1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN 24 * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "hci_transport_h2_libusb.c" 39 40 /* 41 * hci_transport_usb.c 42 * 43 * HCI Transport API implementation for USB 44 * 45 * Created by Matthias Ringwald on 7/5/09. 46 */ 47 48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size 49 // HCI Commands 0 0 0x00 Control 8/16/32/64 50 // HCI Events 0 0 0x81 Interrupt (IN) 16 51 // ACL Data 0 0 0x82 Bulk (IN) 32/64 52 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 53 // SCO Data 0 0 0x83 Isochronous (IN) 54 // SCO Data 0 0 0x03 Isochronous (Out) 55 56 #include <stdio.h> 57 #include <strings.h> 58 #include <string.h> 59 #include <unistd.h> /* UNIX standard function definitions */ 60 #include <sys/types.h> 61 62 #include <libusb.h> 63 64 #include "btstack_config.h" 65 66 #include "btstack_debug.h" 67 #include "hci.h" 68 #include "hci_transport.h" 69 #include "hci_transport_usb.h" 70 71 // deal with changes in libusb API: 72 #ifdef LIBUSB_API_VERSION 73 #if LIBUSB_API_VERSION >= 0x01000106 74 // since 1.0.22, libusb_set_option replaces libusb_set_debug 75 #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level) 76 #endif 77 #endif 78 79 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) 80 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 81 #endif 82 83 #define ACL_IN_BUFFER_COUNT 3 84 #define EVENT_IN_BUFFER_COUNT 3 85 #define SCO_IN_BUFFER_COUNT 10 86 87 #define ASYNC_POLLING_INTERVAL_MS 1 88 89 // 90 // Bluetooth USB Transport Alternate Settings: 91 // 92 // 0: No active voice channels (for USB compliance) 93 // 1: One 8 kHz voice channel with 8-bit encoding 94 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding 95 // 3: Three 8 kHz voice channels with 8-bit encoding 96 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding 97 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding 98 // --> support only a single SCO connection 99 // #define ALT_SETTING (1) 100 101 #ifdef ENABLE_SCO_OVER_HCI 102 // alt setting for 1-3 connections and 8/16 bit 103 static const int alt_setting_8_bit[] = {1,2,3}; 104 static const int alt_setting_16_bit[] = {2,4,5}; 105 106 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets 107 // One complete SCO packet with 24 frames every 3 frames (== 3 ms) 108 #define NUM_ISO_PACKETS (3) 109 110 static const uint16_t iso_packet_size_for_alt_setting[] = { 111 0, 112 9, 113 17, 114 25, 115 33, 116 49, 117 63, 118 }; 119 #endif 120 121 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) 122 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload 123 #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) 124 125 // Outgoing SCO packet queue 126 // simplified ring buffer implementation 127 #define SCO_OUT_BUFFER_COUNT (8) 128 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) 129 130 // seems to be the max depth for USB 3 131 #define USB_MAX_PATH_LEN 7 132 133 // prototypes 134 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); 135 static int usb_close(void); 136 137 typedef enum { 138 LIB_USB_CLOSED = 0, 139 LIB_USB_OPENED, 140 LIB_USB_DEVICE_OPENDED, 141 LIB_USB_INTERFACE_CLAIMED, 142 LIB_USB_TRANSFERS_ALLOCATED 143 } libusb_state_t; 144 145 // SCO packet state machine 146 typedef enum { 147 H2_W4_SCO_HEADER = 1, 148 H2_W4_PAYLOAD, 149 } H2_SCO_STATE; 150 151 static libusb_state_t libusb_state = LIB_USB_CLOSED; 152 153 // single instance 154 static hci_transport_t * hci_transport_usb = NULL; 155 156 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; 157 158 // libusb 159 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 160 static struct libusb_device_descriptor desc; 161 #endif 162 static libusb_device_handle * handle; 163 164 static struct libusb_transfer *command_out_transfer; 165 static struct libusb_transfer *acl_out_transfer; 166 static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT]; 167 static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT]; 168 169 #ifdef ENABLE_SCO_OVER_HCI 170 171 #ifdef _WIN32 172 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" 173 #endif 174 175 // incoming SCO 176 static H2_SCO_STATE sco_state; 177 static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; 178 static uint16_t sco_read_pos; 179 static uint16_t sco_bytes_to_read; 180 static struct libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT]; 181 static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE]; 182 183 // outgoing SCO 184 static uint8_t sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE]; 185 static int sco_ring_write; // packet idx 186 static int sco_out_transfers_active; 187 static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT]; 188 static int sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT]; 189 190 // pause/resume 191 static uint16_t sco_voice_setting; 192 static int sco_num_connections; 193 static int sco_shutdown; 194 195 // dynamic SCO configuration 196 static uint16_t iso_packet_size; 197 static int sco_enabled; 198 199 #endif 200 201 // outgoing buffer for HCI Command packets 202 static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE]; 203 204 // incoming buffer for HCI Events and ACL Packets 205 static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet 206 static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE]; 207 208 // For (ab)use as a linked list of