1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "hci_transport_h2_libusb.c" 39 40 /* 41 * hci_transport_usb.c 42 * 43 * HCI Transport API implementation for USB 44 * 45 * Created by Matthias Ringwald on 7/5/09. 46 */ 47 48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size 49 // HCI Commands 0 0 0x00 Control 8/16/32/64 50 // HCI Events 0 0 0x81 Interrupt (IN) 16 51 // ACL Data 0 0 0x82 Bulk (IN) 32/64 52 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 53 // SCO Data 0 0 0x83 Isochronous (IN) 54 // SCO Data 0 0 0x03 Isochronous (Out) 55 56 #include <stdio.h> 57 #include <strings.h> 58 #include <string.h> 59 #include <unistd.h> /* UNIX standard function definitions */ 60 #include <sys/types.h> 61 62 #include <libusb.h> 63 64 #include "btstack_config.h" 65 66 #include "btstack_debug.h" 67 #include "hci.h" 68 #include "hci_transport.h" 69 70 // deal with changes in libusb API: 71 #ifdef LIBUSB_API_VERSION 72 #if LIBUSB_API_VERSION >= 0x01000106 73 // since 1.0.22, libusb_set_option replaces libusb_set_debug 74 #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level) 75 #endif 76 #endif 77 78 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) 79 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 80 #endif 81 82 #define ACL_IN_BUFFER_COUNT 3 83 #define EVENT_IN_BUFFER_COUNT 3 84 #define SCO_IN_BUFFER_COUNT 10 85 86 #define ASYNC_POLLING_INTERVAL_MS 1 87 88 // 89 // Bluetooth USB Transport Alternate Settings: 90 // 91 // 0: No active voice channels (for USB compliance) 92 // 1: One 8 kHz voice channel with 8-bit encoding 93 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding 94 // 3: Three 8 kHz voice channels with 8-bit encoding 95 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding 96 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding 97 // --> support only a single SCO connection 98 // #define ALT_SETTING (1) 99 100 #ifdef ENABLE_SCO_OVER_HCI 101 // alt setting for 1-3 connections and 8/16 bit 102 static const int alt_setting_8_bit[] = {1,2,3}; 103 static const int alt_setting_16_bit[] = {2,4,5}; 104 105 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets 106 // One complete SCO packet with 24 frames every 3 frames (== 3 ms) 107 #define NUM_ISO_PACKETS (3) 108 109 static const uint16_t iso_packet_size_for_alt_setting[] = { 110 0, 111 9, 112 17, 113 25, 114 33, 115 49, 116 63, 117 }; 118 #endif 119 120 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) 121 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload 122 #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) 123 124 // Outgoing SCO packet queue 125 // simplified ring buffer implementation 126 #define SCO_OUT_BUFFER_COUNT (8) 127 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) 128 129 // seems to be the max depth for USB 3 130 #define USB_MAX_PATH_LEN 7 131 132 // prototypes 133 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); 134 static int usb_close(void); 135 136 typedef enum { 137 LIB_USB_CLOSED = 0, 138 LIB_USB_OPENED, 139 LIB_USB_DEVICE_OPENDED, 140 LIB_USB_INTERFACE_CLAIMED, 141 LIB_USB_TRANSFERS_ALLOCATED 142 } libusb_state_t; 143 144 // SCO packet state machine 145 typedef enum { 146 H2_W4_SCO_HEADER = 1, 147 H2_W4_PAYLOAD, 148 } H2_SCO_STATE; 149 150 static libusb_state_t libusb_state = LIB_USB_CLOSED; 151 152 // single instance 153 static hci_transport_t * hci_transport_usb = NULL; 154 155 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; 156 157 // libusb 158 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 159 static struct libusb_device_descriptor desc; 160 #endif 161 static libusb_device_handle * handle; 162 163 static struct libusb_transfer *command_out_transfer; 164 static struct libusb_transfer *acl_out_transfer; 165 static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT]; 166 static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT]; 167 168 #ifdef ENABLE_SCO_OVER_HCI 169 170 #ifdef _WIN32 171 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" 172 #endif 173 174 // incoming SCO 175 static H2_SCO_STATE sco_state; 176 static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; 177 static uint16_t sco_read_pos; 178 static uint16_t sco_bytes_to_read; 179 static struct libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT]; 180 static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE]; 181 182 // outgoing SCO 183 static uint8_t sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE]; 184 static int sco_ring_write; // packet idx 185 static int sco_out_transfers_active; 186 static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT]; 187 static int sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT]; 188 189 // pause/resume 190 static uint16_t sco_voice_setting; 191 static int sco_num_connections; 192 static int sco_shutdown; 193 194 // dynamic SCO configuration 195 static uint16_t iso_packet_size; 196 static int sco_enabled; 197 198 #endif 199 200 // outgoing buffer for HCI Command packets 201 static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE]; 202 203 // incoming buffer for HCI Events and ACL