2) | (op1 << (32U - op2)); 884 } 885 886 887 /** 888 \brief Breakpoint 889 \details Causes the processor to enter Debug state. 890 Debug tools can use this to investigate system state when the instruction at a particular address is reached. 891 \param [in] value is ignored by the processor. 892 If required, a debugger can use it to store additional information about the breakpoint. 893 */ 894 #define __BKPT(value) __ASM volatile ("bkpt "#value) 895 896 897 /** 898 \brief Reverse bit order of value 899 \details Reverses the bit order of the given value. 900 \param [in] value Value to reverse 901 \return Reversed value 902 */ 903 #define __RBIT __builtin_arm_rbit 904 905 /** 906 \brief Count leading zeros 907 \details Counts the number of leading zeros of a data value. 908 \param [in] value Value to count the leading zeros 909 \return number of leading zeros in value 910 */ 911 #define __CLZ (uint8_t)__builtin_clz 912 913 914 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 915 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 916 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 917 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) 918 /** 919 \brief LDR Exclusive (8 bit) 920 \details Executes a exclusive LDR instruction for 8 bit value. 921 \param [in] ptr Pointer to data 922 \return value of type uint8_t at (*ptr) 923 */ 924 #define __LDREXB (uint8_t)__builtin_arm_ldrex 925 926 927 /** 928 \brief LDR Exclusive (16 bit) 929 \details Executes a exclusive LDR instruction for 16 bit values. 930 \param [in] ptr Pointer to data 931 \return value of type uint16_t at (*ptr) 932 */ 933 #define __LDREXH (uint16_t)__builtin_arm_ldrex 934 935 936 /** 937 \brief LDR Exclusive (32 bit) 938 \details Executes a exclusive LDR instruction for 32 bit values. 939 \param [in] ptr Pointer to data 940 \return value of type uint32_t at (*ptr) 941 */ 942 #define __LDREXW (uint32_t)__builtin_arm_ldrex 943 944 945 /** 946 \brief STR Exclusive (8 bit) 947 \details Executes a exclusive STR instruction for 8 bit values. 948 \param [in] value Value to store 949 \param [in] ptr Pointer to location 950 \return 0 Function succeeded 951 \return 1 Function failed 952 */ 953 #define __STREXB (uint32_t)__builtin_arm_strex 954 955 956 /** 957 \brief STR Exclusive (16 bit) 958 \details Executes a exclusive STR instruction for 16 bit values. 959 \param [in] value Value to store 960 \param [in] ptr Pointer to location 961 \return 0 Function succeeded 962 \return 1 Function failed 963 */ 964 #define __STREXH (uint32_t)__builtin_arm_strex 965 966 967 /** 968 \brief STR Exclusive (32 bit) 969 \details Executes a exclusive STR instruction for 32 bit values. 970 \param [in] value Value to store 971 \param [in] ptr Pointer to location 972 \return 0 Function succeeded 973 \return 1 Function failed 974 */ 975 #define __STREXW (uint32_t)__builtin_arm_strex 976 977 978 /** 979 \brief Remove the exclusive lock 980 \details Removes the exclusive lock which is created by LDREX. 981 */ 982 #define __CLREX __builtin_arm_clrex 983 984 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 985 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 986 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 987 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ 988 989 990 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 991 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 992 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) 993 994 /** 995 \brief Signed Saturate 996 \details Saturates a signed value. 997 \param [in] value Value to be saturated 998 \param [in] sat Bit position to saturate to (1..32) 999 \return Saturated value 1000 */ 1001 #define __SSAT __builtin_arm_ssat 1002 1003 1004 /** 1005 \brief Unsigned Saturate 1006 \details Saturates an unsigned value. 1007 \param [in] value Value to be saturated 1008 \param [in] sat Bit position to saturate to (0..31) 1009 \return Saturated value 1010 */ 1011 #define __USAT __builtin_arm_usat 1012 1013 1014 /** 1015 \brief Rotate Right with Extend (32 bit) 1016 \details Moves each bit of a bitstring right by one bit. 1017 The carry input is shifted in at the left end of the bitstring. 1018 \param [in] value Value to rotate 1019 \return Rotated value 1020 */ 1021 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) 1022 { 1023 uint32_t result; 1024 1025 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); 1026 return(result); 1027 } 1028 1029 1030 /** 1031 \brief LDRT Unprivileged (8 bit) 1032 \details Executes a Unprivileged LDRT instruction for 8 bit value. 1033 \param [in] ptr Pointer to data 1034 \return value of type uint8_t at (*ptr) 1035 */ 1036 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) 1037 { 1038 uint32_t result; 1039 1040 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) ); 1041 return ((uint8_t) result); /* Add explicit type cast here */ 1042 } 1043 1044 1045 /** 1046 \brief LDRT Unprivileged (16 bit) 1047 \details Executes a Unprivileged LDRT instruction for 16 bit values. 