1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "hci_transport_h2_libusb.c" 39 40 /* 41 * hci_transport_usb.c 42 * 43 * HCI Transport API implementation for USB 44 * 45 * Created by Matthias Ringwald on 7/5/09. 46 */ 47 48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size 49 // HCI Commands 0 0 0x00 Control 8/16/32/64 50 // HCI Events 0 0 0x81 Interrupt (IN) 16 51 // ACL Data 0 0 0x82 Bulk (IN) 32/64 52 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 53 // SCO Data 0 0 0x83 Isochronous (IN) 54 // SCO Data 0 0 0x03 Isochronous (Out) 55 56 #include <stdio.h> 57 #include <strings.h> 58 #include <string.h> 59 #include <unistd.h> /* UNIX standard function definitions */ 60 #include <sys/types.h> 61 62 #include <libusb.h> 63 64 #include "btstack_config.h" 65 66 #include "btstack_debug.h" 67 #include "hci.h" 68 #include "hci_transport.h" 69 #include "hci_transport_usb.h" 70 71 // deal with changes in libusb API: 72 #ifdef LIBUSB_API_VERSION 73 #if LIBUSB_API_VERSION >= 0x01000106 74 // since 1.0.22, libusb_set_option replaces libusb_set_debug 75 #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level) 76 #endif 77 #endif 78 79 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) 80 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 81 #endif 82 83 #define ACL_IN_BUFFER_COUNT 3 84 #define EVENT_IN_BUFFER_COUNT 3 85 #define SCO_IN_BUFFER_COUNT 10 86 87 #define ASYNC_POLLING_INTERVAL_MS 1 88 89 // 90 // Bluetooth USB Transport Alternate Settings: 91 // 92 // 0: No active voice channels (for USB compliance) 93 // 1: One 8 kHz voice channel with 8-bit encoding 94 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding 95 // 3: Three 8 kHz voice channels with 8-bit encoding 96 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding 97 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding 98 // --> support only a single SCO connection 99 // #define ALT_SETTING (1) 100 101 #ifdef ENABLE_SCO_OVER_HCI 102 // alt setting for 1-3 connections and 8/16 bit 103 static const int alt_setting_8_bit[] = {1,2,3}; 104 static const int alt_setting_16_bit[] = {2,4,5}; 105 106 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets 107 // One complete SCO packet with 24 frames every 3 frames (== 3 ms) 108 #define NUM_ISO_PACKETS (3) 109 110 static const uint16_t iso_packet_size_for_alt_setting[] = { 111 0, 112 9, 113 17, 114 25, 115 33, 116 49, 117 63, 118 }; 119 #endif 120 121 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) 122 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload 123 #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) 124 125 // Outgoing SCO packet queue 126 // simplified ring buffer implementation 127 #define SCO_OUT_BUFFER_COUNT (8) 128 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) 129 130 // seems to be the max depth for USB 3 131 #define USB_MAX_PATH_LEN 7 132 133 // prototypes 134 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); 135 static int usb_close(void); 136 137 typedef enum { 138 LIB_USB_CLOSED = 0, 139 LIB_USB_OPENED, 140 LIB_USB_DEVICE_OPENDED, 141 LIB_USB_INTERFACE_CLAIMED, 142 LIB_USB_TRANSFERS_ALLOCATED 143 } libusb_state_t; 144 145 // SCO packet state machine 146 typedef enum { 147 H2_W4_SCO_HEADER = 1, 148 H2_W4_PAYLOAD, 149 } H2_SCO_STATE; 150 151 static libusb_state_t libusb_state = LIB_USB_CLOSED; 152 153 // single instance 154 static hci_transport_t * hci_transport_usb = NULL; 155 156 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; 157 158 // libusb 159 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 160 static struct libusb_device_descriptor desc; 161 #endif 162 static libusb_device_handle * handle; 163 164 static struct libusb_transfer *command_out_transfer; 165 static struct libusb_transfer *acl_out_transfer; 166 static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT]; 167 static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT]; 168 169 #ifdef ENABLE_SCO_OVER_HCI 170 171 #ifdef _WIN32 172 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" 173 #endif 174 175 // incoming SCO 176 static H2_SCO_STATE sco_state; 177 static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; 178 static uint16_t sco_read_pos; 179 static uint16_t sco_bytes_to_read; 180 static struct libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT]; 181 static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE]; 182 183 // outgoing SCO 184 static uint8_t sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE]; 185 static int sco_ring_write; // packet idx 186 static int sco_out_transfers_active; 187 static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT]; 188 static int sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT]; 189 190 // pause/resume 191 static uint16_t sco_voice_setting; 192 static int sco_num_connections; 193 static int sco_shutdown; 194 195 // dynamic SCO configuration 196 static uint16_t iso_packet_size; 197 static int sco_enabled; 198 199 #endif 200 201 // outgoing buffer for HCI Command packets 202 static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE]; 203 204 // incoming buffer for HCI Events and ACL Packets 205 