1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN 24 * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "hci_transport_h2_libusb.c" 39 40 /* 41 * hci_transport_usb.c 42 * 43 * HCI Transport API implementation for USB 44 * 45 * Created by Matthias Ringwald on 7/5/09. 46 */ 47 48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size 49 // HCI Commands 0 0 0x00 Control 8/16/32/64 50 // HCI Events 0 0 0x81 Interrupt (IN) 16 51 // ACL Data 0 0 0x82 Bulk (IN) 32/64 52 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 53 // SCO Data 0 0 0x83 Isochronous (IN) 54 // SCO Data 0 0 0x03 Isochronous (Out) 55 56 #include <strings.h> 57 #include <string.h> 58 #include <unistd.h> /* UNIX standard function definitions */ 59 #include <sys/types.h> 60 61 #include <libusb.h> 62 63 // bail out if seen libusb is apperently to old 64 #if !defined(LIBUSB_API_VERSION) || (LIBUSB_API_VERSION < 0x01000104) 65 #error libusb api version to old! 66 #endif 67 68 #include <poll.h> 69 70 #include "btstack_config.h" 71 72 #include "btstack_debug.h" 73 #include "hci.h" 74 #include "hci_transport.h" 75 #include "hci_transport_usb.h" 76 77 #define DEBUG 78 79 // deal with changes in libusb API: 80 #ifdef LIBUSB_API_VERSION 81 #if LIBUSB_API_VERSION >= 0x01000106 82 // since 1.0.22, libusb_set_option replaces libusb_set_debug 83 #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level) 84 #endif 85 #endif 86 87 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) 88 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 89 #endif 90 91 #define ACL_IN_BUFFER_COUNT 3 92 #define EVENT_IN_BUFFER_COUNT 3 93 #define EVENT_OUT_BUFFER_COUNT 4 94 #define SCO_IN_BUFFER_COUNT 10 95 96 #define ASYNC_POLLING_INTERVAL_MS 1 97 98 // 99 // Bluetooth USB Transport Alternate Settings: 100 // 101 // 0: No active voice channels (for USB compliance) 102 // 1: One 8 kHz voice channel with 8-bit encoding 103 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding 104 // 3: Three 8 kHz voice channels with 8-bit encoding 105 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding 106 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding 107 // --> support only a single SCO connection 108 // #define ALT_SETTING (1) 109 110 #ifdef ENABLE_SCO_OVER_HCI 111 // alt setting for 1-3 connections and 8/16 bit 112 static const int alt_setting_8_bit[] = {1,2,3}; 113 static const int alt_setting_16_bit[] = {2,4,5}; 114 115 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets 116 // One complete SCO packet with 24 frames every 3 frames (== 3 ms) 117 #define NUM_ISO_PACKETS (3) 118 119 static const uint16_t iso_packet_size_for_alt_setting[] = { 120 0, 121 9, 122 17, 123 25, 124 33, 125 49, 126 63, 127 }; 128 #endif 129 130 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) 131 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload 132 #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) 133 134 // Outgoing SCO packet queue 135 // simplified ring buffer implementation 136 #define SCO_OUT_BUFFER_COUNT (20) 137 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) 138 139 // seems to be the max depth for USB 3 140 #define USB_MAX_PATH_LEN 7 141 142 // prototypes 143 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); 144 static int usb_close(void); 145 146 typedef enum { 147 LIB_USB_CLOSED = 0, 148 LIB_USB_OPENED, 149 LIB_USB_DEVICE_OPENDED, 150 LIB_USB_INTERFACE_CLAIMED, 151 LIB_USB_TRANSFERS_ALLOCATED 152 } libusb_state_t; 153 154 // SCO packet state machine 155 typedef enum { 156 H2_W4_SCO_HEADER = 1, 157 H2_W4_PAYLOAD, 158 } H2_SCO_STATE; 159 160 static libusb_state_t libusb_state = LIB_USB_CLOSED; 161 162 // single instance 163 static hci_transport_t * hci_transport_usb = NULL; 164 165 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; 166 167 // libusb 168 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 169 static struct libusb_device_descriptor desc; 170 #endif 171 static libusb_device_handle * handle; 172 173 // known devices 174 typedef struct { 175 btstack_linked_item_t next; 176 uint16_t vendor_id; 177 uint16_t product_id; 178 } usb_known_device_t; 179 180 static btstack_linked_list_t usb_knwon_devices; 181 182 typedef struct list_head { 183 struct list_head *next, *prev; 184 } list_head_t; 185 186 static inline void __list_add( list_head_t *new, list_head_t *prev, list_head_t *next ) { 187 next->prev = new; 188 new->next = next; 189 new->prev = prev; 190 prev->next = new; 191 } 192 193 #define LIST_HEAD_INIT(name) { &(name), &(name) } 194 195 static inline void init_list_head( list_head_t *list ) { 196 list->next = list; 197 list->prev = list; 198 } 199 200 static inline void list_add( list_head_t *new, list_head_t *head ) { 201 __list_add( new, head, head->next ); 202 } 203 204 static inline void list_add_tail( list_head_t *new, list_head_t *head ) { 205 __list_add( new, head->prev, head ); 206 } 207 208 static inline void list_del( list_head_t *entry ) { 209 entry->next->prev = entry->prev; 210 entry->prev->next = entry->next; 211 212 entry->prev = NULL; 213 entry->next = NULL; 214 } 215 216 static inline bool list_empty( list_head_t *head ) { 217 return head->next == head; 218 } 219 220 static inline list_head_t *list_pop_front( list_head_t *head ) { 221 list_head_t *front = head->next; 222 list_del( front ); 223 return front; 224 } 225 226 227 typedef struct { 228 list_head_t list; 229 struct libusb_transfer *t; 230 uint8_t *data; 231 bool in_flight; 232 } usb_transfer_list_entry_t; 233 234 typedef struct { 235 list_head_t transfers; 236 int nbr; 237 usb_transfer_list_entry_t