1048 \param [in] ptr Pointer to data 1049 \return value of type uint16_t at (*ptr) 1050 */ 1051 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) 1052 { 1053 uint32_t result; 1054 1055 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) ); 1056 return ((uint16_t) result); /* Add explicit type cast here */ 1057 } 1058 1059 1060 /** 1061 \brief LDRT Unprivileged (32 bit) 1062 \details Executes a Unprivileged LDRT instruction for 32 bit values. 1063 \param [in] ptr Pointer to data 1064 \return value of type uint32_t at (*ptr) 1065 */ 1066 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) 1067 { 1068 uint32_t result; 1069 1070 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) ); 1071 return(result); 1072 } 1073 1074 1075 /** 1076 \brief STRT Unprivileged (8 bit) 1077 \details Executes a Unprivileged STRT instruction for 8 bit values. 1078 \param [in] value Value to store 1079 \param [in] ptr Pointer to location 1080 */ 1081 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) 1082 { 1083 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); 1084 } 1085 1086 1087 /** 1088 \brief STRT Unprivileged (16 bit) 1089 \details Executes a Unprivileged STRT instruction for 16 bit values. 1090 \param [in] value Value to store 1091 \param [in] ptr Pointer to location 1092 */ 1093 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) 1094 { 1095 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); 1096 } 1097 1098 1099 /** 1100 \brief STRT Unprivileged (32 bit) 1101 \details Executes a Unprivileged STRT instruction for 32 bit values. 1102 \param [in] value Value to store 1103 \param [in] ptr Pointer to location 1104 */ 1105 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) 1106 { 1107 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) ); 1108 } 1109 1110 #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 1111 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 1112 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ 1113 1114 /** 1115 \brief Signed Saturate 1116 \details Saturates a signed value. 1117 \param [in] value Value to be saturated 1118 \param [in] sat Bit position to saturate to (1..32) 1119 \return Saturated value 1120 */ 1121 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) 1122 { 1123 if ((sat >= 1U) && (sat <= 32U)) 1124 { 1125 const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); 1126 const int32_t min = -1 - max ; 1127 if (val > max) 1128 { 1129 return max; 1130 } 1131 else if (val < min) 1132 { 1133 return min; 1134 } 1135 } 1136 return val; 1137 } 1138 1139 /** 1140 \brief Unsigned Saturate 1141 \details Saturates an unsigned value. 1142 \param [in] value Value to be saturated 1143 \param [in] sat Bit position to saturate to (0..31) 1144 \return Saturated value 1145 */ 1146 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) 1147 { 1148 if (sat <= 31U) 1149 { 1150 const uint32_t max = ((1U << sat) - 1U); 1151 if (val > (int32_t)max) 1152 { 1153 return max; 1154 } 1155 else if (val < 0) 1156 { 1157 return 0U; 1158 } 1159 } 1160 return (uint32_t)val; 1161 } 1162 1163 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 1164 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 1165 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ 1166 1167 1168 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 1169 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) 1170 /** 1171 \brief Load-Acquire (8 bit) 1172 \details Executes a LDAB instruction for 8 bit value. 1173 \param [in] ptr Pointer to data 1174 \return value of type uint8_t at (*ptr) 1175 */ 1176 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) 1177 { 1178 uint32_t result; 1179 1180 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) ); 1181 return ((uint8_t) result); 1182 } 1183 1184 1185 /** 1186 \brief Load-Acquire (16 bit) 1187 \details Executes a LDAH instruction for 16 bit values. 1188 \param [in] ptr Pointer to data 1189 \return value of type uint16_t at (*ptr) 1190 */ 1191 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) 1192 { 1193 uint32_t result; 1194 1195 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) ); 1196 return ((uint16_t) result); 1197 } 1198 1199 1200 /** 1201 \brief Load-Acquire (32 bit) 1202 \details Executes a LDA instruction for 32 bit values. 1203 \param [in] ptr Pointer to data 1204 \return value of type uint32_t at (*ptr) 1205 */ 1206 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) 1207 { 1208 uint32_t result; 1209 1210 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) ); 1211 return(result); 1212 } 1213 1214 1215 /** 1216 \brief Store-Release (8 bit) 1217 \details Executes a STLB instruction for 8 bit values. 1218 \param [in] value Value to store 1219 \param [in] ptr Pointer to location 1220 */ 1221 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) 1222 { 1223 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); 1224 } 1225 1226 1227 /** 1228 \brief Store-Release (16 bit) 1229 \details Executes a STLH instruction for 16 bit values. 1230 \param [in] value Value to store 1231 \param [in] ptr Pointer to location 1232 */ 1233 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) 1234 { 1235 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); 1236 } 1237 1238 1239 /** 1240 \brief Store-Release (32 bit) 1241 \details Executes a STL instruction for 32 bit values. 