1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define __BTSTACK_FILE__ "hci_transport_h2_libusb.c" 39 40 /* 41 * hci_transport_usb.c 42 * 43 * HCI Transport API implementation for USB 44 * 45 * Created by Matthias Ringwald on 7/5/09. 46 */ 47 48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size 49 // HCI Commands 0 0 0x00 Control 8/16/32/64 50 // HCI Events 0 0 0x81 Interrupt (IN) 16 51 // ACL Data 0 0 0x82 Bulk (IN) 32/64 52 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 53 // SCO Data 0 0 0x83 Isochronous (IN) 54 // SCO Data 0 0 0x03 Isochronous (Out) 55 56 #include <stdio.h> 57 #include <strings.h> 58 #include <string.h> 59 #include <unistd.h> /* UNIX standard function definitions */ 60 #include <sys/types.h> 61 62 #include <libusb.h> 63 64 #include "btstack_config.h" 65 66 #include "btstack_debug.h" 67 #include "hci.h" 68 #include "hci_transport.h" 69 70 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) 71 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 72 #endif 73 74 #define ACL_IN_BUFFER_COUNT 3 75 #define EVENT_IN_BUFFER_COUNT 3 76 #define SCO_IN_BUFFER_COUNT 10 77 78 #define ASYNC_POLLING_INTERVAL_MS 1 79 80 // 81 // Bluetooth USB Transport Alternate Settings: 82 // 83 // 0: No active voice channels (for USB compliance) 84 // 1: One 8 kHz voice channel with 8-bit encoding 85 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding 86 // 3: Three 8 kHz voice channels with 8-bit encoding 87 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding 88 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding 89 // --> support only a single SCO connection 90 // #define ALT_SETTING (1) 91 92 #ifdef ENABLE_SCO_OVER_HCI 93 // alt setting for 1-3 connections and 8/16 bit 94 static const int alt_setting_8_bit[] = {1,2,3}; 95 static const int alt_setting_16_bit[] = {2,4,5}; 96 97 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets 98 // One complete SCO packet with 24 frames every 3 frames (== 3 ms) 99 #define NUM_ISO_PACKETS (3) 100 101 static const uint16_t iso_packet_size_for_alt_setting[] = { 102 0, 103 9, 104 17, 105 25, 106 33, 107 49, 108 63, 109 }; 110 #endif 111 112 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) 113 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload 114 #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) 115 116 // Outgoing SCO packet queue 117 // simplified ring buffer implementation 118 #define SCO_OUT_BUFFER_COUNT (8) 119 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) 120 121 // seems to be the max depth for USB 3 122 #define USB_MAX_PATH_LEN 7 123 124 // prototypes 125 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); 126 static int usb_close(void); 127 128 typedef enum { 129 LIB_USB_CLOSED = 0, 130 LIB_USB_OPENED, 131 LIB_USB_DEVICE_OPENDED, 132 LIB_USB_INTERFACE_CLAIMED, 133 LIB_USB_TRANSFERS_ALLOCATED 134 } libusb_state_t; 135 136 // SCO packet state machine 137 typedef enum { 138 H2_W4_SCO_HEADER = 1, 139 H2_W4_PAYLOAD, 140 } H2_SCO_STATE; 141 142 static libusb_state_t libusb_state = LIB_USB_CLOSED; 143 144 // single instance 145 static hci_transport_t * hci_transport_usb = NULL; 146 147 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; 148 149 // libusb 150 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 151 static struct libusb_device_descriptor desc; 152 static libusb_device * dev; 153 #endif 154 static libusb_device_handle * handle; 155 156 static struct libusb_transfer *command_out_transfer; 157 static struct libusb_transfer *acl_out_transfer; 158 static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT]; 159 static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT]; 160 161 #ifdef ENABLE_SCO_OVER_HCI 162 163 #ifdef _WIN32 164 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" 165 #endif 166 167 // incoming SCO 168 static H2_SCO_STATE sco_state; 169 static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; 170 static uint16_t sco_read_pos; 171 static uint16_t sco_bytes_to_read; 172 static struct libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT]; 173 static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE]; 174 175 // outgoing SCO 176 static uint8_t sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE]; 177 static int sco_ring_write; // packet idx 178 static int sco_out_transfers_active; 179 static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT]; 180 static int sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT]; 181 182 // pause/resume 183 static uint16_t sco_voice_setting; 184 static int sco_num_connections; 185 static int sco_shutdown; 186 187 // dynamic SCO configuration 188 static uint16_t iso_packet_size; 189 190 #endif 191 192 // outgoing buffer for HCI Command packets 193 