1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define __BTSTACK_FILE__ "hci_transport_h2_libusb.c" 39 40 /* 41 * hci_transport_usb.c 42 * 43 * HCI Transport API implementation for USB 44 * 45 * Created by Matthias Ringwald on 7/5/09. 46 */ 47 48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size 49 // HCI Commands 0 0 0x00 Control 8/16/32/64 50 // HCI Events 0 0 0x81 Interrupt (IN) 16 51 // ACL Data 0 0 0x82 Bulk (IN) 32/64 52 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 53 // SCO Data 0 0 0x83 Isochronous (IN) 54 // SCO Data 0 0 0x03 Isochronous (Out) 55 56 #include <stdio.h> 57 #include <strings.h> 58 #include <string.h> 59 #include <unistd.h> /* UNIX standard function definitions */ 60 #include <sys/types.h> 61 62 #include <libusb.h> 63 64 #include "btstack_config.h" 65 66 #include "btstack_debug.h" 67 #include "hci.h" 68 #include "hci_transport.h" 69 70 // deal with changes in libusb API: 71 #ifdef LIBUSB_API_VERSION 72 #if LIBUSB_API_VERSION >= 0x01000106 73 // since 1.0.22, libusb_set_option replaces libusb_set_debug 74 #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level) 75 #endif 76 #endif 77 78 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) 79 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 80 #endif 81 82 #define ACL_IN_BUFFER_COUNT 3 83 #define EVENT_IN_BUFFER_COUNT 3 84 #define SCO_IN_BUFFER_COUNT 10 85 86 #define ASYNC_POLLING_INTERVAL_MS 1 87 88 // 89 // Bluetooth USB Transport Alternate Settings: 90 // 91 // 0: No active voice channels (for USB compliance) 92 // 1: One 8 kHz voice channel with 8-bit encoding 93 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding 94 // 3: Three 8 kHz voice channels with 8-bit encoding 95 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding 96 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding 97 // --> support only a single SCO connection 98 // #define ALT_SETTING (1) 99 100 #ifdef ENABLE_SCO_OVER_HCI 101 // alt setting for 1-3 connections and 8/16 bit 102 static const int alt_setting_8_bit[] = {1,2,3}; 103 static const int alt_setting_16_bit[] = {2,4,5}; 104 105 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets 106 // One complete SCO packet with 24 frames every 3 frames (== 3 ms) 107 #define NUM_ISO_PACKETS (3) 108 109 static const uint16_t iso_packet_size_for_alt_setting[] = { 110 0, 111 9, 112 17, 113 25, 114 33, 115 49, 116 63, 117 }; 118 #endif 119 120 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) 121 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload 122 #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) 123 124 // Outgoing SCO packet queue 125 // simplified ring buffer implementation 126 #define SCO_OUT_BUFFER_COUNT (8) 127 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) 128 129 // seems to be the max depth for USB 3 130 #define USB_MAX_PATH_LEN 7 131 132 // prototypes 133 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); 134 static int usb_close(void); 135 136 typedef enum { 137 LIB_USB_CLOSED = 0, 138 LIB_USB_OPENED, 139 LIB_USB_DEVICE_OPENDED, 140 LIB_USB_INTERFACE_CLAIMED, 141 LIB_USB_TRANSFERS_ALLOCATED 142 } libusb_state_t; 143 144 // SCO packet state machine 145 typedef enum { 146 H2_W4_SCO_HEADER = 1, 147 H2_W4_PAYLOAD, 148 } H2_SCO_STATE; 149 150 static libusb_state_t libusb_state = LIB_USB_CLOSED; 151 152 // single instance 153 static hci_transport_t * hci_transport_usb = NULL; 154 155 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; 156 157 // libusb 158 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 159 static struct libusb_device_descriptor desc; 160 static libusb_device * dev; 161 #endif 162 static libusb_device_handle * handle; 163 164 static struct libusb_transfer *command_out_transfer; 165 static struct libusb_transfer *acl_out_transfer; 166 static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT]; 167 static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT]; 168 169 #ifdef ENABLE_SCO_OVER_HCI 170 171 #ifdef _WIN32 172 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" 173 #endif 174 175 // incoming SCO 176 static H2_SCO_STATE sco_state; 177 static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; 178 static uint16_t sco_read_pos; 179 static uint16_t sco_bytes_to_read; 180 static struct libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT]; 181 static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE]; 182 183 // outgoing SCO 184 static uint8_t sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE]; 185 static int sco_ring_write; // packet idx 186 static int sco_out_transfers_active; 187 static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT]; 188 static int sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT]; 189 190 // pause/resume 191 static uint16_t sco_voice_setting; 192 static int sco_num_connections; 193 static int sco_shutdown; 194 195 // dynamic SCO configuration 196 static uint16_t iso_packet_size; 197 198 #endif 199 200 // outgoing