static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet 206 static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE]; 207 208 // For (ab)use as a linked list of received packets 209 static struct libusb_transfer *handle_packet; 210 211 static int doing_pollfds; 212 static int num_pollfds; 213 static btstack_data_source_t * pollfd_data_sources; 214 static btstack_timer_source_t usb_timer; 215 static int usb_timer_active; 216 217 static int usb_acl_out_active = 0; 218 static int usb_command_active = 0; 219 220 // endpoint addresses 221 static int event_in_addr; 222 static int acl_in_addr; 223 static int acl_out_addr; 224 static int sco_in_addr; 225 static int sco_out_addr; 226 227 // device path 228 static int usb_path_len; 229 static uint8_t usb_path[USB_MAX_PATH_LEN]; 230 231 // transport interface state 232 static int usb_transport_open; 233 234 235 #ifdef ENABLE_SCO_OVER_HCI 236 static void sco_ring_init(void){ 237 sco_ring_write = 0; 238 sco_out_transfers_active = 0; 239 } 240 static int sco_ring_have_space(void){ 241 return sco_out_transfers_active < SCO_OUT_BUFFER_COUNT; 242 } 243 #endif 244 245 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ 246 if (len > USB_MAX_PATH_LEN || !port_numbers){ 247 log_error("hci_transport_usb_set_path: len or port numbers invalid"); 248 return; 249 } 250 usb_path_len = len; 251 memcpy(usb_path, port_numbers, len); 252 } 253 254 // 255 static void queue_transfer(struct libusb_transfer *transfer){ 256 257 // log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length); 258 259 transfer->user_data = NULL; 260 261 // insert first element 262 if (handle_packet == NULL) { 263 handle_packet = transfer; 264 return; 265 } 266 267 // Walk to end of list and add current packet there 268 struct libusb_transfer *temp = handle_packet; 269 while (temp->user_data) { 270 temp = (struct libusb_transfer*)temp->user_data; 271 } 272 temp->user_data = transfer; 273 } 274 275 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){ 276 277 int c; 278 279 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED){ 280 log_info("shutdown, transfer %p", transfer); 281 } 282 283 284 // identify and free transfers as part of shutdown 285 #ifdef ENABLE_SCO_OVER_HCI 286 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) { 287 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 288 if (transfer == sco_in_transfer[c]){ 289 libusb_free_transfer(transfer); 290 sco_in_transfer[c] = 0; 291 return; 292 } 293 } 294 295 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 296 if (transfer == sco_out_transfers[c]){ 297 sco_out_transfers_in_flight[c] = 0; 298 libusb_free_transfer(transfer); 299 sco_out_transfers[c] = 0; 300 return; 301 } 302 } 303 } 304 #endif 305 306 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { 307 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 308 if (transfer == event_in_transfer[c]){ 309 libusb_free_transfer(transfer); 310 event_in_transfer[c] = 0; 311 return; 312 } 313 } 314 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 315 if (transfer == acl_in_transfer[c]){ 316 libusb_free_transfer(transfer); 317 acl_in_transfer[c] = 0; 318 return; 319 } 320 } 321 return; 322 } 323 324 #ifdef ENABLE_SCO_OVER_HCI 325 // mark SCO OUT transfer as done 326 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 327 if (transfer == sco_out_transfers[c]){ 328 sco_out_transfers_in_flight[c] = 0; 329 } 330 } 331 #endif 332 333 int r; 334 // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); 335 336 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { 337 queue_transfer(transfer); 338 } else if (transfer->status == LIBUSB_TRANSFER_STALL){ 339 log_info("-> Transfer stalled, trying again"); 340 r = libusb_clear_halt(handle, transfer->endpoint); 341 if (r) { 342 log_error("Error rclearing halt %d", r); 343 } 344 r = libusb_submit_transfer(transfer); 345 if (r) { 346 log_error("Error re-submitting transfer %d", r); 347 } 348 } else { 349 log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); 350 // No usable data, just resubmit packet 351 r = libusb_submit_transfer(transfer); 352 if (r) { 353 log_error("Error re-submitting transfer %d", r); 354 } 355 } 356 // log_info("end async_callback"); 357 } 358 359 360 #ifdef ENABLE_SCO_OVER_HCI 361 static int usb_send_sco_packet(uint8_t *packet, int size){ 362 int r; 363 364 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 365 366 // log_info("usb_send_acl_packet enter, size %u", size); 367 368 // store packet in free slot 369 int tranfer_index = sco_ring_write; 370 uint8_t * data = &sco_out_ring_buffer[tranfer_index * SCO_PACKET_SIZE]; 371 memcpy(data, packet, size); 372 373 // setup transfer 374 // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); 375 struct libusb_transfer * sco_transfer = sco_out_transfers[tranfer_index]; 376 libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 377 libusb_set_iso_packet_lengths(sco_transfer, iso_packet_size); 378 r = libusb_submit_transfer(sco_transfer); 379 if (r < 0) { 380 log_error("Error submitting sco transfer, %d", r); 381 return -1; 382 } 383 384 // mark slot as full 385 sco_ring_write++; 386 