xref: /btstack/platform/libusb/hci_transport_h2_libusb.c (revision 3faa160f75c1f2da2f28f5c07981475e5ed0ba4e)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
24  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "hci_transport_h2_libusb.c"
39 
40 /*
41  *  hci_transport_usb.c
42  *
43  *  HCI Transport API implementation for USB
44  *
45  *  Created by Matthias Ringwald on 7/5/09.
46  */
47 
48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size
49 // HCI Commands 0 0 0x00 Control 8/16/32/64
50 // HCI Events   0 0 0x81 Interrupt (IN) 16
51 // ACL Data     0 0 0x82 Bulk (IN) 32/64
52 // ACL Data     0 0 0x02 Bulk (OUT) 32/64
53 // SCO Data     0 0 0x83 Isochronous (IN)
54 // SCO Data     0 0 0x03 Isochronous (Out)
55 
56 #include <strings.h>
57 #include <string.h>
58 #include <unistd.h>   /* UNIX standard function definitions */
59 #include <sys/types.h>
60 
61 #include <libusb.h>
62 
63 // bail out if seen libusb is apperently to old
64 #if !defined(LIBUSB_API_VERSION) || (LIBUSB_API_VERSION < 0x01000104)
65 #error libusb api version to old!
66 #endif
67 
68 #include <poll.h>
69 
70 #include "btstack_config.h"
71 
72 #include "btstack_debug.h"
73 #include "hci.h"
74 #include "hci_transport.h"
75 #include "hci_transport_usb.h"
76 
77 // deal with changes in libusb API:
78 #ifdef LIBUSB_API_VERSION
79 #if LIBUSB_API_VERSION >= 0x01000106
80 // since 1.0.22, libusb_set_option replaces libusb_set_debug
81 #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level)
82 #endif
83 #endif
84 
85 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0)
86 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
87 #endif
88 
89 #define ACL_IN_BUFFER_COUNT    3
90 #define EVENT_IN_BUFFER_COUNT  3
91 #define EVENT_OUT_BUFFER_COUNT 4
92 #define SCO_IN_BUFFER_COUNT   10
93 
94 #define ASYNC_POLLING_INTERVAL_MS 1
95 
96 //
97 // Bluetooth USB Transport Alternate Settings:
98 //
99 // 0: No active voice channels (for USB compliance)
100 // 1: One 8 kHz voice channel with 8-bit encoding
101 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding
102 // 3: Three 8 kHz voice channels with 8-bit encoding
103 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding
104 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding
105 // --> support only a single SCO connection
106 // #define ALT_SETTING (1)
107 
108 #ifdef ENABLE_SCO_OVER_HCI
109 // alt setting for 1-3 connections and 8/16 bit
110 static const int alt_setting_8_bit[]  = {1,2,3};
111 static const int alt_setting_16_bit[] = {2,4,5};
112 
113 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets
114 // One complete SCO packet with 24 frames every 3 frames (== 3 ms)
115 #define NUM_ISO_PACKETS (3)
116 
117 static const uint16_t iso_packet_size_for_alt_setting[] = {
118     0,
119     9,
120     17,
121     25,
122     33,
123     49,
124     63,
125 };
126 #endif
127 
128 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel)
129 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload
130 #define SCO_PACKET_SIZE  (49 * NUM_ISO_PACKETS)
131 
132 // Outgoing SCO packet queue
133 // simplified ring buffer implementation
134 #define SCO_OUT_BUFFER_COUNT  (8)
135 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE)
136 
137 // seems to be the max depth for USB 3
138 #define USB_MAX_PATH_LEN 7
139 
140 // prototypes
141 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size);
142 static int usb_close(void);
143 
144 typedef enum {
145     LIB_USB_CLOSED = 0,
146     LIB_USB_OPENED,
147     LIB_USB_DEVICE_OPENDED,
148     LIB_USB_INTERFACE_CLAIMED,
149     LIB_USB_TRANSFERS_ALLOCATED
150 } libusb_state_t;
151 
152 // SCO packet state machine
153 typedef enum {
154     H2_W4_SCO_HEADER = 1,
155     H2_W4_PAYLOAD,
156 } H2_SCO_STATE;
157 
158 static libusb_state_t libusb_state = LIB_USB_CLOSED;
159 
160 // single instance
161 static hci_transport_t * hci_transport_usb = NULL;
162 
163 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler;
164 
165 // libusb
166 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
167 static struct libusb_device_descriptor desc;
168 #endif
169 static libusb_device_handle * handle;
170 