Packets 204 static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet 205 static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE]; 206 207 // For (ab)use as a linked list of received packets 208 static struct libusb_transfer *handle_packet; 209 210 static int doing_pollfds; 211 static int num_pollfds; 212 static btstack_data_source_t * pollfd_data_sources; 213 static btstack_timer_source_t usb_timer; 214 static int usb_timer_active; 215 216 static int usb_acl_out_active = 0; 217 static int usb_command_active = 0; 218 219 // endpoint addresses 220 static int event_in_addr; 221 static int acl_in_addr; 222 static int acl_out_addr; 223 static int sco_in_addr; 224 static int sco_out_addr; 225 226 // device path 227 static int usb_path_len; 228 static uint8_t usb_path[USB_MAX_PATH_LEN]; 229 230 // transport interface state 231 static int usb_transport_open; 232 233 234 #ifdef ENABLE_SCO_OVER_HCI 235 static void sco_ring_init(void){ 236 sco_ring_write = 0; 237 sco_out_transfers_active = 0; 238 } 239 static int sco_ring_have_space(void){ 240 return sco_out_transfers_active < SCO_OUT_BUFFER_COUNT; 241 } 242 #endif 243 244 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ 245 if (len > USB_MAX_PATH_LEN || !port_numbers){ 246 log_error("hci_transport_usb_set_path: len or port numbers invalid"); 247 return; 248 } 249 usb_path_len = len; 250 memcpy(usb_path, port_numbers, len); 251 } 252 253 // 254 static void queue_transfer(struct libusb_transfer *transfer){ 255 256 // log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length); 257 258 transfer->user_data = NULL; 259 260 // insert first element 261 if (handle_packet == NULL) { 262 handle_packet = transfer; 263 return; 264 } 265 266 // Walk to end of list and add current packet there 267 struct libusb_transfer *temp = handle_packet; 268 while (temp->user_data) { 269 temp = (struct libusb_transfer*)temp->user_data; 270 } 271 temp->user_data = transfer; 272 } 273 274 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){ 275 276 int c; 277 278 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED){ 279 log_info("shutdown, transfer %p", transfer); 280 } 281 282 283 // identify and free transfers as part of shutdown 284 #ifdef ENABLE_SCO_OVER_HCI 285 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) { 286 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 287 if (transfer == sco_in_transfer[c]){ 288 libusb_free_transfer(transfer); 289 sco_in_transfer[c] = 0; 290 return; 291 } 292 } 293 294 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 295 if (transfer == sco_out_transfers[c]){ 296 sco_out_transfers_in_flight[c] = 0; 297 libusb_free_transfer(transfer); 298 sco_out_transfers[c] = 0; 299 return; 300 } 301 } 302 } 303 #endif 304 305 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { 306 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 307 if (transfer == event_in_transfer[c]){ 308 libusb_free_transfer(transfer); 309 event_in_transfer[c] = 0; 310 return; 311 } 312 } 313 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 314 if (transfer == acl_in_transfer[c]){ 315 libusb_free_transfer(transfer); 316 acl_in_transfer[c] = 0; 317 return; 318 } 319 } 320 return; 321 } 322 323 #ifdef ENABLE_SCO_OVER_HCI 324 // mark SCO OUT transfer as done 325 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 326 if (transfer == sco_out_transfers[c]){ 327 sco_out_transfers_in_flight[c] = 0; 328 } 329 } 330 #endif 331 332 int r; 333 // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); 334 335 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { 336 queue_transfer(transfer); 337 } else if (transfer->status == LIBUSB_TRANSFER_STALL){ 338 log_info("-> Transfer stalled, trying again"); 339 r = libusb_clear_halt(handle, transfer->endpoint); 340 if (r) { 341 log_error("Error rclearing halt %d", r); 342 } 343 r = libusb_submit_transfer(transfer); 344 if (r) { 345 log_error("Error re-submitting transfer %d", r); 346 } 347 } else { 348 log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); 349 // No usable data, just resubmit packet 350 r = libusb_submit_transfer(transfer); 351 if (r) { 352 log_error("Error re-submitting transfer %d", r); 353 } 354 } 355 // log_info("end async_callback"); 356 } 357 358 359 #ifdef ENABLE_SCO_OVER_HCI 360 static int usb_send_sco_packet(uint8_t *packet, int size){ 361 int r; 362 363 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 364 365 // log_info("usb_send_acl_packet enter, size %u", size); 366 367 // store packet in free slot 368 int tranfer_index = sco_ring_write; 369 uint8_t * data = &sco_out_ring_buffer[tranfer_index * SCO_PACKET_SIZE]; 370 memcpy(data, packet, size); 371 372 // setup transfer 373 // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); 374 struct libusb_transfer * sco_transfer = sco_out_transfers[tranfer_index]; 375 libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 376 libusb_set_iso_packet_lengths(sco_transfer, iso_packet_size); 377 r = libusb_submit_transfer(sco_transfer); 378 if (r < 0) { 379 log_error("Error submitting sco transfer, %d", r); 380 return -1; 381 } 382 383 // mark slot as full 384 sco_ring_write++; 385 if (sco_ring_write == SCO_OUT_BUFFER_COUNT){ 386 sco_ring_write = 0; 387 } 388 sco_out_transfers_active++; 389 sco_out_transfers_in_flight[tranfer_index] = 1; 390 391 // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); 392 393 // notify upper stack that provided buffer can be used again 394 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 395 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 396 397 // and if we have more space for SCO packets 398 if (sco_ring_have_space()) { 399 uint8_t event_sco[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 400 packet_handler(HCI_EVENT_PACKET, &event_sco[0], sizeof(event_sco)); 401 } 402 return 0; 403 } 404 405 static void sco_state_machine_init(void){ 406 sco_state = H2_W4_SCO_HEADER; 407 sco_read_pos = 0; 408 sco_bytes_to_read = 3; 409 } 410 411 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ 412 while (size){ 413 if (size < sco_bytes_to_read){ 414 // just store incomplete data 415 memcpy(&sco_buffer[sco_read_pos], buffer, size); 416 sco_read_pos += size; 417 sco_bytes_to_read -= size; 418 return; 419 } 420 // copy requested data 421 memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); 422 sco_read_pos += sco_bytes_to_read; 423 buffer += sco_bytes_to_read; 424 size -= sco_bytes_to_read; 425 426 // chunk read successfully, next action 427 switch (sco_state){ 428 case H2_W4_SCO_HEADER: 429 sco_state = H2_W4_PAYLOAD; 430 sco_bytes_to_read = sco_buffer[2]; 431 break; 432 case H2_W4_PAYLOAD: 433 // packet complete 434 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); 435 sco_state_machine_init(); 436 break; 437 default: 438 btstack_assert(false); 439 break; 440 } 441 } 442 } 443 #endif 444 445 static void handle_completed_transfer(struct libusb_transfer *transfer){ 446 447 int resubmit = 0; 448 int signal_done = 0; 449 450 if (transfer->endpoint == event_in_addr) { 451 packet_handler(HCI_EVENT_PACKET, transfer->buffer, transfer->actual_length); 452 resubmit = 1; 453 } else if (transfer->endpoint == acl_in_addr) { 454 // log_info("-> acl"); 455 packet_handler(HCI_ACL_DATA_PACKET, transfer->buffer, transfer->actual_length); 456 resubmit = 1; 457 } else if (transfer->endpoint == 0){ 458 // log_info("command done, size %u", transfer->actual_length); 459 usb_command_active = 0; 460 signal_done = 1; 461 } else if (transfer->endpoint == acl_out_addr){ 462 // log_info("acl out done, size %u", transfer->actual_length); 463 usb_acl_out_active = 0; 464 signal_done = 1; 465 #ifdef ENABLE_SCO_OVER_HCI 466 } else if (transfer->endpoint == sco_in_addr) { 467 // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); 468 int i; 469 for (i = 0; i < transfer->num_iso_packets; i++) { 470 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 471 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 472 log_error("Error: pack %u status %d\n", i, pack->status); 473 continue; 474 } 475 if (!pack->actual_length) continue; 476 uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); 477 // printf_hexdump(data, pack->actual_length); 478 // log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length); 479 handle_isochronous_data(data, pack->actual_length); 480 } 481 resubmit = 1; 482 } else if (transfer->endpoint == sco_out_addr){ 483 int i; 484 for (i = 0; i < transfer->num_iso_packets; i++) { 485 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 486 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 487 log_error("Error: pack %u status %d\n", i, pack->status); 488 } 489 } 490 // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", 491 // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, 492 // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, 493 // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); 494 // notify upper layer if there's space for new SCO packets 495 496 if (sco_ring_have_space()) { 497 uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 498 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 499 } 500 // decrease tab 501 sco_out_transfers_active--; 502 // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); 503 #endif 504 } else { 505 log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); 506 } 507 508 if (signal_done){ 509 // notify upper stack that provided buffer can be used again 510 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 511 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 512 } 513 514 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 515 516 if (resubmit){ 517 // Re-submit transfer 518 transfer->user_data = NULL; 519 int r = libusb_submit_transfer(transfer); 520 if (r) { 521 log_error("Error re-submitting transfer %d", r); 522 } 523 } 524 } 525 526 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 527 528 UNUSED(ds); 529 UNUSED(callback_type); 530 531 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 532 533 // log_info("begin usb_process_ds"); 534 // always handling an event as we're called when data is ready 535 struct timeval tv; 536 memset(&tv, 0, sizeof(struct timeval)); 537 