received packets 209 static struct libusb_transfer *handle_packet; 210 211 static int doing_pollfds; 212 static int num_pollfds; 213 static btstack_data_source_t * pollfd_data_sources; 214 static btstack_timer_source_t usb_timer; 215 static int usb_timer_active; 216 217 static int usb_acl_out_active = 0; 218 static int usb_command_active = 0; 219 220 // endpoint addresses 221 static int event_in_addr; 222 static int acl_in_addr; 223 static int acl_out_addr; 224 static int sco_in_addr; 225 static int sco_out_addr; 226 227 // device info 228 static int usb_path_len; 229 static uint8_t usb_path[USB_MAX_PATH_LEN]; 230 static uint16_t usb_vendor_id; 231 static uint16_t usb_product_id; 232 233 // transport interface state 234 static int usb_transport_open; 235 236 237 #ifdef ENABLE_SCO_OVER_HCI 238 static void sco_ring_init(void){ 239 sco_ring_write = 0; 240 sco_out_transfers_active = 0; 241 } 242 static int sco_ring_have_space(void){ 243 return sco_out_transfers_active < SCO_OUT_BUFFER_COUNT; 244 } 245 #endif 246 247 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ 248 if (len > USB_MAX_PATH_LEN || !port_numbers){ 249 log_error("hci_transport_usb_set_path: len or port numbers invalid"); 250 return; 251 } 252 usb_path_len = len; 253 memcpy(usb_path, port_numbers, len); 254 } 255 256 // 257 static void queue_transfer(struct libusb_transfer *transfer){ 258 259 // log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length); 260 261 transfer->user_data = NULL; 262 263 // insert first element 264 if (handle_packet == NULL) { 265 handle_packet = transfer; 266 return; 267 } 268 269 // Walk to end of list and add current packet there 270 struct libusb_transfer *temp = handle_packet; 271 while (temp->user_data) { 272 temp = (struct libusb_transfer*)temp->user_data; 273 } 274 temp->user_data = transfer; 275 } 276 277 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){ 278 279 int c; 280 281 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED){ 282 log_info("shutdown, transfer %p", transfer); 283 } 284 285 286 // identify and free transfers as part of shutdown 287 #ifdef ENABLE_SCO_OVER_HCI 288 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) { 289 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 290 if (transfer == sco_in_transfer[c]){ 291 libusb_free_transfer(transfer); 292 sco_in_transfer[c] = NULL; 293 return; 294 } 295 } 296 297 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 298 if (transfer == sco_out_transfers[c]){ 299 sco_out_transfers_in_flight[c] = 0; 300 libusb_free_transfer(transfer); 301 sco_out_transfers[c] = NULL; 302 return; 303 } 304 } 305 } 306 #endif 307 308 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { 309 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 310 if (transfer == event_in_transfer[c]){ 311 libusb_free_transfer(transfer); 312 event_in_transfer[c] = 0; 313 return; 314 } 315 } 316 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 317 if (transfer == acl_in_transfer[c]){ 318 libusb_free_transfer(transfer); 319 acl_in_transfer[c] = 0; 320 return; 321 } 322 } 323 return; 324 } 325 326 #ifdef ENABLE_SCO_OVER_HCI 327 // mark SCO OUT transfer as done 328 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 329 if (transfer == sco_out_transfers[c]){ 330 sco_out_transfers_in_flight[c] = 0; 331 } 332 } 333 #endif 334 335 int r; 336 // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); 337 338 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { 339 queue_transfer(transfer); 340 } else if (transfer->status == LIBUSB_TRANSFER_STALL){ 341 log_info("-> Transfer stalled, trying again"); 342 r = libusb_clear_halt(handle, transfer->endpoint); 343 if (r) { 344 log_error("Error rclearing halt %d", r); 345 } 346 r = libusb_submit_transfer(transfer); 347 if (r) { 348 log_error("Error re-submitting transfer %d", r); 349 } 350 } else { 351 log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); 352 // No usable data, just resubmit packet 353 r = libusb_submit_transfer(transfer); 354 if (r) { 355 log_error("Error re-submitting transfer %d", r); 356 } 357 } 358 // log_info("end async_callback"); 359 } 360 361 362 #ifdef ENABLE_SCO_OVER_HCI 363 static int usb_send_sco_packet(uint8_t *packet, int size){ 364 int r; 365 366 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 367 368 // log_info("usb_send_acl_packet enter, size %u", size); 369 370 // store packet in free slot 371 int tranfer_index = sco_ring_write; 372 uint8_t * data = &sco_out_ring_buffer[tranfer_index * SCO_PACKET_SIZE]; 373 memcpy(data, packet, size); 374 375 // setup transfer 376 // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); 377 struct libusb_transfer * sco_transfer = sco_out_transfers[tranfer_index]; 378 libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 379 libusb_set_iso_packet_lengths(sco_transfer, iso_packet_size); 380 r = libusb_submit_transfer(sco_transfer); 381 if (r < 0) { 382 log_error("Error submitting sco transfer, %d", r); 383 return -1; 384 } 385 386 // mark slot as full 387 sco_ring_write++; 388 if (sco_ring_write == SCO_OUT_BUFFER_COUNT){ 389 sco_ring_write = 0; 390 } 391 sco_out_transfers_active++; 392 sco_out_transfers_in_flight[tranfer_index] = 1; 393 394 // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); 395 396 // notify upper stack that provided buffer can be used again 397 