1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "hci_transport_h2_libusb.c" 39 40 /* 41 * hci_transport_usb.c 42 * 43 * HCI Transport API implementation for USB 44 * 45 * Created by Matthias Ringwald on 7/5/09. 46 */ 47 48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size 49 // HCI Commands 0 0 0x00 Control 8/16/32/64 50 // HCI Events 0 0 0x81 Interrupt (IN) 16 51 // ACL Data 0 0 0x82 Bulk (IN) 32/64 52 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 53 // SCO Data 0 0 0x83 Isochronous (IN) 54 // SCO Data 0 0 0x03 Isochronous (Out) 55 56 #include <stdio.h> 57 #include <strings.h> 58 #include <string.h> 59 #include <unistd.h> /* UNIX standard function definitions */ 60 #include <sys/types.h> 61 62 #include <libusb.h> 63 64 #include "btstack_config.h" 65 66 #include "btstack_debug.h" 67 #include "hci.h" 68 #include "hci_transport.h" 69 #include "hci_transport_usb.h" 70 71 // deal with changes in libusb API: 72 #ifdef LIBUSB_API_VERSION 73 #if LIBUSB_API_VERSION >= 0x01000106 74 // since 1.0.22, libusb_set_option replaces libusb_set_debug 75 #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level) 76 #endif 77 #endif 78 79 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) 80 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 81 #endif 82 83 #define ACL_IN_BUFFER_COUNT 3 84 #define EVENT_IN_BUFFER_COUNT 3 85 #define SCO_IN_BUFFER_COUNT 10 86 87 #define ASYNC_POLLING_INTERVAL_MS 1 88 89 // 90 // Bluetooth USB Transport Alternate Settings: 91 // 92 // 0: No active voice channels (for USB compliance) 93 // 1: One 8 kHz voice channel with 8-bit encoding 94 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding 95 // 3: Three 8 kHz voice channels with 8-bit encoding 96 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding 97 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding 98 // --> support only a single SCO connection 99 // #define ALT_SETTING (1) 100 101 #ifdef ENABLE_SCO_OVER_HCI 102 // alt setting for 1-3 connections and 8/16 bit 103 static const int alt_setting_8_bit[] = {1,2,3}; 104 static const int alt_setting_16_bit[] = {2,4,5}; 105 106 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets 107 // One complete SCO packet with 24 frames every 3 frames (== 3 ms) 108 #define NUM_ISO_PACKETS (3) 109 110 static const uint16_t iso_packet_size_for_alt_setting[] = { 111 0, 112 9, 113 17, 114 25, 115 33, 116 49, 117 63, 118 }; 119 #endif 120 121 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) 122 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload 123 #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) 124 125 // Outgoing SCO packet queue 126 // simplified ring buffer implementation 127 #define SCO_OUT_BUFFER_COUNT (8) 128 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) 129 130 // seems to be the max depth for USB 3 131 #define USB_MAX_PATH_LEN 7 132 133 // prototypes 134 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); 135 static int usb_close(void); 136 137 typedef enum { 138 LIB_USB_CLOSED = 0, 139 LIB_USB_OPENED, 140 LIB_USB_DEVICE_OPENDED, 141 LIB_USB_INTERFACE_CLAIMED, 142 LIB_USB_TRANSFERS_ALLOCATED 143 } libusb_state_t; 144 145 // SCO packet state machine 146 typedef enum { 147 H2_W4_SCO_HEADER = 1, 148 H2_W4_PAYLOAD, 149 } H2_SCO_STATE; 150 151 static libusb_state_t libusb_state = LIB_USB_CLOSED; 152 153 // single instance 154 static hci_transport_t * hci_transport_usb = NULL; 155 156 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; 157 158 // libusb 159 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 160 static struct libusb_device_descriptor desc; 161 #endif 162 static libusb_device_handle * handle; 163 164 static struct libusb_transfer *command_out_transfer; 165 static struct libusb_transfer *acl_out_transfer; 166 static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT]; 167 static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT]; 168 169 #ifdef ENABLE_SCO_OVER_HCI 170 171 #ifdef _WIN32 172 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" 173 #endif 174 175 // incoming SCO 176 static H2_SCO_STATE sco_state; 177 static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; 178 static uint16_t sco_read_pos; 179 static uint16_t sco_bytes_to_read; 180 static struct libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT]; 181 static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE]; 182 183 // outgoing SCO 184 static uint8_t sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE]; 185 static int sco_ring_write; // packet idx 186 static int sco_out_transfers_active; 187 static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT]; 188 static int sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT]; 189 190 // pause/resume 191 static uint16_t sco_voice_setting; 192 static int sco_num_connections; 193 static int sco_shutdown; 194 195 // dynamic SCO configuration 196 static uint16_t iso_packet_size; 197 static int sco_enabled; 198 199 #endif 200 201 // outgoing buffer for HCI Command packets 202 static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE]; 203 204 // incoming buffer for HCI Events and ACL Packets 205 static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet 206 static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE]; 207 208 // For (ab)use as a linked list of