libusb_handle_events_timeout(NULL, &tv); 538 539 // Handle any packet in the order that they were received 540 while (handle_packet) { 541 // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); 542 543 // pop next transfer 544 struct libusb_transfer * transfer = handle_packet; 545 handle_packet = (struct libusb_transfer*) handle_packet->user_data; 546 547 // handle transfer 548 handle_completed_transfer(transfer); 549 550 // handle case where libusb_close might be called by hci packet handler 551 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 552 } 553 // log_info("end usb_process_ds"); 554 } 555 556 static void usb_process_ts(btstack_timer_source_t *timer) { 557 558 UNUSED(timer); 559 560 // log_info("in usb_process_ts"); 561 562 // timer is deactive, when timer callback gets called 563 usb_timer_active = 0; 564 565 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 566 567 // actually handled the packet in the pollfds function 568 usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); 569 570 // Get the amount of time until next event is due 571 long msec = ASYNC_POLLING_INTERVAL_MS; 572 573 // Activate timer 574 btstack_run_loop_set_timer(&usb_timer, msec); 575 btstack_run_loop_add_timer(&usb_timer); 576 usb_timer_active = 1; 577 578 return; 579 } 580 581 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 582 583 // list of known devices, using VendorID/ProductID tuples 584 static const uint16_t known_bt_devices[] = { 585 // DeLOCK Bluetooth 4.0 586 0x0a5c, 0x21e8, 587 // Asus BT400 588 0x0b05, 0x17cb, 589 // BCM20702B0 (Generic USB Detuned Class 1 @ 20 MHz) 590 0x0a5c, 0x22be, 591 // Zephyr e.g nRF52840-PCA10056 592 0x2fe3, 0x0100, 593 }; 594 595 static int num_known_devices = sizeof(known_bt_devices) / sizeof(uint16_t) / 2; 596 597 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ 598 int i; 599 for (i=0; i<num_known_devices; i++){ 600 if (known_bt_devices[i*2] == vendor_id && known_bt_devices[i*2+1] == product_id){ 601 return 1; 602 } 603 } 604 return 0; 605 } 606 607 static int scan_for_bt_endpoints(libusb_device *dev) { 608 int r; 609 610 event_in_addr = 0; 611 acl_in_addr = 0; 612 acl_out_addr = 0; 613 sco_out_addr = 0; 614 sco_in_addr = 0; 615 616 // get endpoints from interface descriptor 617 struct libusb_config_descriptor *config_descriptor; 618 r = libusb_get_active_config_descriptor(dev, &config_descriptor); 619 if (r < 0) return r; 620 621 int num_interfaces = config_descriptor->bNumInterfaces; 622 log_info("active configuration has %u interfaces", num_interfaces); 623 624 int i; 625 for (i = 0; i < num_interfaces ; i++){ 626 const struct libusb_interface *interface = &config_descriptor->interface[i]; 627 const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; 628 log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); 629 630 const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; 631 632 for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){ 633 log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); 634 635 switch (endpoint->bmAttributes & 0x3){ 636 case LIBUSB_TRANSFER_TYPE_INTERRUPT: 637 if (event_in_addr) continue; 638 event_in_addr = endpoint->bEndpointAddress; 639 log_info("-> using 0x%2.2X for HCI Events", event_in_addr); 640 break; 641 case LIBUSB_TRANSFER_TYPE_BULK: 642 if (endpoint->bEndpointAddress & 0x80) { 643 if (acl_in_addr) continue; 644 acl_in_addr = endpoint->bEndpointAddress; 645 log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); 646 } else { 647 if (acl_out_addr) continue; 648 acl_out_addr = endpoint->bEndpointAddress; 649 log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); 650 } 651 break; 652 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: 653 if (endpoint->bEndpointAddress & 0x80) { 654 if (sco_in_addr) continue; 655 sco_in_addr = endpoint->bEndpointAddress; 656 log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); 657 } else { 658 if (sco_out_addr) continue; 659 sco_out_addr = endpoint->bEndpointAddress; 660 log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); 661 } 662 break; 663 default: 664 break; 665 } 666 } 667 } 668 libusb_free_config_descriptor(config_descriptor); 669 return 0; 670 } 671 672 // returns index of found device or -1 673 static int scan_for_bt_device(libusb_device **devs, int start_index) { 674 int i; 675 for (i = start_index; devs[i] ; i++){ 676 libusb_device * dev = devs[i]; 677 int r = libusb_get_device_descriptor(dev, &desc); 678 if (r < 0) { 679 log_error("failed to get device descriptor"); 680 return 0; 681 } 682 683 log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", 684 desc.idVendor, desc.idProduct, 685 libusb_get_bus_number(dev), libusb_get_device_address(dev), 686 desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); 687 688 // Detect USB Dongle based Class, Subclass, and Protocol 689 // The class code (bDeviceClass) is 0xE0 – Wireless Controller. 690 // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. 691 // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. 