if (sco_ring_write == SCO_OUT_BUFFER_COUNT){ 387 sco_ring_write = 0; 388 } 389 sco_out_transfers_active++; 390 sco_out_transfers_in_flight[tranfer_index] = 1; 391 392 // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); 393 394 // notify upper stack that provided buffer can be used again 395 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 396 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 397 398 // and if we have more space for SCO packets 399 if (sco_ring_have_space()) { 400 uint8_t event_sco[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 401 packet_handler(HCI_EVENT_PACKET, &event_sco[0], sizeof(event_sco)); 402 } 403 return 0; 404 } 405 406 static void sco_state_machine_init(void){ 407 sco_state = H2_W4_SCO_HEADER; 408 sco_read_pos = 0; 409 sco_bytes_to_read = 3; 410 } 411 412 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ 413 while (size){ 414 if (size < sco_bytes_to_read){ 415 // just store incomplete data 416 memcpy(&sco_buffer[sco_read_pos], buffer, size); 417 sco_read_pos += size; 418 sco_bytes_to_read -= size; 419 return; 420 } 421 // copy requested data 422 memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); 423 sco_read_pos += sco_bytes_to_read; 424 buffer += sco_bytes_to_read; 425 size -= sco_bytes_to_read; 426 427 // chunk read successfully, next action 428 switch (sco_state){ 429 case H2_W4_SCO_HEADER: 430 sco_state = H2_W4_PAYLOAD; 431 sco_bytes_to_read = sco_buffer[2]; 432 break; 433 case H2_W4_PAYLOAD: 434 // packet complete 435 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); 436 sco_state_machine_init(); 437 break; 438 default: 439 btstack_assert(false); 440 break; 441 } 442 } 443 } 444 #endif 445 446 static void handle_completed_transfer(struct libusb_transfer *transfer){ 447 448 int resubmit = 0; 449 int signal_done = 0; 450 451 if (transfer->endpoint == event_in_addr) { 452 packet_handler(HCI_EVENT_PACKET, transfer->buffer, transfer->actual_length); 453 resubmit = 1; 454 } else if (transfer->endpoint == acl_in_addr) { 455 // log_info("-> acl"); 456 packet_handler(HCI_ACL_DATA_PACKET, transfer->buffer, transfer->actual_length); 457 resubmit = 1; 458 } else if (transfer->endpoint == 0){ 459 // log_info("command done, size %u", transfer->actual_length); 460 usb_command_active = 0; 461 signal_done = 1; 462 } else if (transfer->endpoint == acl_out_addr){ 463 // log_info("acl out done, size %u", transfer->actual_length); 464 usb_acl_out_active = 0; 465 signal_done = 1; 466 #ifdef ENABLE_SCO_OVER_HCI 467 } else if (transfer->endpoint == sco_in_addr) { 468 // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); 469 int i; 470 for (i = 0; i < transfer->num_iso_packets; i++) { 471 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 472 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 473 log_error("Error: pack %u status %d\n", i, pack->status); 474 continue; 475 } 476 if (!pack->actual_length) continue; 477 uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); 478 // printf_hexdump(data, pack->actual_length); 479 // log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length); 480 handle_isochronous_data(data, pack->actual_length); 481 } 482 resubmit = 1; 483 } else if (transfer->endpoint == sco_out_addr){ 484 int i; 485 for (i = 0; i < transfer->num_iso_packets; i++) { 486 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 487 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 488 log_error("Error: pack %u status %d\n", i, pack->status); 489 } 490 } 491 // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", 492 // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, 493 // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, 494 // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); 495 // notify upper layer if there's space for new SCO packets 496 497 if (sco_ring_have_space()) { 498 uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 499 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 500 } 501 // decrease tab 502 sco_out_transfers_active--; 503 // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); 504 #endif 505 } else { 506 log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); 507 } 508 509 if (signal_done){ 510 // notify upper stack that provided buffer can be used again 511 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 512 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 513 } 514 515 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 516 517 if (resubmit){ 518 // Re-submit transfer 519 transfer->user_data = NULL; 520 int r = libusb_submit_transfer(transfer); 521 if (r) { 522 log_error("Error re-submitting transfer %d", r); 523 } 524 } 525 } 526 527 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 528 529 UNUSED(ds); 530 UNUSED(callback_type); 531 532 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 533 534 // log_info("begin usb_process_ds"); 535 // always handling an event as we're called when data is ready 536 struct timeval tv; 537 memset(&tv, 0, sizeof(struct timeval)); 538 libusb_handle_events_timeout(NULL, &tv); 539 540 // Handle any packet in the order that they were received 541 while (handle_packet) { 542 // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); 543 544 // pop next transfer 545 struct libusb_transfer * transfer = handle_packet; 546 handle_packet = (struct libusb_transfer*) handle_packet->user_data; 547 548 // handle transfer 549 handle_completed_transfer(transfer); 550 551 // handle case where libusb_close might be called by hci packet handler 552 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 553 } 554 // log_info("end usb_process_ds"); 555 } 556 557 static void usb_process_ts(btstack_timer_source_t *timer) { 558 559 UNUSED(timer); 560 561 // log_info("in usb_process_ts"); 562 563 // timer is deactive, when timer callback gets called 564 usb_timer_active = 0; 565 566 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 567 568 // actually handled the packet in the pollfds function 569 usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); 570 571 // Get the amount of time until next event is due 572 long msec = ASYNC_POLLING_INTERVAL_MS; 573 574 // Activate timer 575 btstack_run_loop_set_timer(&usb_timer, msec); 576 btstack_run_loop_add_timer(&usb_timer); 577 usb_timer_active = 1; 578 579 return; 580 } 581 582 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 583 584 // list of known devices, using VendorID/ProductID tuples 585 static const uint16_t known_bluetooth_devices[] = { 586 // BCM20702A0 - DeLOCK Bluetooth 4.0 587 0x0a5c, 0x21e8, 588 // BCM20702A0 - Asus BT400 589 0x0b05, 0x17cb, 590 // BCM20702B0 - Generic USB Detuned Class 1 @ 20 MHz 591 0x0a5c, 0x22be, 592 // nRF5x Zephyr USB HCI, e.g nRF52840-PCA10056 593 0x2fe3, 0x0100, 594 0x2fe3, 0x000b, 595 }; 596 597 static int num_known_devices = sizeof(known_bluetooth_devices) / sizeof(uint16_t) / 2; 598 599 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ 600 int i; 601 for (i=0; i<num_known_devices; i++){ 602 if (known_bluetooth_devices[i*2] == vendor_id && known_bluetooth_devices[i*2+1] == product_id){ 603 return 1; 604 } 605 } 606 return 0; 607 } 608 609 static int scan_for_bt_endpoints(libusb_device *dev) { 610 int r; 611 612 event_in_addr = 0; 613 acl_in_addr = 0; 614 acl_out_addr = 0; 615 sco_out_addr = 0; 616 sco_in_addr = 0; 617 618 // get endpoints from interface descriptor 619 struct libusb_config_descriptor *config_descriptor; 620 r = libusb_get_active_config_descriptor(dev, &config_descriptor); 621 if (r < 0) return r; 622 623 int num_interfaces = config_descriptor->bNumInterfaces; 624 log_info("active configuration has %u interfaces", num_interfaces); 625 626 int i; 627 for (i = 0; i < num_interfaces ; i++){ 628 const struct libusb_interface *interface = &config_descriptor->interface[i]; 629 const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; 630 log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); 631 632 const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; 633 634 for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){ 635 log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); 636 637 switch (endpoint->bmAttributes & 0x3){ 638 case LIBUSB_TRANSFER_TYPE_INTERRUPT: 639 if (event_in_addr) continue; 640 event_in_addr = endpoint->bEndpointAddress; 641 log_info("-> using 0x%2.2X for HCI Events", event_in_addr); 642 break; 643 case LIBUSB_TRANSFER_TYPE_BULK: 644 if (endpoint->bEndpointAddress & 0x80) { 645 if (acl_in_addr) continue; 646 acl_in_addr = endpoint->bEndpointAddress; 647 log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); 648 } else { 649 if (acl_out_addr) continue; 650 acl_out_addr = endpoint->bEndpointAddress; 651 log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); 652 } 653 break; 654 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: 655 if (endpoint->bEndpointAddress & 0x80) { 656 if (sco_in_addr) continue; 657 sco_in_addr = endpoint->bEndpointAddress; 658 log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); 659 } else { 660 if (sco_out_addr) continue; 661 sco_out_addr = endpoint->bEndpointAddress; 662 log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); 663 } 664 break; 665 default: 666 break; 667 } 668 } 669 } 670 libusb_free_config_descriptor(config_descriptor); 671 return 0; 672 } 673 674 // returns index of found device or -1 675 static int scan_for_bt_device(libusb_device **devs, int start_index) { 676 int i; 677 for (i = start_index; devs[i] ; i++){ 678 libusb_device * dev = devs[i]; 679 int r = libusb_get_device_descriptor(dev, &desc); 680 if (r < 0) { 681 log_error("failed to get device descriptor"); 682 return 0; 683 } 684 685 log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", 686 desc.idVendor, desc.idProduct, 687 libusb_get_bus_number(dev), libusb_get_device_address(dev), 688 desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); 689 690 // Detect USB Dongle based Class, Subclass, and Protocol 691 // The class code (bDeviceClass) is 0xE0 – Wireless Controller. 692 // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. 693 // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. 