received packets 209 static struct libusb_transfer *handle_packet; 210 211 static int doing_pollfds; 212 static int num_pollfds; 213 static btstack_data_source_t * pollfd_data_sources; 214 static btstack_timer_source_t usb_timer; 215 static int usb_timer_active; 216 217 static int usb_acl_out_active = 0; 218 static int usb_command_active = 0; 219 220 // endpoint addresses 221 static int event_in_addr; 222 static int acl_in_addr; 223 static int acl_out_addr; 224 static int sco_in_addr; 225 static int sco_out_addr; 226 227 // device path 228 static int usb_path_len; 229 static uint8_t usb_path[USB_MAX_PATH_LEN]; 230 231 // transport interface state 232 static int usb_transport_open; 233 234 235 #ifdef ENABLE_SCO_OVER_HCI 236 static void sco_ring_init(void){ 237 sco_ring_write = 0; 238 sco_out_transfers_active = 0; 239 } 240 static int sco_ring_have_space(void){ 241 return sco_out_transfers_active < SCO_OUT_BUFFER_COUNT; 242 } 243 #endif 244 245 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ 246 if (len > USB_MAX_PATH_LEN || !port_numbers){ 247 log_error("hci_transport_usb_set_path: len or port numbers invalid"); 248 return; 249 } 250 usb_path_len = len; 251 memcpy(usb_path, port_numbers, len); 252 } 253 254 // 255 static void queue_transfer(struct libusb_transfer *transfer){ 256 257 // log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length); 258 259 transfer->user_data = NULL; 260 261 // insert first element 262 if (handle_packet == NULL) { 263 handle_packet = transfer; 264 return; 265 } 266 267 // Walk to end of list and add current packet there 268 struct libusb_transfer *temp = handle_packet; 269 while (temp->user_data) { 270 temp = (struct libusb_transfer*)temp->user_data; 271 } 272 temp->user_data = transfer; 273 } 274 275 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){ 276 277 int c; 278 279 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED){ 280 log_info("shutdown, transfer %p", transfer); 281 } 282 283 284 // identify and free transfers as part of shutdown 285 #ifdef ENABLE_SCO_OVER_HCI 286 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) { 287 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 288 if (transfer == sco_in_transfer[c]){ 289 libusb_free_transfer(transfer); 290 sco_in_transfer[c] = NULL; 291 return; 292 } 293 } 294 295 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 296 if (transfer == sco_out_transfers[c]){ 297 sco_out_transfers_in_flight[c] = 0; 298 libusb_free_transfer(transfer); 299 sco_out_transfers[c] = NULL; 300 return; 301 } 302 } 303 } 304 #endif 305 306 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { 307 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 308 if (transfer == event_in_transfer[c]){ 309 libusb_free_transfer(transfer); 310 event_in_transfer[c] = 0; 311 return; 312 } 313 } 314 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 315 if (transfer == acl_in_transfer[c]){ 316 libusb_free_transfer(transfer); 317 acl_in_transfer[c] = 0; 318 return; 319 } 320 } 321 return; 322 } 323 324 #ifdef ENABLE_SCO_OVER_HCI 325 // mark SCO OUT transfer as done 326 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 327 if (transfer == sco_out_transfers[c]){ 328 sco_out_transfers_in_flight[c] = 0; 329 } 330 } 331 #endif 332 333 int r; 334 // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); 335 336 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { 337 queue_transfer(transfer); 338 } else if (transfer->status == LIBUSB_TRANSFER_STALL){ 339 log_info("-> Transfer stalled, trying again"); 340 r = libusb_clear_halt(handle, transfer->endpoint); 341 if (r) { 342 log_error("Error rclearing halt %d", r); 343 } 344 r = libusb_submit_transfer(transfer); 345 if (r) { 346 log_error("Error re-submitting transfer %d", r); 347 } 348 } else { 349 log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); 350 // No usable data, just resubmit packet 351 r = libusb_submit_transfer(transfer); 352 if (r) { 353 log_error("Error re-submitting transfer %d", r); 354 } 355 } 356 // log_info("end async_callback"); 357 } 358 359 360 #ifdef ENABLE_SCO_OVER_HCI 361 static int usb_send_sco_packet(uint8_t *packet, int size){ 362 int r; 363 364 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 365 366 // log_info("usb_send_acl_packet enter, size %u", size); 367 368 // store packet in free slot 369 int tranfer_index = sco_ring_write; 370 uint8_t * data = &sco_out_ring_buffer[tranfer_index * SCO_PACKET_SIZE]; 371 memcpy(data, packet, size); 372 373 // setup transfer 374 // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); 375 struct libusb_transfer * sco_transfer = sco_out_transfers[tranfer_index]; 376 libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 377 libusb_set_iso_packet_lengths(sco_transfer, iso_packet_size); 378 r = libusb_submit_transfer(sco_transfer); 379 if (r < 0) { 380 log_error("Error submitting sco transfer, %d", r); 381 return -1; 382 } 383 384 // mark slot as full 385 sco_ring_write++; 386 if (sco_ring_write == SCO_OUT_BUFFER_COUNT){ 387 sco_ring_write = 0; 388 } 389 sco_out_transfers_active++; 390 sco_out_transfers_in_flight[tranfer_index] = 1; 391 392 // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); 393 394 // notify upper stack that provided buffer can be used again 395 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 