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 398 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 399 400 // and if we have more space for SCO packets 401 if (sco_ring_have_space()) { 402 uint8_t event_sco[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 403 packet_handler(HCI_EVENT_PACKET, &event_sco[0], sizeof(event_sco)); 404 } 405 return 0; 406 } 407 408 static void sco_state_machine_init(void){ 409 sco_state = H2_W4_SCO_HEADER; 410 sco_read_pos = 0; 411 sco_bytes_to_read = 3; 412 } 413 414 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ 415 while (size){ 416 if (size < sco_bytes_to_read){ 417 // just store incomplete data 418 memcpy(&sco_buffer[sco_read_pos], buffer, size); 419 sco_read_pos += size; 420 sco_bytes_to_read -= size; 421 return; 422 } 423 // copy requested data 424 memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); 425 sco_read_pos += sco_bytes_to_read; 426 buffer += sco_bytes_to_read; 427 size -= sco_bytes_to_read; 428 429 // chunk read successfully, next action 430 switch (sco_state){ 431 case H2_W4_SCO_HEADER: 432 sco_state = H2_W4_PAYLOAD; 433 sco_bytes_to_read = sco_buffer[2]; 434 break; 435 case H2_W4_PAYLOAD: 436 // packet complete 437 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); 438 sco_state_machine_init(); 439 break; 440 default: 441 btstack_assert(false); 442 break; 443 } 444 } 445 } 446 #endif 447 448 static void handle_completed_transfer(struct libusb_transfer *transfer){ 449 450 int resubmit = 0; 451 int signal_done = 0; 452 453 if (transfer->endpoint == event_in_addr) { 454 packet_handler(HCI_EVENT_PACKET, transfer->buffer, transfer->actual_length); 455 resubmit = 1; 456 } else if (transfer->endpoint == acl_in_addr) { 457 // log_info("-> acl"); 458 packet_handler(HCI_ACL_DATA_PACKET, transfer->buffer, transfer->actual_length); 459 resubmit = 1; 460 } else if (transfer->endpoint == 0){ 461 // log_info("command done, size %u", transfer->actual_length); 462 usb_command_active = 0; 463 signal_done = 1; 464 } else if (transfer->endpoint == acl_out_addr){ 465 // log_info("acl out done, size %u", transfer->actual_length); 466 usb_acl_out_active = 0; 467 signal_done = 1; 468 #ifdef ENABLE_SCO_OVER_HCI 469 } else if (transfer->endpoint == sco_in_addr) { 470 // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); 471 int i; 472 for (i = 0; i < transfer->num_iso_packets; i++) { 473 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 474 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 475 log_error("Error: pack %u status %d\n", i, pack->status); 476 continue; 477 } 478 if (!pack->actual_length) continue; 479 uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); 480 // printf_hexdump(data, pack->actual_length); 481 // log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length); 482 handle_isochronous_data(data, pack->actual_length); 483 } 484 resubmit = 1; 485 } else if (transfer->endpoint == sco_out_addr){ 486 int i; 487 for (i = 0; i < transfer->num_iso_packets; i++) { 488 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 489 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 490 log_error("Error: pack %u status %d\n", i, pack->status); 491 } 492 } 493 // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", 494 // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, 495 // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, 496 // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); 497 // notify upper layer if there's space for new SCO packets 498 499 if (sco_ring_have_space()) { 500 uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 501 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 502 } 503 // decrease tab 504 sco_out_transfers_active--; 505 // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); 506 #endif 507 } else { 508 log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); 509 } 510 511 if (signal_done){ 512 // notify upper stack that provided buffer can be used again 513 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 514 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 515 } 516 517 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 518 519 if (resubmit){ 520 // Re-submit transfer 521 transfer->user_data = NULL; 522 int r = libusb_submit_transfer(transfer); 523 if (r) { 524 log_error("Error re-submitting transfer %d", r); 525 } 526 } 527 } 528 529 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 530 531 UNUSED(ds); 532 UNUSED(callback_type); 533 534 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 535 536 // log_info("begin usb_process_ds"); 537 // always handling an event as we're called when data is ready 538 struct timeval tv; 539 memset(&tv, 0, sizeof(struct timeval)); 540 libusb_handle_events_timeout(NULL, &tv); 541 542 // Handle any packet in the order that they were received 543 while (handle_packet) { 544 // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); 545 546 // pop next transfer 547 struct libusb_transfer * transfer = handle_packet; 548 handle_packet = (struct libusb_transfer*) handle_packet->user_data; 549 550 // handle transfer 551 handle_completed_transfer(transfer); 552 553 // handle case where libusb_close might be called by hci packet handler 554 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 555 } 556 // log_info("end usb_process_ds"); 557 } 558 559 static void usb_process_ts(btstack_timer_source_t *timer) { 560 561 UNUSED(timer); 562 563 // log_info("in usb_process_ts"); 564 565 // timer is deactive, when timer callback gets called 566 usb_timer_active = 0; 567 568 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 569 570 // actually handled the packet in the pollfds function 571 usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); 572 573 // Get the amount of time until next event is due 574 long msec = ASYNC_POLLING_INTERVAL_MS; 575 576 // Activate timer 577 btstack_run_loop_set_timer(&usb_timer, msec); 578 btstack_run_loop_add_timer(&usb_timer); 579 usb_timer_active = 1; 580 581 return; 582 } 583 584 585 static int scan_for_bt_endpoints(libusb_device *dev) { 586 int r; 587 588 event_in_addr = 0; 589 acl_in_addr = 0; 590 acl_out_addr = 0; 591 sco_out_addr = 0; 592 sco_in_addr = 0; 593 594 // get endpoints from interface descriptor 595 struct libusb_config_descriptor *config_descriptor; 596 r = libusb_get_active_config_descriptor(dev, &config_descriptor); 597 if (r < 0) return r; 598 599 int num_interfaces = config_descriptor->bNumInterfaces; 600 log_info("active configuration has %u interfaces", num_interfaces); 601 602 int i; 603 for (i = 0; i < num_interfaces ; i++){ 604 const struct libusb_interface *interface = &config_descriptor->interface[i]; 605 const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; 606 log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); 607 608 const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; 609 610 for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){ 611 log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); 612 613 switch (endpoint->bmAttributes & 0x3){ 614 case LIBUSB_TRANSFER_TYPE_INTERRUPT: 615 if (event_in_addr) continue; 616 event_in_addr = endpoint->bEndpointAddress; 617 log_info("-> using 0x%2.2X for HCI Events", event_in_addr); 618 break; 619 case LIBUSB_TRANSFER_TYPE_BULK: 620 if (endpoint->bEndpointAddress & 0x80) { 621 if (acl_in_addr) continue; 622 acl_in_addr = endpoint->bEndpointAddress; 623 log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); 624 } else { 625 if (acl_out_addr) continue; 626 acl_out_addr = endpoint->bEndpointAddress; 627 log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); 628 } 629 break; 630 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: 631 if (endpoint->bEndpointAddress & 0x80) { 632 if (sco_in_addr) continue; 633 sco_in_addr = endpoint->bEndpointAddress; 634 log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); 635 } else { 636 if (sco_out_addr) continue; 637 sco_out_addr = endpoint->bEndpointAddress; 638 log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); 639 } 640 break; 641 default: 642 break; 643 } 644 } 645 } 646 libusb_free_config_descriptor(config_descriptor); 647 return 0; 648 } 649 650 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 651 652 // list of known devices, using VendorID/ProductID tuples 653 static const uint16_t known_bluetooth_devices[] = { 654 // BCM20702A0 - DeLOCK Bluetooth 4.0 655 0x0a5c, 0x21e8, 656 // BCM20702A0 - Asus BT400 657 0x0b05, 0x17cb, 658 // BCM20702B0 - Generic USB Detuned Class 1 @ 20 MHz 659 0x0a5c, 0x22be, 660 // nRF5x Zephyr USB HCI, e.g nRF52840-PCA10056 661 0x2fe3, 0x0100, 662 0x2fe3, 0x000b, 663 }; 664 665 static int num_known_devices = sizeof(known_bluetooth_devices) / sizeof(uint16_t) / 2; 666 667 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ 668 int i; 669 for (i=0; i<num_known_devices; i++){ 670 if (known_bluetooth_devices[i*2] == vendor_id && known_bluetooth_devices[i*2+1] == product_id){ 671 return 1; 672 } 673 } 674 return 0; 675 } 676 677 // returns index of found device or -1 678 static int scan_for_bt_device(libusb_device **devs, int start_index) { 679 int i; 680 for (i = start_index; devs[i] ; i++){ 681 libusb_device * dev = devs[i]; 682 int r = libusb_get_device_descriptor(dev, &desc); 683 if (r < 0) { 684 log_error("failed to get device descriptor"); 685 return 0; 686 } 687 688 log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", 689 desc.idVendor, desc.idProduct, 690 libusb_get_bus_number(dev), libusb_get_device_address(dev), 691 desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); 692 693 // Detect USB Dongle based Class, Subclass, and Protocol 694 // The class code (bDeviceClass) is 0xE0 – Wireless Controller. 695 // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. 696 // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. 697 if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { 698 return i; 699 } 700 701 // Detect USB Dongle based on whitelist 702 if (is_known_bt_device(desc.idVendor, desc.idProduct)) { 703 return i; 704 } 705 } 706 return -1; 707 } 708 #endif 709 710 static int prepare_device(libusb_device_handle * aHandle){ 711 712 // get device path 713 libusb_device * device = libusb_get_device(aHandle); 714 usb_path_len = libusb_get_port_numbers(device, usb_path, USB_MAX_PATH_LEN); 715 716 // print device path 717 printf("USB Path: "); 718 int i; 719 for (i=0;i<usb_path_len;i++){ 720 if (i) printf("-"); 721 printf("%02x", usb_path[i]); 722 } 723 printf("\n"); 724 725 int r; 726 int kernel_driver_detached = 0; 727 728 // Detach OS driver (not possible for OS X, FreeBSD, and Windows) 729 #if !defined(__APPLE__) && !defined(_WIN32) && !defined(__CYGWIN__) && !defined(__FreeBSD__) 730 r = libusb_kernel_driver_active(aHandle, 