694 if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { 695 return i; 696 } 697 698 // Detect USB Dongle based on whitelist 699 if (is_known_bt_device(desc.idVendor, desc.idProduct)) { 700 return i; 701 } 702 } 703 return -1; 704 } 705 #endif 706 707 static int prepare_device(libusb_device_handle * aHandle){ 708 709 // print device path 710 uint8_t port_numbers[USB_MAX_PATH_LEN]; 711 libusb_device * device = libusb_get_device(aHandle); 712 int path_len = libusb_get_port_numbers(device, port_numbers, USB_MAX_PATH_LEN); 713 printf("USB Path: "); 714 int i; 715 for (i=0;i<path_len;i++){ 716 if (i) printf("-"); 717 printf("%02x", port_numbers[i]); 718 } 719 printf("\n"); 720 721 int r; 722 int kernel_driver_detached = 0; 723 724 // Detach OS driver (not possible for OS X, FreeBSD, and WIN32) 725 #if !defined(__APPLE__) && !defined(_WIN32) && !defined(__FreeBSD__) 726 r = libusb_kernel_driver_active(aHandle, 0); 727 if (r < 0) { 728 log_error("libusb_kernel_driver_active error %d", r); 729 libusb_close(aHandle); 730 return r; 731 } 732 733 if (r == 1) { 734 r = libusb_detach_kernel_driver(aHandle, 0); 735 if (r < 0) { 736 log_error("libusb_detach_kernel_driver error %d", r); 737 libusb_close(aHandle); 738 return r; 739 } 740 kernel_driver_detached = 1; 741 } 742 log_info("libusb_detach_kernel_driver"); 743 #endif 744 745 const int configuration = 1; 746 log_info("setting configuration %d...", configuration); 747 r = libusb_set_configuration(aHandle, configuration); 748 if (r < 0) { 749 log_error("Error libusb_set_configuration: %d", r); 750 if (kernel_driver_detached){ 751 libusb_attach_kernel_driver(aHandle, 0); 752 } 753 libusb_close(aHandle); 754 return r; 755 } 756 757 // reserve access to device 758 log_info("claiming interface 0..."); 759 r = libusb_claim_interface(aHandle, 0); 760 if (r < 0) { 761 log_error("Error %d claiming interface 0", r); 762 if (kernel_driver_detached){ 763 libusb_attach_kernel_driver(aHandle, 0); 764 } 765 libusb_close(aHandle); 766 return r; 767 } 768 769 #ifdef ENABLE_SCO_OVER_HCI 770 // get endpoints from interface descriptor 771 struct libusb_config_descriptor *config_descriptor; 772 r = libusb_get_active_config_descriptor(device, &config_descriptor); 773 if (r >= 0){ 774 int num_interfaces = config_descriptor->bNumInterfaces; 775 if (num_interfaces > 1) { 776 r = libusb_claim_interface(aHandle, 1); 777 if (r < 0) { 778 log_error("Error %d claiming interface 1: - disabling SCO over HCI", r); 779 } else { 780 sco_enabled = 1; 781 } 782 } else { 783 log_info("Device has only on interface, disabling SCO over HCI"); 784 } 785 } 786 #endif 787 788 return 0; 789 } 790 791 static libusb_device_handle * try_open_device(libusb_device * device){ 792 int r; 793 794 libusb_device_handle * dev_handle; 795 r = libusb_open(device, &dev_handle); 796 797 if (r < 0) { 798 log_error("libusb_open failed!"); 799 dev_handle = NULL; 800 return NULL; 801 } 802 803 log_info("libusb open %d, handle %p", r, dev_handle); 804 805 // reset device (Not currently possible under FreeBSD 11.x/12.x due to usb framework) 806 #if !defined(__FreeBSD__) 807 r = libusb_reset_device(dev_handle); 808 if (r < 0) { 809 log_error("libusb_reset_device failed!"); 810 libusb_close(dev_handle); 811 return NULL; 812 } 813 #endif 814 return dev_handle; 815 } 816 817 #ifdef ENABLE_SCO_OVER_HCI 818 819 static int usb_sco_start(void){ 820 821 printf("usb_sco_start\n"); 822 log_info("usb_sco_start"); 823 824 sco_state_machine_init(); 825 sco_ring_init(); 826 827 int alt_setting; 828 if (sco_voice_setting & 0x0020){ 829 // 16-bit PCM 830 alt_setting = alt_setting_16_bit[sco_num_connections-1]; 831 } else { 832 // 8-bit PCM or mSBC 833 alt_setting = alt_setting_8_bit[sco_num_connections-1]; 834 } 835 // derive iso packet size from alt setting 836 iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; 837 838 log_info("Switching to setting %u on interface 1..", alt_setting); 839 int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); 840 if (r < 0) { 841 log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); 842 return r; 843 } 844 845 // incoming 846 int c; 847 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 848 sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in 849 if (!sco_in_transfer[c]) { 850 usb_close(); 851 return LIBUSB_ERROR_NO_MEM; 852 } 853 // configure sco_in handlers 854 libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr, 855 hci_sco_in_buffer[c], NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 856 libusb_set_iso_packet_lengths(sco_in_transfer[c], iso_packet_size); 857 r = libusb_submit_transfer(sco_in_transfer[c]); 858 if (r) { 859 log_error("Error submitting isochronous in transfer %d", r); 860 usb_close(); 861 return r; 862 } 863 } 864 865 // outgoing 866 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 867 sco_out_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts 868 sco_out_transfers_in_flight[c] = 0; 869 } 870 return 0; 871 } 872 873 static void usb_sco_stop(void){ 874 875 printf("usb_sco_stop\n"); 876 877 log_info("usb_sco_stop"); 878 sco_shutdown = 1; 879 880 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 881 882 int c; 883 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 884 libusb_cancel_transfer(sco_in_transfer[c]); 885 } 