692 // if (desc.bDeviceClass == 0xe0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01){ 693 if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { 694 return i; 695 } 696 697 // Detect USB Dongle based on whitelist 698 if (is_known_bt_device(desc.idVendor, desc.idProduct)) { 699 return i; 700 } 701 } 702 return -1; 703 } 704 #endif 705 706 static int prepare_device(libusb_device_handle * aHandle){ 707 708 // print device path 709 uint8_t port_numbers[USB_MAX_PATH_LEN]; 710 libusb_device * device = libusb_get_device(aHandle); 711 int path_len = libusb_get_port_numbers(device, port_numbers, USB_MAX_PATH_LEN); 712 printf("USB Path: "); 713 int i; 714 for (i=0;i<path_len;i++){ 715 if (i) printf("-"); 716 printf("%02x", port_numbers[i]); 717 } 718 printf("\n"); 719 720 int r; 721 int kernel_driver_detached = 0; 722 723 // Detach OS driver (not possible for OS X, FreeBSD, and WIN32) 724 #if !defined(__APPLE__) && !defined(_WIN32) && !defined(__FreeBSD__) 725 r = libusb_kernel_driver_active(aHandle, 0); 726 if (r < 0) { 727 log_error("libusb_kernel_driver_active error %d", r); 728 libusb_close(aHandle); 729 return r; 730 } 731 732 if (r == 1) { 733 r = libusb_detach_kernel_driver(aHandle, 0); 734 if (r < 0) { 735 log_error("libusb_detach_kernel_driver error %d", r); 736 libusb_close(aHandle); 737 return r; 738 } 739 kernel_driver_detached = 1; 740 } 741 log_info("libusb_detach_kernel_driver"); 742 #endif 743 744 const int configuration = 1; 745 log_info("setting configuration %d...", configuration); 746 r = libusb_set_configuration(aHandle, configuration); 747 if (r < 0) { 748 log_error("Error libusb_set_configuration: %d", r); 749 if (kernel_driver_detached){ 750 libusb_attach_kernel_driver(aHandle, 0); 751 } 752 libusb_close(aHandle); 753 return r; 754 } 755 756 // reserve access to device 757 log_info("claiming interface 0..."); 758 r = libusb_claim_interface(aHandle, 0); 759 if (r < 0) { 760 log_error("Error %d claiming interface 0", r); 761 if (kernel_driver_detached){ 762 libusb_attach_kernel_driver(aHandle, 0); 763 } 764 libusb_close(aHandle); 765 return r; 766 } 767 768 #ifdef ENABLE_SCO_OVER_HCI 769 log_info("claiming interface 1..."); 770 r = libusb_claim_interface(aHandle, 1); 771 if (r < 0) { 772 log_error("Error %d claiming interface 1: - disabling SCO over HCI", r); 773 } else { 774 sco_enabled = 1; 775 } 776 #endif 777 778 return 0; 779 } 780 781 static libusb_device_handle * try_open_device(libusb_device * device){ 782 int r; 783 784 libusb_device_handle * dev_handle; 785 r = libusb_open(device, &dev_handle); 786 787 if (r < 0) { 788 log_error("libusb_open failed!"); 789 dev_handle = NULL; 790 return NULL; 791 } 792 793 log_info("libusb open %d, handle %p", r, dev_handle); 794 795 // reset device (Not currently possible under FreeBSD 11.x/12.x due to usb framework) 796 #if !defined(__FreeBSD__) 797 r = libusb_reset_device(dev_handle); 798 if (r < 0) { 799 log_error("libusb_reset_device failed!"); 800 libusb_close(dev_handle); 801 return NULL; 802 } 803 #endif 804 return dev_handle; 805 } 806 807 #ifdef ENABLE_SCO_OVER_HCI 808 809 static int usb_sco_start(void){ 810 811 printf("usb_sco_start\n"); 812 log_info("usb_sco_start"); 813 814 sco_state_machine_init(); 815 sco_ring_init(); 816 817 int alt_setting; 818 if (sco_voice_setting & 0x0020){ 819 // 16-bit PCM 820 alt_setting = alt_setting_16_bit[sco_num_connections-1]; 821 } else { 822 // 8-bit PCM or mSBC 823 alt_setting = alt_setting_8_bit[sco_num_connections-1]; 824 } 825 // derive iso packet size from alt setting 826 iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; 827 828 log_info("Switching to setting %u on interface 1..", alt_setting); 829 int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); 830 if (r < 0) { 831 log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); 832 return r; 833 } 834 835 // incoming 836 int c; 837 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 838 sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in 839 if (!sco_in_transfer[c]) { 840 usb_close(); 841 return LIBUSB_ERROR_NO_MEM; 842 } 843 // configure sco_in handlers 844 libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr, 845 hci_sco_in_buffer[c], NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 846 libusb_set_iso_packet_lengths(sco_in_transfer[c], iso_packet_size); 847 r = libusb_submit_transfer(sco_in_transfer[c]); 848 if (r) { 849 log_error("Error submitting isochronous in transfer %d", r); 850 usb_close(); 851 return r; 852 } 853 } 854 855 // outgoing 856 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 857 sco_out_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts 858 sco_out_transfers_in_flight[c] = 0; 859 } 860 return 0; 861 } 862 863 static void usb_sco_stop(void){ 864 865 printf("usb_sco_stop\n"); 866 867 log_info("usb_sco_stop"); 868 sco_shutdown = 1; 869 870 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 871 872 int c; 873 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 874 libusb_cancel_transfer(sco_in_transfer[c]); 875 } 876 877 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 878 if (sco_out_transfers_in_flight[c]) { 879 libusb_cancel_transfer(sco_out_transfers[c]); 