171 //static struct libusb_transfer *acl_out_transfer;
172 //static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT];
173 //static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT];
174 
175 // known devices
176 typedef struct {
177     btstack_linked_item_t next;
178     uint16_t vendor_id;
179     uint16_t product_id;
180 } usb_known_device_t;
181 
182 static btstack_linked_list_t usb_knwon_devices;
183 
184 typedef struct list_head {
185     struct list_head *next, *prev;
186 } list_head_t;
187 
188 static inline void __list_add( list_head_t *new, list_head_t *prev, list_head_t *next ) {
189     next->prev = new;
190     new->next = next;
191     new->prev = prev;
192     prev->next = new;
193 }
194 
195 #define LIST_HEAD_INIT(name) { &(name), &(name) }
196 
197 static inline void init_list_head( list_head_t *list ) {
198     list->next = list;
199     list->prev = list;
200 }
201 
202 static inline void list_add( list_head_t *new, list_head_t *head ) {
203     __list_add( new, head, head->next );
204 }
205 
206 static inline void list_add_tail( list_head_t *new, list_head_t *head ) {
207     __list_add( new, head->prev, head );
208 }
209 
210 static inline void list_del( list_head_t *entry ) {
211     entry->next->prev = entry->prev;
212     entry->prev->next = entry->next;
213 
214     entry->prev = NULL;
215     entry->next = NULL;
216 }
217 
218 static inline bool list_empty( list_head_t *head ) {
219     return head->next == head;
220 }
221 
222 static inline list_head_t *list_pop_front( list_head_t *head ) {
223     list_head_t *front = head->next;
224     list_del( front );
225     return front;
226 }
227 
228 
229 typedef struct {
230     list_head_t list;
231     struct libusb_transfer *t;
232     uint8_t *data;
233     bool in_flight;
234 } usb_transfer_list_entry_t;
235 
236 typedef struct {
237     list_head_t transfers;
238     int nbr;
239     usb_transfer_list_entry_t entries[0];
240 } usb_transfer_list_t;
241 
242 static struct libusb_transfer *usb_transfer_list_acquire( usb_transfer_list_t *list ) {
243     usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)list_pop_front( &list->transfers );
244     struct libusb_transfer *transfer = current->t;
245     current->in_flight = true;
246     return transfer;
247 }
248 
249 static void usb_transfer_list_release( usb_transfer_list_t *list, struct libusb_transfer *transfer ) {
250     usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data;
251     assert( current != NULL );
252     current->in_flight = false;
253     list_add( &current->list, &list->transfers );
254 }
255 
256 static bool usb_transfer_list_empty( usb_transfer_list_t *list ) {
257     return list_empty( &list->transfers );
258 }
259 
260 static usb_transfer_list_t *usb_transfer_list_alloc( int nbr, int iso_packets, int length ) {
261     usb_transfer_list_t *list = malloc( sizeof(usb_transfer_list_t) + nbr*sizeof(usb_transfer_list_entry_t) );
262     init_list_head( &list->transfers );
263     list->nbr = nbr;
264     for( int i=0; i<nbr; ++i )
265     {
266         usb_transfer_list_entry_t *entry = &list->entries[i];
267         struct libusb_transfer *transfer = libusb_alloc_transfer(iso_packets);
268         entry->data = malloc( length );
269         transfer->buffer = entry->data;
270 //        transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER;
271         transfer->user_data = entry;
272         entry->t = transfer;
273         usb_transfer_list_release( list, transfer );
274         assert( entry->t->user_data != NULL );
275     }
276     return list;
277 }
278 
279 static void usb_transfer_list_cancel( usb_transfer_list_t *list ) {
280     for( int i=0; i<list->nbr; ++i ) {
281         usb_transfer_list_entry_t *current = &list->entries[i];
282         if( current->in_flight ) {
283             libusb_cancel_transfer( current->t );
284         }
285     }
286 }
287 
288 static int usb_transfer_list_in_flight( usb_transfer_list_t *list ) {
289     int cnt = 0;
290     for(int i=0; i<list->nbr; ++i) {
291         usb_transfer_list_entry_t *entry = &list->entries[i];
292         if( entry->in_flight ) {
293             ++cnt;
294         }
295     }