static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE]; 194 195 // incoming buffer for HCI Events and ACL Packets 196 static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet 197 static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE]; 198 199 // For (ab)use as a linked list of received packets 200 static struct libusb_transfer *handle_packet; 201 202 static int doing_pollfds; 203 static int num_pollfds; 204 static btstack_data_source_t * pollfd_data_sources; 205 static btstack_timer_source_t usb_timer; 206 static int usb_timer_active; 207 208 static int usb_acl_out_active = 0; 209 static int usb_command_active = 0; 210 211 // endpoint addresses 212 static int event_in_addr; 213 static int acl_in_addr; 214 static int acl_out_addr; 215 static int sco_in_addr; 216 static int sco_out_addr; 217 218 // device path 219 static int usb_path_len; 220 static uint8_t usb_path[USB_MAX_PATH_LEN]; 221 222 223 #ifdef ENABLE_SCO_OVER_HCI 224 static void sco_ring_init(void){ 225 sco_ring_write = 0; 226 sco_out_transfers_active = 0; 227 } 228 static int sco_ring_have_space(void){ 229 return sco_out_transfers_active < SCO_OUT_BUFFER_COUNT; 230 } 231 #endif 232 233 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ 234 if (len > USB_MAX_PATH_LEN || !port_numbers){ 235 log_error("hci_transport_usb_set_path: len or port numbers invalid"); 236 return; 237 } 238 usb_path_len = len; 239 memcpy(usb_path, port_numbers, len); 240 } 241 242 // 243 static void queue_transfer(struct libusb_transfer *transfer){ 244 245 // log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length); 246 247 transfer->user_data = NULL; 248 249 // insert first element 250 if (handle_packet == NULL) { 251 handle_packet = transfer; 252 return; 253 } 254 255 // Walk to end of list and add current packet there 256 struct libusb_transfer *temp = handle_packet; 257 while (temp->user_data) { 258 temp = (struct libusb_transfer*)temp->user_data; 259 } 260 temp->user_data = transfer; 261 } 262 263 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){ 264 265 int c; 266 267 // identify and free transfers as part of shutdown 268 #ifdef ENABLE_SCO_OVER_HCI 269 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) { 270 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 271 if (transfer == sco_in_transfer[c]){ 272 libusb_free_transfer(transfer); 273 sco_in_transfer[c] = 0; 274 return; 275 } 276 } 277 278 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 279 if (transfer == sco_out_transfers[c]){ 280 sco_out_transfers_in_flight[c] = 0; 281 libusb_free_transfer(transfer); 282 sco_out_transfers[c] = 0; 283 return; 284 } 285 } 286 } 287 #endif 288 289 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { 290 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 291 if (transfer == event_in_transfer[c]){ 292 libusb_free_transfer(transfer); 293 event_in_transfer[c] = 0; 294 return; 295 } 296 } 297 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 298 if (transfer == acl_in_transfer[c]){ 299 libusb_free_transfer(transfer); 300 acl_in_transfer[c] = 0; 301 return; 302 } 303 } 304 return; 305 } 306 307 #ifdef ENABLE_SCO_OVER_HCI 308 // mark SCO OUT transfer as done 309 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 310 if (transfer == sco_out_transfers[c]){ 311 sco_out_transfers_in_flight[c] = 0; 312 } 313 } 314 #endif 315 316 int r; 317 // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); 318 319 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { 320 queue_transfer(transfer); 321 } else if (transfer->status == LIBUSB_TRANSFER_STALL){ 322 log_info("-> Transfer stalled, trying again"); 323 r = libusb_clear_halt(handle, transfer->endpoint); 324 if (r) { 325 log_error("Error rclearing halt %d", r); 326 } 327 r = libusb_submit_transfer(transfer); 328 if (r) { 329 log_error("Error re-submitting transfer %d", r); 330 } 331 } else { 332 log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); 333 // No usable data, just resubmit packet 334 r = libusb_submit_transfer(transfer); 335 if (r) { 336 log_error("Error re-submitting transfer %d", r); 337 } 338 } 339 // log_info("end async_callback"); 340 } 341 342 343 #ifdef ENABLE_SCO_OVER_HCI 344 static int usb_send_sco_packet(uint8_t *packet, int size){ 345 int r; 346 347 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 348 349 // log_info("usb_send_acl_packet enter, size %u", size); 350 351 // store packet in free slot 352 int tranfer_index = sco_ring_write; 353 uint8_t * data = &sco_out_ring_buffer[tranfer_index * SCO_PACKET_SIZE]; 354 memcpy(data, packet, size); 355 356 // setup transfer 357 // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); 358 struct libusb_transfer * sco_transfer = sco_out_transfers[tranfer_index]; 359 libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 