1 /**************************************************************************//** 2 * @file cmsis_armcc.h 3 * @brief CMSIS compiler ARMCC (Arm Compiler 5) header file 4 * @version V5.0.4 5 * @date 10. January 2018 6 ******************************************************************************/ 7 /* 8 * Copyright (c) 2009-2018 Arm Limited. All rights reserved. 9 * 10 * SPDX-License-Identifier: Apache-2.0 11 * 12 * Licensed under the Apache License, Version 2.0 (the License); you may 13 * not use this file except in compliance with the License. 14 * You may obtain a copy of the License at 15 * 16 * www.apache.org/licenses/LICENSE-2.0 17 * 18 * Unless required by applicable law or agreed to in writing, software 19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 21 * See the License for the specific language governing permissions and 22 * limitations under the License. 23 */ 24 25 #ifndef __CMSIS_ARMCC_H 26 #define __CMSIS_ARMCC_H 27 28 29 #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677) 30 #error "Please use Arm Compiler Toolchain V4.0.677 or later!" 31 #endif 32 33 /* CMSIS compiler control architecture macros */ 34 #if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \ 35 (defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) ) 36 #define __ARM_ARCH_6M__ 1 37 #endif 38 39 #if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1)) 40 #define __ARM_ARCH_7M__ 1 41 #endif 42 43 #if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1)) 44 #define __ARM_ARCH_7EM__ 1 45 #endif 46 47 /* __ARM_ARCH_8M_BASE__ not applicable */ 48 /* __ARM_ARCH_8M_MAIN__ not applicable */ 49 50 51 /* CMSIS compiler specific defines */ 52 #ifndef __ASM 53 #define __ASM __asm 54 #endif 55 #ifndef __INLINE 56 #define __INLINE __inline 57 #endif 58 #ifndef __STATIC_INLINE 59 #define __STATIC_INLINE static __inline 60 #endif 61 #ifndef __STATIC_FORCEINLINE 62 #define __STATIC_FORCEINLINE static __forceinline 63 #endif 64 #ifndef __NO_RETURN 65 #define __NO_RETURN __declspec(noreturn) 66 #endif 67 #ifndef __USED 68 #define __USED __attribute__((used)) 69 #endif 70 #ifndef __WEAK 71 #define __WEAK __attribute__((weak)) 72 #endif 73 #ifndef __PACKED 74 #define __PACKED __attribute__((packed)) 75 #endif 76 #ifndef __PACKED_STRUCT 77 #define __PACKED_STRUCT __packed struct 78 #endif 79 #ifndef __PACKED_UNION 80 #define __PACKED_UNION __packed union 81 #endif 82 #ifndef __UNALIGNED_UINT32 /* deprecated */ 83 #define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x))) 84 #endif 85 #ifndef __UNALIGNED_UINT16_WRITE 86 #define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val)) 87 #endif 88 #ifndef __UNALIGNED_UINT16_READ 89 #define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr))) 90 #endif 91 #ifndef __UNALIGNED_UINT32_WRITE 92 #define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val)) 93 #endif 94 #ifndef __UNALIGNED_UINT32_READ 95 #define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr))) 96 #endif 97 #ifndef __ALIGNED 98 #define __ALIGNED(x) __attribute__((aligned(x))) 99 #endif 100 #ifndef __RESTRICT 101 #define __RESTRICT __restrict 102 #endif 103 104 /* ########################### Core Function Access ########################### */ 105 /** \ingroup CMSIS_Core_FunctionInterface 106 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions 107 @{ 108 */ 109 110 /** 111 \brief Enable IRQ Interrupts 112 \details Enables IRQ interrupts by clearing the I-bit in the CPSR. 113 Can only be executed in Privileged modes. 114 */ 115 /* intrinsic void __enable_irq(); */ 116 117 118 /** 119 \brief Disable IRQ Interrupts 120 \details Disables IRQ interrupts by setting the I-bit in the CPSR. 121 Can only be executed in Privileged modes. 122 */ 123 /* intrinsic void __disable_irq(); */ 124 125 /** 126 \brief Get Control Register 127 \details Returns the content of the Control Register. 128 \return Control Register value 129 */ 130 __STATIC_INLINE uint32_t __get_CONTROL(void) 131 { 132 register uint32_t __regControl __ASM("control"); 133 return(__regControl); 134 } 135 136 137 /** 138 \brief Set Control Register 139 \details Writes the given value to the Control Register. 