880 } else { 881 libusb_free_transfer(sco_out_transfers[c]); 882 sco_out_transfers[c] = 0; 883 } 884 } 885 886 // wait until all transfers are completed 887 int completed = 0; 888 while (!completed){ 889 struct timeval tv; 890 memset(&tv, 0, sizeof(struct timeval)); 891 libusb_handle_events_timeout(NULL, &tv); 892 // check if all done 893 completed = 1; 894 895 // Cancel all synchronous transfer 896 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 897 if (sco_in_transfer[c]){ 898 completed = 0; 899 break; 900 } 901 } 902 903 if (!completed) continue; 904 905 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 906 if (sco_out_transfers[c]){ 907 completed = 0; 908 break; 909 } 910 } 911 } 912 sco_shutdown = 0; 913 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 914 915 log_info("Switching to setting %u on interface 1..", 0); 916 int r = libusb_set_interface_alt_setting(handle, 1, 0); 917 if (r < 0) { 918 log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); 919 return; 920 } 921 922 printf("usb_sco_stop done\n"); 923 } 924 925 926 927 #endif 928 929 static int usb_open(void){ 930 int r; 931 932 if (usb_transport_open) return 0; 933 934 handle_packet = NULL; 935 936 // default endpoint addresses 937 event_in_addr = 0x81; // EP1, IN interrupt 938 acl_in_addr = 0x82; // EP2, IN bulk 939 acl_out_addr = 0x02; // EP2, OUT bulk 940 sco_in_addr = 0x83; // EP3, IN isochronous 941 sco_out_addr = 0x03; // EP3, OUT isochronous 942 943 // USB init 944 r = libusb_init(NULL); 945 if (r < 0) return -1; 946 947 libusb_state = LIB_USB_OPENED; 948 949 // configure debug level 950 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 951 952 libusb_device * dev = NULL; 953 954 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 955 956 // Use a specified device 957 log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); 958 handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); 959 960 if (!handle){ 961 log_error("libusb_open_device_with_vid_pid failed!"); 962 usb_close(); 963 return -1; 964 } 965 log_info("libusb open %d, handle %p", r, handle); 966 967 r = prepare_device(handle); 968 if (r < 0){ 969 usb_close(); 970 return -1; 971 } 972 973 dev = libusb_get_device(aHandle); 974 r = scan_for_bt_endpoints(dev); 975 if (r < 0){ 976 usb_close(); 977 return -1; 978 } 979 980 #else 981 // Scan system for an appropriate devices 982 libusb_device **devs; 983 ssize_t num_devices; 984 985 log_info("Scanning for USB Bluetooth device"); 986 num_devices = libusb_get_device_list(NULL, &devs); 987 if (num_devices < 0) { 988 usb_close(); 989 return -1; 990 } 991 992 if (usb_path_len){ 993 int i; 994 for (i=0;i<num_devices;i++){ 995 uint8_t port_numbers[USB_MAX_PATH_LEN]; 996 int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN); 997 if (len != usb_path_len) continue; 998 if (memcmp(usb_path, port_numbers, len) == 0){ 999 log_info("USB device found at specified path"); 1000 handle = try_open_device(devs[i]); 1001 if (!handle) continue; 1002 1003 r = prepare_device(handle); 1004 if (r < 0) { 1005 handle = NULL; 1006 continue; 1007 } 1008 1009 dev = devs[i]; 1010 r = scan_for_bt_endpoints(dev); 1011 if (r < 0) { 1012 handle = NULL; 1013 continue; 1014 } 1015 1016 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1017 break; 1018 }; 1019 } 1020 if (!handle){ 1021 log_error("USB device with given path not found"); 1022 printf("USB device with given path not found\n"); 1023 return -1; 1024 } 1025 } else { 1026 1027 int deviceIndex = -1; 1028 while (true){ 1029 // look for next Bluetooth dongle 1030 deviceIndex = scan_for_bt_device(devs, deviceIndex+1); 1031 if (deviceIndex < 0) break; 1032 1033 log_info("USB Bluetooth device found, index %u", deviceIndex); 1034 1035 handle = try_open_device(devs[deviceIndex]); 1036 if (!handle) continue; 1037 1038 r = prepare_device(handle); 1039 if (r < 0) { 1040 handle = NULL; 1041 continue; 1042 } 1043 1044 dev = devs[deviceIndex]; 1045 r = scan_for_bt_endpoints(dev); 1046 if (r < 0) { 1047 handle = NULL; 1048 continue; 1049 } 1050 1051 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1052 break; 1053 } 1054 } 1055 1056 libusb_free_device_list(devs, 1); 1057 1058 if (handle == 0){ 1059 log_error("No USB Bluetooth device found"); 1060 return -1; 1061 } 1062 1063 #endif 1064 1065 // allocate transfer handlers 1066 int c; 1067 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1068 event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events 1069 if (!event_in_transfer[c]) { 1070 usb_close(); 1071 return LIBUSB_ERROR_NO_MEM; 1072 } 1073 } 1074 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1075 acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in 1076 if (!acl_in_transfer[c]) { 1077 usb_close(); 1078 return LIBUSB_ERROR_NO_MEM; 1079 } 1080 } 1081 1082 command_out_transfer = libusb_alloc_transfer(0); 1083 acl_out_transfer = libusb_alloc_transfer(0); 1084 1085 // TODO check for error 1086 1087 libusb_state = LIB_USB_TRANSFERS_ALLOCATED; 1088 1089 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1090 // configure