entries[0]; 238 } usb_transfer_list_t; 239 240 static struct libusb_transfer *usb_transfer_list_acquire( usb_transfer_list_t *list ) { 241 usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)list_pop_front( &list->transfers ); 242 struct libusb_transfer *transfer = current->t; 243 current->in_flight = true; 244 return transfer; 245 } 246 void usb_transfer_list_free( usb_transfer_list_t *list ); 247 248 static void usb_transfer_list_release( usb_transfer_list_t *list, struct libusb_transfer *transfer ) { 249 usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data; 250 assert( current != NULL ); 251 current->in_flight = false; 252 list_add( ¤t->list, &list->transfers ); 253 } 254 255 static bool usb_transfer_list_empty( usb_transfer_list_t *list ) { 256 return list_empty( &list->transfers ); 257 } 258 259 static usb_transfer_list_t *usb_transfer_list_alloc( int nbr, int iso_packets, int length ) { 260 usb_transfer_list_t *list = malloc( sizeof(usb_transfer_list_t) + nbr*sizeof(usb_transfer_list_entry_t) ); 261 init_list_head( &list->transfers ); 262 list->nbr = nbr; 263 for( int i=0; i<nbr; ++i ) 264 { 265 usb_transfer_list_entry_t *entry = &list->entries[i]; 266 struct libusb_transfer *transfer = libusb_alloc_transfer(iso_packets); 267 entry->data = malloc( length ); 268 transfer->buffer = entry->data; 269 transfer->user_data = entry; 270 entry->t = transfer; 271 usb_transfer_list_release( list, transfer ); 272 assert( entry->t->user_data != NULL ); 273 } 274 return list; 275 } 276 277 static void usb_transfer_list_cancel( usb_transfer_list_t *list ) { 278 for( int i=0; i<list->nbr; ++i ) { 279 usb_transfer_list_entry_t *current = &list->entries[i]; 280 if( current->in_flight ) { 281 libusb_cancel_transfer( current->t ); 282 } 283 } 284 } 285 286 static int usb_transfer_list_in_flight( usb_transfer_list_t *list ) { 287 int cnt = 0; 288 for(int i=0; i<list->nbr; ++i) { 289 usb_transfer_list_entry_t *entry = &list->entries[i]; 290 if( entry->in_flight ) { 291 ++cnt; 292 } 293 } 294 return cnt; 295 } 296 297 298 static void usb_transfer_list_free_entry( struct libusb_transfer *transfer ) { 299 usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data; 300 free( current->data ); 301 libusb_free_transfer( transfer ); 302 current->in_flight = false; 303 current->t = NULL; 304 current->data = NULL; 305 } 306 307 void usb_transfer_list_free( usb_transfer_list_t *list ) { 308 for( int i=0; i<list->nbr; ++i ) { 309 usb_transfer_list_entry_t *entry = &list->entries[i]; 310 assert( entry->in_flight == false ); 311 if( entry->t ) { 312 usb_transfer_list_free_entry( entry->t ); 313 } 314 } 315 free( list ); 316 } 317 318 static usb_transfer_list_t *default_transfer_list = NULL; 319 320 // For (ab)use as a linked list of received packets 321 static list_head_t handle_packet_list = LIST_HEAD_INIT(handle_packet_list); 322 323 static void enqueue_transfer(struct libusb_transfer *transfer) { 324 usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data; 325 assert( current != NULL ); 326 list_add_tail( ¤t->list, &handle_packet_list ); 327 } 328 329 static void signal_acknowledge(void); 330 static void signal_sco_can_send_now(void); 331 332 #ifdef ENABLE_SCO_OVER_HCI 333 334 #ifdef _WIN32 335 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" 336 #endif 337 338 // incoming SCO 339 static H2_SCO_STATE sco_state; 340 static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; 341 static uint16_t sco_read_pos; 342 static uint16_t sco_bytes_to_read; 343 344 // pause/resume 345 static uint16_t sco_voice_setting; 346 static int sco_num_connections; 347 static bool sco_activated; 348 349 // dynamic SCO configuration 350 static uint16_t iso_packet_size; 351 static int sco_enabled; 352 353 usb_transfer_list_t *sco_transfer_list = NULL; 354 355 #endif 356 357 358 static int doing_pollfds; 359 static int num_pollfds; 360 static btstack_data_source_t * pollfd_data_sources; 361 362 static void usb_transport_response_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type); 363 static btstack_data_source_t transport_response; 364 365 static btstack_timer_source_t usb_timer; 366 static int usb_timer_active; 367 368 // endpoint addresses 369 static int event_in_addr; 370 static int acl_in_addr; 371 static int acl_out_addr; 372 static int sco_in_addr; 373 static int sco_out_addr; 374 375 // device info 376 static int usb_path_len; 377 static uint8_t usb_path[USB_MAX_PATH_LEN]; 378 static uint16_t usb_vendor_id; 379 static uint16_t usb_product_id; 380 381 // transport interface state 382 static int usb_transport_open; 383 384 static void hci_transport_h2_libusb_emit_usb_info(void) { 385 uint8_t event[7 + USB_MAX_PATH_LEN]; 386 uint16_t pos = 0; 387 event[pos++] = HCI_EVENT_TRANSPORT_USB_INFO; 388 event[pos++] = 5 + usb_path_len; 389 little_endian_store_16(event, pos, usb_vendor_id); 390 pos+=2; 391 little_endian_store_16(event, pos, usb_product_id); 392 pos+=2; 393 event[pos++] = usb_path_len; 394 memcpy(&event[pos], usb_path, usb_path_len); 395 pos += usb_path_len; 396 (*packet_handler)(HCI_EVENT_PACKET, event, pos); 397 } 398 399 void hci_transport_usb_add_device(uint16_t vendor_id, uint16_t product_id) { 400 usb_known_device_t * device = malloc(sizeof(usb_known_device_t)); 401 if (device != NULL) { 402 device->vendor_id = vendor_id; 403 device->product_id = product_id; 404 btstack_linked_list_add(&usb_knwon_devices, (btstack_linked_item_t *) device); 405 } 406 } 407 408 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ 409 if (len > USB_MAX_PATH_LEN || !port_numbers){ 