buffer for HCI Command packets 201 static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE]; 202 203 // incoming buffer for HCI Events and ACL Packets 204 static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet 205 static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE]; 206 207 // For (ab)use as a linked list of received packets 208 static struct libusb_transfer *handle_packet; 209 210 static int doing_pollfds; 211 static int num_pollfds; 212 static btstack_data_source_t * pollfd_data_sources; 213 static btstack_timer_source_t usb_timer; 214 static int usb_timer_active; 215 216 static int usb_acl_out_active = 0; 217 static int usb_command_active = 0; 218 219 // endpoint addresses 220 static int event_in_addr; 221 static int acl_in_addr; 222 static int acl_out_addr; 223 static int sco_in_addr; 224 static int sco_out_addr; 225 226 // device path 227 static int usb_path_len; 228 static uint8_t usb_path[USB_MAX_PATH_LEN]; 229 230 // transport interface state 231 static int usb_transport_open; 232 233 234 #ifdef ENABLE_SCO_OVER_HCI 235 static void sco_ring_init(void){ 236 sco_ring_write = 0; 237 sco_out_transfers_active = 0; 238 } 239 static int sco_ring_have_space(void){ 240 return sco_out_transfers_active < SCO_OUT_BUFFER_COUNT; 241 } 242 #endif 243 244 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ 245 if (len > USB_MAX_PATH_LEN || !port_numbers){ 246 log_error("hci_transport_usb_set_path: len or port numbers invalid"); 247 return; 248 } 249 usb_path_len = len; 250 memcpy(usb_path, port_numbers, len); 251 } 252 253 // 254 static void queue_transfer(struct libusb_transfer *transfer){ 255 256 // log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length); 257 258 transfer->user_data = NULL; 259 260 // insert first element 261 if (handle_packet == NULL) { 262 handle_packet = transfer; 263 return; 264 } 265 266 // Walk to end of list and add current packet there 267 struct libusb_transfer *temp = handle_packet; 268 while (temp->user_data) { 269 temp = (struct libusb_transfer*)temp->user_data; 270 } 271 temp->user_data = transfer; 272 } 273 274 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){ 275 276 int c; 277 278 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED){ 279 log_info("shutdown, transfer %p", transfer); 280 } 281 282 283 // identify and free transfers as part of shutdown 284 #ifdef ENABLE_SCO_OVER_HCI 285 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) { 286 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 287 if (transfer == sco_in_transfer[c]){ 288 libusb_free_transfer(transfer); 289 sco_in_transfer[c] = 0; 290 return; 291 } 292 } 293 294 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 295 if (transfer == sco_out_transfers[c]){ 296 sco_out_transfers_in_flight[c] = 0; 297 libusb_free_transfer(transfer); 298 sco_out_transfers[c] = 0; 299 return; 300 } 301 } 302 } 303 #endif 304 305 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { 306 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 307 if (transfer == event_in_transfer[c]){ 308 libusb_free_transfer(transfer); 309 event_in_transfer[c] = 0; 310 return; 311 } 312 } 313 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 314 if (transfer == acl_in_transfer[c]){ 315 libusb_free_transfer(transfer); 316 acl_in_transfer[c] = 0; 317 return; 318 } 319 } 320 return; 321 } 322 323 #ifdef ENABLE_SCO_OVER_HCI 324 // mark SCO OUT transfer as done 325 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 326 if (transfer == sco_out_transfers[c]){ 327 sco_out_transfers_in_flight[c] = 0; 328 } 329 } 330 #endif 331 332 int r; 333 // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); 334 335 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { 336 queue_transfer(transfer); 337 } else if (transfer->status == LIBUSB_TRANSFER_STALL){ 338 log_info("-> Transfer stalled, trying again"); 339 r = libusb_clear_halt(handle, transfer->endpoint); 340 if (r) { 341 log_error("Error rclearing halt %d", r); 342 } 343 r = libusb_submit_transfer(transfer); 344 if (r) { 345 log_error("Error re-submitting transfer %d", r); 346 } 347 } else { 348 log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); 349 // No usable data, just resubmit packet 350 r = libusb_submit_transfer(transfer); 351 if (r) { 352 log_error("Error re-submitting transfer %d", r); 353 } 354 } 355 // log_info("end async_callback"); 356 } 357 358 359 #ifdef ENABLE_SCO_OVER_HCI 360 static int usb_send_sco_packet(uint8_t *packet, int size){ 361 int r; 362 363 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 364 365 // log_info("usb_send_acl_packet enter, size %u", size); 366 367 // store packet in free slot 368 int tranfer_index = sco_ring_write; 369 uint8_t * data = &sco_out_ring_buffer[tranfer_index * SCO_PACKET_SIZE]; 370 memcpy(data, packet, size); 371 372 // setup transfer 373 // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); 374 struct libusb_transfer * sco_transfer = sco_out_transfers[tranfer_index]; 