140 \param [in] control Control Register value to set 141 */ 142 __STATIC_INLINE void __set_CONTROL(uint32_t control) 143 { 144 register uint32_t __regControl __ASM("control"); 145 __regControl = control; 146 } 147 148 149 /** 150 \brief Get IPSR Register 151 \details Returns the content of the IPSR Register. 152 \return IPSR Register value 153 */ 154 __STATIC_INLINE uint32_t __get_IPSR(void) 155 { 156 register uint32_t __regIPSR __ASM("ipsr"); 157 return(__regIPSR); 158 } 159 160 161 /** 162 \brief Get APSR Register 163 \details Returns the content of the APSR Register. 164 \return APSR Register value 165 */ 166 __STATIC_INLINE uint32_t __get_APSR(void) 167 { 168 register uint32_t __regAPSR __ASM("apsr"); 169 return(__regAPSR); 170 } 171 172 173 /** 174 \brief Get xPSR Register 175 \details Returns the content of the xPSR Register. 176 \return xPSR Register value 177 */ 178 __STATIC_INLINE uint32_t __get_xPSR(void) 179 { 180 register uint32_t __regXPSR __ASM("xpsr"); 181 return(__regXPSR); 182 } 183 184 185 /** 186 \brief Get Process Stack Pointer 187 \details Returns the current value of the Process Stack Pointer (PSP). 188 \return PSP Register value 189 */ 190 __STATIC_INLINE uint32_t __get_PSP(void) 191 { 192 register uint32_t __regProcessStackPointer __ASM("psp"); 193 return(__regProcessStackPointer); 194 } 195 196 197 /** 198 \brief Set Process Stack Pointer 199 \details Assigns the given value to the Process Stack Pointer (PSP). 200 \param [in] topOfProcStack Process Stack Pointer value to set 201 */ 202 __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) 203 { 204 register uint32_t __regProcessStackPointer __ASM("psp"); 205 __regProcessStackPointer = topOfProcStack; 206 } 207 208 209 /** 210 \brief Get Main Stack Pointer 211 \details Returns the current value of the Main Stack Pointer (MSP). 212 \return MSP Register value 213 */ 214 __STATIC_INLINE uint32_t __get_MSP(void) 215 { 216 register uint32_t __regMainStackPointer __ASM("msp"); 217 return(__regMainStackPointer); 218 } 219 220 221 /** 222 \brief Set Main Stack Pointer 223 \details Assigns the given value to the Main Stack Pointer (MSP). 224 \param [in] topOfMainStack Main Stack Pointer value to set 225 */ 226 __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) 227 { 228 register uint32_t __regMainStackPointer __ASM("msp"); 229 __regMainStackPointer = topOfMainStack; 230 } 231 232 233 /** 234 \brief Get Priority Mask 235 \details Returns the current state of the priority mask bit from the Priority Mask Register. 236 \return Priority Mask value 237 */ 238 __STATIC_INLINE uint32_t __get_PRIMASK(void) 239 { 240 register uint32_t __regPriMask __ASM("primask"); 241 return(__regPriMask); 242 } 243 244 245 /** 246 \brief Set Priority Mask 247 \details Assigns the given value to the Priority Mask Register. 248 \param [in] priMask Priority Mask 249 */ 250 __STATIC_INLINE void __set_PRIMASK(uint32_t priMask) 251 { 252 register uint32_t __regPriMask __ASM("primask"); 253 __regPriMask = (priMask); 254 } 255 256 257 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 258 (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) 259 260 /** 261 \brief Enable FIQ 262 \details Enables FIQ interrupts by clearing the F-bit in the CPSR. 263 Can only be executed in Privileged modes. 264 */ 265 #define __enable_fault_irq __enable_fiq 266 267 268 /** 269 \brief Disable FIQ 270 \details Disables FIQ interrupts by setting the F-bit in the CPSR. 271 Can only be executed in Privileged modes. 272 */ 273 #define __disable_fault_irq __disable_fiq 274 275 276 /** 277 \brief Get Base Priority 278 \details Returns the current value of the Base Priority register. 279 \return Base Priority register value 280 */ 281 __STATIC_INLINE uint32_t __get_BASEPRI(void) 282 { 283 register uint32_t __regBasePri __ASM("basepri"); 284 return(__regBasePri); 285 } 286 287 288 /** 289 \brief Set Base Priority 290 \details Assigns the given value to the Base Priority register. 