296     return cnt;
297 }
298 
299 
300 static void usb_transfer_list_free_entry( struct libusb_transfer *transfer ) {
301     usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data;
302     free( current->data );
303     libusb_free_transfer( transfer );
304     current->in_flight = false;
305     current->t = NULL;
306     current->data = NULL;
307 }
308 
309 void usb_transfer_list_free( usb_transfer_list_t *list ) {
310     for( int i=0; i<list->nbr; ++i ) {
311         usb_transfer_list_entry_t *entry = &list->entries[i];
312         assert( entry->in_flight == false );
313         if( entry->t ) {
314             usb_transfer_list_free_entry( entry->t );
315         }
316     }
317     free( list );
318 }
319 
320 static usb_transfer_list_t *default_transfer_list = NULL;
321 
322 // For (ab)use as a linked list of received packets
323 static list_head_t handle_packet_list = LIST_HEAD_INIT(handle_packet_list);
324 
325 static void enqueue_transfer(struct libusb_transfer *transfer) {
326     usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data;
327     assert( current != NULL );
328     list_add_tail( &current->list, &handle_packet_list );
329 }
330 
331 static void signal_acknowledge();
332 static void signal_sco_can_send_now();
333 
334 // outgoing buffer for HCI Command packets
335 //static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE];
336 
337 // incoming buffer for HCI Events and ACL Packets
338 //static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet
339 //static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE];
340 
341 
342 
343 #ifdef ENABLE_SCO_OVER_HCI
344 
345 #ifdef _WIN32
346 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now"
347 #endif
348 
349 // incoming SCO
350 static H2_SCO_STATE sco_state;
351 static uint8_t  sco_buffer[255+3 + SCO_PACKET_SIZE];
352 static uint16_t sco_read_pos;
353 static uint16_t sco_bytes_to_read;
354 //static struct  libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT];
355 //static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE];
356 
357 // outgoing SCO
358 //static uint8_t  sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE];
359 //static int      sco_ring_write;  // packet idx
360 //static int      sco_out_transfers_active;
361 //static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT];
362 //static int      sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT];
363 
364 // pause/resume
365 static uint16_t sco_voice_setting;
366 static int      sco_num_connections;
367 static int      sco_shutdown;
368 
369 // dynamic SCO configuration
370 static uint16_t iso_packet_size;
371 static int      sco_enabled;
372 
373 usb_transfer_list_t *sco_transfer_list = NULL;
374 
375 #endif
376 
377 
378 
379 
380 static int doing_pollfds;
381 static int num_pollfds;
382 static btstack_data_source_t * pollfd_data_sources;
383 
384 static void usb_transport_response_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type);
385 static btstack_data_source_t transport_response;
386 
387 static btstack_timer_source_t usb_timer;
388 static int usb_timer_active;
389 
390 // endpoint addresses
391 static int event_in_addr;
392 static int acl_in_addr;
393 static int acl_out_addr;
394 static int sco_in_addr;
395 static int sco_out_addr;
396 
397 // device info
398 static int usb_path_len;
399 static uint8_t usb_path[USB_MAX_PATH_LEN];
400 static uint16_t usb_vendor_id;
401 static uint16_t usb_product_id;
402 
403 // transport interface state
404 static int usb_transport_open;
405 
406 static void hci_transport_h2_libusb_emit_usb_info(void) {
407     uint8_t event[7 + USB_MAX_PATH_LEN];
408     uint16_t pos = 0;
409     event[pos++] = HCI_EVENT_TRANSPORT_USB_INFO;
410     event[pos++] = 5 + usb_path_len;
411     little_endian_store_16(event, pos, usb_vendor_id);
412     pos+=2;
413     little_endian_store_16(event, pos, usb_product_id);
414     pos+=2;
415     event[pos++] = usb_path_len;
416     memcpy(&event[pos], usb_path, usb_path_len);
417     pos += usb_path_len;
418     (*packet_handler)(HCI_EVENT_PACKET, event, pos);
419 }
420 
421 void hci_transport_usb_add_device(uint16_t vendor_id, uint16_t product_id) {