1242 \param [in] value Value to store 1243 \param [in] ptr Pointer to location 1244 */ 1245 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) 1246 { 1247 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); 1248 } 1249 1250 1251 /** 1252 \brief Load-Acquire Exclusive (8 bit) 1253 \details Executes a LDAB exclusive instruction for 8 bit value. 1254 \param [in] ptr Pointer to data 1255 \return value of type uint8_t at (*ptr) 1256 */ 1257 #define __LDAEXB (uint8_t)__builtin_arm_ldaex 1258 1259 1260 /** 1261 \brief Load-Acquire Exclusive (16 bit) 1262 \details Executes a LDAH exclusive instruction for 16 bit values. 1263 \param [in] ptr Pointer to data 1264 \return value of type uint16_t at (*ptr) 1265 */ 1266 #define __LDAEXH (uint16_t)__builtin_arm_ldaex 1267 1268 1269 /** 1270 \brief Load-Acquire Exclusive (32 bit) 1271 \details Executes a LDA exclusive instruction for 32 bit values. 1272 \param [in] ptr Pointer to data 1273 \return value of type uint32_t at (*ptr) 1274 */ 1275 #define __LDAEX (uint32_t)__builtin_arm_ldaex 1276 1277 1278 /** 1279 \brief Store-Release Exclusive (8 bit) 1280 \details Executes a STLB exclusive instruction for 8 bit values. 1281 \param [in] value Value to store 1282 \param [in] ptr Pointer to location 1283 \return 0 Function succeeded 1284 \return 1 Function failed 1285 */ 1286 #define __STLEXB (uint32_t)__builtin_arm_stlex 1287 1288 1289 /** 1290 \brief Store-Release Exclusive (16 bit) 1291 \details Executes a STLH exclusive instruction for 16 bit values. 1292 \param [in] value Value to store 1293 \param [in] ptr Pointer to location 1294 \return 0 Function succeeded 1295 \return 1 Function failed 1296 */ 1297 #define __STLEXH (uint32_t)__builtin_arm_stlex 1298 1299 1300 /** 1301 \brief Store-Release Exclusive (32 bit) 1302 \details Executes a STL exclusive instruction for 32 bit values. 1303 \param [in] value Value to store 1304 \param [in] ptr Pointer to location 1305 \return 0 Function succeeded 1306 \return 1 Function failed 1307 */ 1308 #define __STLEX (uint32_t)__builtin_arm_stlex 1309 1310 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 1311 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ 1312 1313 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ 1314 1315 1316 /* ################### Compiler specific Intrinsics ########################### */ 1317 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics 1318 Access to dedicated SIMD instructions 1319 @{ 1320 */ 1321 1322 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) 1323 1324 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) 1325 { 1326 uint32_t result; 1327 1328 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1329 return(result); 1330 } 1331 1332 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) 1333 { 1334 uint32_t result; 1335 1336 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1337 return(result); 1338 } 1339 1340 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) 1341 { 1342 uint32_t result; 1343 1344 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1345 return(result); 1346 } 1347 1348 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) 1349 { 1350 uint32_t result; 1351 1352 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1353 return(result); 1354 } 1355 1356 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) 1357 { 1358 uint32_t result; 1359 1360 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1361 return(result); 1362 } 1363 1364 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) 1365 { 1366 uint32_t result; 1367 1368 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1369 return(result); 1370 } 1371 1372 1373 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) 1374 { 1375 uint32_t result; 1376 1377 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1378 return(result); 1379 } 1380 1381 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) 1382 { 1383 uint32_t result; 1384 1385 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1386 return(result); 1387 } 1388 1389 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) 1390 { 1391 uint32_t result; 1392 1393 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1394 return(result); 1395 } 1396 1397 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) 1398 { 1399 uint32_t result; 1400 1401 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1402 return(result); 1403 } 1404 1405 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) 1406 { 1407 uint32_t result; 1408 1409 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1410 return(result); 1411 } 1412 1413 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) 1414 { 1415 uint32_t result; 1416 1417 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1418 return(result); 1419 } 1420 1421 1422 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) 1423 { 1424 uint32_t result; 1425 1426 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1427 return(result); 1428 } 1429 1430 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) 1431 { 1432 uint32_t result; 1433 1434 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1435 return(result); 