0); 731 if (r < 0) { 732 log_error("libusb_kernel_driver_active error %d", r); 733 libusb_close(aHandle); 734 return r; 735 } 736 737 if (r == 1) { 738 r = libusb_detach_kernel_driver(aHandle, 0); 739 if (r < 0) { 740 log_error("libusb_detach_kernel_driver error %d", r); 741 libusb_close(aHandle); 742 return r; 743 } 744 kernel_driver_detached = 1; 745 } 746 log_info("libusb_detach_kernel_driver"); 747 #endif 748 749 const int configuration = 1; 750 log_info("setting configuration %d...", configuration); 751 r = libusb_set_configuration(aHandle, configuration); 752 if (r < 0) { 753 log_error("Error libusb_set_configuration: %d", r); 754 if (kernel_driver_detached){ 755 libusb_attach_kernel_driver(aHandle, 0); 756 } 757 libusb_close(aHandle); 758 return r; 759 } 760 761 // reserve access to device 762 log_info("claiming interface 0..."); 763 r = libusb_claim_interface(aHandle, 0); 764 if (r < 0) { 765 log_error("Error %d claiming interface 0", r); 766 if (kernel_driver_detached){ 767 libusb_attach_kernel_driver(aHandle, 0); 768 } 769 libusb_close(aHandle); 770 return r; 771 } 772 773 #ifdef ENABLE_SCO_OVER_HCI 774 // get endpoints from interface descriptor 775 struct libusb_config_descriptor *config_descriptor; 776 r = libusb_get_active_config_descriptor(device, &config_descriptor); 777 if (r >= 0){ 778 int num_interfaces = config_descriptor->bNumInterfaces; 779 if (num_interfaces > 1) { 780 r = libusb_claim_interface(aHandle, 1); 781 if (r < 0) { 782 log_error("Error %d claiming interface 1: - disabling SCO over HCI", r); 783 } else { 784 sco_enabled = 1; 785 } 786 } else { 787 log_info("Device has only on interface, disabling SCO over HCI"); 788 } 789 } 790 #endif 791 792 return 0; 793 } 794 795 static libusb_device_handle * try_open_device(libusb_device * device){ 796 int r; 797 798 r = libusb_get_device_descriptor(device, &desc); 799 if (r < 0) { 800 log_error("libusb_get_device_descriptor failed!"); 801 return NULL; 802 } 803 usb_vendor_id = desc.idVendor; 804 usb_product_id = desc.idProduct; 805 806 libusb_device_handle * dev_handle; 807 r = libusb_open(device, &dev_handle); 808 809 if (r < 0) { 810 log_error("libusb_open failed!"); 811 dev_handle = NULL; 812 return NULL; 813 } 814 815 log_info("libusb open %d, handle %p", r, dev_handle); 816 817 // reset device (Not currently possible under FreeBSD 11.x/12.x due to usb framework) 818 #if !defined(__FreeBSD__) 819 r = libusb_reset_device(dev_handle); 820 if (r < 0) { 821 log_error("libusb_reset_device failed!"); 822 libusb_close(dev_handle); 823 return NULL; 824 } 825 #endif 826 return dev_handle; 827 } 828 829 #ifdef ENABLE_SCO_OVER_HCI 830 831 static int usb_sco_start(void){ 832 833 printf("usb_sco_start\n"); 834 log_info("usb_sco_start"); 835 836 sco_state_machine_init(); 837 sco_ring_init(); 838 839 int alt_setting; 840 if (sco_voice_setting & 0x0020){ 841 // 16-bit PCM 842 alt_setting = alt_setting_16_bit[sco_num_connections-1]; 843 } else { 844 // 8-bit PCM or mSBC 845 alt_setting = alt_setting_8_bit[sco_num_connections-1]; 846 } 847 // derive iso packet size from alt setting 848 iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; 849 850 log_info("Switching to setting %u on interface 1..", alt_setting); 851 int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); 852 if (r < 0) { 853 log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); 854 return r; 855 } 856 857 // incoming 858 int c; 859 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 860 sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in 861 if (!sco_in_transfer[c]) { 862 usb_close(); 863 return LIBUSB_ERROR_NO_MEM; 864 } 865 // configure sco_in handlers 866 libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr, 867 hci_sco_in_buffer[c], NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 868 libusb_set_iso_packet_lengths(sco_in_transfer[c], iso_packet_size); 869 r = libusb_submit_transfer(sco_in_transfer[c]); 870 if (r) { 871 log_error("Error submitting isochronous in transfer %d", r); 872 usb_close(); 873 return r; 874 } 875 } 876 877 // outgoing 878 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 879 sco_out_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts 880 sco_out_transfers_in_flight[c] = 0; 881 } 882 return 0; 883 } 884 885 static void usb_sco_stop(void){ 886 887 printf("usb_sco_stop\n"); 888 889 log_info("usb_sco_stop"); 890 sco_shutdown = 1; 891 892 // Free SCO transfers already in queue 893 struct libusb_transfer* transfer = handle_packet; 894 struct libusb_transfer* prev_transfer = NULL; 895 while (transfer != NULL) { 896 uint16_t c; 897 bool drop_transfer = false; 898 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 899 if (transfer == sco_in_transfer[c]){ 900 sco_in_transfer[c] = NULL; 901 drop_transfer = true; 902 break; 903 } 904 } 905 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 906 if (transfer == sco_out_transfers[c]){ 907 sco_out_transfers_in_flight[c] = 0; 908 sco_out_transfers[c] = NULL; 909 drop_transfer = true; 910 break; 911 } 912 } 913 struct libusb_transfer * next_transfer = (struct libusb_transfer *) transfer->user_data; 914 if (drop_transfer) { 915 printf("Drop completed SCO transfer %p\n", transfer); 916 if (prev_transfer == NULL) { 917 // first item 918 handle_packet = (struct libusb_transfer *) next_transfer; 919 } else { 920 // other item 