291 \param [in] basePri Base Priority value to set 292 */ 293 __STATIC_INLINE void __set_BASEPRI(uint32_t basePri) 294 { 295 register uint32_t __regBasePri __ASM("basepri"); 296 __regBasePri = (basePri & 0xFFU); 297 } 298 299 300 /** 301 \brief Set Base Priority with condition 302 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, 303 or the new value increases the BASEPRI priority level. 304 \param [in] basePri Base Priority value to set 305 */ 306 __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri) 307 { 308 register uint32_t __regBasePriMax __ASM("basepri_max"); 309 __regBasePriMax = (basePri & 0xFFU); 310 } 311 312 313 /** 314 \brief Get Fault Mask 315 \details Returns the current value of the Fault Mask register. 316 \return Fault Mask register value 317 */ 318 __STATIC_INLINE uint32_t __get_FAULTMASK(void) 319 { 320 register uint32_t __regFaultMask __ASM("faultmask"); 321 return(__regFaultMask); 322 } 323 324 325 /** 326 \brief Set Fault Mask 327 \details Assigns the given value to the Fault Mask register. 328 \param [in] faultMask Fault Mask value to set 329 */ 330 __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) 331 { 332 register uint32_t __regFaultMask __ASM("faultmask"); 333 __regFaultMask = (faultMask & (uint32_t)1U); 334 } 335 336 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 337 (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ 338 339 340 /** 341 \brief Get FPSCR 342 \details Returns the current value of the Floating Point Status/Control register. 343 \return Floating Point Status/Control register value 344 */ 345 __STATIC_INLINE uint32_t __get_FPSCR(void) 346 { 347 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ 348 (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) 349 register uint32_t __regfpscr __ASM("fpscr"); 350 return(__regfpscr); 351 #else 352 return(0U); 353 #endif 354 } 355 356 357 /** 358 \brief Set FPSCR 359 \details Assigns the given value to the Floating Point Status/Control register. 360 \param [in] fpscr Floating Point Status/Control value to set 361 */ 362 __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) 363 { 364 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ 365 (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) 366 register uint32_t __regfpscr __ASM("fpscr"); 367 __regfpscr = (fpscr); 368 #else 369 (void)fpscr; 370 #endif 371 } 372 373 374 /*@} end of CMSIS_Core_RegAccFunctions */ 375 376 377 /* ########################## Core Instruction Access ######################### */ 378 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface 379 Access to dedicated instructions 380 @{ 381 */ 382 383 /** 384 \brief No Operation 385 \details No Operation does nothing. This instruction can be used for code alignment purposes. 386 */ 387 #define __NOP __nop 388 389 390 /** 391 \brief Wait For Interrupt 392 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. 393 */ 394 #define __WFI __wfi 395 396 397 /** 398 \brief Wait For Event 399 \details Wait For Event is a hint instruction that permits the processor to enter 400 a low-power state until one of a number of events occurs. 401 */ 402 #define __WFE __wfe 403 404 405 /** 406 \brief Send Event 407 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. 408 */ 409 #define __SEV __sev 410 411 412 /** 413 \brief Instruction Synchronization Barrier 414 \details Instruction Synchronization Barrier flushes the pipeline in the processor, 415 so that all instructions following the ISB are fetched from cache or memory, 416 after the instruction has been completed. 417 */ 418 #define __ISB() do {\ 419 __schedule_barrier();\ 420 __isb(0xF);\ 421 __schedule_barrier();\ 422 } while (0U) 423 424 /** 425 \brief Data Synchronization Barrier 426 \details Acts as a special kind of Data Memory Barrier. 427 It completes when all explicit memory accesses before this instruction complete. 