422     usb_known_device_t * device = malloc(sizeof(usb_known_device_t));
423     if (device != NULL) {
424         device->vendor_id = vendor_id;
425         device->product_id = product_id;
426         btstack_linked_list_add(&usb_knwon_devices, (btstack_linked_item_t *) device);
427     }
428 }
429 
430 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){
431     if (len > USB_MAX_PATH_LEN || !port_numbers){
432         log_error("hci_transport_usb_set_path: len or port numbers invalid");
433         return;
434     }
435     usb_path_len = len;
436     memcpy(usb_path, port_numbers, len);
437 }
438 
439 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){
440 
441     int c;
442 
443     if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) {
444         log_info("shutdown, transfer %p", transfer);
445         usb_transfer_list_free_entry( transfer );
446         return;
447     }
448 #if 0
449 
450     // identify and free transfers as part of shutdown
451 #ifdef ENABLE_SCO_OVER_HCI
452     if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) {
453         for (c=0;c<SCO_IN_BUFFER_COUNT;c++){
454             if (transfer == sco_in_transfer[c]){
455                 libusb_free_transfer(transfer);
456                 sco_in_transfer[c] = NULL;
457                 return;
458             }
459         }
460 
461         for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){
462             if (transfer == sco_out_transfers[c]){
463                 sco_out_transfers_in_flight[c] = 0;
464                 libusb_free_transfer(transfer);
465                 sco_out_transfers[c] = NULL;
466                 return;
467             }
468         }
469     }
470 #endif
471 
472     if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) {
473         for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){
474             if (transfer == event_in_transfer[c]){
475                 libusb_free_transfer(transfer);
476                 event_in_transfer[c] = 0;
477                 return;
478             }
479         }
480         for (c=0;c<ACL_IN_BUFFER_COUNT;c++){
481             if (transfer == acl_in_transfer[c]){
482                 libusb_free_transfer(transfer);
483                 acl_in_transfer[c] = 0;
484                 return;
485             }
486         }
487         return;
488     }
489 
490 #ifdef ENABLE_SCO_OVER_HCI
491     // mark SCO OUT transfer as done
492     for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){
493         if (transfer == sco_out_transfers[c]){
494             sco_out_transfers_in_flight[c] = 0;
495         }
496     }
497 #endif
498 
499 #endif
500 
501     int r;
502     // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length );
503 
504     if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
505         enqueue_transfer(transfer);
506     } else if (transfer->status == LIBUSB_TRANSFER_STALL){
507         log_info("-> Transfer stalled, trying again");
508         r = libusb_clear_halt(handle, transfer->endpoint);
509         if (r) {
510             log_error("Error rclearing halt %d", r);
511         }
512         r = libusb_submit_transfer(transfer);
513         if (r) {
514             log_error("Error re-submitting transfer %d", r);
515         }
516     } else {
517         log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length);
518         // No usable data, just resubmit packet
519         r = libusb_submit_transfer(transfer);
520         if (r) {
521             log_error("Error re-submitting transfer %d", r);
522         }
523     }
524     // log_info("end async_callback");
525 }
526 
527 
528 #ifdef ENABLE_SCO_OVER_HCI
529 static int usb_send_sco_packet(uint8_t *packet, int size){
530     int r;
531 
532     if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
533 
534     struct libusb_transfer *transfer = usb_transfer_list_acquire( sco_transfer_list );
535     uint8_t *data = transfer->buffer;
536     void *user_data = transfer->user_data;
537 
538     // log_info("usb_send_acl_packet enter, size %u", size);
539 
540     // store packet in free slot
541     memcpy(data, packet, size);
542 