360 libusb_set_iso_packet_lengths(sco_transfer, iso_packet_size); 361 r = libusb_submit_transfer(sco_transfer); 362 if (r < 0) { 363 log_error("Error submitting sco transfer, %d", r); 364 return -1; 365 } 366 367 // mark slot as full 368 sco_ring_write++; 369 if (sco_ring_write == SCO_OUT_BUFFER_COUNT){ 370 sco_ring_write = 0; 371 } 372 sco_out_transfers_active++; 373 sco_out_transfers_in_flight[tranfer_index] = 1; 374 375 // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); 376 377 // notify upper stack that provided buffer can be used again 378 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 379 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 380 381 // and if we have more space for SCO packets 382 if (sco_ring_have_space()) { 383 uint8_t event_sco[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 384 packet_handler(HCI_EVENT_PACKET, &event_sco[0], sizeof(event_sco)); 385 } 386 return 0; 387 } 388 389 static void sco_state_machine_init(void){ 390 sco_state = H2_W4_SCO_HEADER; 391 sco_read_pos = 0; 392 sco_bytes_to_read = 3; 393 } 394 395 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ 396 while (size){ 397 if (size < sco_bytes_to_read){ 398 // just store incomplete data 399 memcpy(&sco_buffer[sco_read_pos], buffer, size); 400 sco_read_pos += size; 401 sco_bytes_to_read -= size; 402 return; 403 } 404 // copy requested data 405 memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); 406 sco_read_pos += sco_bytes_to_read; 407 buffer += sco_bytes_to_read; 408 size -= sco_bytes_to_read; 409 410 // chunk read successfully, next action 411 switch (sco_state){ 412 case H2_W4_SCO_HEADER: 413 sco_state = H2_W4_PAYLOAD; 414 sco_bytes_to_read = sco_buffer[2]; 415 break; 416 case H2_W4_PAYLOAD: 417 // packet complete 418 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); 419 sco_state_machine_init(); 420 break; 421 } 422 } 423 } 424 #endif 425 426 static void handle_completed_transfer(struct libusb_transfer *transfer){ 427 428 int resubmit = 0; 429 int signal_done = 0; 430 431 if (transfer->endpoint == event_in_addr) { 432 packet_handler(HCI_EVENT_PACKET, transfer-> buffer, transfer->actual_length); 433 resubmit = 1; 434 } else if (transfer->endpoint == acl_in_addr) { 435 // log_info("-> acl"); 436 packet_handler(HCI_ACL_DATA_PACKET, transfer-> buffer, transfer->actual_length); 437 resubmit = 1; 438 } else if (transfer->endpoint == 0){ 439 // log_info("command done, size %u", transfer->actual_length); 440 usb_command_active = 0; 441 signal_done = 1; 442 } else if (transfer->endpoint == acl_out_addr){ 443 // log_info("acl out done, size %u", transfer->actual_length); 444 usb_acl_out_active = 0; 445 signal_done = 1; 446 #ifdef ENABLE_SCO_OVER_HCI 447 } else if (transfer->endpoint == sco_in_addr) { 448 // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); 449 int i; 450 for (i = 0; i < transfer->num_iso_packets; i++) { 451 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 452 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 453 log_error("Error: pack %u status %d\n", i, pack->status); 454 continue; 455 } 456 if (!pack->actual_length) continue; 457 uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); 458 // printf_hexdump(data, pack->actual_length); 459 // log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length); 460 handle_isochronous_data(data, pack->actual_length); 461 } 462 resubmit = 1; 463 } else if (transfer->endpoint == sco_out_addr){ 464 int i; 465 for (i = 0; i < transfer->num_iso_packets; i++) { 466 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 467 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 468 log_error("Error: pack %u status %d\n", i, pack->status); 469 } 470 } 471 // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", 472 // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, 473 // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, 474 // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); 475 // notify upper layer if there's space for new SCO packets 476 477 if (sco_ring_have_space()) { 478 uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 479 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 480 } 481 // decrease tab 482 sco_out_transfers_active--; 483 // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); 484 #endif 485 } else { 486 log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); 487 } 488 489 if (signal_done){ 490 // notify upper stack that provided buffer can be used again 491 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 492 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 493 } 494 495 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 496 497 if (resubmit){ 498 // Re-submit transfer 499 transfer->user_data = NULL; 500 int r = libusb_submit_transfer(transfer); 501 if (r) { 502 log_error("Error re-submitting transfer %d", r); 503 } 504 } 505 } 506 507 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 508 509 UNUSED(ds); 510 UNUSED(callback_type); 511 512 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 513 514 // log_info("begin usb_process_ds"); 515 // always handling an event as we're called when data is ready 516 struct timeval tv; 517 memset(&tv, 0, sizeof(struct timeval)); 518 libusb_handle_events_timeout(NULL, &tv); 519 520 // Handle any packet in the order that they were received 521 while (handle_packet) { 522 // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); 523 void * next = handle_packet->user_data; 524 handle_completed_transfer(handle_packet); 525 // handle case where libusb_close might be called by hci packet handler 526 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 527 528 // Move to next in the list of packets to handle 529 if (next) { 530 handle_packet = (struct libusb_transfer*)next; 531 } else { 532 handle_packet = NULL; 533 } 534 } 535 // log_info("end usb_process_ds"); 536 } 537 538 static void usb_process_ts(btstack_timer_source_t *timer) { 539 540 UNUSED(timer); 541 542 // log_info("in usb_process_ts"); 543 544 // timer is deactive, when timer callback gets called 545 usb_timer_active = 0; 546 547 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 548 549 // actually handled the packet in the pollfds function 550 usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); 551 552 // Get the amount of time until next event is due 553 long msec = ASYNC_POLLING_INTERVAL_MS; 554 555 // Activate timer 556 btstack_run_loop_set_timer(&usb_timer, msec); 557 btstack_run_loop_add_timer(&usb_timer); 558 usb_timer_active = 1; 559 560 return; 561 } 562 563 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 564 565 // list of known devices, using VendorID/ProductID tuples 566 static const uint16_t known_bt_devices[] = { 567 // DeLOCK Bluetooth 4.0 568 0x0a5c, 0x21e8, 569 // Asus BT400 570 0x0b05, 0x17cb, 571 }; 572 573 static int num_known_devices = sizeof(known_bt_devices) / sizeof(uint16_t) / 2; 574 575 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ 576 int i; 577 for (i=0; i<num_known_devices; i++){ 578 if (known_bt_devices[i*2] == vendor_id && known_bt_devices[i*2+1] == product_id){ 579 return 1; 580 } 581 } 582 return 0; 583 } 584 585 static void scan_for_bt_endpoints(void) { 586 int r; 587 588 event_in_addr = 0; 589 acl_in_addr = 0; 590 acl_out_addr = 0; 591 sco_out_addr = 0; 592 sco_in_addr = 0; 593 594 // get endpoints from interface descriptor 595 struct libusb_config_descriptor *config_descriptor; 596 r = libusb_get_active_config_descriptor(dev, &config_descriptor); 597 598 int num_interfaces = config_descriptor->bNumInterfaces; 599 log_info("active configuration has %u interfaces", num_interfaces); 600 601 int i; 602 for (i = 0; i < num_interfaces ; i++){ 603 const struct libusb_interface *interface = &config_descriptor->interface[i]; 604 const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; 605 log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); 606 607 const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; 608 609 for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){ 610 log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); 611 612 switch (endpoint->bmAttributes & 0x3){ 613 case LIBUSB_TRANSFER_TYPE_INTERRUPT: 614 if (event_in_addr) continue; 615 event_in_addr = endpoint->bEndpointAddress; 616 log_info("-> using 0x%2.2X for HCI Events", event_in_addr); 617 break; 618 case LIBUSB_TRANSFER_TYPE_BULK: 619 if (endpoint->bEndpointAddress & 0x80) { 620 if (acl_in_addr) continue; 621 acl_in_addr = endpoint->bEndpointAddress; 622 log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); 623 } else { 624 if (acl_out_addr) continue; 625 acl_out_addr = endpoint->bEndpointAddress; 626 log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); 627 } 628 break; 629 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: 630 if (endpoint->bEndpointAddress & 0x80) { 631 if (sco_in_addr) continue; 632 sco_in_addr = endpoint->bEndpointAddress; 633 log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); 634 } else { 635 if (sco_out_addr) continue; 636 sco_out_addr = endpoint->bEndpointAddress; 637 log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); 638 } 639 break; 640 default: 641 break; 642 } 643 } 644 } 645 libusb_free_config_descriptor(config_descriptor); 646 } 647 648 // returns index of found device or -1 649 static int scan_for_bt_device(libusb_device **devs, int start_index) { 650 int i; 651 for (i = start_index; devs[i] ; i++){ 652 dev = devs[i]; 653 int r = libusb_get_device_descriptor(dev, &desc); 654 if (r < 0) { 655 log_error("failed to get device descriptor"); 656 return 0; 657 } 658 659 log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", 660 desc.idVendor, desc.idProduct, 661 libusb_get_bus_number(dev), libusb_get_device_address(dev), 662 desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); 663 664 // Detect USB Dongle based Class, Subclass, and Protocol 665 // The class code (bDeviceClass) is 0xE0 – Wireless Controller. 