921 prev_transfer->user_data = (struct libusb_transfer *) next_transfer; 922 } 923 libusb_free_transfer(transfer); 924 } else { 925 prev_transfer = transfer; 926 } 927 transfer = next_transfer; 928 } 929 930 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 931 932 int c; 933 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 934 if (sco_in_transfer[c] != NULL) { 935 libusb_cancel_transfer(sco_in_transfer[c]); 936 } 937 } 938 939 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 940 if (sco_out_transfers_in_flight[c]) { 941 libusb_cancel_transfer(sco_out_transfers[c]); 942 } else { 943 if (sco_out_transfers[c] != NULL) { 944 libusb_free_transfer(sco_out_transfers[c]); 945 sco_out_transfers[c] = 0; 946 } 947 } 948 } 949 950 // wait until all transfers are completed 951 int completed = 0; 952 while (!completed){ 953 struct timeval tv; 954 memset(&tv, 0, sizeof(struct timeval)); 955 libusb_handle_events_timeout(NULL, &tv); 956 // check if all done 957 completed = 1; 958 959 // Cancel all synchronous transfer 960 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 961 if (sco_in_transfer[c] != NULL){ 962 completed = 0; 963 break; 964 } 965 } 966 967 if (!completed) continue; 968 969 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 970 if (sco_out_transfers[c] != NULL){ 971 completed = 0; 972 break; 973 } 974 } 975 } 976 sco_shutdown = 0; 977 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 978 979 log_info("Switching to setting %u on interface 1..", 0); 980 int r = libusb_set_interface_alt_setting(handle, 1, 0); 981 if (r < 0) { 982 log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); 983 return; 984 } 985 986 printf("usb_sco_stop done\n"); 987 } 988 989 990 991 #endif 992 993 static int usb_open(void){ 994 int r; 995 996 if (usb_transport_open) return 0; 997 998 handle_packet = NULL; 999 1000 // default endpoint addresses 1001 event_in_addr = 0x81; // EP1, IN interrupt 1002 acl_in_addr = 0x82; // EP2, IN bulk 1003 acl_out_addr = 0x02; // EP2, OUT bulk 1004 sco_in_addr = 0x83; // EP3, IN isochronous 1005 sco_out_addr = 0x03; // EP3, OUT isochronous 1006 1007 // USB init 1008 r = libusb_init(NULL); 1009 if (r < 0) return -1; 1010 1011 libusb_state = LIB_USB_OPENED; 1012 1013 // configure debug level 1014 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1015 1016 libusb_device * dev = NULL; 1017 1018 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 1019 1020 // Use a specified device 1021 log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); 1022 handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); 1023 1024 if (!handle){ 1025 log_error("libusb_open_device_with_vid_pid failed!"); 1026 usb_close(); 1027 return -1; 1028 } 1029 log_info("libusb open %d, handle %p", r, handle); 1030 1031 r = prepare_device(handle); 1032 if (r < 0){ 1033 usb_close(); 1034 return -1; 1035 } 1036 1037 dev = libusb_get_device(handle); 1038 r = scan_for_bt_endpoints(dev); 1039 if (r < 0){ 1040 usb_close(); 1041 return -1; 1042 } 1043 1044 usb_vendor_id = USB_VENDOR_ID; 1045 usb_product_id = USB_PRODUCT_ID; 1046 1047 #else 1048 // Scan system for an appropriate devices 1049 libusb_device **devs; 1050 ssize_t num_devices; 1051 1052 log_info("Scanning for USB Bluetooth device"); 1053 num_devices = libusb_get_device_list(NULL, &devs); 1054 if (num_devices < 0) { 1055 usb_close(); 1056 return -1; 1057 } 1058 1059 if (usb_path_len){ 1060 int i; 1061 for (i=0;i<num_devices;i++){ 1062 uint8_t port_numbers[USB_MAX_PATH_LEN]; 1063 int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN); 1064 if (len != usb_path_len) continue; 1065 if (memcmp(usb_path, port_numbers, len) == 0){ 1066 log_info("USB device found at specified path"); 1067 handle = try_open_device(devs[i]); 1068 if (!handle) continue; 1069 1070 r = prepare_device(handle); 1071 if (r < 0) { 1072 handle = NULL; 1073 continue; 1074 } 1075 1076 dev = devs[i]; 1077 r = scan_for_bt_endpoints(dev); 1078 if (r < 0) { 1079 handle = NULL; 1080 continue; 1081 } 1082 1083 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1084 break; 1085 }; 1086 } 1087 if (!handle){ 1088 log_error("USB device with given path not found"); 1089 printf("USB device with given path not found\n"); 1090 return -1; 1091 } 1092 } else { 1093 1094 int deviceIndex = -1; 1095 while (true){ 1096 // look for next Bluetooth dongle 1097 deviceIndex = scan_for_bt_device(devs, deviceIndex+1); 1098 if (deviceIndex < 0) break; 1099 1100 log_info("USB Bluetooth device found, index %u", deviceIndex); 1101 1102 handle = try_open_device(devs[deviceIndex]); 1103 if (!handle) continue; 1104 1105 r = prepare_device(handle); 1106 if (r < 0) { 1107 handle = NULL; 1108 continue; 1109 } 1110 1111 dev = devs[deviceIndex]; 1112 r = scan_for_bt_endpoints(dev); 1113 if (r < 0) { 1114 handle = NULL; 1115 continue; 1116 } 1117 1118 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1119 break; 1120 } 1121 } 1122 1123 libusb_free_device_list(devs, 1); 1124 1125 if (handle == 0){ 1126 log_error("No USB Bluetooth device found"); 1127 return -1; 1128 } 1129 1130 #endif 1131 1132 // allocate transfer handlers 1133 int c; 1134 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1135 event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events 1136 if (!event_in_transfer[c]) { 1137 usb_close(); 1138 return LIBUSB_ERROR_NO_MEM; 1139 } 1140 } 1141 