1436 } 1437 1438 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) 1439 { 1440 uint32_t result; 1441 1442 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1443 return(result); 1444 } 1445 1446 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) 1447 { 1448 uint32_t result; 1449 1450 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1451 return(result); 1452 } 1453 1454 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) 1455 { 1456 uint32_t result; 1457 1458 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1459 return(result); 1460 } 1461 1462 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) 1463 { 1464 uint32_t result; 1465 1466 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1467 return(result); 1468 } 1469 1470 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) 1471 { 1472 uint32_t result; 1473 1474 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1475 return(result); 1476 } 1477 1478 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) 1479 { 1480 uint32_t result; 1481 1482 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1483 return(result); 1484 } 1485 1486 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) 1487 { 1488 uint32_t result; 1489 1490 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1491 return(result); 1492 } 1493 1494 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) 1495 { 1496 uint32_t result; 1497 1498 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1499 return(result); 1500 } 1501 1502 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) 1503 { 1504 uint32_t result; 1505 1506 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1507 return(result); 1508 } 1509 1510 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) 1511 { 1512 uint32_t result; 1513 1514 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1515 return(result); 1516 } 1517 1518 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2) 1519 { 1520 uint32_t result; 1521 1522 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1523 return(result); 1524 } 1525 1526 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2) 1527 { 1528 uint32_t result; 1529 1530 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1531 return(result); 1532 } 1533 1534 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) 1535 { 1536 uint32_t result; 1537 1538 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1539 return(result); 1540 } 1541 1542 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2) 1543 { 1544 uint32_t result; 1545 1546 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1547 return(result); 1548 } 1549 1550 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) 1551 { 1552 uint32_t result; 1553 1554 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1555 return(result); 1556 } 1557 1558 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) 1559 { 1560 uint32_t result; 1561 1562 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1563 return(result); 1564 } 1565 1566 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) 1567 { 1568 uint32_t result; 1569 1570 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1571 return(result); 1572 } 1573 1574 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) 1575 { 1576 uint32_t result; 1577 1578 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1579 return(result); 1580 } 1581 1582 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) 1583 { 1584 uint32_t result; 1585 1586 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1587 return(result); 1588 } 1589 1590 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2) 1591 { 1592 uint32_t result; 1593 1594 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1595 return(result); 1596 } 1597 1598 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) 1599 { 1600 uint32_t result; 1601 1602 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1603 return(result); 1604 } 1605 1606 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) 1607 { 1608 uint32_t result; 1609 1610 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1611 return(result); 1612 } 1613 1614 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) 1615 { 1616 uint32_t result; 1617 1618 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1619 return(result); 1620 } 1621 1622 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) 1623 { 1624 uint32_t result; 1625 1626 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 1627 return(result); 1628 } 1629 1630 #define __SSAT16(ARG1,ARG2) \ 1631 ({ \ 1632 int32_t __RES, __ARG1 = (ARG1); \ 1633 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ 1634 __RES; \ 1635 }) 1636 1637 #define __USAT16(ARG1,ARG2) \ 1638 ({ \ 1639 uint32_t __RES, __ARG1 = (ARG1); \ 1640 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ 1641 __RES; \ 1642 }) 1643 1644 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1) 1645 { 1646 uint32_t result; 1647 1648 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); 1649 return(result); 1650 } 1651 1652 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) 1653 { 1654 uint32_t result; 1655 1656 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1657 return(result); 