666 // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. 667 // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. 668 // if (desc.bDeviceClass == 0xe0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01){ 669 if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { 670 return i; 671 } 672 673 // Detect USB Dongle based on whitelist 674 if (is_known_bt_device(desc.idVendor, desc.idProduct)) { 675 return i; 676 } 677 } 678 return -1; 679 } 680 #endif 681 682 static int prepare_device(libusb_device_handle * aHandle){ 683 684 // print device path 685 uint8_t port_numbers[USB_MAX_PATH_LEN]; 686 libusb_device * device = libusb_get_device(aHandle); 687 int path_len = libusb_get_port_numbers(device, port_numbers, USB_MAX_PATH_LEN); 688 printf("USB Path: "); 689 int i; 690 for (i=0;i<path_len;i++){ 691 if (i) printf("-"); 692 printf("%02x", port_numbers[i]); 693 } 694 printf("\n"); 695 696 int r; 697 int kernel_driver_detached = 0; 698 699 // Detach OS driver (not possible for OS X and WIN32) 700 #if !defined(__APPLE__) && !defined(_WIN32) 701 r = libusb_kernel_driver_active(aHandle, 0); 702 if (r < 0) { 703 log_error("libusb_kernel_driver_active error %d", r); 704 libusb_close(aHandle); 705 return r; 706 } 707 708 if (r == 1) { 709 r = libusb_detach_kernel_driver(aHandle, 0); 710 if (r < 0) { 711 log_error("libusb_detach_kernel_driver error %d", r); 712 libusb_close(aHandle); 713 return r; 714 } 715 kernel_driver_detached = 1; 716 } 717 log_info("libusb_detach_kernel_driver"); 718 #endif 719 720 const int configuration = 1; 721 log_info("setting configuration %d...", configuration); 722 r = libusb_set_configuration(aHandle, configuration); 723 if (r < 0) { 724 log_error("Error libusb_set_configuration: %d", r); 725 if (kernel_driver_detached){ 726 libusb_attach_kernel_driver(aHandle, 0); 727 } 728 libusb_close(aHandle); 729 return r; 730 } 731 732 // reserve access to device 733 log_info("claiming interface 0..."); 734 r = libusb_claim_interface(aHandle, 0); 735 if (r < 0) { 736 log_error("Error claiming interface %d", r); 737 if (kernel_driver_detached){ 738 libusb_attach_kernel_driver(aHandle, 0); 739 } 740 libusb_close(aHandle); 741 return r; 742 } 743 744 #ifdef ENABLE_SCO_OVER_HCI 745 log_info("claiming interface 1..."); 746 r = libusb_claim_interface(aHandle, 1); 747 if (r < 0) { 748 log_error("Error claiming interface %d", r); 749 if (kernel_driver_detached){ 750 libusb_attach_kernel_driver(aHandle, 0); 751 } 752 libusb_close(aHandle); 753 return r; 754 } 755 #endif 756 757 return 0; 758 } 759 760 static libusb_device_handle * try_open_device(libusb_device * device){ 761 int r; 762 763 libusb_device_handle * dev_handle; 764 r = libusb_open(device, &dev_handle); 765 766 if (r < 0) { 767 log_error("libusb_open failed!"); 768 dev_handle = NULL; 769 return NULL; 770 } 771 772 log_info("libusb open %d, handle %p", r, dev_handle); 773 774 // reset device 775 libusb_reset_device(dev_handle); 776 if (r < 0) { 777 log_error("libusb_reset_device failed!"); 778 libusb_close(dev_handle); 779 return NULL; 780 } 781 return dev_handle; 782 } 783 784 #ifdef ENABLE_SCO_OVER_HCI 785 786 static int usb_sco_start(void){ 787 788 printf("usb_sco_start\n"); 789 log_info("usb_sco_start"); 790 791 sco_state_machine_init(); 792 sco_ring_init(); 793 794 int alt_setting; 795 if (sco_voice_setting & 0x0020){ 796 // 16-bit PCM 797 alt_setting = alt_setting_16_bit[sco_num_connections-1]; 798 } else { 799 // 8-bit PCM or mSBC 800 alt_setting = alt_setting_8_bit[sco_num_connections-1]; 801 } 802 // derive iso packet size from alt setting 803 iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; 804 805 log_info("Switching to setting %u on interface 1..", alt_setting); 806 int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); 807 if (r < 0) { 808 log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); 809 return r; 810 } 811 812 // incoming 813 int c; 814 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 815 sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in 816 if (!sco_in_transfer[c]) { 817 usb_close(); 818 return LIBUSB_ERROR_NO_MEM; 819 } 820 // configure sco_in handlers 821 libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr, 822 hci_sco_in_buffer[c], NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 