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1142 acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in 1143 if (!acl_in_transfer[c]) { 1144 usb_close(); 1145 return LIBUSB_ERROR_NO_MEM; 1146 } 1147 } 1148 1149 command_out_transfer = libusb_alloc_transfer(0); 1150 acl_out_transfer = libusb_alloc_transfer(0); 1151 1152 // TODO check for error 1153 1154 libusb_state = LIB_USB_TRANSFERS_ALLOCATED; 1155 1156 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1157 // configure event_in handlers 1158 libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr, 1159 hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1160 r = libusb_submit_transfer(event_in_transfer[c]); 1161 if (r) { 1162 log_error("Error submitting interrupt transfer %d", r); 1163 usb_close(); 1164 return r; 1165 } 1166 } 1167 1168 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1169 // configure acl_in handlers 1170 libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr, 1171 hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1172 r = libusb_submit_transfer(acl_in_transfer[c]); 1173 if (r) { 1174 log_error("Error submitting bulk in transfer %d", r); 1175 usb_close(); 1176 return r; 1177 } 1178 1179 } 1180 1181 #if 0 1182 // Check for pollfds functionality 1183 doing_pollfds = libusb_pollfds_handle_timeouts(NULL); 1184 #else 1185 // NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation 1186 doing_pollfds = 0; 1187 #endif 1188 1189 if (doing_pollfds) { 1190 log_info("Async using pollfds:"); 1191 1192 const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); 1193 for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); 1194 pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); 1195 if (!pollfd_data_sources){ 1196 log_error("Cannot allocate data sources for pollfds"); 1197 usb_close(); 1198 return 1; 1199 } 1200 memset(pollfd_data_sources, 0, sizeof(btstack_data_source_t) * num_pollfds); 1201 for (r = 0 ; r < num_pollfds ; r++) { 1202 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1203 btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); 1204 btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); 1205 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); 1206 btstack_run_loop_add_data_source(ds); 1207 log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); 1208 } 1209 free(pollfd); 1210 } else { 1211 log_info("Async using timers:"); 1212 1213 usb_timer.process = usb_process_ts; 1214 btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); 1215 btstack_run_loop_add_timer(&usb_timer); 1216 usb_timer_active = 1; 1217 } 1218 1219 usb_transport_open = 1; 1220 1221 return 0; 1222 } 1223 1224 static int usb_close(void){ 1225 int c; 1226 int completed = 0; 1227 1228 if (!usb_transport_open) return 0; 1229 1230 log_info("usb_close"); 1231 1232 switch (libusb_state){ 1233 case LIB_USB_CLOSED: 1234 break; 1235 1236 case LIB_USB_TRANSFERS_ALLOCATED: 1237 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1238 1239 if(usb_timer_active) { 1240 btstack_run_loop_remove_timer(&usb_timer); 1241 usb_timer_active = 0; 1242 } 1243 1244 if (doing_pollfds){ 1245 int r; 1246 for (r = 0 ; r < num_pollfds ; r++) { 1247 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1248 btstack_run_loop_remove_data_source(ds); 1249 } 1250 free(pollfd_data_sources); 1251 pollfd_data_sources = NULL; 1252 num_pollfds = 0; 1253 doing_pollfds = 0; 1254 } 1255 1256 /* fall through */ 1257 1258 case LIB_USB_INTERFACE_CLAIMED: 1259 // Cancel all transfers, ignore warnings for this 1260 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 1261 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1262 if (event_in_transfer[c]){ 1263 log_info("cancel event_in_transfer[%u] = %p", c, event_in_transfer[c]); 1264 libusb_cancel_transfer(event_in_transfer[c]); 1265 } 1266 } 1267 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1268 if (acl_in_transfer[c]){ 1269 log_info("cancel acl_in_transfer[%u] = %p", c, acl_in_transfer[c]); 1270 libusb_cancel_transfer(acl_in_transfer[c]); 1271 } 1272 } 1273 #ifdef ENABLE_SCO_OVER_HCI 1274 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1275 if (sco_in_transfer[c]){ 1276 log_info("cancel sco_in_transfer[%u] = %p", c, sco_in_transfer[c]); 1277 libusb_cancel_transfer(sco_in_transfer[c]); 1278 } 1279 } 1280 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1281 if (sco_out_transfers_in_flight[c]) { 1282 log_info("cancel sco_out_transfers[%u] = %p", c, sco_out_transfers[c]); 1283 libusb_cancel_transfer(sco_out_transfers[c]); 1284 } else { 1285 if (sco_out_transfers[c] != NULL){ 1286 libusb_free_transfer(sco_out_transfers[c]); 1287 sco_out_transfers[c] = 0; 1288 } 1289 } 1290 } 1291 #endif 1292 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1293 1294 // wait until all transfers are completed - or 20 iterations 1295 int countdown = 20; 1296 while (!completed){ 1297 1298 if (--countdown == 0){ 1299 log_info("Not all transfers cancelled, leaking a bit."); 1300 break; 1301 } 1302 1303 struct timeval tv; 1304 memset(&tv, 0, sizeof(struct timeval)); 1305 libusb_handle_events_timeout(NULL, &tv); 1306 // check if all done 1307 completed = 1; 1308 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 1309 if (event_in_transfer[c]) { 1310 log_info("event_in_transfer[%u] still active (%p)", c, event_in_transfer[c]); 1311 completed = 0; 1312 break; 1313 } 