375 libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 376 libusb_set_iso_packet_lengths(sco_transfer, iso_packet_size); 377 r = libusb_submit_transfer(sco_transfer); 378 if (r < 0) { 379 log_error("Error submitting sco transfer, %d", r); 380 return -1; 381 } 382 383 // mark slot as full 384 sco_ring_write++; 385 if (sco_ring_write == SCO_OUT_BUFFER_COUNT){ 386 sco_ring_write = 0; 387 } 388 sco_out_transfers_active++; 389 sco_out_transfers_in_flight[tranfer_index] = 1; 390 391 // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); 392 393 // notify upper stack that provided buffer can be used again 394 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 395 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 396 397 // and if we have more space for SCO packets 398 if (sco_ring_have_space()) { 399 uint8_t event_sco[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 400 packet_handler(HCI_EVENT_PACKET, &event_sco[0], sizeof(event_sco)); 401 } 402 return 0; 403 } 404 405 static void sco_state_machine_init(void){ 406 sco_state = H2_W4_SCO_HEADER; 407 sco_read_pos = 0; 408 sco_bytes_to_read = 3; 409 } 410 411 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ 412 while (size){ 413 if (size < sco_bytes_to_read){ 414 // just store incomplete data 415 memcpy(&sco_buffer[sco_read_pos], buffer, size); 416 sco_read_pos += size; 417 sco_bytes_to_read -= size; 418 return; 419 } 420 // copy requested data 421 memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); 422 sco_read_pos += sco_bytes_to_read; 423 buffer += sco_bytes_to_read; 424 size -= sco_bytes_to_read; 425 426 // chunk read successfully, next action 427 switch (sco_state){ 428 case H2_W4_SCO_HEADER: 429 sco_state = H2_W4_PAYLOAD; 430 sco_bytes_to_read = sco_buffer[2]; 431 break; 432 case H2_W4_PAYLOAD: 433 // packet complete 434 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); 435 sco_state_machine_init(); 436 break; 437 } 438 } 439 } 440 #endif 441 442 static void handle_completed_transfer(struct libusb_transfer *transfer){ 443 444 int resubmit = 0; 445 int signal_done = 0; 446 447 if (transfer->endpoint == event_in_addr) { 448 packet_handler(HCI_EVENT_PACKET, transfer-> buffer, transfer->actual_length); 449 resubmit = 1; 450 } else if (transfer->endpoint == acl_in_addr) { 451 // log_info("-> acl"); 452 packet_handler(HCI_ACL_DATA_PACKET, transfer-> buffer, transfer->actual_length); 453 resubmit = 1; 454 } else if (transfer->endpoint == 0){ 455 // log_info("command done, size %u", transfer->actual_length); 456 usb_command_active = 0; 457 signal_done = 1; 458 } else if (transfer->endpoint == acl_out_addr){ 459 // log_info("acl out done, size %u", transfer->actual_length); 460 usb_acl_out_active = 0; 461 signal_done = 1; 462 #ifdef ENABLE_SCO_OVER_HCI 463 } else if (transfer->endpoint == sco_in_addr) { 464 // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); 465 int i; 466 for (i = 0; i < transfer->num_iso_packets; i++) { 467 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 468 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 469 log_error("Error: pack %u status %d\n", i, pack->status); 470 continue; 471 } 472 if (!pack->actual_length) continue; 473 uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); 474 // printf_hexdump(data, pack->actual_length); 475 // log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length); 476 handle_isochronous_data(data, pack->actual_length); 477 } 478 resubmit = 1; 479 } else if (transfer->endpoint == sco_out_addr){ 480 int i; 481 for (i = 0; i < transfer->num_iso_packets; i++) { 482 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 483 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 484 log_error("Error: pack %u status %d\n", i, pack->status); 485 } 486 } 487 // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", 488 // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, 489 // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, 490 // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); 491 // notify upper layer if there's space for new SCO packets 492 493 if (sco_ring_have_space()) { 494 uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 495 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 496 } 497 // decrease tab 498 sco_out_transfers_active--; 499 // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); 500 #endif 501 } else { 502 log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); 503 } 504 505 if (signal_done){ 506 // notify upper stack that provided buffer can be used again 507 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 508 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 509 } 510 511 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 512 513 if (resubmit){ 514 // Re-submit transfer 515 transfer->user_data = NULL; 516 int r = libusb_submit_transfer(transfer); 517 if (r) { 518 log_error("Error re-submitting transfer %d", r); 519 } 520 } 521 } 522 523 