410 log_error("hci_transport_usb_set_path: len or port numbers invalid"); 411 return; 412 } 413 usb_path_len = len; 414 memcpy(usb_path, port_numbers, len); 415 } 416 417 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer) { 418 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { 419 log_info("shutdown, transfer %p", transfer); 420 usb_transfer_list_free_entry( transfer ); 421 return; 422 } 423 424 int r; 425 // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); 426 427 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { 428 enqueue_transfer(transfer); 429 } else if (transfer->status == LIBUSB_TRANSFER_STALL){ 430 log_info("-> Transfer stalled, trying again"); 431 r = libusb_clear_halt(handle, transfer->endpoint); 432 if (r) { 433 log_error("Error rclearing halt %d", r); 434 } 435 r = libusb_submit_transfer(transfer); 436 if (r) { 437 log_error("Error re-submitting transfer %d", r); 438 } 439 } else if ( transfer->status == LIBUSB_TRANSFER_CANCELLED ) { 440 if(( transfer->endpoint == sco_in_addr) || (transfer->endpoint == sco_out_addr)) { 441 usb_transfer_list_release( sco_transfer_list, transfer ); 442 } else { 443 usb_transfer_list_release( default_transfer_list, transfer ); 444 } 445 } else { 446 log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); 447 // No usable data, just resubmit packet 448 r = libusb_submit_transfer(transfer); 449 if (r) { 450 log_error("Error re-submitting transfer %d", r); 451 } 452 } 453 // log_info("end async_callback"); 454 } 455 456 457 #ifdef ENABLE_SCO_OVER_HCI 458 static int usb_send_sco_packet(uint8_t *packet, int size){ 459 int r; 460 461 if( !sco_activated ) { 462 log_error("sco send without beeing active!"); 463 return -1; 464 } 465 466 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 467 468 struct libusb_transfer *transfer = usb_transfer_list_acquire( sco_transfer_list ); 469 uint8_t *data = transfer->buffer; 470 void *user_data = transfer->user_data; 471 472 // log_info("usb_send_acl_packet enter, size %u", size); 473 474 // store packet in free slot 475 memcpy(data, packet, size); 476 477 // setup transfer 478 // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); 479 libusb_fill_iso_transfer(transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, user_data, 0); 480 libusb_set_iso_packet_lengths(transfer, iso_packet_size); 481 r = libusb_submit_transfer(transfer); 482 if (r < 0) { 483 log_error("Error submitting sco transfer, %d", r); 484 return -1; 485 } 486 487 // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); 488 signal_acknowledge(); 489 490 if( !usb_transfer_list_empty( sco_transfer_list ) ) { 491 signal_sco_can_send_now(); 492 } 493 494 return 0; 495 } 496 497 static void sco_state_machine_init(void){ 498 sco_state = H2_W4_SCO_HEADER; 499 sco_read_pos = 0; 500 sco_bytes_to_read = 3; 501 } 502 503 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ 504 while (size){ 505 if (size < sco_bytes_to_read){ 506 // just store incomplete data 507 memcpy(&sco_buffer[sco_read_pos], buffer, size); 508 sco_read_pos += size; 509 sco_bytes_to_read -= size; 510 return; 511 } 512 // copy requested data 513 memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); 514 sco_read_pos += sco_bytes_to_read; 515 buffer += sco_bytes_to_read; 516 size -= sco_bytes_to_read; 517 518 // chunk read successfully, next action 519 switch (sco_state){ 520 case H2_W4_SCO_HEADER: 521 sco_state = H2_W4_PAYLOAD; 522 sco_bytes_to_read = sco_buffer[2]; 523 break; 524 case H2_W4_PAYLOAD: 525 // packet complete 526 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); 527 sco_state_machine_init(); 528 break; 529 default: 530 btstack_assert(false); 531 break; 532 } 533 } 534 } 535 #endif 536 537 static void handle_completed_transfer(struct libusb_transfer *transfer){ 538 539 int resubmit = 0; 540 assert(transfer->user_data != NULL ); 541 if (transfer->endpoint == event_in_addr) { 542 packet_handler(HCI_EVENT_PACKET, transfer->buffer, transfer->actual_length); 543 resubmit = 1; 544 } else if (transfer->endpoint == acl_in_addr) { 545 // log_info("-> acl"); 546 packet_handler(HCI_ACL_DATA_PACKET, transfer->buffer, transfer->actual_length); 547 resubmit = 1; 548 } else if (transfer->endpoint == 0){ 549 // log_info("command done, size %u", transfer->actual_length); 550 // printf("%s cmd release\n", __FUNCTION__ ); 551 usb_transfer_list_release( default_transfer_list, transfer ); 552 } else if (transfer->endpoint == acl_out_addr){ 553 // log_info("acl out done, size %u", transfer->actual_length); 554 // printf("%s acl release\n", __FUNCTION__ ); 555 usb_transfer_list_release( default_transfer_list, transfer ); 556 #ifdef ENABLE_SCO_OVER_HCI 557 } else if (transfer->endpoint == sco_in_addr) { 558 // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); 559 560 // give the transfer back to the pool, without resubmiting 561 if( !sco_activated ) { 562 usb_transfer_list_release( sco_transfer_list, transfer ); 563 return; 564 } 565 566 int i; 567 for (i = 0; i < transfer->num_iso_packets; i++) { 568 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 569 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 570 log_error("Error: pack %u status %d\n", i, pack->status); 571 continue; 572 } 573 if (!pack->actual_length) continue; 574 uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); 575 handle_isochronous_data(data, pack->actual_length); 576 } 577 resubmit = 1; 578 } else if (transfer->endpoint == sco_out_addr){ 579 int i; 580 for (i = 0; i < transfer->num_iso_packets; i++) { 581 