event_in handlers 1091 libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr, 1092 hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1093 r = libusb_submit_transfer(event_in_transfer[c]); 1094 if (r) { 1095 log_error("Error submitting interrupt transfer %d", r); 1096 usb_close(); 1097 return r; 1098 } 1099 } 1100 1101 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1102 // configure acl_in handlers 1103 libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr, 1104 hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1105 r = libusb_submit_transfer(acl_in_transfer[c]); 1106 if (r) { 1107 log_error("Error submitting bulk in transfer %d", r); 1108 usb_close(); 1109 return r; 1110 } 1111 1112 } 1113 1114 #if 0 1115 // Check for pollfds functionality 1116 doing_pollfds = libusb_pollfds_handle_timeouts(NULL); 1117 #else 1118 // NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation 1119 doing_pollfds = 0; 1120 #endif 1121 1122 if (doing_pollfds) { 1123 log_info("Async using pollfds:"); 1124 1125 const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); 1126 for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); 1127 pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); 1128 if (!pollfd_data_sources){ 1129 log_error("Cannot allocate data sources for pollfds"); 1130 usb_close(); 1131 return 1; 1132 } 1133 memset(pollfd_data_sources, 0, sizeof(btstack_data_source_t) * num_pollfds); 1134 for (r = 0 ; r < num_pollfds ; r++) { 1135 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1136 btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); 1137 btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); 1138 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); 1139 btstack_run_loop_add_data_source(ds); 1140 log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); 1141 } 1142 free(pollfd); 1143 } else { 1144 log_info("Async using timers:"); 1145 1146 usb_timer.process = usb_process_ts; 1147 btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); 1148 btstack_run_loop_add_timer(&usb_timer); 1149 usb_timer_active = 1; 1150 } 1151 1152 usb_transport_open = 1; 1153 1154 return 0; 1155 } 1156 1157 static int usb_close(void){ 1158 int c; 1159 int completed = 0; 1160 1161 if (!usb_transport_open) return 0; 1162 1163 log_info("usb_close"); 1164 1165 switch (libusb_state){ 1166 case LIB_USB_CLOSED: 1167 break; 1168 1169 case LIB_USB_TRANSFERS_ALLOCATED: 1170 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1171 1172 if(usb_timer_active) { 1173 btstack_run_loop_remove_timer(&usb_timer); 1174 usb_timer_active = 0; 1175 } 1176 1177 if (doing_pollfds){ 1178 int r; 1179 for (r = 0 ; r < num_pollfds ; r++) { 1180 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1181 btstack_run_loop_remove_data_source(ds); 1182 } 1183 free(pollfd_data_sources); 1184 pollfd_data_sources = NULL; 1185 num_pollfds = 0; 1186 doing_pollfds = 0; 1187 } 1188 1189 /* fall through */ 1190 1191 case LIB_USB_INTERFACE_CLAIMED: 1192 // Cancel all transfers, ignore warnings for this 1193 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 1194 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1195 if (event_in_transfer[c]){ 1196 log_info("cancel event_in_transfer[%u] = %p", c, event_in_transfer[c]); 1197 libusb_cancel_transfer(event_in_transfer[c]); 1198 } 1199 } 1200 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1201 if (acl_in_transfer[c]){ 1202 log_info("cancel acl_in_transfer[%u] = %p", c, acl_in_transfer[c]); 1203 libusb_cancel_transfer(acl_in_transfer[c]); 1204 } 1205 } 1206 #ifdef ENABLE_SCO_OVER_HCI 1207 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1208 if (sco_in_transfer[c]){ 1209 log_info("cancel sco_in_transfer[%u] = %p", c, sco_in_transfer[c]); 1210 libusb_cancel_transfer(sco_in_transfer[c]); 1211 } 1212 } 1213 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1214 if (sco_out_transfers_in_flight[c]) { 1215 log_info("cancel sco_out_transfers[%u] = %p", c, sco_out_transfers[c]); 1216 libusb_cancel_transfer(sco_out_transfers[c]); 1217 } else { 1218 libusb_free_transfer(sco_out_transfers[c]); 1219 sco_out_transfers[c] = 0; 1220 } 1221 } 1222 #endif 1223 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1224 1225 // wait until all transfers are completed - or 20 iterations 1226 int countdown = 20; 1227 while (!completed){ 1228 1229 if (--countdown == 0){ 1230 log_info("Not all transfers cancelled, leaking a bit."); 1231 break; 1232 } 1233 1234 struct timeval tv; 1235 memset(&tv, 0, sizeof(struct timeval)); 1236 libusb_handle_events_timeout(NULL, &tv); 1237 // check if all done 1238 completed = 1; 1239 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 1240 if (event_in_transfer[c]) { 1241 log_info("event_in_transfer[%u] still active (%p)", c, event_in_transfer[c]); 1242 completed = 0; 1243 break; 1244 } 1245 } 1246 1247 if (!completed) continue; 1248 1249 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 1250 if (acl_in_transfer[c]) { 1251 log_info("acl_in_transfer[%u] still active (%p)", c, acl_in_transfer[c]); 1252 completed = 0; 1253 break; 1254 } 1255 } 