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 524 525 UNUSED(ds); 526 UNUSED(callback_type); 527 528 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 529 530 // log_info("begin usb_process_ds"); 531 // always handling an event as we're called when data is ready 532 struct timeval tv; 533 memset(&tv, 0, sizeof(struct timeval)); 534 libusb_handle_events_timeout(NULL, &tv); 535 536 // Handle any packet in the order that they were received 537 while (handle_packet) { 538 // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); 539 void * next = handle_packet->user_data; 540 handle_completed_transfer(handle_packet); 541 // handle case where libusb_close might be called by hci packet handler 542 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 543 544 // Move to next in the list of packets to handle 545 if (next) { 546 handle_packet = (struct libusb_transfer*)next; 547 } else { 548 handle_packet = NULL; 549 } 550 } 551 // log_info("end usb_process_ds"); 552 } 553 554 static void usb_process_ts(btstack_timer_source_t *timer) { 555 556 UNUSED(timer); 557 558 // log_info("in usb_process_ts"); 559 560 // timer is deactive, when timer callback gets called 561 usb_timer_active = 0; 562 563 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 564 565 // actually handled the packet in the pollfds function 566 usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); 567 568 // Get the amount of time until next event is due 569 long msec = ASYNC_POLLING_INTERVAL_MS; 570 571 // Activate timer 572 btstack_run_loop_set_timer(&usb_timer, msec); 573 btstack_run_loop_add_timer(&usb_timer); 574 usb_timer_active = 1; 575 576 return; 577 } 578 579 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 580 581 // list of known devices, using VendorID/ProductID tuples 582 static const uint16_t known_bt_devices[] = { 583 // DeLOCK Bluetooth 4.0 584 0x0a5c, 0x21e8, 585 // Asus BT400 586 0x0b05, 0x17cb, 587 // BCM20702B0 (Generic USB Detuned Class 1 @ 20 MHz) 588 0x0a5c, 0x22be 589 }; 590 591 static int num_known_devices = sizeof(known_bt_devices) / sizeof(uint16_t) / 2; 592 593 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ 594 int i; 595 for (i=0; i<num_known_devices; i++){ 596 if (known_bt_devices[i*2] == vendor_id && known_bt_devices[i*2+1] == product_id){ 597 return 1; 598 } 599 } 600 return 0; 601 } 602 603 static void scan_for_bt_endpoints(void) { 604 int r; 605 606 event_in_addr = 0; 607 acl_in_addr = 0; 608 acl_out_addr = 0; 609 sco_out_addr = 0; 610 sco_in_addr = 0; 611 612 // get endpoints from interface descriptor 613 struct libusb_config_descriptor *config_descriptor; 614 r = libusb_get_active_config_descriptor(dev, &config_descriptor); 615 616 int num_interfaces = config_descriptor->bNumInterfaces; 617 log_info("active configuration has %u interfaces", num_interfaces); 618 619 int i; 620 for (i = 0; i < num_interfaces ; i++){ 621 const struct libusb_interface *interface = &config_descriptor->interface[i]; 622 const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; 623 log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); 624 625 const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; 626 627 for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){ 628 log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); 629 630 switch (endpoint->bmAttributes & 0x3){ 631 case LIBUSB_TRANSFER_TYPE_INTERRUPT: 632 if (event_in_addr) continue; 633 event_in_addr = endpoint->bEndpointAddress; 634 log_info("-> using 0x%2.2X for HCI Events", event_in_addr); 635 break; 636 case LIBUSB_TRANSFER_TYPE_BULK: 637 if (endpoint->bEndpointAddress & 0x80) { 638 if (acl_in_addr) continue; 639 acl_in_addr = endpoint->bEndpointAddress; 640 log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); 641 } else { 642 if (acl_out_addr) continue; 643 acl_out_addr = endpoint->bEndpointAddress; 644 log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); 645 } 646 break; 647 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: 648 if (endpoint->bEndpointAddress & 0x80) { 649 if (sco_in_addr) continue; 650 sco_in_addr = endpoint->bEndpointAddress; 651 log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); 652 } else { 653 if (sco_out_addr) continue; 654 sco_out_addr = endpoint->bEndpointAddress; 655 log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); 656 } 657 break; 658 default: 659 break; 660 } 661 } 662 } 663 libusb_free_config_descriptor(config_descriptor); 664 } 665 666 // returns index of found device or -1 667 static int scan_for_bt_device(libusb_device **devs, int start_index) { 668 int i; 669 for (i = start_index; devs[i] ; i++){ 670 dev = devs[i]; 671 int r = libusb_get_device_descriptor(dev, &desc); 672 if (r < 0) { 673 log_error("failed to get device descriptor"); 674 return 0; 675 } 676 677 log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", 678 desc.idVendor, desc.idProduct, 679 libusb_get_bus_number(dev), libusb_get_device_address(dev), 680 desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); 681 682 // Detect USB Dongle based Class, Subclass, and Protocol 683 // The class code (bDeviceClass) is 0xE0 – Wireless Controller. 