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 582 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 583 log_error("Error: pack %u status %d\n", i, pack->status); 584 } 585 } 586 usb_transfer_list_release( sco_transfer_list, transfer ); 587 if( !sco_activated ) { 588 return; 589 } 590 // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", 591 // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, 592 // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, 593 // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); 594 // notify upper layer if there's space for new SCO packets 595 596 if (!usb_transfer_list_empty(sco_transfer_list)) { 597 signal_sco_can_send_now(); 598 } 599 // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); 600 #endif 601 } else { 602 log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); 603 } 604 605 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 606 607 if (resubmit){ 608 // Re-submit transfer 609 int r = libusb_submit_transfer(transfer); 610 if (r) { 611 log_error("Error re-submitting transfer %d", r); 612 } 613 } 614 } 615 616 void usb_handle_pending_events(void); 617 void usb_handle_pending_events(void) { 618 struct timeval tv = { 0 }; 619 libusb_handle_events_timeout_completed(NULL, &tv, NULL); 620 } 621 622 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 623 624 UNUSED(ds); 625 UNUSED(callback_type); 626 627 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 628 629 // log_info("begin usb_process_ds"); 630 // always handling an event as we're called when data is ready 631 usb_handle_pending_events(); 632 633 // Handle any packet in the order that they were received 634 while (!list_empty(&handle_packet_list)) { 635 // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); 636 637 // pop next transfer 638 usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)list_pop_front( &handle_packet_list ); 639 640 // handle transfer 641 handle_completed_transfer(current->t); 642 643 // handle case where libusb_close might be called by hci packet handler 644 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 645 } 646 // log_info("end usb_process_ds"); 647 } 648 649 static void usb_process_ts(btstack_timer_source_t *timer) { 650 651 UNUSED(timer); 652 653 // log_info("in usb_process_ts"); 654 655 // timer is deactive, when timer callback gets called 656 usb_timer_active = 0; 657 658 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 659 660 // actually handled the packet in the pollfds function 661 usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); 662 663 // Get the amount of time until next event is due 664 long msec = ASYNC_POLLING_INTERVAL_MS; 665 666 // Activate timer 667 btstack_run_loop_set_timer(&usb_timer, msec); 668 btstack_run_loop_add_timer(&usb_timer); 669 usb_timer_active = 1; 670 671 return; 672 } 673 674 675 static int scan_for_bt_endpoints(libusb_device *dev) { 676 int r; 677 678 event_in_addr = 0; 679 acl_in_addr = 0; 680 acl_out_addr = 0; 681 sco_out_addr = 0; 682 sco_in_addr = 0; 683 684 // get endpoints from interface descriptor 685 struct libusb_config_descriptor *config_descriptor; 686 r = libusb_get_active_config_descriptor(dev, &config_descriptor); 687 if (r < 0) return r; 688 689 int num_interfaces = config_descriptor->bNumInterfaces; 690 log_info("active configuration has %u interfaces", num_interfaces); 691 692 int i; 693 for (i = 0; i < num_interfaces ; i++){ 694 const struct libusb_interface *interface = &config_descriptor->interface[i]; 695 const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; 696 log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); 697 698 const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; 699 700 for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){ 701 log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); 702 703 switch (endpoint->bmAttributes & 0x3){ 704 case LIBUSB_TRANSFER_TYPE_INTERRUPT: 705 if (event_in_addr) continue; 706 event_in_addr = endpoint->bEndpointAddress; 707 log_info("-> using 0x%2.2X for HCI Events", event_in_addr); 708 break; 709 case LIBUSB_TRANSFER_TYPE_BULK: 710 if (endpoint->bEndpointAddress & 0x80) { 711 if (acl_in_addr) continue; 712 acl_in_addr = endpoint->bEndpointAddress; 713 log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); 714 } else { 715 if (acl_out_addr) continue; 716 acl_out_addr = endpoint->bEndpointAddress; 717 log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); 718 } 719 break; 720 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: 721 if (endpoint->bEndpointAddress & 0x80) { 722 if (sco_in_addr) continue; 723 sco_in_addr = endpoint->bEndpointAddress; 724 log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); 725 } else { 726 if (sco_out_addr) continue; 727 sco_out_addr = endpoint->bEndpointAddress; 728 log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); 729 } 730 break; 731 default: 732 break; 733 } 734 } 735 } 736 libusb_free_config_descriptor(config_descriptor); 737 return 0; 738 } 739 740 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 741 742 // list of known devices, using VendorID/ProductID tuples 743 static const uint16_t known_bluetooth_devices[] = { 744 // BCM20702A0 - DeLOCK Bluetooth 4.0 745 0x0a5c, 0x21e8, 746 // BCM20702A0 - Asus BT400 747 0x0b05, 0x17cb, 748 // BCM20702B0 - Generic USB Detuned Class 1 @ 20 MHz 749 0x0a5c, 0x22be, 750 // nRF5x Zephyr USB HCI, e.g nRF52840-PCA10056 751 0x2fe3, 0x0100, 752 0x2fe3, 0x000b, 753 }; 754 755 static int num_known_devices = sizeof(known_bluetooth_devices) / sizeof(uint16_t) / 2; 756 757 