428 */ 429 #define __DSB() do {\ 430 __schedule_barrier();\ 431 __dsb(0xF);\ 432 __schedule_barrier();\ 433 } while (0U) 434 435 /** 436 \brief Data Memory Barrier 437 \details Ensures the apparent order of the explicit memory operations before 438 and after the instruction, without ensuring their completion. 439 */ 440 #define __DMB() do {\ 441 __schedule_barrier();\ 442 __dmb(0xF);\ 443 __schedule_barrier();\ 444 } while (0U) 445 446 447 /** 448 \brief Reverse byte order (32 bit) 449 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. 450 \param [in] value Value to reverse 451 \return Reversed value 452 */ 453 #define __REV __rev 454 455 456 /** 457 \brief Reverse byte order (16 bit) 458 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. 459 \param [in] value Value to reverse 460 \return Reversed value 461 */ 462 #ifndef __NO_EMBEDDED_ASM 463 __attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value) 464 { 465 rev16 r0, r0 466 bx lr 467 } 468 #endif 469 470 471 /** 472 \brief Reverse byte order (16 bit) 473 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. 474 \param [in] value Value to reverse 475 \return Reversed value 476 */ 477 #ifndef __NO_EMBEDDED_ASM 478 __attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value) 479 { 480 revsh r0, r0 481 bx lr 482 } 483 #endif 484 485 486 /** 487 \brief Rotate Right in unsigned value (32 bit) 488 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. 489 \param [in] op1 Value to rotate 490 \param [in] op2 Number of Bits to rotate 491 \return Rotated value 492 */ 493 #define __ROR __ror 494 495 496 /** 497 \brief Breakpoint 498 \details Causes the processor to enter Debug state. 499 Debug tools can use this to investigate system state when the instruction at a particular address is reached. 500 \param [in] value is ignored by the processor. 501 If required, a debugger can use it to store additional information about the breakpoint. 502 */ 503 #define __BKPT(value) __breakpoint(value) 504 505 506 /** 507 \brief Reverse bit order of value 508 \details Reverses the bit order of the given value. 509 \param [in] value Value to reverse 510 \return Reversed value 511 */ 512 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 513 (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) 514 #define __RBIT __rbit 515 #else 516 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) 517 { 518 uint32_t result; 519 uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */ 520 521 result = value; /* r will be reversed bits of v; first get LSB of v */ 522 for (value >>= 1U; value != 0U; value >>= 1U) 523 { 524 result <<= 1U; 525 result |= value & 1U; 526 s--; 527 } 528 result <<= s; /* shift when v's highest bits are zero */ 529 return result; 530 } 531 #endif 532 533 534 /** 535 \brief Count leading zeros 536 \details Counts the number of leading zeros of a data value. 537 \param [in] value Value to count the leading zeros 538 \return number of leading zeros in value 539 */ 540 #define __CLZ __clz 541 542 543 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 544 (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) 545 546 /** 547 \brief LDR Exclusive (8 bit) 548 \details Executes a exclusive LDR instruction for 8 bit value. 549 \param [in] ptr Pointer to data 550 \return value of type uint8_t at (*ptr) 551 */ 552 #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) 553 #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr)) 554 #else 555 #define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop") 556 #endif 557 558 559 /** 560 \brief LDR Exclusive (16 bit) 561 \details Executes a exclusive LDR instruction for 16 bit values. 562 \param [in] ptr Pointer to data 563 \return value of type uint16_t at (*ptr) 564 */ 565 #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) 566 #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr)) 567 #else 568 #define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop") 569 #endif 570 571 572 /** 573 \brief LDR Exclusive (32 bit) 574 \details Executes a exclusive LDR instruction for 32 bit values. 