684 // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. 685 // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. 686 // if (desc.bDeviceClass == 0xe0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01){ 687 if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { 688 return i; 689 } 690 691 // Detect USB Dongle based on whitelist 692 if (is_known_bt_device(desc.idVendor, desc.idProduct)) { 693 return i; 694 } 695 } 696 return -1; 697 } 698 #endif 699 700 static int prepare_device(libusb_device_handle * aHandle){ 701 702 // print device path 703 uint8_t port_numbers[USB_MAX_PATH_LEN]; 704 libusb_device * device = libusb_get_device(aHandle); 705 int path_len = libusb_get_port_numbers(device, port_numbers, USB_MAX_PATH_LEN); 706 printf("USB Path: "); 707 int i; 708 for (i=0;i<path_len;i++){ 709 if (i) printf("-"); 710 printf("%02x", port_numbers[i]); 711 } 712 printf("\n"); 713 714 int r; 715 int kernel_driver_detached = 0; 716 717 // Detach OS driver (not possible for OS X and WIN32) 718 #if !defined(__APPLE__) && !defined(_WIN32) 719 r = libusb_kernel_driver_active(aHandle, 0); 720 if (r < 0) { 721 log_error("libusb_kernel_driver_active error %d", r); 722 libusb_close(aHandle); 723 return r; 724 } 725 726 if (r == 1) { 727 r = libusb_detach_kernel_driver(aHandle, 0); 728 if (r < 0) { 729 log_error("libusb_detach_kernel_driver error %d", r); 730 libusb_close(aHandle); 731 return r; 732 } 733 kernel_driver_detached = 1; 734 } 735 log_info("libusb_detach_kernel_driver"); 736 #endif 737 738 const int configuration = 1; 739 log_info("setting configuration %d...", configuration); 740 r = libusb_set_configuration(aHandle, configuration); 741 if (r < 0) { 742 log_error("Error libusb_set_configuration: %d", r); 743 if (kernel_driver_detached){ 744 libusb_attach_kernel_driver(aHandle, 0); 745 } 746 libusb_close(aHandle); 747 return r; 748 } 749 750 // reserve access to device 751 log_info("claiming interface 0..."); 752 r = libusb_claim_interface(aHandle, 0); 753 if (r < 0) { 754 log_error("Error claiming interface %d", r); 755 if (kernel_driver_detached){ 756 libusb_attach_kernel_driver(aHandle, 0); 757 } 758 libusb_close(aHandle); 759 return r; 760 } 761 762 #ifdef ENABLE_SCO_OVER_HCI 763 log_info("claiming interface 1..."); 764 r = libusb_claim_interface(aHandle, 1); 765 if (r < 0) { 766 log_error("Error claiming interface %d", r); 767 if (kernel_driver_detached){ 768 libusb_attach_kernel_driver(aHandle, 0); 769 } 770 libusb_close(aHandle); 771 return r; 772 } 773 #endif 774 775 return 0; 776 } 777 778 static libusb_device_handle * try_open_device(libusb_device * device){ 779 int r; 780 781 libusb_device_handle * dev_handle; 782 r = libusb_open(device, &dev_handle); 783 784 if (r < 0) { 785 log_error("libusb_open failed!"); 786 dev_handle = NULL; 787 return NULL; 788 } 789 790 log_info("libusb open %d, handle %p", r, dev_handle); 791 792 // reset device 793 libusb_reset_device(dev_handle); 794 if (r < 0) { 795 log_error("libusb_reset_device failed!"); 796 libusb_close(dev_handle); 797 return NULL; 798 } 799 return dev_handle; 800 } 801 802 #ifdef ENABLE_SCO_OVER_HCI 803 804 static int usb_sco_start(void){ 805 806 printf("usb_sco_start\n"); 807 log_info("usb_sco_start"); 808 809 sco_state_machine_init(); 810 sco_ring_init(); 811 812 int alt_setting; 813 if (sco_voice_setting & 0x0020){ 814 // 16-bit PCM 815 alt_setting = alt_setting_16_bit[sco_num_connections-1]; 816 } else { 817 // 8-bit PCM or mSBC 818 alt_setting = alt_setting_8_bit[sco_num_connections-1]; 819 } 820 // derive iso packet size from alt setting 821 iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; 822 823 log_info("Switching to setting %u on interface 1..", alt_setting); 824 int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); 825 if (r < 0) { 826 log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); 827 return r; 828 } 829 830 // incoming 831 int c; 832 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 833 sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in 834 if (!sco_in_transfer[c]) { 835 usb_close(); 836 return LIBUSB_ERROR_NO_MEM; 837 } 838 // configure sco_in handlers 839 libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr, 840 hci_sco_in_buffer[c], NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 841 libusb_set_iso_packet_lengths(sco_in_transfer[c], iso_packet_size); 842 r = libusb_submit_transfer(sco_in_transfer[c]); 843 if (r) { 844 log_error("Error submitting isochronous in transfer %d", r); 845 usb_close(); 846 return r; 847 } 848 } 849 850 // outgoing 851 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 852 sco_out_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts 853 sco_out_transfers_in_flight[c] = 0; 854 } 855 return 0; 856 } 857 858 static void