396 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 397 398 // and if we have more space for SCO packets 399 if (sco_ring_have_space()) { 400 uint8_t event_sco[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 401 packet_handler(HCI_EVENT_PACKET, &event_sco[0], sizeof(event_sco)); 402 } 403 return 0; 404 } 405 406 static void sco_state_machine_init(void){ 407 sco_state = H2_W4_SCO_HEADER; 408 sco_read_pos = 0; 409 sco_bytes_to_read = 3; 410 } 411 412 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ 413 while (size){ 414 if (size < sco_bytes_to_read){ 415 // just store incomplete data 416 memcpy(&sco_buffer[sco_read_pos], buffer, size); 417 sco_read_pos += size; 418 sco_bytes_to_read -= size; 419 return; 420 } 421 // copy requested data 422 memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); 423 sco_read_pos += sco_bytes_to_read; 424 buffer += sco_bytes_to_read; 425 size -= sco_bytes_to_read; 426 427 // chunk read successfully, next action 428 switch (sco_state){ 429 case H2_W4_SCO_HEADER: 430 sco_state = H2_W4_PAYLOAD; 431 sco_bytes_to_read = sco_buffer[2]; 432 break; 433 case H2_W4_PAYLOAD: 434 // packet complete 435 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); 436 sco_state_machine_init(); 437 break; 438 default: 439 btstack_assert(false); 440 break; 441 } 442 } 443 } 444 #endif 445 446 static void handle_completed_transfer(struct libusb_transfer *transfer){ 447 448 int resubmit = 0; 449 int signal_done = 0; 450 451 if (transfer->endpoint == event_in_addr) { 452 packet_handler(HCI_EVENT_PACKET, transfer->buffer, transfer->actual_length); 453 resubmit = 1; 454 } else if (transfer->endpoint == acl_in_addr) { 455 // log_info("-> acl"); 456 packet_handler(HCI_ACL_DATA_PACKET, transfer->buffer, transfer->actual_length); 457 resubmit = 1; 458 } else if (transfer->endpoint == 0){ 459 // log_info("command done, size %u", transfer->actual_length); 460 usb_command_active = 0; 461 signal_done = 1; 462 } else if (transfer->endpoint == acl_out_addr){ 463 // log_info("acl out done, size %u", transfer->actual_length); 464 usb_acl_out_active = 0; 465 signal_done = 1; 466 #ifdef ENABLE_SCO_OVER_HCI 467 } else if (transfer->endpoint == sco_in_addr) { 468 // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); 469 int i; 470 for (i = 0; i < transfer->num_iso_packets; i++) { 471 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 472 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 473 log_error("Error: pack %u status %d\n", i, pack->status); 474 continue; 475 } 476 if (!pack->actual_length) continue; 477 uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); 478 // printf_hexdump(data, pack->actual_length); 479 // log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length); 480 handle_isochronous_data(data, pack->actual_length); 481 } 482 resubmit = 1; 483 } else if (transfer->endpoint == sco_out_addr){ 484 int i; 485 for (i = 0; i < transfer->num_iso_packets; i++) { 486 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 487 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 488 log_error("Error: pack %u status %d\n", i, pack->status); 489 } 490 } 491 // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", 492 // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, 493 // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, 494 // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); 495 // notify upper layer if there's space for new SCO packets 496 497 if (sco_ring_have_space()) { 498 uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 499 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 500 } 501 // decrease tab 502 sco_out_transfers_active--; 503 // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); 504 #endif 505 } else { 506 log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); 507 } 508 509 if (signal_done){ 510 // notify upper stack that provided buffer can be used again 511 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 512 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 513 } 514 515 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 516 517 if (resubmit){ 518 // Re-submit transfer 519 transfer->user_data = NULL; 520 int r = libusb_submit_transfer(transfer); 521 if (r) { 522 log_error("Error re-submitting transfer %d", r); 523 } 524 } 525 } 526 527 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 528 529 UNUSED(ds); 530 UNUSED(callback_type); 531 532 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 533 534 // log_info("begin usb_process_ds"); 535 // always handling an event as we're called when data is ready 536 struct timeval tv; 537 memset(&tv, 0, sizeof(struct timeval)); 538 libusb_handle_events_timeout(NULL, &tv); 539 540 // Handle any packet in the order that they were received 541 while (handle_packet) { 542 // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); 543 544 // pop next transfer 545 struct libusb_transfer * transfer = handle_packet; 546 handle_packet = (struct libusb_transfer*) handle_packet->user_data; 547 548 // handle transfer 549 handle_completed_transfer(transfer); 550 551 // handle case where libusb_close might be called by hci packet handler 552 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 553 } 554 // log_info("end usb_process_ds"); 555 } 556 557 static void