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ 758 int i; 759 for (i=0; i<num_known_devices; i++){ 760 if (known_bluetooth_devices[i*2] == vendor_id && known_bluetooth_devices[i*2+1] == product_id){ 761 return 1; 762 } 763 } 764 btstack_linked_list_iterator_t it; 765 btstack_linked_list_iterator_init(&it, &usb_knwon_devices); 766 while (btstack_linked_list_iterator_has_next(&it)) { 767 usb_known_device_t * device = (usb_known_device_t *) btstack_linked_list_iterator_next(&it); 768 if (device->vendor_id != vendor_id) continue; 769 if (device->product_id != product_id) continue; 770 return 1; 771 } 772 return 0; 773 } 774 775 // returns index of found device or -1 776 static int scan_for_bt_device(libusb_device **devs, int start_index) { 777 int i; 778 for (i = start_index; devs[i] ; i++){ 779 libusb_device * dev = devs[i]; 780 int r = libusb_get_device_descriptor(dev, &desc); 781 if (r < 0) { 782 log_error("failed to get device descriptor"); 783 return 0; 784 } 785 786 log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", 787 desc.idVendor, desc.idProduct, 788 libusb_get_bus_number(dev), libusb_get_device_address(dev), 789 desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); 790 791 // Detect USB Dongle based Class, Subclass, and Protocol 792 // The class code (bDeviceClass) is 0xE0 – Wireless Controller. 793 // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. 794 // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. 795 if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { 796 return i; 797 } 798 799 // Detect USB Dongle based on whitelist 800 if (is_known_bt_device(desc.idVendor, desc.idProduct)) { 801 return i; 802 } 803 } 804 return -1; 805 } 806 #endif 807 808 static int prepare_device(libusb_device_handle * aHandle){ 809 810 // get device path 811 libusb_device * device = libusb_get_device(aHandle); 812 usb_path_len = libusb_get_port_numbers(device, usb_path, USB_MAX_PATH_LEN); 813 814 int r; 815 int kernel_driver_detached = 0; 816 817 // Detach OS driver (not possible for OS X, FreeBSD, and Windows) 818 #if !defined(__APPLE__) && !defined(_WIN32) && !defined(__CYGWIN__) && !defined(__FreeBSD__) 819 r = libusb_kernel_driver_active(aHandle, 0); 820 if (r < 0) { 821 log_error("libusb_kernel_driver_active error %d", r); 822 libusb_close(aHandle); 823 return r; 824 } 825 826 if (r == 1) { 827 r = libusb_detach_kernel_driver(aHandle, 0); 828 if (r < 0) { 829 log_error("libusb_detach_kernel_driver error %d", r); 830 libusb_close(aHandle); 831 return r; 832 } 833 kernel_driver_detached = 1; 834 } 835 log_info("libusb_detach_kernel_driver"); 836 #endif 837 838 const int configuration = 1; 839 log_info("setting configuration %d...", configuration); 840 r = libusb_set_configuration(aHandle, configuration); 841 if (r < 0) { 842 log_error("Error libusb_set_configuration: %d", r); 843 if (kernel_driver_detached){ 844 libusb_attach_kernel_driver(aHandle, 0); 845 } 846 libusb_close(aHandle); 847 return r; 848 } 849 850 // reserve access to device 851 log_info("claiming interface 0..."); 852 r = libusb_claim_interface(aHandle, 0); 853 if (r < 0) { 854 log_error("Error %d claiming interface 0", r); 855 if (kernel_driver_detached){ 856 libusb_attach_kernel_driver(aHandle, 0); 857 } 858 libusb_close(aHandle); 859 return r; 860 } 861 862 #ifdef ENABLE_SCO_OVER_HCI 863 // get endpoints from interface descriptor 864 struct libusb_config_descriptor *config_descriptor; 865 r = libusb_get_active_config_descriptor(device, &config_descriptor); 866 if (r >= 0){ 867 int num_interfaces = config_descriptor->bNumInterfaces; 868 if (num_interfaces > 1) { 869 r = libusb_claim_interface(aHandle, 1); 870 if (r < 0) { 871 log_error("Error %d claiming interface 1: - disabling SCO over HCI", r); 872 } else { 873 sco_enabled = 1; 874 } 875 } else { 876 log_info("Device has only on interface, disabling SCO over HCI"); 877 } 878 } 879 #endif 880 881 return 0; 882 } 883 884 static libusb_device_handle * try_open_device(libusb_device * device){ 885 int r; 886 887 r = libusb_get_device_descriptor(device, &desc); 888 if (r < 0) { 889 log_error("libusb_get_device_descriptor failed!"); 890 return NULL; 891 } 892 usb_vendor_id = desc.idVendor; 893 usb_product_id = desc.idProduct; 894 895 libusb_device_handle * dev_handle; 896 r = libusb_open(device, &dev_handle); 897 898 if (r < 0) { 899 log_error("libusb_open failed!"); 900 dev_handle = NULL; 901 return NULL; 902 } 903 904 log_info("libusb open %d, handle %p", r, dev_handle); 905 906 // reset device (Not currently possible under FreeBSD 11.x/12.x due to usb framework) 907 #if !defined(__FreeBSD__) 908 r = libusb_reset_device(dev_handle); 909 if (r < 0) { 910 log_error("libusb_reset_device failed!"); 911 libusb_close(dev_handle); 912 return NULL; 913 } 914 #endif 915 return dev_handle; 916 } 917 918 #ifdef ENABLE_SCO_OVER_HCI 919 static int usb_sco_start(void){ 920 921 log_info("usb_sco_start"); 922 if( sco_activated ) { 923 log_error("double sco start!"); 924 return -1; 925 } 926 sco_activated = true; 927 928 sco_state_machine_init(); 929 930 int alt_setting; 931 if (sco_voice_setting & 0x0020){ 932 // 16-bit PCM 933 alt_setting = alt_setting_16_bit[sco_num_connections-1]; 934 } else { 935 // 8-bit PCM or mSBC 936 alt_setting = alt_setting_8_bit[sco_num_connections-1]; 937 } 938 // derive iso packet size from alt setting 939 iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; 940 941 log_info("Switching to setting %u on interface 1..", alt_setting); 942 int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); 943 if (r < 0) { 944 