usb_sco_stop(void){ 859 860 printf("usb_sco_stop\n"); 861 862 log_info("usb_sco_stop"); 863 sco_shutdown = 1; 864 865 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 866 867 int c; 868 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 869 libusb_cancel_transfer(sco_in_transfer[c]); 870 } 871 872 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 873 if (sco_out_transfers_in_flight[c]) { 874 libusb_cancel_transfer(sco_out_transfers[c]); 875 } else { 876 libusb_free_transfer(sco_out_transfers[c]); 877 sco_out_transfers[c] = 0; 878 } 879 } 880 881 // wait until all transfers are completed 882 int completed = 0; 883 while (!completed){ 884 struct timeval tv; 885 memset(&tv, 0, sizeof(struct timeval)); 886 libusb_handle_events_timeout(NULL, &tv); 887 // check if all done 888 completed = 1; 889 890 // Cancel all synchronous transfer 891 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 892 if (sco_in_transfer[c]){ 893 completed = 0; 894 break; 895 } 896 } 897 898 if (!completed) continue; 899 900 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 901 if (sco_out_transfers[c]){ 902 completed = 0; 903 break; 904 } 905 } 906 } 907 sco_shutdown = 0; 908 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 909 910 log_info("Switching to setting %u on interface 1..", 0); 911 int r = libusb_set_interface_alt_setting(handle, 1, 0); 912 if (r < 0) { 913 log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); 914 return; 915 } 916 917 printf("usb_sco_stop done\n"); 918 } 919 920 921 922 #endif 923 924 static int usb_open(void){ 925 int r; 926 927 if (usb_transport_open) return 0; 928 929 handle_packet = NULL; 930 931 // default endpoint addresses 932 event_in_addr = 0x81; // EP1, IN interrupt 933 acl_in_addr = 0x82; // EP2, IN bulk 934 acl_out_addr = 0x02; // EP2, OUT bulk 935 sco_in_addr = 0x83; // EP3, IN isochronous 936 sco_out_addr = 0x03; // EP3, OUT isochronous 937 938 // USB init 939 r = libusb_init(NULL); 940 if (r < 0) return -1; 941 942 libusb_state = LIB_USB_OPENED; 943 944 // configure debug level 945 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 946 947 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 948 949 // Use a specified device 950 log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); 951 handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); 952 953 if (!handle){ 954 log_error("libusb_open_device_with_vid_pid failed!"); 955 usb_close(); 956 return -1; 957 } 958 log_info("libusb open %d, handle %p", r, handle); 959 960 r = prepare_device(handle); 961 if (r < 0){ 962 usb_close(); 963 return -1; 964 } 965 966 #else 967 // Scan system for an appropriate devices 968 libusb_device **devs; 969 ssize_t num_devices; 970 971 log_info("Scanning for USB Bluetooth device"); 972 num_devices = libusb_get_device_list(NULL, &devs); 973 if (num_devices < 0) { 974 usb_close(); 975 return -1; 976 } 977 978 dev = NULL; 979 980 if (usb_path_len){ 981 int i; 982 for (i=0;i<num_devices;i++){ 983 uint8_t port_numbers[USB_MAX_PATH_LEN]; 984 int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN); 985 if (len != usb_path_len) continue; 986 if (memcmp(usb_path, port_numbers, len) == 0){ 987 log_info("USB device found at specified path"); 988 handle = try_open_device(devs[i]); 989 if (!handle) continue; 990 991 r = prepare_device(handle); 992 if (r < 0) continue; 993 994 dev = devs[i]; 995 libusb_state = LIB_USB_INTERFACE_CLAIMED; 996 break; 997 }; 998 } 999 if (!handle){ 1000 log_error("USB device with given path not found"); 1001 printf("USB device with given path not found\n"); 1002 return -1; 1003 } 1004 } else { 1005 1006 int deviceIndex = -1; 1007 while (1){ 1008 // look for next Bluetooth dongle 1009 deviceIndex = scan_for_bt_device(devs, deviceIndex+1); 1010 if (deviceIndex < 0) break; 1011 1012 log_info("USB Bluetooth device found, index %u", deviceIndex); 1013 1014 handle = try_open_device(devs[deviceIndex]); 1015 if (!handle) continue; 1016 1017 r = prepare_device(handle); 1018 if (r < 0) continue; 1019 1020 dev = devs[deviceIndex]; 1021 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1022 break; 1023 } 1024 } 1025 1026 libusb_free_device_list(devs, 1); 1027 1028 if (handle == 0){ 1029 log_error("No USB Bluetooth device found"); 1030 return -1; 1031 } 1032 1033 scan_for_bt_endpoints(); 1034 1035 #endif 1036 1037 // allocate transfer handlers 1038 int c; 1039 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1040 event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events 1041 if (!event_in_transfer[c]) { 1042 usb_close(); 1043 return LIBUSB_ERROR_NO_MEM; 1044 } 1045 } 1046 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1047 acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in 1048 if (!acl_in_transfer[c]) { 1049 usb_close(); 1050 return LIBUSB_ERROR_NO_MEM; 1051 } 1052 } 1053 1054 command_out_transfer = libusb_alloc_transfer(0); 1055 acl_out_transfer = libusb_alloc_transfer(0); 1056 1057 // TODO check for error 