1658 } 1659 1660 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1) 1661 { 1662 uint32_t result; 1663 1664 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); 1665 return(result); 1666 } 1667 1668 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) 1669 { 1670 uint32_t result; 1671 1672 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1673 return(result); 1674 } 1675 1676 __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) 1677 { 1678 uint32_t result; 1679 1680 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1681 return(result); 1682 } 1683 1684 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) 1685 { 1686 uint32_t result; 1687 1688 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1689 return(result); 1690 } 1691 1692 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) 1693 { 1694 uint32_t result; 1695 1696 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 1697 return(result); 1698 } 1699 1700 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) 1701 { 1702 uint32_t result; 1703 1704 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 1705 return(result); 1706 } 1707 1708 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) 1709 { 1710 union llreg_u{ 1711 uint32_t w32[2]; 1712 uint64_t w64; 1713 } llr; 1714 llr.w64 = acc; 1715 1716 #ifndef __ARMEB__ /* Little endian */ 1717 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); 1718 #else /* Big endian */ 1719 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); 1720 #endif 1721 1722 return(llr.w64); 1723 } 1724 1725 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) 1726 { 1727 union llreg_u{ 1728 uint32_t w32[2]; 1729 uint64_t w64; 1730 } llr; 1731 llr.w64 = acc; 1732 1733 #ifndef __ARMEB__ /* Little endian */ 1734 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); 1735 #else /* Big endian */ 1736 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); 1737 #endif 1738 1739 return(llr.w64); 1740 } 1741 1742 __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) 1743 { 1744 uint32_t result; 1745 1746 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1747 return(result); 1748 } 1749 1750 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) 1751 { 1752 uint32_t result; 1753 1754 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1755 return(result); 1756 } 1757 1758 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) 1759 { 1760 uint32_t result; 1761 1762 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 1763 return(result); 1764 } 1765 1766 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) 1767 { 1768 uint32_t result; 1769 1770 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 1771 return(result); 1772 } 1773 1774 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) 1775 { 1776 union llreg_u{ 1777 uint32_t w32[2]; 1778 uint64_t w64; 1779 } llr; 1780 llr.w64 = acc; 1781 1782 #ifndef __ARMEB__ /* Little endian */ 1783 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); 1784 #else /* Big endian */ 1785 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); 1786 #endif 1787 1788 return(llr.w64); 1789 } 1790 1791 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) 1792 { 1793 union llreg_u{ 1794 uint32_t w32[2]; 1795 uint64_t w64; 1796 } llr; 1797 llr.w64 = acc; 1798 1799 #ifndef __ARMEB__ /* Little endian */ 1800 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); 1801 #else /* Big endian */ 1802 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); 1803 #endif 1804 1805 return(llr.w64); 1806 } 1807 1808 __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2) 1809 { 1810 uint32_t result; 1811 1812 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1813 return(result); 1814 } 1815 1816 __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2) 1817 { 1818 int32_t result; 1819 1820 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1821 return(result); 1822 } 1823 1824 __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2) 1825 { 1826 int32_t result; 1827 1828 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 1829 return(result); 1830 } 1831 1832 #if 0 1833 #define __PKHBT(ARG1,ARG2,ARG3) \ 1834 ({ \ 1835 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ 1836 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ 1837 __RES; \ 1838 }) 1839 1840 #define __PKHTB(ARG1,ARG2,ARG3) \ 1841 ({ \ 1842 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ 1843 if (ARG3 == 0) \ 1844 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \ 1845 else \ 1846 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ 1847 __RES; \ 1848 }) 1849 #endif 1850 1851 #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ 1852 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) 1853 1854 #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ 1855 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) 1856 1857 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) 1858 { 1859 int32_t result; 1860 1861 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); 1862 return(result); 1863 } 1864 1865 #endif /* (__ARM_FEATURE_DSP == 1) */ 1866 /*@} end of group CMSIS_SIMD_intrinsics */ 1867 1868 1869 #endif /* __CMSIS_ARMCLANG_H */ 1870