575 \param [in] ptr Pointer to data 576 \return value of type uint32_t at (*ptr) 577 */ 578 #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) 579 #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr)) 580 #else 581 #define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop") 582 #endif 583 584 585 /** 586 \brief STR Exclusive (8 bit) 587 \details Executes a exclusive STR instruction for 8 bit values. 588 \param [in] value Value to store 589 \param [in] ptr Pointer to location 590 \return 0 Function succeeded 591 \return 1 Function failed 592 */ 593 #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) 594 #define __STREXB(value, ptr) __strex(value, ptr) 595 #else 596 #define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") 597 #endif 598 599 600 /** 601 \brief STR Exclusive (16 bit) 602 \details Executes a exclusive STR instruction for 16 bit values. 603 \param [in] value Value to store 604 \param [in] ptr Pointer to location 605 \return 0 Function succeeded 606 \return 1 Function failed 607 */ 608 #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) 609 #define __STREXH(value, ptr) __strex(value, ptr) 610 #else 611 #define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") 612 #endif 613 614 615 /** 616 \brief STR Exclusive (32 bit) 617 \details Executes a exclusive STR instruction for 32 bit values. 618 \param [in] value Value to store 619 \param [in] ptr Pointer to location 620 \return 0 Function succeeded 621 \return 1 Function failed 622 */ 623 #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) 624 #define __STREXW(value, ptr) __strex(value, ptr) 625 #else 626 #define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") 627 #endif 628 629 630 /** 631 \brief Remove the exclusive lock 632 \details Removes the exclusive lock which is created by LDREX. 633 */ 634 #define __CLREX __clrex 635 636 637 /** 638 \brief Signed Saturate 639 \details Saturates a signed value. 640 \param [in] value Value to be saturated 641 \param [in] sat Bit position to saturate to (1..32) 642 \return Saturated value 643 */ 644 #define __SSAT __ssat 645 646 647 /** 648 \brief Unsigned Saturate 649 \details Saturates an unsigned value. 650 \param [in] value Value to be saturated 651 \param [in] sat Bit position to saturate to (0..31) 652 \return Saturated value 653 */ 654 #define __USAT __usat 655 656 657 /** 658 \brief Rotate Right with Extend (32 bit) 659 \details Moves each bit of a bitstring right by one bit. 660 The carry input is shifted in at the left end of the bitstring. 661 \param [in] value Value to rotate 662 \return Rotated value 663 */ 664 #ifndef __NO_EMBEDDED_ASM 665 __attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value) 666 { 667 rrx r0, r0 668 bx lr 669 } 670 #endif 671 672 673 /** 674 \brief LDRT Unprivileged (8 bit) 675 \details Executes a Unprivileged LDRT instruction for 8 bit value. 676 \param [in] ptr Pointer to data 677 \return value of type uint8_t at (*ptr) 678 */ 679 #define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr)) 680 681 682 /** 683 \brief LDRT Unprivileged (16 bit) 684 \details Executes a Unprivileged LDRT instruction for 16 bit values. 685 \param [in] ptr Pointer to data 686 \return value of type uint16_t at (*ptr) 687 */ 688 #define __LDRHT(ptr) ((uint16_t) __ldrt(ptr)) 689 690 691 /** 692 \brief LDRT Unprivileged (32 bit) 693 \details Executes a Unprivileged LDRT instruction for 32 bit values. 694 \param [in] ptr Pointer to data 695 \return value of type uint32_t at (*ptr) 696 */ 697 #define __LDRT(ptr) ((uint32_t ) __ldrt(ptr)) 698 699 700 /** 701 \brief STRT Unprivileged (8 bit) 702 \details Executes a Unprivileged STRT instruction for 8 bit values. 703 \param [in] value Value to store 704 \param [in] ptr Pointer to location 705 */ 706 #define __STRBT(value, ptr) __strt(value, ptr) 707 708 709 /** 710 \brief STRT Unprivileged (16 bit) 711 \details Executes a Unprivileged STRT instruction for 16 bit values. 712 \param [in] value Value to store 713 \param [in] ptr Pointer to location 714 */ 715 #define __STRHT(value, ptr) __strt(value, ptr) 716 717 718 /** 719 \brief STRT Unprivileged (32 bit) 720 \details Executes a Unprivileged STRT instruction for 32 bit values. 