1058 1059 libusb_state = LIB_USB_TRANSFERS_ALLOCATED; 1060 1061 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1062 // configure event_in handlers 1063 libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr, 1064 hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1065 r = libusb_submit_transfer(event_in_transfer[c]); 1066 if (r) { 1067 log_error("Error submitting interrupt transfer %d", r); 1068 usb_close(); 1069 return r; 1070 } 1071 } 1072 1073 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1074 // configure acl_in handlers 1075 libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr, 1076 hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1077 r = libusb_submit_transfer(acl_in_transfer[c]); 1078 if (r) { 1079 log_error("Error submitting bulk in transfer %d", r); 1080 usb_close(); 1081 return r; 1082 } 1083 1084 } 1085 1086 // Check for pollfds functionality 1087 doing_pollfds = libusb_pollfds_handle_timeouts(NULL); 1088 1089 // NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation here 1090 doing_pollfds = 0; 1091 1092 if (doing_pollfds) { 1093 log_info("Async using pollfds:"); 1094 1095 const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); 1096 for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); 1097 pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); 1098 if (!pollfd_data_sources){ 1099 log_error("Cannot allocate data sources for pollfds"); 1100 usb_close(); 1101 return 1; 1102 } 1103 for (r = 0 ; r < num_pollfds ; r++) { 1104 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1105 btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); 1106 btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); 1107 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); 1108 btstack_run_loop_add_data_source(ds); 1109 log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); 1110 } 1111 free(pollfd); 1112 } else { 1113 log_info("Async using timers:"); 1114 1115 usb_timer.process = usb_process_ts; 1116 btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); 1117 btstack_run_loop_add_timer(&usb_timer); 1118 usb_timer_active = 1; 1119 } 1120 1121 usb_transport_open = 1; 1122 1123 return 0; 1124 } 1125 1126 static int usb_close(void){ 1127 int c; 1128 int completed = 0; 1129 1130 if (!usb_transport_open) return 0; 1131 1132 log_info("usb_close"); 1133 1134 switch (libusb_state){ 1135 case LIB_USB_CLOSED: 1136 break; 1137 1138 case LIB_USB_TRANSFERS_ALLOCATED: 1139 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1140 1141 if(usb_timer_active) { 1142 btstack_run_loop_remove_timer(&usb_timer); 1143 usb_timer_active = 0; 1144 } 1145 1146 if (doing_pollfds){ 1147 int r; 1148 for (r = 0 ; r < num_pollfds ; r++) { 1149 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1150 btstack_run_loop_remove_data_source(ds); 1151 } 1152 free(pollfd_data_sources); 1153 pollfd_data_sources = NULL; 1154 num_pollfds = 0; 1155 doing_pollfds = 0; 1156 } 1157 1158 case LIB_USB_INTERFACE_CLAIMED: 1159 // Cancel all transfers, ignore warnings for this 1160 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 1161 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1162 if (event_in_transfer[c]){ 1163 log_info("cancel event_in_transfer[%u] = %p", c, event_in_transfer[c]); 1164 libusb_cancel_transfer(event_in_transfer[c]); 1165 } 1166 } 1167 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1168 if (acl_in_transfer[c]){ 1169 log_info("cancel acl_in_transfer[%u] = %p", c, acl_in_transfer[c]); 1170 libusb_cancel_transfer(acl_in_transfer[c]); 1171 } 1172 } 1173 #ifdef ENABLE_SCO_OVER_HCI 1174 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1175 if (sco_in_transfer[c]){ 1176 log_info("cancel sco_in_transfer[%u] = %p", c, sco_in_transfer[c]); 1177 libusb_cancel_transfer(sco_in_transfer[c]); 1178 } 1179 } 1180 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1181 if (sco_out_transfers_in_flight[c]) { 1182 log_info("cancel sco_out_transfers[%u] = %p", c, sco_out_transfers[c]); 1183 libusb_cancel_transfer(sco_out_transfers[c]); 1184 } else { 1185 libusb_free_transfer(sco_out_transfers[c]); 1186 sco_out_transfers[c] = 0; 1187 } 1188 } 1189 #endif 1190 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1191 1192 // wait until all transfers are completed - or 20 iterations 1193 int countdown = 20; 1194 while (!completed){ 1195 1196 if (--countdown == 0){ 1197 log_info("Not all transfers cancelled, leaking a bit."); 1198 break; 1199 } 1200 1201 struct timeval tv; 1202 memset(&tv, 0, sizeof(struct timeval)); 1203 libusb_handle_events_timeout(NULL, &tv); 1204 // check if all done 1205 completed = 1; 1206 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 1207 if (event_in_transfer[c]) { 1208 log_info("event_in_transfer[%u] still active (%p)", c, event_in_transfer[c]); 1209 completed = 0; 1210 break; 1211 } 1212 } 1213 1214 if (!completed) continue; 1215 1216 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 1217 if (acl_in_transfer[c]) { 