log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); 945 return r; 946 } 947 948 #ifdef DEBUG 949 int in_flight = usb_transfer_list_in_flight( sco_transfer_list ); 950 // there need to be at least SCO_IN_BUFFER_COUNT packets available to 951 // fill them in below 952 assert( in_flight <= SCO_OUT_BUFFER_COUNT ); 953 #endif 954 955 // incoming 956 int c; 957 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 958 959 struct libusb_transfer *transfer = usb_transfer_list_acquire( sco_transfer_list ); 960 uint8_t *data = transfer->buffer; 961 void *user_data = transfer->user_data; 962 963 // configure sco_in handlers 964 libusb_fill_iso_transfer(transfer, handle, sco_in_addr, 965 data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, user_data, 0); 966 libusb_set_iso_packet_lengths(transfer, iso_packet_size); 967 r = libusb_submit_transfer(transfer); 968 if (r) { 969 log_error("Error submitting isochronous in transfer %d", r); 970 usb_close(); 971 return r; 972 } 973 } 974 return 0; 975 } 976 977 static void usb_sco_stop(void){ 978 979 log_info("usb_sco_stop"); 980 sco_activated = false; 981 982 usb_transfer_list_cancel( sco_transfer_list ); 983 984 log_info("Switching to setting %u on interface 1..", 0); 985 int r = libusb_set_interface_alt_setting(handle, 1, 0); 986 if (r < 0) { 987 log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); 988 return; 989 } 990 991 log_info("usb_sco_stop done"); 992 } 993 #endif 994 995 void pollfd_added_cb(int fd, short events, void *user_data); 996 void pollfd_remove_cb(int fd, void *user_data); 997 998 void pollfd_added_cb(int fd, short events, void *user_data) { 999 UNUSED(events); 1000 UNUSED(user_data); 1001 log_error("add fd: %d", fd); 1002 assert(0); 1003 } 1004 1005 void pollfd_remove_cb(int fd, void *user_data) { 1006 UNUSED(user_data); 1007 log_error("remove fd: %d", fd); 1008 assert(0); 1009 } 1010 1011 static int usb_open(void){ 1012 int r; 1013 1014 if (usb_transport_open) return 0; 1015 1016 // default endpoint addresses 1017 event_in_addr = 0x81; // EP1, IN interrupt 1018 acl_in_addr = 0x82; // EP2, IN bulk 1019 acl_out_addr = 0x02; // EP2, OUT bulk 1020 sco_in_addr = 0x83; // EP3, IN isochronous 1021 sco_out_addr = 0x03; // EP3, OUT isochronous 1022 1023 // USB init 1024 r = libusb_init(NULL); 1025 if (r < 0) return -1; 1026 1027 libusb_state = LIB_USB_OPENED; 1028 1029 // configure debug level 1030 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1031 1032 libusb_device * dev = NULL; 1033 1034 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 1035 1036 // Use a specified device 1037 log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); 1038 handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); 1039 1040 if (!handle){ 1041 log_error("libusb_open_device_with_vid_pid failed!"); 1042 usb_close(); 1043 return -1; 1044 } 1045 log_info("libusb open %d, handle %p", r, handle); 1046 1047 r = prepare_device(handle); 1048 if (r < 0){ 1049 usb_close(); 1050 return -1; 1051 } 1052 1053 dev = libusb_get_device(handle); 1054 r = scan_for_bt_endpoints(dev); 1055 if (r < 0){ 1056 usb_close(); 1057 return -1; 1058 } 1059 1060 usb_vendor_id = USB_VENDOR_ID; 1061 usb_product_id = USB_PRODUCT_ID; 1062 1063 #else 1064 // Scan system for an appropriate devices 1065 libusb_device **devs; 1066 ssize_t num_devices; 1067 1068 log_info("Scanning for USB Bluetooth device"); 1069 num_devices = libusb_get_device_list(NULL, &devs); 1070 if (num_devices < 0) { 1071 usb_close(); 1072 return -1; 1073 } 1074 1075 if (usb_path_len){ 1076 int i; 1077 for (i=0;i<num_devices;i++){ 1078 uint8_t port_numbers[USB_MAX_PATH_LEN]; 1079 int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN); 1080 if (len != usb_path_len) continue; 1081 if (memcmp(usb_path, port_numbers, len) == 0){ 1082 log_info("USB device found at specified path"); 1083 handle = try_open_device(devs[i]); 1084 if (!handle) continue; 1085 1086 r = prepare_device(handle); 1087 if (r < 0) { 1088 handle = NULL; 1089 continue; 1090 } 1091 1092 dev = devs[i]; 1093 r = scan_for_bt_endpoints(dev); 1094 if (r < 0) { 1095 handle = NULL; 1096 continue; 1097 } 1098 1099 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1100 break; 1101 }; 1102 } 1103 if (!handle){ 1104 log_error("USB device with given path not found"); 1105 return -1; 1106 } 1107 } else { 1108 1109 int deviceIndex = -1; 1110 while (true){ 1111 // look for next Bluetooth dongle 1112 deviceIndex = scan_for_bt_device(devs, deviceIndex+1); 1113 if (deviceIndex < 0) break; 1114 1115 log_info("USB Bluetooth device found, index %u", deviceIndex); 1116 1117 handle = try_open_device(devs[deviceIndex]); 1118 if (!handle) continue; 1119 1120 r = prepare_device(handle); 1121 if (r < 0) { 1122 handle = NULL; 1123 continue; 1124 } 1125 1126 dev = devs[deviceIndex]; 1127 r = scan_for_bt_endpoints(dev); 1128 if (r < 0) { 1129 handle = NULL; 1130 continue; 1131 } 1132 1133 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1134 break; 1135 } 1136 } 1137 1138 libusb_free_device_list(devs, 1); 1139 1140 if (handle == 0){ 1141 log_error("No USB Bluetooth device found"); 1142 return -1; 1143 } 1144 1145 #endif 1146 1147 // allocate transfer handlers 1148 int c; 1149 1150 default_transfer_list = usb_transfer_list_alloc( 1151 EVENT_OUT_BUFFER_COUNT+EVENT_IN_BUFFER_COUNT+ACL_IN_BUFFER_COUNT, 1152 0, 1153 LIBUSB_CONTROL_SETUP_SIZE + HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE ); // biggest packet ever to expect 1154 1155 #ifdef ENABLE_SCO_OVER_HCI 1156 sco_transfer_list = usb_transfer_list_alloc( 1157 