823 libusb_set_iso_packet_lengths(sco_in_transfer[c], iso_packet_size); 824 r = libusb_submit_transfer(sco_in_transfer[c]); 825 if (r) { 826 log_error("Error submitting isochronous in transfer %d", r); 827 usb_close(); 828 return r; 829 } 830 } 831 832 // outgoing 833 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 834 sco_out_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts 835 sco_out_transfers_in_flight[c] = 0; 836 } 837 return 0; 838 } 839 840 static void usb_sco_stop(void){ 841 842 printf("usb_sco_stop\n"); 843 844 log_info("usb_sco_stop"); 845 sco_shutdown = 1; 846 847 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 848 849 int c; 850 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 851 libusb_cancel_transfer(sco_in_transfer[c]); 852 } 853 854 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 855 if (sco_out_transfers_in_flight[c]) { 856 libusb_cancel_transfer(sco_out_transfers[c]); 857 } else { 858 libusb_free_transfer(sco_out_transfers[c]); 859 sco_out_transfers[c] = 0; 860 } 861 } 862 863 // wait until all transfers are completed 864 int completed = 0; 865 while (!completed){ 866 struct timeval tv; 867 memset(&tv, 0, sizeof(struct timeval)); 868 libusb_handle_events_timeout(NULL, &tv); 869 // check if all done 870 completed = 1; 871 872 // Cancel all synchronous transfer 873 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 874 if (sco_in_transfer[c]){ 875 completed = 0; 876 break; 877 } 878 } 879 880 if (!completed) continue; 881 882 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 883 if (sco_out_transfers[c]){ 884 completed = 0; 885 break; 886 } 887 } 888 } 889 sco_shutdown = 0; 890 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 891 892 log_info("Switching to setting %u on interface 1..", 0); 893 int r = libusb_set_interface_alt_setting(handle, 1, 0); 894 if (r < 0) { 895 log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); 896 return; 897 } 898 899 printf("usb_sco_stop done\n"); 900 } 901 902 903 904 #endif 905 906 static int usb_open(void){ 907 int r; 908 909 handle_packet = NULL; 910 911 // default endpoint addresses 912 event_in_addr = 0x81; // EP1, IN interrupt 913 acl_in_addr = 0x82; // EP2, IN bulk 914 acl_out_addr = 0x02; // EP2, OUT bulk 915 sco_in_addr = 0x83; // EP3, IN isochronous 916 sco_out_addr = 0x03; // EP3, OUT isochronous 917 918 // USB init 919 r = libusb_init(NULL); 920 if (r < 0) return -1; 921 922 libusb_state = LIB_USB_OPENED; 923 924 // configure debug level 925 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 926 927 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 928 929 // Use a specified device 930 log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); 931 handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); 932 933 if (!handle){ 934 log_error("libusb_open_device_with_vid_pid failed!"); 935 usb_close(); 936 return -1; 937 } 938 log_info("libusb open %d, handle %p", r, handle); 939 940 r = prepare_device(handle); 941 if (r < 0){ 942 usb_close(); 943 return -1; 944 } 945 946 #else 947 // Scan system for an appropriate devices 948 libusb_device **devs; 949 ssize_t num_devices; 950 951 log_info("Scanning for USB Bluetooth device"); 952 num_devices = libusb_get_device_list(NULL, &devs); 953 if (num_devices < 0) { 954 usb_close(); 955 return -1; 956 } 957 958 dev = NULL; 959 960 if (usb_path_len){ 961 int i; 962 for (i=0;i<num_devices;i++){ 963 uint8_t port_numbers[USB_MAX_PATH_LEN]; 964 int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN); 965 if (len != usb_path_len) continue; 966 if (memcmp(usb_path, port_numbers, len) == 0){ 967 log_info("USB device found at specified path"); 968 handle = try_open_device(devs[i]); 969 if (!handle) continue; 970 971 r = prepare_device(handle); 972 if (r < 0) continue; 973 974 dev = devs[i]; 975 libusb_state = LIB_USB_INTERFACE_CLAIMED; 976 break; 977 }; 978 } 979 if (!handle){ 980 log_error("USB device with given path not found"); 981 printf("USB device with given path not found\n"); 982 return -1; 983 } 984 } else { 985 986 int deviceIndex = -1; 987 while (1){ 988 // look for next Bluetooth dongle 989 deviceIndex = scan_for_bt_device(devs, deviceIndex+1); 990 if (deviceIndex < 0) break; 991 992 log_info("USB Bluetooth device found, index %u", deviceIndex); 993 994 handle = try_open_device(devs[deviceIndex]); 995 if (!handle) continue; 996 997 r = prepare_device(handle); 998 if (r < 0) continue; 999 1000 dev = devs[deviceIndex]; 1001 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1002 break; 1003 } 1004 } 1005 1006 libusb_free_device_list(devs, 1); 1007 1008 if (handle == 0){ 1009 log_error("No USB Bluetooth device found"); 1010 return -1; 1011 } 1012 1013 scan_for_bt_endpoints(); 1014 1015 #endif 1016 1017 // allocate transfer handlers 1018 int c; 1019 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1020 event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events 1021 if (!event_in_transfer[c]) { 1022 usb_close(); 1023 return LIBUSB_ERROR_NO_MEM; 1024 } 1025 } 1026 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1027 acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in 1028 if (!acl_in_transfer[c]) { 1029 usb_close(); 1030 return LIBUSB_ERROR_NO_MEM; 1031 } 1032 } 1033 1034 command_out_transfer = libusb_alloc_transfer(0); 1035 acl_out_transfer = libusb_alloc_transfer(0); 1036 1037 // TODO check for error 1038 1039 libusb_state = LIB_USB_TRANSFERS_ALLOCATED; 1040 1041 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1042 // configure event_in handlers 1043 libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr, 1044 hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1045 r = libusb_submit_transfer(event_in_transfer[c]); 1046 if (r) { 1047 log_error("Error submitting interrupt transfer %d", r); 1048 usb_close(); 1049 return r; 1050 } 1051 } 1052 1053 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1054 // configure acl_in handlers 1055 libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr, 1056 hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1057 r = libusb_submit_transfer(acl_in_transfer[c]); 1058 if (r) { 1059 log_error("Error submitting bulk in transfer %d", r); 1060 usb_close(); 1061 return r; 1062 } 1063 1064 } 1065 1066 // Check for pollfds functionality 1067 doing_pollfds = libusb_pollfds_handle_timeouts(NULL); 1068 1069 // NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation here 1070 doing_pollfds = 0; 1071 1072 if (doing_pollfds) { 1073 log_info("Async using pollfds:"); 1074 1075 const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); 1076 for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); 1077 pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); 1078 if (!pollfd_data_sources){ 1079 log_error("Cannot allocate data sources for pollfds"); 1080 usb_close(); 1081 return 1; 1082 } 1083 for (r = 0 ; r < num_pollfds ; r++) { 1084 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1085 btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); 1086 btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); 1087 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); 1088 btstack_run_loop_add_data_source(ds); 1089 log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); 1090 } 1091 free(pollfd); 1092 } else { 1093 log_info("Async using timers:"); 1094 1095 usb_timer.process = usb_process_ts; 1096 btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); 1097 btstack_run_loop_add_timer(&usb_timer); 1098 usb_timer_active = 1; 1099 } 1100 1101 return 0; 1102 } 1103 1104 static int usb_close(void){ 1105 int c; 1106 int completed = 0; 1107 1108 switch (libusb_state){ 1109 case LIB_USB_CLOSED: 1110 break; 1111 1112 case LIB_USB_TRANSFERS_ALLOCATED: 1113 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1114 1115 if(usb_timer_active) { 1116 btstack_run_loop_remove_timer(&usb_timer); 1117 usb_timer_active = 0; 1118 } 1119 1120 if (doing_pollfds){ 1121 int r; 1122 for (r = 0 ; r < num_pollfds ; r++) { 1123 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1124 btstack_run_loop_remove_data_source(ds); 1125 } 1126 free(pollfd_data_sources); 1127 pollfd_data_sources = NULL; 1128 num_pollfds = 0; 1129 doing_pollfds = 0; 1130 } 1131 1132 case LIB_USB_INTERFACE_CLAIMED: 1133 // Cancel all transfers, ignore warnings for this 1134 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 1135 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1136 libusb_cancel_transfer(event_in_transfer[c]); 1137 } 1138 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1139 libusb_cancel_transfer(acl_in_transfer[c]); 1140 } 1141 #ifdef ENABLE_SCO_OVER_HCI 1142 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1143 libusb_cancel_transfer(sco_in_transfer[c]); 1144 } 1145 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1146 if (sco_out_transfers_in_flight[c]) { 1147 libusb_cancel_transfer(sco_out_transfers[c]); 1148 } else { 1149 libusb_free_transfer(sco_out_transfers[c]); 1150 sco_out_transfers[c] = 0; 1151 } 1152 } 1153 #endif 1154 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1155 1156 // wait until all transfers are completed 1157 while (!completed){ 1158 struct timeval tv; 1159 memset(&tv, 0, sizeof(struct timeval)); 1160 libusb_handle_events_timeout(NULL, &tv); 1161 // check if all done 1162 completed = 1; 1163 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 1164 if (event_in_transfer[c]) { 1165 completed = 0; 1166 break; 1167 } 1168 } 1169 1170 if (!completed) continue; 1171 1172 