1218 log_info("acl_in_transfer[%u] still active (%p)", c, acl_in_transfer[c]); 1219 completed = 0; 1220 break; 1221 } 1222 } 1223 1224 #ifdef ENABLE_SCO_OVER_HCI 1225 if (!completed) continue; 1226 1227 // Cancel all synchronous transfer 1228 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1229 if (sco_in_transfer[c]){ 1230 log_info("sco_in_transfer[%u] still active (%p)", c, sco_in_transfer[c]); 1231 completed = 0; 1232 break; 1233 } 1234 } 1235 1236 if (!completed) continue; 1237 1238 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1239 if (sco_out_transfers[c]){ 1240 log_info("sco_out_transfers[%u] still active (%p)", c, sco_out_transfers[c]); 1241 completed = 0; 1242 break; 1243 } 1244 } 1245 #endif 1246 } 1247 1248 // finally release interface 1249 libusb_release_interface(handle, 0); 1250 #ifdef ENABLE_SCO_OVER_HCI 1251 libusb_release_interface(handle, 1); 1252 #endif 1253 log_info("Libusb shutdown complete"); 1254 1255 case LIB_USB_DEVICE_OPENDED: 1256 libusb_close(handle); 1257 1258 case LIB_USB_OPENED: 1259 libusb_exit(NULL); 1260 } 1261 1262 libusb_state = LIB_USB_CLOSED; 1263 handle = NULL; 1264 usb_transport_open = 0; 1265 1266 return 0; 1267 } 1268 1269 static int usb_send_cmd_packet(uint8_t *packet, int size){ 1270 int r; 1271 1272 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1273 1274 // async 1275 libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); 1276 memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size); 1277 1278 // prepare transfer 1279 int completed = 0; 1280 libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0); 1281 command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER; 1282 1283 // update stata before submitting transfer 1284 usb_command_active = 1; 1285 1286 // submit transfer 1287 r = libusb_submit_transfer(command_out_transfer); 1288 1289 if (r < 0) { 1290 usb_command_active = 0; 1291 log_error("Error submitting cmd transfer %d", r); 1292 return -1; 1293 } 1294 1295 return 0; 1296 } 1297 1298 static int usb_send_acl_packet(uint8_t *packet, int size){ 1299 int r; 1300 1301 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1302 1303 // log_info("usb_send_acl_packet enter, size %u", size); 1304 1305 // prepare transfer 1306 int completed = 0; 1307 libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size, 1308 async_callback, &completed, 0); 1309 acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK; 1310 1311 // update stata before submitting transfer 1312 usb_acl_out_active = 1; 1313 1314 r = libusb_submit_transfer(acl_out_transfer); 1315 if (r < 0) { 1316 usb_acl_out_active = 0; 1317 log_error("Error submitting acl transfer, %d", r); 1318 return -1; 1319 } 1320 1321 return 0; 1322 } 1323 1324 static int usb_can_send_packet_now(uint8_t packet_type){ 1325 switch (packet_type){ 1326 case HCI_COMMAND_DATA_PACKET: 1327 return !usb_command_active; 1328 case HCI_ACL_DATA_PACKET: 1329 return !usb_acl_out_active; 1330 #ifdef ENABLE_SCO_OVER_HCI 1331 case HCI_SCO_DATA_PACKET: 1332 return sco_ring_have_space(); 1333 #endif 1334 default: 1335 return 0; 1336 } 1337 } 1338 1339 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ 1340 switch (packet_type){ 1341 case HCI_COMMAND_DATA_PACKET: 1342 return usb_send_cmd_packet(packet, size); 1343 case HCI_ACL_DATA_PACKET: 1344 return usb_send_acl_packet(packet, size); 1345 #ifdef ENABLE_SCO_OVER_HCI 1346 case HCI_SCO_DATA_PACKET: 1347 return usb_send_sco_packet(packet, size); 1348 #endif 1349 default: 1350 return -1; 1351 } 1352 } 1353 1354 #ifdef ENABLE_SCO_OVER_HCI 1355 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ 1356 log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); 1357 1358 if (num_connections != sco_num_connections){ 1359 sco_voice_setting = voice_setting; 1360 if (sco_num_connections){ 1361 usb_sco_stop(); 1362 } 1363 sco_num_connections = num_connections; 1364 if (num_connections){ 1365 usb_sco_start(); 1366 } 1367 } 1368 } 1369 #endif 1370 1371 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1372 log_info("registering packet handler"); 1373 packet_handler = handler; 1374 } 1375 1376 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1377 UNUSED(packet_type); 1378 UNUSED(packet); 1379 UNUSED(size); 1380 } 1381 1382 // get usb singleton 1383 const hci_transport_t * hci_transport_usb_instance(void) { 1384 if (!hci_transport_usb) { 1385 hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); 1386 memset(hci_transport_usb, 0, sizeof(hci_transport_t)); 1387 hci_transport_usb->name = "H2_LIBUSB"; 1388 hci_transport_usb->open = usb_open; 1389 hci_transport_usb->close = usb_close; 1390 hci_transport_usb->register_packet_handler = usb_register_packet_handler; 1391 hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; 1392 hci_transport_usb->send_packet = usb_send_packet; 1393 #ifdef ENABLE_SCO_OVER_HCI 1394 hci_transport_usb->set_sco_config = usb_set_sco_config; 1395 #endif 1396 } 1397 return hci_transport_usb; 1398 } 1399