1256 1257 #ifdef ENABLE_SCO_OVER_HCI 1258 if (!completed) continue; 1259 1260 // Cancel all synchronous transfer 1261 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1262 if (sco_in_transfer[c]){ 1263 log_info("sco_in_transfer[%u] still active (%p)", c, sco_in_transfer[c]); 1264 completed = 0; 1265 break; 1266 } 1267 } 1268 1269 if (!completed) continue; 1270 1271 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1272 if (sco_out_transfers[c]){ 1273 log_info("sco_out_transfers[%u] still active (%p)", c, sco_out_transfers[c]); 1274 completed = 0; 1275 break; 1276 } 1277 } 1278 sco_enabled = 0; 1279 #endif 1280 } 1281 1282 // finally release interface 1283 libusb_release_interface(handle, 0); 1284 #ifdef ENABLE_SCO_OVER_HCI 1285 libusb_release_interface(handle, 1); 1286 #endif 1287 log_info("Libusb shutdown complete"); 1288 1289 /* fall through */ 1290 1291 case LIB_USB_DEVICE_OPENDED: 1292 libusb_close(handle); 1293 1294 /* fall through */ 1295 1296 case LIB_USB_OPENED: 1297 libusb_exit(NULL); 1298 break; 1299 1300 default: 1301 btstack_assert(false); 1302 break; 1303 } 1304 1305 libusb_state = LIB_USB_CLOSED; 1306 handle = NULL; 1307 usb_transport_open = 0; 1308 1309 return 0; 1310 } 1311 1312 static int usb_send_cmd_packet(uint8_t *packet, int size){ 1313 int r; 1314 1315 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1316 1317 // async 1318 libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); 1319 memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size); 1320 1321 // prepare transfer 1322 int completed = 0; 1323 libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0); 1324 command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER; 1325 1326 // update stata before submitting transfer 1327 usb_command_active = 1; 1328 1329 // submit transfer 1330 r = libusb_submit_transfer(command_out_transfer); 1331 1332 if (r < 0) { 1333 usb_command_active = 0; 1334 log_error("Error submitting cmd transfer %d", r); 1335 return -1; 1336 } 1337 1338 return 0; 1339 } 1340 1341 static int usb_send_acl_packet(uint8_t *packet, int size){ 1342 int r; 1343 1344 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1345 1346 // log_info("usb_send_acl_packet enter, size %u", size); 1347 1348 // prepare transfer 1349 int completed = 0; 1350 libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size, 1351 async_callback, &completed, 0); 1352 acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK; 1353 1354 // update stata before submitting transfer 1355 usb_acl_out_active = 1; 1356 1357 r = libusb_submit_transfer(acl_out_transfer); 1358 if (r < 0) { 1359 usb_acl_out_active = 0; 1360 log_error("Error submitting acl transfer, %d", r); 1361 return -1; 1362 } 1363 1364 return 0; 1365 } 1366 1367 static int usb_can_send_packet_now(uint8_t packet_type){ 1368 switch (packet_type){ 1369 case HCI_COMMAND_DATA_PACKET: 1370 return !usb_command_active; 1371 case HCI_ACL_DATA_PACKET: 1372 return !usb_acl_out_active; 1373 #ifdef ENABLE_SCO_OVER_HCI 1374 case HCI_SCO_DATA_PACKET: 1375 if (!sco_enabled) return 0; 1376 return sco_ring_have_space(); 1377 #endif 1378 default: 1379 return 0; 1380 } 1381 } 1382 1383 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ 1384 switch (packet_type){ 1385 case HCI_COMMAND_DATA_PACKET: 1386 return usb_send_cmd_packet(packet, size); 1387 case HCI_ACL_DATA_PACKET: 1388 return usb_send_acl_packet(packet, size); 1389 #ifdef ENABLE_SCO_OVER_HCI 1390 case HCI_SCO_DATA_PACKET: 1391 if (!sco_enabled) return -1; 1392 return usb_send_sco_packet(packet, size); 1393 #endif 1394 default: 1395 return -1; 1396 } 1397 } 1398 1399 #ifdef ENABLE_SCO_OVER_HCI 1400 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ 1401 if (!sco_enabled) return; 1402 1403 log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); 1404 1405 if (num_connections != sco_num_connections){ 1406 sco_voice_setting = voice_setting; 1407 if (sco_num_connections){ 1408 usb_sco_stop(); 1409 } 1410 sco_num_connections = num_connections; 1411 if (num_connections){ 1412 usb_sco_start(); 1413 } 1414 } 1415 } 1416 #endif 1417 1418 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1419 log_info("registering packet handler"); 1420 packet_handler = handler; 1421 } 1422 1423 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1424 UNUSED(packet_type); 1425 UNUSED(packet); 1426 UNUSED(size); 1427 } 1428 1429 // get usb singleton 1430 const hci_transport_t * hci_transport_usb_instance(void) { 1431 if (!hci_transport_usb) { 1432 hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); 1433 memset(hci_transport_usb, 0, sizeof(hci_transport_t)); 1434 hci_transport_usb->name = "H2_LIBUSB"; 1435 hci_transport_usb->open = usb_open; 1436 hci_transport_usb->close = usb_close; 1437 hci_transport_usb->register_packet_handler = usb_register_packet_handler; 1438 hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; 1439 hci_transport_usb->send_packet = usb_send_packet; 1440 #ifdef ENABLE_SCO_OVER_HCI 1441 hci_transport_usb->set_sco_config = usb_set_sco_config; 1442 #endif 1443 } 1444 return hci_transport_usb; 1445 } 1446