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 1173 if (acl_in_transfer[c]) { 1174 completed = 0; 1175 break; 1176 } 1177 } 1178 1179 #ifdef ENABLE_SCO_OVER_HCI 1180 if (!completed) continue; 1181 1182 // Cancel all synchronous transfer 1183 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1184 if (sco_in_transfer[c]){ 1185 completed = 0; 1186 break; 1187 } 1188 } 1189 1190 if (!completed) continue; 1191 1192 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1193 if (sco_out_transfers[c]){ 1194 completed = 0; 1195 break; 1196 } 1197 } 1198 #endif 1199 } 1200 1201 // finally release interface 1202 libusb_release_interface(handle, 0); 1203 #ifdef ENABLE_SCO_OVER_HCI 1204 libusb_release_interface(handle, 1); 1205 #endif 1206 log_info("Libusb shutdown complete"); 1207 1208 case LIB_USB_DEVICE_OPENDED: 1209 libusb_close(handle); 1210 1211 case LIB_USB_OPENED: 1212 libusb_exit(NULL); 1213 } 1214 1215 libusb_state = LIB_USB_CLOSED; 1216 handle = NULL; 1217 1218 return 0; 1219 } 1220 1221 static int usb_send_cmd_packet(uint8_t *packet, int size){ 1222 int r; 1223 1224 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1225 1226 // async 1227 libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); 1228 memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size); 1229 1230 // prepare transfer 1231 int completed = 0; 1232 libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0); 1233 command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER; 1234 1235 // update stata before submitting transfer 1236 usb_command_active = 1; 1237 1238 // submit transfer 1239 r = libusb_submit_transfer(command_out_transfer); 1240 1241 if (r < 0) { 1242 usb_command_active = 0; 1243 log_error("Error submitting cmd transfer %d", r); 1244 return -1; 1245 } 1246 1247 return 0; 1248 } 1249 1250 static int usb_send_acl_packet(uint8_t *packet, int size){ 1251 int r; 1252 1253 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1254 1255 // log_info("usb_send_acl_packet enter, size %u", size); 1256 1257 // prepare transfer 1258 int completed = 0; 1259 libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size, 1260 async_callback, &completed, 0); 1261 acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK; 1262 1263 // update stata before submitting transfer 1264 usb_acl_out_active = 1; 1265 1266 r = libusb_submit_transfer(acl_out_transfer); 1267 if (r < 0) { 1268 usb_acl_out_active = 0; 1269 log_error("Error submitting acl transfer, %d", r); 1270 return -1; 1271 } 1272 1273 return 0; 1274 } 1275 1276 static int usb_can_send_packet_now(uint8_t packet_type){ 1277 switch (packet_type){ 1278 case HCI_COMMAND_DATA_PACKET: 1279 return !usb_command_active; 1280 case HCI_ACL_DATA_PACKET: 1281 return !usb_acl_out_active; 1282 #ifdef ENABLE_SCO_OVER_HCI 1283 case HCI_SCO_DATA_PACKET: 1284 return sco_ring_have_space(); 1285 #endif 1286 default: 1287 return 0; 1288 } 1289 } 1290 1291 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ 1292 switch (packet_type){ 1293 case HCI_COMMAND_DATA_PACKET: 1294 return usb_send_cmd_packet(packet, size); 1295 case HCI_ACL_DATA_PACKET: 1296 return usb_send_acl_packet(packet, size); 1297 #ifdef ENABLE_SCO_OVER_HCI 1298 case HCI_SCO_DATA_PACKET: 1299 return usb_send_sco_packet(packet, size); 1300 #endif 1301 default: 1302 return -1; 1303 } 1304 } 1305 1306 #ifdef ENABLE_SCO_OVER_HCI 1307 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ 1308 log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); 1309 1310 if (num_connections != sco_num_connections){ 1311 sco_voice_setting = voice_setting; 1312 if (sco_num_connections){ 1313 usb_sco_stop(); 1314 } 1315 sco_num_connections = num_connections; 1316 if (num_connections){ 1317 usb_sco_start(); 1318 } 1319 } 1320 } 1321 #endif 1322 1323 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1324 log_info("registering packet handler"); 1325 packet_handler = handler; 1326 } 1327 1328 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1329 UNUSED(packet_type); 1330 UNUSED(packet); 1331 UNUSED(size); 1332 } 1333 1334 // get usb singleton 1335 const hci_transport_t * hci_transport_usb_instance(void) { 1336 if (!hci_transport_usb) { 1337 hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); 1338 memset(hci_transport_usb, 0, sizeof(hci_transport_t)); 1339 hci_transport_usb->name = "H2_LIBUSB"; 1340 hci_transport_usb->open = usb_open; 1341 hci_transport_usb->close = usb_close; 1342 hci_transport_usb->register_packet_handler = usb_register_packet_handler; 1343 hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; 1344 hci_transport_usb->send_packet = usb_send_packet; 1345 #ifdef ENABLE_SCO_OVER_HCI 1346 hci_transport_usb->set_sco_config = usb_set_sco_config; 1347 #endif 1348 } 1349 return hci_transport_usb; 1350 } 1351