usb_process_ts(btstack_timer_source_t *timer) { 558 559 UNUSED(timer); 560 561 // log_info("in usb_process_ts"); 562 563 // timer is deactive, when timer callback gets called 564 usb_timer_active = 0; 565 566 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 567 568 // actually handled the packet in the pollfds function 569 usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); 570 571 // Get the amount of time until next event is due 572 long msec = ASYNC_POLLING_INTERVAL_MS; 573 574 // Activate timer 575 btstack_run_loop_set_timer(&usb_timer, msec); 576 btstack_run_loop_add_timer(&usb_timer); 577 usb_timer_active = 1; 578 579 return; 580 } 581 582 583 static int scan_for_bt_endpoints(libusb_device *dev) { 584 int r; 585 586 event_in_addr = 0; 587 acl_in_addr = 0; 588 acl_out_addr = 0; 589 sco_out_addr = 0; 590 sco_in_addr = 0; 591 592 // get endpoints from interface descriptor 593 struct libusb_config_descriptor *config_descriptor; 594 r = libusb_get_active_config_descriptor(dev, &config_descriptor); 595 if (r < 0) return r; 596 597 int num_interfaces = config_descriptor->bNumInterfaces; 598 log_info("active configuration has %u interfaces", num_interfaces); 599 600 int i; 601 for (i = 0; i < num_interfaces ; i++){ 602 const struct libusb_interface *interface = &config_descriptor->interface[i]; 603 const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; 604 log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); 605 606 const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; 607 608 for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){ 609 log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); 610 611 switch (endpoint->bmAttributes & 0x3){ 612 case LIBUSB_TRANSFER_TYPE_INTERRUPT: 613 if (event_in_addr) continue; 614 event_in_addr = endpoint->bEndpointAddress; 615 log_info("-> using 0x%2.2X for HCI Events", event_in_addr); 616 break; 617 case LIBUSB_TRANSFER_TYPE_BULK: 618 if (endpoint->bEndpointAddress & 0x80) { 619 if (acl_in_addr) continue; 620 acl_in_addr = endpoint->bEndpointAddress; 621 log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); 622 } else { 623 if (acl_out_addr) continue; 624 acl_out_addr = endpoint->bEndpointAddress; 625 log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); 626 } 627 break; 628 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: 629 if (endpoint->bEndpointAddress & 0x80) { 630 if (sco_in_addr) continue; 631 sco_in_addr = endpoint->bEndpointAddress; 632 log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); 633 } else { 634 if (sco_out_addr) continue; 635 sco_out_addr = endpoint->bEndpointAddress; 636 log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); 637 } 638 break; 639 default: 640 break; 641 } 642 } 643 } 644 libusb_free_config_descriptor(config_descriptor); 645 return 0; 646 } 647 648 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 649 650 // list of known devices, using VendorID/ProductID tuples 651 static const uint16_t known_bluetooth_devices[] = { 652 // BCM20702A0 - DeLOCK Bluetooth 4.0 653 0x0a5c, 0x21e8, 654 // BCM20702A0 - Asus BT400 655 0x0b05, 0x17cb, 656 // BCM20702B0 - Generic USB Detuned Class 1 @ 20 MHz 657 0x0a5c, 0x22be, 658 // nRF5x Zephyr USB HCI, e.g nRF52840-PCA10056 659 0x2fe3, 0x0100, 660 0x2fe3, 0x000b, 661 }; 662 663 static int num_known_devices = sizeof(known_bluetooth_devices) / sizeof(uint16_t) / 2; 664 665 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ 666 int i; 667 for (i=0; i<num_known_devices; i++){ 668 if (known_bluetooth_devices[i*2] == vendor_id && known_bluetooth_devices[i*2+1] == product_id){ 669 return 1; 670 } 671 } 672 return 0; 673 } 674 675 // returns index of found device or -1 676 static int scan_for_bt_device(libusb_device **devs, int start_index) { 677 int i; 678 for (i = start_index; devs[i] ; i++){ 679 libusb_device * dev = devs[i]; 680 int r = libusb_get_device_descriptor(dev, &desc); 681 if (r < 0) { 682 log_error("failed to get device descriptor"); 683 return 0; 684 } 685 686 log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", 687 desc.idVendor, desc.idProduct, 688 libusb_get_bus_number(dev), libusb_get_device_address(dev), 689 desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); 690 691 // Detect USB Dongle based Class, Subclass, and Protocol 692 // The class code (bDeviceClass) is 0xE0 – Wireless Controller. 693 // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. 694 // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. 695 if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { 696 return i; 697 } 698 699 // Detect USB Dongle based on whitelist 700 if (is_known_bt_device(desc.idVendor, desc.idProduct)) { 701 return i; 702 } 703 } 704 return -1; 705 } 706 #endif 707 708 static int prepare_device(libusb_device_handle * aHandle){ 709 710 // print device path 711 uint8_t port_numbers[USB_MAX_PATH_LEN]; 712 libusb_device * device = libusb_get_device(aHandle); 713 int path_len = libusb_get_port_numbers(device, port_numbers, USB_MAX_PATH_LEN); 714 printf("USB Path: "); 715 int i; 716 for (i=0;i<path_len;i++){ 717 if (i) printf("-"); 718 printf("%02x", port_numbers[i]); 719 } 720 printf("\n"); 721 722 int r; 723 int kernel_driver_detached = 0; 724 725 // Detach OS driver (not possible for OS X, FreeBSD, and WIN32) 726 #if !defined(__APPLE__) && !defined(_WIN32) && !defined(__FreeBSD__) 727 r = libusb_kernel_driver_active(aHandle, 0); 728 if (r < 0) { 729 log_error("libusb_kernel_driver_active error %d", r); 730 libusb_close(aHandle); 731 return r; 732 } 733 734 if (r == 1) { 735 r = libusb_detach_kernel_driver(aHandle, 0); 736 if (r < 0) { 737 log_error("libusb_detach_kernel_driver error %d", r); 738 libusb_close(aHandle); 739 return r; 740 } 741 kernel_driver_detached = 1; 742 } 743 log_info("libusb_detach_kernel_driver"); 744 #endif 745 746 const int configuration = 1; 747 log_info("setting configuration %d...", configuration); 748 r = libusb_set_configuration(aHandle, configuration); 749 if (r < 0) { 750 log_error("Error libusb_set_configuration: %d", r); 751 if (kernel_driver_detached){ 752 libusb_attach_kernel_driver(aHandle, 0); 753 } 754 libusb_close(aHandle); 755 return r; 756 } 757 758 // reserve access to device 759 log_info("claiming interface 0..."); 760 r = libusb_claim_interface(aHandle, 0); 761 if (r < 0) { 762 log_error("Error %d claiming interface 0", r); 763 if (kernel_driver_detached){ 764 libusb_attach_kernel_driver(aHandle, 0); 765 } 766 libusb_close(aHandle); 767 return r; 768 } 769 770 #ifdef ENABLE_SCO_OVER_HCI 771 // get endpoints from interface descriptor 772 struct libusb_config_descriptor *config_descriptor; 773 r = libusb_get_active_config_descriptor(device, &config_descriptor); 774 if (r >= 0){ 775 int num_interfaces = config_descriptor->bNumInterfaces; 776 if (num_interfaces > 1) { 777 r = libusb_claim_interface(aHandle, 1); 778 if (r < 0) { 779 log_error("Error %d claiming interface 1: - disabling SCO over HCI", r); 780 } else { 781 sco_enabled = 1; 782 } 783 } else { 784 log_info("Device has only on interface, disabling SCO over HCI"); 785 } 786 } 787 #endif 788 789 return 0; 790 } 791 792 static libusb_device_handle * try_open_device(libusb_device * device){ 793 int r; 794 795 libusb_device_handle * dev_handle; 796 r = libusb_open(device, &dev_handle); 797 798 if (r < 0) { 799 log_error("libusb_open failed!"); 800 dev_handle = NULL; 801 return NULL; 802 } 803 804 log_info("libusb open %d, handle %p", r, dev_handle); 805 806 // reset device (Not currently possible under FreeBSD 11.x/12.x due to usb framework) 807 #if !defined(__FreeBSD__) 808 r = libusb_reset_device(dev_handle); 809 if (r < 0) { 810 log_error("libusb_reset_device failed!"); 811 libusb_close(dev_handle); 812 return NULL; 813 } 814 #endif 815 return dev_handle; 816 } 817 818 #ifdef ENABLE_SCO_OVER_HCI 819 820 static int usb_sco_start(void){ 821 822 printf("usb_sco_start\n"); 823 log_info("usb_sco_start"); 824 825 sco_state_machine_init(); 826 sco_ring_init(); 827 828 int alt_setting; 829 if (sco_voice_setting & 0x0020){ 830 // 16-bit PCM 831 alt_setting = alt_setting_16_bit[sco_num_connections-1]; 832 } else { 833 // 8-bit PCM or mSBC 834 alt_setting = alt_setting_8_bit[sco_num_connections-1]; 835 } 836 // derive iso packet size from alt setting 837 iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; 838 839 log_info("Switching to setting %u on interface 1..", alt_setting); 840 int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); 841 if (r < 0) { 842 log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); 843 return r; 844 } 845 846 // incoming 847 int c; 848 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 849 sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in 850 if (!sco_in_transfer[c]) { 851 usb_close(); 852 return LIBUSB_ERROR_NO_MEM; 853 } 854 // configure sco_in handlers 855 libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr, 856 hci_sco_in_buffer[c], NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 857 libusb_set_iso_packet_lengths(sco_in_transfer[c], iso_packet_size); 858 r = libusb_submit_transfer(sco_in_transfer[c]); 859 if (r) { 860 log_error("Error submitting isochronous in transfer %d", r); 861 usb_close(); 862 return r; 863 } 864 } 865 866 // outgoing 867 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 868 sco_out_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts 869 sco_out_transfers_in_flight[c] = 0; 870 } 871 return 0; 872 } 873 874 static void usb_sco_stop(void){ 875 876 printf("usb_sco_stop\n"); 877 878 log_info("usb_sco_stop"); 879 sco_shutdown = 1; 880 881 // Free SCO transfers already in queue 882 struct libusb_transfer* transfer = handle_packet; 883 struct libusb_transfer* prev_transfer = NULL; 884 while (transfer != NULL) { 885 uint16_t c; 886 bool drop_transfer = false; 887 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 888 if (transfer == sco_in_transfer[c]){ 889 sco_in_transfer[c] = NULL; 890 drop_transfer = true; 891 break; 892 } 893 } 894 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 895 if (transfer == sco_out_transfers[c]){ 896 sco_out_transfers_in_flight[c] = 0; 897 sco_out_transfers[c] = NULL; 898 drop_transfer = true; 899 break; 900 } 901 } 902 struct libusb_transfer * next_transfer = (struct libusb_transfer *) transfer->user_data; 903 if (drop_transfer) { 904 printf("Drop completed SCO transfer %p\n", transfer); 905 if (prev_transfer == NULL) { 906 // first item 907 handle_packet = (struct libusb_transfer *) next_transfer; 908 } else { 909 // other item 910 prev_transfer->user_data = (struct libusb_transfer *) next_transfer; 911 } 