886 887 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 888 if (sco_out_transfers_in_flight[c]) { 889 libusb_cancel_transfer(sco_out_transfers[c]); 890 } else { 891 libusb_free_transfer(sco_out_transfers[c]); 892 sco_out_transfers[c] = 0; 893 } 894 } 895 896 // wait until all transfers are completed 897 int completed = 0; 898 while (!completed){ 899 struct timeval tv; 900 memset(&tv, 0, sizeof(struct timeval)); 901 libusb_handle_events_timeout(NULL, &tv); 902 // check if all done 903 completed = 1; 904 905 // Cancel all synchronous transfer 906 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 907 if (sco_in_transfer[c]){ 908 completed = 0; 909 break; 910 } 911 } 912 913 if (!completed) continue; 914 915 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 916 if (sco_out_transfers[c]){ 917 completed = 0; 918 break; 919 } 920 } 921 } 922 sco_shutdown = 0; 923 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 924 925 log_info("Switching to setting %u on interface 1..", 0); 926 int r = libusb_set_interface_alt_setting(handle, 1, 0); 927 if (r < 0) { 928 log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); 929 return; 930 } 931 932 printf("usb_sco_stop done\n"); 933 } 934 935 936 937 #endif 938 939 static int usb_open(void){ 940 int r; 941 942 if (usb_transport_open) return 0; 943 944 handle_packet = NULL; 945 946 // default endpoint addresses 947 event_in_addr = 0x81; // EP1, IN interrupt 948 acl_in_addr = 0x82; // EP2, IN bulk 949 acl_out_addr = 0x02; // EP2, OUT bulk 950 sco_in_addr = 0x83; // EP3, IN isochronous 951 sco_out_addr = 0x03; // EP3, OUT isochronous 952 953 // USB init 954 r = libusb_init(NULL); 955 if (r < 0) return -1; 956 957 libusb_state = LIB_USB_OPENED; 958 959 // configure debug level 960 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 961 962 libusb_device * dev = NULL; 963 964 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 965 966 // Use a specified device 967 log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); 968 handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); 969 970 if (!handle){ 971 log_error("libusb_open_device_with_vid_pid failed!"); 972 usb_close(); 973 return -1; 974 } 975 log_info("libusb open %d, handle %p", r, handle); 976 977 r = prepare_device(handle); 978 if (r < 0){ 979 usb_close(); 980 return -1; 981 } 982 983 dev = libusb_get_device(aHandle); 984 r = scan_for_bt_endpoints(dev); 985 if (r < 0){ 986 usb_close(); 987 return -1; 988 } 989 990 #else 991 // Scan system for an appropriate devices 992 libusb_device **devs; 993 ssize_t num_devices; 994 995 log_info("Scanning for USB Bluetooth device"); 996 num_devices = libusb_get_device_list(NULL, &devs); 997 if (num_devices < 0) { 998 usb_close(); 999 return -1; 1000 } 1001 1002 if (usb_path_len){ 1003 int i; 1004 for (i=0;i<num_devices;i++){ 1005 uint8_t port_numbers[USB_MAX_PATH_LEN]; 1006 int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN); 1007 if (len != usb_path_len) continue; 1008 if (memcmp(usb_path, port_numbers, len) == 0){ 1009 log_info("USB device found at specified path"); 1010 handle = try_open_device(devs[i]); 1011 if (!handle) continue; 1012 1013 r = prepare_device(handle); 1014 if (r < 0) { 1015 handle = NULL; 1016 continue; 1017 } 1018 1019 dev = devs[i]; 1020 r = scan_for_bt_endpoints(dev); 1021 if (r < 0) { 1022 handle = NULL; 1023 continue; 1024 } 1025 1026 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1027 break; 1028 }; 1029 } 1030 if (!handle){ 1031 log_error("USB device with given path not found"); 1032 printf("USB device with given path not found\n"); 1033 return -1; 1034 } 1035 } else { 1036 1037 int deviceIndex = -1; 1038 while (true){ 1039 // look for next Bluetooth dongle 1040 deviceIndex = scan_for_bt_device(devs, deviceIndex+1); 1041 if (deviceIndex < 0) break; 1042 1043 log_info("USB Bluetooth device found, index %u", deviceIndex); 1044 1045 handle = try_open_device(devs[deviceIndex]); 1046 if (!handle) continue; 1047 1048 r = prepare_device(handle); 1049 if (r < 0) { 1050 handle = NULL; 1051 continue; 1052 } 1053 1054 dev = devs[deviceIndex]; 1055 r = scan_for_bt_endpoints(dev); 1056 if (r < 0) { 1057 handle = NULL; 1058 continue; 1059 } 1060 1061 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1062 break; 1063 } 1064 } 1065 1066 libusb_free_device_list(devs, 1); 1067 1068 if (handle == 0){ 1069 log_error("No USB Bluetooth device found"); 1070 return -1; 1071 } 1072 1073 #endif 1074 1075 // allocate transfer handlers 1076 int c; 1077 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1078 event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events 1079 if (!event_in_transfer[c]) { 1080 usb_close(); 1081 return LIBUSB_ERROR_NO_MEM; 1082 } 1083 } 1084 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1085 acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in 1086 if (!acl_in_transfer[c]) { 1087 usb_close(); 1088 return LIBUSB_ERROR_NO_MEM; 1089 } 1090 } 1091 1092 command_out_transfer = libusb_alloc_transfer(0); 1093 acl_out_transfer = libusb_alloc_transfer(0); 1094 1095 // TODO check for error 1096 1097 libusb_state = LIB_USB_TRANSFERS_ALLOCATED; 