SCO_OUT_BUFFER_COUNT+SCO_IN_BUFFER_COUNT, 1158 NUM_ISO_PACKETS, 1159 SCO_PACKET_SIZE 1160 ); 1161 #endif 1162 1163 // TODO check for error 1164 1165 libusb_state = LIB_USB_TRANSFERS_ALLOCATED; 1166 1167 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1168 struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list ); 1169 uint8_t *data = transfer->buffer; 1170 void *user_data = transfer->user_data; 1171 // configure event_in handlers 1172 libusb_fill_interrupt_transfer(transfer, handle, event_in_addr, 1173 data, HCI_ACL_BUFFER_SIZE, async_callback, user_data, 0); 1174 r = libusb_submit_transfer(transfer); 1175 if (r) { 1176 log_error("Error submitting interrupt transfer %d", r); 1177 usb_close(); 1178 return r; 1179 } 1180 } 1181 1182 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1183 struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list ); 1184 usb_transfer_list_entry_t *transfer_meta_data = (usb_transfer_list_entry_t*)transfer->user_data; 1185 uint8_t *data = transfer_meta_data->data; 1186 void *user_data = transfer->user_data; 1187 // configure acl_in handlers 1188 libusb_fill_bulk_transfer(transfer, handle, acl_in_addr, 1189 data + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, user_data, 0) ; 1190 r = libusb_submit_transfer(transfer); 1191 if (r) { 1192 log_error("Error submitting bulk in transfer %d", r); 1193 usb_close(); 1194 return r; 1195 } 1196 1197 } 1198 1199 // Check for pollfds functionality 1200 doing_pollfds = libusb_pollfds_handle_timeouts(NULL); 1201 1202 libusb_set_pollfd_notifiers( NULL, pollfd_added_cb, pollfd_remove_cb, NULL ); 1203 1204 if (doing_pollfds) { 1205 log_info("Async using pollfds:"); 1206 1207 const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); 1208 for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); 1209 pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); 1210 if (!pollfd_data_sources){ 1211 log_error("Cannot allocate data sources for pollfds"); 1212 usb_close(); 1213 return 1; 1214 } 1215 memset(pollfd_data_sources, 0, sizeof(btstack_data_source_t) * num_pollfds); 1216 for (r = 0 ; r < num_pollfds ; r++) { 1217 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1218 btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); 1219 btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); 1220 if( pollfd[r]->events & POLLIN ) 1221 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); 1222 else 1223 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_WRITE); 1224 btstack_run_loop_add_data_source(ds); 1225 log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); 1226 } 1227 libusb_free_pollfds(pollfd); 1228 } else { 1229 log_info("Async using timers:"); 1230 1231 usb_timer.process = usb_process_ts; 1232 btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); 1233 btstack_run_loop_add_timer(&usb_timer); 1234 usb_timer_active = 1; 1235 } 1236 1237 usb_transport_open = 1; 1238 1239 hci_transport_h2_libusb_emit_usb_info(); 1240 1241 btstack_data_source_t *ds = &transport_response; 1242 btstack_run_loop_set_data_source_handler(ds, &usb_transport_response_ds); 1243 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_POLL); 1244 btstack_run_loop_add_data_source(ds); 1245 return 0; 1246 } 1247 1248 static int usb_close(void) { 1249 if (!usb_transport_open) return 0; 1250 1251 log_info("usb_close"); 1252 1253 switch (libusb_state){ 1254 case LIB_USB_CLOSED: 1255 break; 1256 1257 case LIB_USB_TRANSFERS_ALLOCATED: 1258 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1259 1260 if(usb_timer_active) { 1261 btstack_run_loop_remove_timer(&usb_timer); 1262 usb_timer_active = 0; 1263 } 1264 1265 if (doing_pollfds){ 1266 int r; 1267 for (r = 0 ; r < num_pollfds ; r++) { 1268 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1269 btstack_run_loop_remove_data_source(ds); 1270 } 1271 free(pollfd_data_sources); 1272 pollfd_data_sources = NULL; 1273 num_pollfds = 0; 1274 doing_pollfds = 0; 1275 } 1276 1277 /* fall through */ 1278 1279 case LIB_USB_INTERFACE_CLAIMED: 1280 libusb_set_pollfd_notifiers( NULL, NULL, NULL, NULL ); 1281 usb_transfer_list_cancel( default_transfer_list ); 1282 #ifdef ENABLE_SCO_OVER_HCI 1283 usb_transfer_list_cancel( sco_transfer_list ); 1284 #endif 1285 1286 int in_flight_transfers = usb_transfer_list_in_flight( default_transfer_list ); 1287 #ifdef ENABLE_SCO_OVER_HCI 1288 in_flight_transfers += usb_transfer_list_in_flight( sco_transfer_list ); 1289 #endif 1290 while( in_flight_transfers > 0 ) { 1291 struct timeval tv = { 0 }; 1292 libusb_handle_events_timeout(NULL, &tv); 1293 1294 in_flight_transfers = usb_transfer_list_in_flight( default_transfer_list ); 1295 #ifdef ENABLE_SCO_OVER_HCI 1296 in_flight_transfers += usb_transfer_list_in_flight( sco_transfer_list ); 1297 #endif 1298 } 1299 1300 usb_transfer_list_free( default_transfer_list ); 1301 #ifdef ENABLE_SCO_OVER_HCI 1302 usb_transfer_list_free( sco_transfer_list ); 1303 sco_enabled = 0; 1304 #endif 1305 1306 // finally release interface 1307 libusb_release_interface(handle, 0); 1308 #ifdef ENABLE_SCO_OVER_HCI 1309 libusb_release_interface(handle, 1); 1310 #endif 1311 log_info("Libusb shutdown complete"); 1312 1313 /* fall through */ 1314 1315 case LIB_USB_DEVICE_OPENDED: 1316 libusb_close(handle); 1317 1318 /* fall through */ 1319 1320 case LIB_USB_OPENED: 1321 libusb_exit(NULL); 1322 break; 1323 1324 default: 1325 btstack_assert(false); 1326 break; 1327 } 1328 1329 libusb_state = LIB_USB_CLOSED; 1330 handle = NULL; 1331 usb_transport_open = 0; 1332 1333 return 0; 1334 } 1335 1336 static int acknowledge_count = 0; 1337 static void signal_acknowledge() { 1338 ++acknowledge_count; 1339 btstack_run_loop_poll_data_sources_from_irq(); 1340 } 1341 1342 static int sco_can_send_now_count = 0; 1343 static void signal_sco_can_send_now() { 1344 ++sco_can_send_now_count; 1345 btstack_run_loop_poll_data_sources_from_irq(); 1346 } 1347 1348 static void usb_transport_response_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 1349 UNUSED(ds); 1350 UNUSED(callback_type); 1351 // printf("%s packet sent: %d sco can send now: %d\n", __FUNCTION__, acknowledge_count, sco_can_send_now_count); 1352 for(; acknowledge_count>0; --acknowledge_count) { 1353 static const uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0 }; 1354 packet_handler(HCI_EVENT_PACKET, (uint8_t*)&event[0], sizeof(event)); 1355 } 1356 1357 for(; sco_can_send_now_count>0; --sco_can_send_now_count) { 1358 static const uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0 }; 1359 packet_handler(HCI_EVENT_PACKET, (uint8_t*)&event[0], sizeof(event)); 1360 } 1361 1362 } 1363 1364 static int usb_send_cmd_packet(uint8_t *packet, int size){ 1365 int r; 1366 1367 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1368 // printf("%s( %p, %d )\n", __FUNCTION__, packet, size ); 1369 1370 struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list ); 1371 uint8_t *data = transfer->buffer; 1372 void *user_data = transfer->user_data; 1373 1374 // async 1375 libusb_fill_control_setup(data, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); 1376 memcpy(data + LIBUSB_CONTROL_SETUP_SIZE, packet, size); 1377 1378 // prepare transfer 1379 libusb_fill_control_transfer(transfer, handle, data, async_callback, user_data, 0); 1380 1381 // submit transfer 1382 assert( transfer->user_data != NULL ); 1383 r = libusb_submit_transfer(transfer); 1384 1385 if (r < 0) { 1386 log_error("Error submitting cmd transfer %d", r); 1387 return -1; 1388 } 1389 1390 signal_acknowledge(); 1391 1392 return 0; 1393 } 1394 1395 static int usb_send_acl_packet(uint8_t *packet, int size){ 1396 int r; 1397 1398 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1399 // printf("%s( %p, %d )\n", __FUNCTION__, packet, size ); 1400 // log_info("usb_send_acl_packet enter, size %u", size); 1401 1402 struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list ); 1403 uint8_t *data = transfer->buffer; 1404 1405 // prepare transfer 1406 memcpy( data, packet, size ); 1407 libusb_fill_bulk_transfer(transfer, handle, acl_out_addr, data, size, 1408 async_callback, transfer->user_data, 0); 1409 1410 assert( transfer->user_data != NULL ); 1411 r = libusb_submit_transfer(transfer); 1412 1413 if (r < 0) { 1414 log_error("Error submitting acl transfer, %d", r); 1415 return -1; 1416 } 1417 1418 signal_acknowledge(); 1419 1420 return 0; 1421 } 1422 1423 static int usb_can_send_packet_now(uint8_t packet_type){ 1424 switch (packet_type){ 1425 case HCI_COMMAND_DATA_PACKET: { 1426 int ret = !usb_transfer_list_empty( default_transfer_list ); 1427 if( !ret ) { 1428 log_error("command transfers shouldn't be empty!"); 1429 } 1430 return ret; 1431 } 1432 case HCI_ACL_DATA_PACKET: { 1433 int ret = !usb_transfer_list_empty( default_transfer_list ); 1434 if( !ret ) { 1435 log_error("acl transfers shouldn't be empty!"); 1436 } 1437 return ret; 1438 } 1439 1440 #ifdef ENABLE_SCO_OVER_HCI 1441 case HCI_SCO_DATA_PACKET: { 1442 if (!sco_enabled || !sco_activated) return 0; 1443 int ret = !usb_transfer_list_empty( sco_transfer_list ); 1444 if( !ret ) { 1445 log_error("sco transfers shouldn't be empty!"); 1446 } 1447 return ret; 1448 } 1449 #endif 1450 default: 1451 return 0; 1452 } 1453 } 1454 1455 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ 1456 switch (packet_type){ 1457 case HCI_COMMAND_DATA_PACKET: 1458 return usb_send_cmd_packet(packet, size); 1459 case HCI_ACL_DATA_PACKET: 1460 return usb_send_acl_packet(packet, size); 1461 #ifdef ENABLE_SCO_OVER_HCI 1462 case HCI_SCO_DATA_PACKET: 1463 if (!sco_enabled) return -1; 1464 return usb_send_sco_packet(packet, size); 1465 #endif 1466 default: 1467 return -1; 1468 } 1469 } 1470 1471 #ifdef ENABLE_SCO_OVER_HCI 1472 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ 1473 if (!sco_enabled) return; 1474 1475 log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); 1476 1477 if (num_connections != sco_num_connections){ 1478 sco_voice_setting = voice_setting; 1479 if (sco_num_connections){ 1480 usb_sco_stop(); 1481 } 1482 sco_num_connections = num_connections; 1483 if (num_connections){ 1484 usb_sco_start(); 1485 } 1486 } 1487 } 1488 #endif 1489 1490 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1491 log_info("registering packet handler"); 1492 packet_handler = handler; 1493 } 1494 1495 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1496 UNUSED(packet_type); 1497 UNUSED(packet); 1498 UNUSED(size); 1499 } 1500 1501 // get usb singleton 1502 const hci_transport_t * hci_transport_usb_instance(void) { 1503 if (!hci_transport_usb) { 1504 hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); 1505 memset(hci_transport_usb, 0, sizeof(hci_transport_t)); 1506 hci_transport_usb->name = "H2_LIBUSB"; 1507 hci_transport_usb->open = usb_open; 1508 hci_transport_usb->close = usb_close; 1509 hci_transport_usb->register_packet_handler = usb_register_packet_handler; 1510 hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; 1511 hci_transport_usb->send_packet = usb_send_packet; 1512 #ifdef ENABLE_SCO_OVER_HCI 1513 hci_transport_usb->set_sco_config = usb_set_sco_config; 1514 #endif 1515 } 1516 return hci_transport_usb; 1517 } 1518