912 libusb_free_transfer(transfer); 913 } else { 914 prev_transfer = transfer; 915 } 916 transfer = next_transfer; 917 } 918 919 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 920 921 int c; 922 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 923 if (sco_in_transfer[c] != NULL) { 924 libusb_cancel_transfer(sco_in_transfer[c]); 925 } 926 } 927 928 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 929 if (sco_out_transfers_in_flight[c]) { 930 libusb_cancel_transfer(sco_out_transfers[c]); 931 } else { 932 if (sco_out_transfers[c] != NULL) { 933 libusb_free_transfer(sco_out_transfers[c]); 934 sco_out_transfers[c] = 0; 935 } 936 } 937 } 938 939 // wait until all transfers are completed 940 int completed = 0; 941 while (!completed){ 942 struct timeval tv; 943 memset(&tv, 0, sizeof(struct timeval)); 944 libusb_handle_events_timeout(NULL, &tv); 945 // check if all done 946 completed = 1; 947 948 // Cancel all synchronous transfer 949 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 950 if (sco_in_transfer[c] != NULL){ 951 completed = 0; 952 break; 953 } 954 } 955 956 if (!completed) continue; 957 958 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 959 if (sco_out_transfers[c] != NULL){ 960 completed = 0; 961 break; 962 } 963 } 964 } 965 sco_shutdown = 0; 966 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 967 968 log_info("Switching to setting %u on interface 1..", 0); 969 int r = libusb_set_interface_alt_setting(handle, 1, 0); 970 if (r < 0) { 971 log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); 972 return; 973 } 974 975 printf("usb_sco_stop done\n"); 976 } 977 978 979 980 #endif 981 982 static int usb_open(void){ 983 int r; 984 985 if (usb_transport_open) return 0; 986 987 handle_packet = NULL; 988 989 // default endpoint addresses 990 event_in_addr = 0x81; // EP1, IN interrupt 991 acl_in_addr = 0x82; // EP2, IN bulk 992 acl_out_addr = 0x02; // EP2, OUT bulk 993 sco_in_addr = 0x83; // EP3, IN isochronous 994 sco_out_addr = 0x03; // EP3, OUT isochronous 995 996 // USB init 997 r = libusb_init(NULL); 998 if (r < 0) return -1; 999 1000 libusb_state = LIB_USB_OPENED; 1001 1002 // configure debug level 1003 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1004 1005 libusb_device * dev = NULL; 1006 1007 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 1008 1009 // Use a specified device 1010 log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); 1011 handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); 1012 1013 if (!handle){ 1014 log_error("libusb_open_device_with_vid_pid failed!"); 1015 usb_close(); 1016 return -1; 1017 } 1018 log_info("libusb open %d, handle %p", r, handle); 1019 1020 r = prepare_device(handle); 1021 if (r < 0){ 1022 usb_close(); 1023 return -1; 1024 } 1025 1026 dev = libusb_get_device(handle); 1027 r = scan_for_bt_endpoints(dev); 1028 if (r < 0){ 1029 usb_close(); 1030 return -1; 1031 } 1032 1033 #else 1034 // Scan system for an appropriate devices 1035 libusb_device **devs; 1036 ssize_t num_devices; 1037 1038 log_info("Scanning for USB Bluetooth device"); 1039 num_devices = libusb_get_device_list(NULL, &devs); 1040 if (num_devices < 0) { 1041 usb_close(); 1042 return -1; 1043 } 1044 1045 if (usb_path_len){ 1046 int i; 1047 for (i=0;i<num_devices;i++){ 1048 uint8_t port_numbers[USB_MAX_PATH_LEN]; 1049 int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN); 1050 if (len != usb_path_len) continue; 1051 if (memcmp(usb_path, port_numbers, len) == 0){ 1052 log_info("USB device found at specified path"); 1053 handle = try_open_device(devs[i]); 1054 if (!handle) continue; 1055 1056 r = prepare_device(handle); 1057 if (r < 0) { 1058 handle = NULL; 1059 continue; 1060 } 1061 1062 dev = devs[i]; 1063 r = scan_for_bt_endpoints(dev); 1064 if (r < 0) { 1065 handle = NULL; 1066 continue; 1067 } 1068 1069 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1070 break; 1071 }; 1072 } 1073 if (!handle){ 1074 log_error("USB device with given path not found"); 1075 printf("USB device with given path not found\n"); 1076 return -1; 1077 } 1078 } else { 1079 1080 int deviceIndex = -1; 1081 while (true){ 1082 // look for next Bluetooth dongle 1083 deviceIndex = scan_for_bt_device(devs, deviceIndex+1); 1084 if (deviceIndex < 0) break; 1085 1086 log_info("USB Bluetooth device found, index %u", deviceIndex); 1087 1088 handle = try_open_device(devs[deviceIndex]); 1089 if (!handle) continue; 1090 1091 r = prepare_device(handle); 1092 if (r < 0) { 1093 handle = NULL; 1094 continue; 1095 } 1096 1097 dev = devs[deviceIndex]; 1098 r = scan_for_bt_endpoints(dev); 1099 if (r < 0) { 1100 handle = NULL; 1101 continue; 1102 } 1103 1104 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1105 break; 1106 } 1107 } 1108 1109 libusb_free_device_list(devs, 1); 1110 1111 if (handle == 0){ 1112 log_error("No USB Bluetooth device found"); 1113 return -1; 1114 } 1115 1116 #endif 1117 1118 // allocate transfer handlers 1119 int c; 1120 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1121 event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events 1122 if (!event_in_transfer[c]) { 1123 usb_close(); 1124 return LIBUSB_ERROR_NO_MEM; 1125 } 1126 } 1127 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1128 acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in 