1098 1099 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1100 // configure event_in handlers 1101 libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr, 1102 hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1103 r = libusb_submit_transfer(event_in_transfer[c]); 1104 if (r) { 1105 log_error("Error submitting interrupt transfer %d", r); 1106 usb_close(); 1107 return r; 1108 } 1109 } 1110 1111 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1112 // configure acl_in handlers 1113 libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr, 1114 hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1115 r = libusb_submit_transfer(acl_in_transfer[c]); 1116 if (r) { 1117 log_error("Error submitting bulk in transfer %d", r); 1118 usb_close(); 1119 return r; 1120 } 1121 1122 } 1123 1124 #if 0 1125 // Check for pollfds functionality 1126 doing_pollfds = libusb_pollfds_handle_timeouts(NULL); 1127 #else 1128 // NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation 1129 doing_pollfds = 0; 1130 #endif 1131 1132 if (doing_pollfds) { 1133 log_info("Async using pollfds:"); 1134 1135 const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); 1136 for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); 1137 pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); 1138 if (!pollfd_data_sources){ 1139 log_error("Cannot allocate data sources for pollfds"); 1140 usb_close(); 1141 return 1; 1142 } 1143 memset(pollfd_data_sources, 0, sizeof(btstack_data_source_t) * num_pollfds); 1144 for (r = 0 ; r < num_pollfds ; r++) { 1145 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1146 btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); 1147 btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); 1148 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); 1149 btstack_run_loop_add_data_source(ds); 1150 log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); 1151 } 1152 free(pollfd); 1153 } else { 1154 log_info("Async using timers:"); 1155 1156 usb_timer.process = usb_process_ts; 1157 btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); 1158 btstack_run_loop_add_timer(&usb_timer); 1159 usb_timer_active = 1; 1160 } 1161 1162 usb_transport_open = 1; 1163 1164 return 0; 1165 } 1166 1167 static int usb_close(void){ 1168 int c; 1169 int completed = 0; 1170 1171 if (!usb_transport_open) return 0; 1172 1173 log_info("usb_close"); 1174 1175 switch (libusb_state){ 1176 case LIB_USB_CLOSED: 1177 break; 1178 1179 case LIB_USB_TRANSFERS_ALLOCATED: 1180 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1181 1182 if(usb_timer_active) { 1183 btstack_run_loop_remove_timer(&usb_timer); 1184 usb_timer_active = 0; 1185 } 1186 1187 if (doing_pollfds){ 1188 int r; 1189 for (r = 0 ; r < num_pollfds ; r++) { 1190 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1191 btstack_run_loop_remove_data_source(ds); 1192 } 1193 free(pollfd_data_sources); 1194 pollfd_data_sources = NULL; 1195 num_pollfds = 0; 1196 doing_pollfds = 0; 1197 } 1198 1199 /* fall through */ 1200 1201 case LIB_USB_INTERFACE_CLAIMED: 1202 // Cancel all transfers, ignore warnings for this 1203 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 1204 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1205 if (event_in_transfer[c]){ 1206 log_info("cancel event_in_transfer[%u] = %p", c, event_in_transfer[c]); 1207 libusb_cancel_transfer(event_in_transfer[c]); 1208 } 1209 } 1210 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1211 if (acl_in_transfer[c]){ 1212 log_info("cancel acl_in_transfer[%u] = %p", c, acl_in_transfer[c]); 1213 libusb_cancel_transfer(acl_in_transfer[c]); 1214 } 1215 } 1216 #ifdef ENABLE_SCO_OVER_HCI 1217 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1218 if (sco_in_transfer[c]){ 1219 log_info("cancel sco_in_transfer[%u] = %p", c, sco_in_transfer[c]); 1220 libusb_cancel_transfer(sco_in_transfer[c]); 1221 } 1222 } 1223 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1224 if (sco_out_transfers_in_flight[c]) { 1225 log_info("cancel sco_out_transfers[%u] = %p", c, sco_out_transfers[c]); 1226 libusb_cancel_transfer(sco_out_transfers[c]); 1227 } else { 1228 libusb_free_transfer(sco_out_transfers[c]); 1229 sco_out_transfers[c] = 0; 1230 } 1231 } 1232 #endif 1233 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1234 1235 // wait until all transfers are completed - or 20 iterations 1236 int countdown = 20; 1237 while (!completed){ 1238 1239 if (--countdown == 0){ 1240 log_info("Not all transfers cancelled, leaking a bit."); 1241 break; 1242 } 1243 1244 struct timeval tv; 1245 memset(&tv, 0, sizeof(struct timeval)); 1246 libusb_handle_events_timeout(NULL, &tv); 1247 // check if all done 1248 completed = 1; 1249 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 1250 if (event_in_transfer[c]) { 1251 log_info("event_in_transfer[%u] still active (%p)", c, event_in_transfer[c]); 1252 completed = 0; 1253 break; 1254 } 1255 } 1256 1257 if (!completed) continue; 1258 1259 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 1260 if (acl_in_transfer[c]) { 1261 log_info("acl_in_transfer[%u] still active (%p)", c, acl_in_transfer[c]); 