721 \param [in] value Value to store 722 \param [in] ptr Pointer to location 723 */ 724 #define __STRT(value, ptr) __strt(value, ptr) 725 726 #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 727 (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ 728 729 /** 730 \brief Signed Saturate 731 \details Saturates a signed value. 732 \param [in] value Value to be saturated 733 \param [in] sat Bit position to saturate to (1..32) 734 \return Saturated value 735 */ 736 __attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat) 737 { 738 if ((sat >= 1U) && (sat <= 32U)) 739 { 740 const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); 741 const int32_t min = -1 - max ; 742 if (val > max) 743 { 744 return max; 745 } 746 else if (val < min) 747 { 748 return min; 749 } 750 } 751 return val; 752 } 753 754 /** 755 \brief Unsigned Saturate 756 \details Saturates an unsigned value. 757 \param [in] value Value to be saturated 758 \param [in] sat Bit position to saturate to (0..31) 759 \return Saturated value 760 */ 761 __attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat) 762 { 763 if (sat <= 31U) 764 { 765 const uint32_t max = ((1U << sat) - 1U); 766 if (val > (int32_t)max) 767 { 768 return max; 769 } 770 else if (val < 0) 771 { 772 return 0U; 773 } 774 } 775 return (uint32_t)val; 776 } 777 778 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 779 (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ 780 781 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ 782 783 784 /* ################### Compiler specific Intrinsics ########################### */ 785 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics 786 Access to dedicated SIMD instructions 787 @{ 788 */ 789 790 #if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) 791 792 #define __SADD8 __sadd8 793 #define __QADD8 __qadd8 794 #define __SHADD8 __shadd8 795 #define __UADD8 __uadd8 796 #define __UQADD8 __uqadd8 797 #define __UHADD8 __uhadd8 798 #define __SSUB8 __ssub8 799 #define __QSUB8 __qsub8 800 #define __SHSUB8 __shsub8 801 #define __USUB8 __usub8 802 #define __UQSUB8 __uqsub8 803 #define __UHSUB8 __uhsub8 804 #define __SADD16 __sadd16 805 #define __QADD16 __qadd16 806 #define __SHADD16 __shadd16 807 #define __UADD16 __uadd16 808 #define __UQADD16 __uqadd16 809 #define __UHADD16 __uhadd16 810 #define __SSUB16 __ssub16 811 #define __QSUB16 __qsub16 812 #define __SHSUB16 __shsub16 813 #define __USUB16 __usub16 814 #define __UQSUB16 __uqsub16 815 #define __UHSUB16 __uhsub16 816 #define __SASX __sasx 817 #define __QASX __qasx 818 #define __SHASX __shasx 819 #define __UASX __uasx 820 #define __UQASX __uqasx 821 #define __UHASX __uhasx 822 #define __SSAX __ssax 823 #define __QSAX __qsax 824 #define __SHSAX __shsax 825 #define __USAX __usax 826 #define __UQSAX __uqsax 827 #define __UHSAX __uhsax 828 #define __USAD8 __usad8 829 #define __USADA8 __usada8 830 #define __SSAT16 __ssat16 831 #define __USAT16 __usat16 832 #define __UXTB16 __uxtb16 833 #define __UXTAB16 __uxtab16 834 #define __SXTB16 __sxtb16 835 #define __SXTAB16 __sxtab16 836 #define __SMUAD __smuad 837 #define __SMUADX __smuadx 838 #define __SMLAD __smlad 839 #define __SMLADX __smladx 840 #define __SMLALD __smlald 841 #define __SMLALDX __smlaldx 842 #define __SMUSD __smusd 843 #define __SMUSDX __smusdx 844 #define __SMLSD __smlsd 845 #define __SMLSDX __smlsdx 846 #define __SMLSLD __smlsld 847 #define __SMLSLDX __smlsldx 848 #define __SEL __sel 849 #define __QADD __qadd 850 #define __QSUB __qsub 851 852 #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ 853 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) 854 855 #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ 856 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) 857 858 #define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \ 859 ((int64_t)(ARG3) << 32U) ) >> 32U)) 860 861 #endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ 862 /*@} end of group CMSIS_SIMD_intrinsics */ 863 864 865 #endif /* __CMSIS_ARMCC_H */ 866