1129 if (!acl_in_transfer[c]) { 1130 usb_close(); 1131 return LIBUSB_ERROR_NO_MEM; 1132 } 1133 } 1134 1135 command_out_transfer = libusb_alloc_transfer(0); 1136 acl_out_transfer = libusb_alloc_transfer(0); 1137 1138 // TODO check for error 1139 1140 libusb_state = LIB_USB_TRANSFERS_ALLOCATED; 1141 1142 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1143 // configure event_in handlers 1144 libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr, 1145 hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1146 r = libusb_submit_transfer(event_in_transfer[c]); 1147 if (r) { 1148 log_error("Error submitting interrupt transfer %d", r); 1149 usb_close(); 1150 return r; 1151 } 1152 } 1153 1154 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1155 // configure acl_in handlers 1156 libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr, 1157 hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1158 r = libusb_submit_transfer(acl_in_transfer[c]); 1159 if (r) { 1160 log_error("Error submitting bulk in transfer %d", r); 1161 usb_close(); 1162 return r; 1163 } 1164 1165 } 1166 1167 #if 0 1168 // Check for pollfds functionality 1169 doing_pollfds = libusb_pollfds_handle_timeouts(NULL); 1170 #else 1171 // NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation 1172 doing_pollfds = 0; 1173 #endif 1174 1175 if (doing_pollfds) { 1176 log_info("Async using pollfds:"); 1177 1178 const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); 1179 for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); 1180 pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); 1181 if (!pollfd_data_sources){ 1182 log_error("Cannot allocate data sources for pollfds"); 1183 usb_close(); 1184 return 1; 1185 } 1186 memset(pollfd_data_sources, 0, sizeof(btstack_data_source_t) * num_pollfds); 1187 for (r = 0 ; r < num_pollfds ; r++) { 1188 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1189 btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); 1190 btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); 1191 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); 1192 btstack_run_loop_add_data_source(ds); 1193 log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); 1194 } 1195 free(pollfd); 1196 } else { 1197 log_info("Async using timers:"); 1198 1199 usb_timer.process = usb_process_ts; 1200 btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); 1201 btstack_run_loop_add_timer(&usb_timer); 1202 usb_timer_active = 1; 1203 } 1204 1205 usb_transport_open = 1; 1206 1207 return 0; 1208 } 1209 1210 static int usb_close(void){ 1211 int c; 1212 int completed = 0; 1213 1214 if (!usb_transport_open) return 0; 1215 1216 log_info("usb_close"); 1217 1218 switch (libusb_state){ 1219 case LIB_USB_CLOSED: 1220 break; 1221 1222 case LIB_USB_TRANSFERS_ALLOCATED: 1223 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1224 1225 if(usb_timer_active) { 1226 btstack_run_loop_remove_timer(&usb_timer); 1227 usb_timer_active = 0; 1228 } 1229 1230 if (doing_pollfds){ 1231 int r; 1232 for (r = 0 ; r < num_pollfds ; r++) { 1233 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1234 btstack_run_loop_remove_data_source(ds); 1235 } 1236 free(pollfd_data_sources); 1237 pollfd_data_sources = NULL; 1238 num_pollfds = 0; 1239 doing_pollfds = 0; 1240 } 1241 1242 /* fall through */ 1243 1244 case LIB_USB_INTERFACE_CLAIMED: 1245 // Cancel all transfers, ignore warnings for this 1246 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 1247 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1248 if (event_in_transfer[c]){ 1249 log_info("cancel event_in_transfer[%u] = %p", c, event_in_transfer[c]); 1250 libusb_cancel_transfer(event_in_transfer[c]); 1251 } 1252 } 1253 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1254 if (acl_in_transfer[c]){ 1255 log_info("cancel acl_in_transfer[%u] = %p", c, acl_in_transfer[c]); 1256 libusb_cancel_transfer(acl_in_transfer[c]); 1257 } 1258 } 1259 #ifdef ENABLE_SCO_OVER_HCI 1260 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1261 if (sco_in_transfer[c]){ 1262 log_info("cancel sco_in_transfer[%u] = %p", c, sco_in_transfer[c]); 1263 libusb_cancel_transfer(sco_in_transfer[c]); 1264 } 1265 } 1266 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1267 if (sco_out_transfers_in_flight[c]) { 1268 log_info("cancel sco_out_transfers[%u] = %p", c, sco_out_transfers[c]); 1269 libusb_cancel_transfer(sco_out_transfers[c]); 1270 } else { 1271 if (sco_out_transfers[c] != NULL){ 1272 libusb_free_transfer(sco_out_transfers[c]); 1273 sco_out_transfers[c] = 0; 1274 } 1275 } 1276 } 1277 #endif 1278 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1279 1280 // wait until all transfers are completed - or 20 iterations 1281 int countdown = 20; 1282 while (!completed){ 1283 1284 if (--countdown == 0){ 1285 log_info("Not all transfers cancelled, leaking a bit."); 1286 break; 1287 } 1288 1289 struct timeval tv; 1290 memset(&tv, 0, sizeof(struct timeval)); 1291 libusb_handle_events_timeout(NULL, &tv); 1292 // check if all done 1293 completed = 1; 1294 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 1295 if (event_in_transfer[c]) { 1296 log_info("event_in_transfer[%u] still active (%p)", c, event_in_transfer[c]); 1297 completed = 0; 1298 break; 1299 } 1300 } 1301 1302 if (!completed) continue; 1303 1304 