1262 completed = 0; 1263 break; 1264 } 1265 } 1266 1267 #ifdef ENABLE_SCO_OVER_HCI 1268 if (!completed) continue; 1269 1270 // Cancel all synchronous transfer 1271 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1272 if (sco_in_transfer[c]){ 1273 log_info("sco_in_transfer[%u] still active (%p)", c, sco_in_transfer[c]); 1274 completed = 0; 1275 break; 1276 } 1277 } 1278 1279 if (!completed) continue; 1280 1281 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1282 if (sco_out_transfers[c]){ 1283 log_info("sco_out_transfers[%u] still active (%p)", c, sco_out_transfers[c]); 1284 completed = 0; 1285 break; 1286 } 1287 } 1288 sco_enabled = 0; 1289 #endif 1290 } 1291 1292 // finally release interface 1293 libusb_release_interface(handle, 0); 1294 #ifdef ENABLE_SCO_OVER_HCI 1295 libusb_release_interface(handle, 1); 1296 #endif 1297 log_info("Libusb shutdown complete"); 1298 1299 /* fall through */ 1300 1301 case LIB_USB_DEVICE_OPENDED: 1302 libusb_close(handle); 1303 1304 /* fall through */ 1305 1306 case LIB_USB_OPENED: 1307 libusb_exit(NULL); 1308 break; 1309 1310 default: 1311 btstack_assert(false); 1312 break; 1313 } 1314 1315 libusb_state = LIB_USB_CLOSED; 1316 handle = NULL; 1317 usb_transport_open = 0; 1318 1319 return 0; 1320 } 1321 1322 static int usb_send_cmd_packet(uint8_t *packet, int size){ 1323 int r; 1324 1325 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1326 1327 // async 1328 libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); 1329 memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size); 1330 1331 // prepare transfer 1332 int completed = 0; 1333 libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0); 1334 command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER; 1335 1336 // update stata before submitting transfer 1337 usb_command_active = 1; 1338 1339 // submit transfer 1340 r = libusb_submit_transfer(command_out_transfer); 1341 1342 if (r < 0) { 1343 usb_command_active = 0; 1344 log_error("Error submitting cmd transfer %d", r); 1345 return -1; 1346 } 1347 1348 return 0; 1349 } 1350 1351 static int usb_send_acl_packet(uint8_t *packet, int size){ 1352 int r; 1353 1354 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1355 1356 // log_info("usb_send_acl_packet enter, size %u", size); 1357 1358 // prepare transfer 1359 int completed = 0; 1360 libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size, 1361 async_callback, &completed, 0); 1362 acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK; 1363 1364 // update stata before submitting transfer 1365 usb_acl_out_active = 1; 1366 1367 r = libusb_submit_transfer(acl_out_transfer); 1368 if (r < 0) { 1369 usb_acl_out_active = 0; 1370 log_error("Error submitting acl transfer, %d", r); 1371 return -1; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int usb_can_send_packet_now(uint8_t packet_type){ 1378 switch (packet_type){ 1379 case HCI_COMMAND_DATA_PACKET: 1380 return !usb_command_active; 1381 case HCI_ACL_DATA_PACKET: 1382 return !usb_acl_out_active; 1383 #ifdef ENABLE_SCO_OVER_HCI 1384 case HCI_SCO_DATA_PACKET: 1385 if (!sco_enabled) return 0; 1386 return sco_ring_have_space(); 1387 #endif 1388 default: 1389 return 0; 1390 } 1391 } 1392 1393 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ 1394 switch (packet_type){ 1395 case HCI_COMMAND_DATA_PACKET: 1396 return usb_send_cmd_packet(packet, size); 1397 case HCI_ACL_DATA_PACKET: 1398 return usb_send_acl_packet(packet, size); 1399 #ifdef ENABLE_SCO_OVER_HCI 1400 case HCI_SCO_DATA_PACKET: 1401 if (!sco_enabled) return -1; 1402 return usb_send_sco_packet(packet, size); 1403 #endif 1404 default: 1405 return -1; 1406 } 1407 } 1408 1409 #ifdef ENABLE_SCO_OVER_HCI 1410 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ 1411 if (!sco_enabled) return; 1412 1413 log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); 1414 1415 if (num_connections != sco_num_connections){ 1416 sco_voice_setting = voice_setting; 1417 if (sco_num_connections){ 1418 usb_sco_stop(); 1419 } 1420 sco_num_connections = num_connections; 1421 if (num_connections){ 1422 usb_sco_start(); 1423 } 1424 } 1425 } 1426 #endif 1427 1428 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1429 log_info("registering packet handler"); 1430 packet_handler = handler; 1431 } 1432 1433 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1434 UNUSED(packet_type); 1435 UNUSED(packet); 1436 UNUSED(size); 1437 } 1438 1439 // get usb singleton 1440 const hci_transport_t * hci_transport_usb_instance(void) { 1441 if (!hci_transport_usb) { 1442 hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); 1443 memset(hci_transport_usb, 0, sizeof(hci_transport_t)); 1444 hci_transport_usb->name = "H2_LIBUSB"; 1445 hci_transport_usb->open = usb_open; 1446 hci_transport_usb->close = usb_close; 1447 hci_transport_usb->register_packet_handler = usb_register_packet_handler; 1448 hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; 1449 hci_transport_usb->send_packet = usb_send_packet; 1450 #ifdef ENABLE_SCO_OVER_HCI 1451 hci_transport_usb->set_sco_config = usb_set_sco_config; 1452 #endif 1453 } 1454 return hci_transport_usb; 1455 } 1456