1314 } 1315 1316 if (!completed) continue; 1317 1318 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 1319 if (acl_in_transfer[c]) { 1320 log_info("acl_in_transfer[%u] still active (%p)", c, acl_in_transfer[c]); 1321 completed = 0; 1322 break; 1323 } 1324 } 1325 1326 #ifdef ENABLE_SCO_OVER_HCI 1327 if (!completed) continue; 1328 1329 // Cancel all synchronous transfer 1330 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1331 if (sco_in_transfer[c]){ 1332 log_info("sco_in_transfer[%u] still active (%p)", c, sco_in_transfer[c]); 1333 completed = 0; 1334 break; 1335 } 1336 } 1337 1338 if (!completed) continue; 1339 1340 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1341 if (sco_out_transfers[c] != NULL){ 1342 log_info("sco_out_transfers[%u] still active (%p)", c, sco_out_transfers[c]); 1343 completed = 0; 1344 break; 1345 } 1346 } 1347 sco_enabled = 0; 1348 #endif 1349 } 1350 1351 // finally release interface 1352 libusb_release_interface(handle, 0); 1353 #ifdef ENABLE_SCO_OVER_HCI 1354 libusb_release_interface(handle, 1); 1355 #endif 1356 log_info("Libusb shutdown complete"); 1357 1358 /* fall through */ 1359 1360 case LIB_USB_DEVICE_OPENDED: 1361 libusb_close(handle); 1362 1363 /* fall through */ 1364 1365 case LIB_USB_OPENED: 1366 libusb_exit(NULL); 1367 break; 1368 1369 default: 1370 btstack_assert(false); 1371 break; 1372 } 1373 1374 libusb_state = LIB_USB_CLOSED; 1375 handle = NULL; 1376 usb_transport_open = 0; 1377 1378 return 0; 1379 } 1380 1381 static int usb_send_cmd_packet(uint8_t *packet, int size){ 1382 int r; 1383 1384 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1385 1386 // async 1387 libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); 1388 memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size); 1389 1390 // prepare transfer 1391 int completed = 0; 1392 libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0); 1393 command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER; 1394 1395 // update stata before submitting transfer 1396 usb_command_active = 1; 1397 1398 // submit transfer 1399 r = libusb_submit_transfer(command_out_transfer); 1400 1401 if (r < 0) { 1402 usb_command_active = 0; 1403 log_error("Error submitting cmd transfer %d", r); 1404 return -1; 1405 } 1406 1407 return 0; 1408 } 1409 1410 static int usb_send_acl_packet(uint8_t *packet, int size){ 1411 int r; 1412 1413 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1414 1415 // log_info("usb_send_acl_packet enter, size %u", size); 1416 1417 // prepare transfer 1418 int completed = 0; 1419 libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size, 1420 async_callback, &completed, 0); 1421 acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK; 1422 1423 // update stata before submitting transfer 1424 usb_acl_out_active = 1; 1425 1426 r = libusb_submit_transfer(acl_out_transfer); 1427 if (r < 0) { 1428 usb_acl_out_active = 0; 1429 log_error("Error submitting acl transfer, %d", r); 1430 return -1; 1431 } 1432 1433 return 0; 1434 } 1435 1436 static int usb_can_send_packet_now(uint8_t packet_type){ 1437 switch (packet_type){ 1438 case HCI_COMMAND_DATA_PACKET: 1439 return !usb_command_active; 1440 case HCI_ACL_DATA_PACKET: 1441 return !usb_acl_out_active; 1442 #ifdef ENABLE_SCO_OVER_HCI 1443 case HCI_SCO_DATA_PACKET: 1444 if (!sco_enabled) return 0; 1445 return sco_ring_have_space(); 1446 #endif 1447 default: 1448 return 0; 1449 } 1450 } 1451 1452 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ 1453 switch (packet_type){ 1454 case HCI_COMMAND_DATA_PACKET: 1455 return usb_send_cmd_packet(packet, size); 1456 case HCI_ACL_DATA_PACKET: 1457 return usb_send_acl_packet(packet, size); 1458 #ifdef ENABLE_SCO_OVER_HCI 1459 case HCI_SCO_DATA_PACKET: 1460 if (!sco_enabled) return -1; 1461 return usb_send_sco_packet(packet, size); 1462 #endif 1463 default: 1464 return -1; 1465 } 1466 } 1467 1468 #ifdef ENABLE_SCO_OVER_HCI 1469 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ 1470 if (!sco_enabled) return; 1471 1472 log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); 1473 1474 if (num_connections != sco_num_connections){ 1475 sco_voice_setting = voice_setting; 1476 if (sco_num_connections){ 1477 usb_sco_stop(); 1478 } 1479 sco_num_connections = num_connections; 1480 if (num_connections){ 1481 usb_sco_start(); 1482 } 1483 } 1484 } 1485 #endif 1486 1487 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1488 log_info("registering packet handler"); 1489 packet_handler = handler; 1490 } 1491 1492 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1493 UNUSED(packet_type); 1494 UNUSED(packet); 1495 UNUSED(size); 1496 } 1497 1498 // get usb singleton 1499 const hci_transport_t * hci_transport_usb_instance(void) { 1500 if (!hci_transport_usb) { 1501 hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); 1502 memset(hci_transport_usb, 0, sizeof(hci_transport_t)); 1503 hci_transport_usb->name = "H2_LIBUSB"; 1504 hci_transport_usb->open = usb_open; 1505 hci_transport_usb->close = usb_close; 1506 hci_transport_usb->register_packet_handler = usb_register_packet_handler; 1507 hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; 1508 hci_transport_usb->send_packet = usb_send_packet; 1509 #ifdef ENABLE_SCO_OVER_HCI 1510 hci_transport_usb->set_sco_config = usb_set_sco_config; 1511 #endif 1512 } 1513 return hci_transport_usb; 1514 } 1515