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 1305 if (acl_in_transfer[c]) { 1306 log_info("acl_in_transfer[%u] still active (%p)", c, acl_in_transfer[c]); 1307 completed = 0; 1308 break; 1309 } 1310 } 1311 1312 #ifdef ENABLE_SCO_OVER_HCI 1313 if (!completed) continue; 1314 1315 // Cancel all synchronous transfer 1316 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1317 if (sco_in_transfer[c]){ 1318 log_info("sco_in_transfer[%u] still active (%p)", c, sco_in_transfer[c]); 1319 completed = 0; 1320 break; 1321 } 1322 } 1323 1324 if (!completed) continue; 1325 1326 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1327 if (sco_out_transfers[c] != NULL){ 1328 log_info("sco_out_transfers[%u] still active (%p)", c, sco_out_transfers[c]); 1329 completed = 0; 1330 break; 1331 } 1332 } 1333 sco_enabled = 0; 1334 #endif 1335 } 1336 1337 // finally release interface 1338 libusb_release_interface(handle, 0); 1339 #ifdef ENABLE_SCO_OVER_HCI 1340 libusb_release_interface(handle, 1); 1341 #endif 1342 log_info("Libusb shutdown complete"); 1343 1344 /* fall through */ 1345 1346 case LIB_USB_DEVICE_OPENDED: 1347 libusb_close(handle); 1348 1349 /* fall through */ 1350 1351 case LIB_USB_OPENED: 1352 libusb_exit(NULL); 1353 break; 1354 1355 default: 1356 btstack_assert(false); 1357 break; 1358 } 1359 1360 libusb_state = LIB_USB_CLOSED; 1361 handle = NULL; 1362 usb_transport_open = 0; 1363 1364 return 0; 1365 } 1366 1367 static int usb_send_cmd_packet(uint8_t *packet, int size){ 1368 int r; 1369 1370 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1371 1372 // async 1373 libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); 1374 memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size); 1375 1376 // prepare transfer 1377 int completed = 0; 1378 libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0); 1379 command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER; 1380 1381 // update stata before submitting transfer 1382 usb_command_active = 1; 1383 1384 // submit transfer 1385 r = libusb_submit_transfer(command_out_transfer); 1386 1387 if (r < 0) { 1388 usb_command_active = 0; 1389 log_error("Error submitting cmd transfer %d", r); 1390 return -1; 1391 } 1392 1393 return 0; 1394 } 1395 1396 static int usb_send_acl_packet(uint8_t *packet, int size){ 1397 int r; 1398 1399 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1400 1401 // log_info("usb_send_acl_packet enter, size %u", size); 1402 1403 // prepare transfer 1404 int completed = 0; 1405 libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size, 1406 async_callback, &completed, 0); 1407 acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK; 1408 1409 // update stata before submitting transfer 1410 usb_acl_out_active = 1; 1411 1412 r = libusb_submit_transfer(acl_out_transfer); 1413 if (r < 0) { 1414 usb_acl_out_active = 0; 1415 log_error("Error submitting acl transfer, %d", r); 1416 return -1; 1417 } 1418 1419 return 0; 1420 } 1421 1422 static int usb_can_send_packet_now(uint8_t packet_type){ 1423 switch (packet_type){ 1424 case HCI_COMMAND_DATA_PACKET: 1425 return !usb_command_active; 1426 case HCI_ACL_DATA_PACKET: 1427 return !usb_acl_out_active; 1428 #ifdef ENABLE_SCO_OVER_HCI 1429 case HCI_SCO_DATA_PACKET: 1430 if (!sco_enabled) return 0; 1431 return sco_ring_have_space(); 1432 #endif 1433 default: 1434 return 0; 1435 } 1436 } 1437 1438 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ 1439 switch (packet_type){ 1440 case HCI_COMMAND_DATA_PACKET: 1441 return usb_send_cmd_packet(packet, size); 1442 case HCI_ACL_DATA_PACKET: 1443 return usb_send_acl_packet(packet, size); 1444 #ifdef ENABLE_SCO_OVER_HCI 1445 case HCI_SCO_DATA_PACKET: 1446 if (!sco_enabled) return -1; 1447 return usb_send_sco_packet(packet, size); 1448 #endif 1449 default: 1450 return -1; 1451 } 1452 } 1453 1454 #ifdef ENABLE_SCO_OVER_HCI 1455 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ 1456 if (!sco_enabled) return; 1457 1458 log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); 1459 1460 if (num_connections != sco_num_connections){ 1461 sco_voice_setting = voice_setting; 1462 if (sco_num_connections){ 1463 usb_sco_stop(); 1464 } 1465 sco_num_connections = num_connections; 1466 if (num_connections){ 1467 usb_sco_start(); 1468 } 1469 } 1470 } 1471 #endif 1472 1473 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1474 log_info("registering packet handler"); 1475 packet_handler = handler; 1476 } 1477 1478 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1479 UNUSED(packet_type); 1480 UNUSED(packet); 1481 UNUSED(size); 1482 } 1483 1484 // get usb singleton 1485 const hci_transport_t * hci_transport_usb_instance(void) { 1486 if (!hci_transport_usb) { 1487 hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); 1488 memset(hci_transport_usb, 0, sizeof(hci_transport_t)); 1489 hci_transport_usb->name = "H2_LIBUSB"; 1490 hci_transport_usb->open = usb_open; 1491 hci_transport_usb->close = usb_close; 1492 hci_transport_usb->register_packet_handler = usb_register_packet_handler; 1493 hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; 1494 hci_transport_usb->send_packet = usb_send_packet; 1495 #ifdef ENABLE_SCO_OVER_HCI 1496 hci_transport_usb->set_sco_config = usb_set_sco_config; 1497 #endif 1498 } 1499 return hci_transport_usb; 1500 } 1501