543     // setup transfer
544     // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size);
545     libusb_fill_iso_transfer(transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, user_data, 0);
546     libusb_set_iso_packet_lengths(transfer, iso_packet_size);
547     r = libusb_submit_transfer(transfer);
548     if (r < 0) {
549         log_error("Error submitting sco transfer, %d", r);
550         return -1;
551     }
552 
553     // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active);
554     signal_acknowledge();
555 
556     if( !usb_transfer_list_empty( sco_transfer_list ) ) {
557         signal_sco_can_send_now();
558     }
559 
560     return 0;
561 }
562 
563 static void sco_state_machine_init(void){
564     sco_state = H2_W4_SCO_HEADER;
565     sco_read_pos = 0;
566     sco_bytes_to_read = 3;
567 }
568 
569 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){
570     while (size){
571         if (size < sco_bytes_to_read){
572             // just store incomplete data
573             memcpy(&sco_buffer[sco_read_pos], buffer, size);
574             sco_read_pos      += size;
575             sco_bytes_to_read -= size;
576             return;
577         }
578         // copy requested data
579         memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read);
580         sco_read_pos += sco_bytes_to_read;
581         buffer       += sco_bytes_to_read;
582         size         -= sco_bytes_to_read;
583 
584         // chunk read successfully, next action
585         switch (sco_state){
586             case H2_W4_SCO_HEADER:
587                 sco_state = H2_W4_PAYLOAD;
588                 sco_bytes_to_read = sco_buffer[2];
589                 break;
590             case H2_W4_PAYLOAD:
591                 // packet complete
592                 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos);
593                 sco_state_machine_init();
594                 break;
595 			default:
596 				btstack_assert(false);
597 				break;
598         }
599     }
600 }
601 #endif
602 
603 static void handle_completed_transfer(struct libusb_transfer *transfer){
604 
605     int resubmit = 0;
606     assert(transfer->user_data != NULL );
607     if (transfer->endpoint == event_in_addr) {
608         packet_handler(HCI_EVENT_PACKET, transfer->buffer, transfer->actual_length);
609         resubmit = 1;
610     } else if (transfer->endpoint == acl_in_addr) {
611         // log_info("-> acl");
612         packet_handler(HCI_ACL_DATA_PACKET, transfer->buffer, transfer->actual_length);
613         resubmit = 1;
614     } else if (transfer->endpoint == 0){
615         // log_info("command done, size %u", transfer->actual_length);
616 //        printf("%s cmd release\n", __FUNCTION__ );
617         usb_transfer_list_release( default_transfer_list, transfer );
618     } else if (transfer->endpoint == acl_out_addr){
619         // log_info("acl out done, size %u", transfer->actual_length);
620 //        printf("%s acl release\n", __FUNCTION__ );
621         usb_transfer_list_release( default_transfer_list, transfer );
622 #ifdef ENABLE_SCO_OVER_HCI
623     } else if (transfer->endpoint == sco_in_addr) {
624         // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS);
625 
626         // give the transfer back to the pool, without resubmiting
627         if( sco_shutdown ) {
628             usb_transfer_list_release( sco_transfer_list, transfer );
629             return;
630         }
631 
632         int i;
633         for (i = 0; i < transfer->num_iso_packets; i++) {
634             struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i];
635             if (pack->status != LIBUSB_TRANSFER_COMPLETED) {
636                 log_error("Error: pack %u status %d\n", i, pack->status);
637                 continue;
638             }
639             if (!pack->actual_length) continue;
640             uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i);
641             handle_isochronous_data(data, pack->actual_length);
642         }
643         resubmit = 1;
644     } else if (transfer->endpoint == sco_out_addr){
645         int i;
646         for (i = 0; i < transfer->num_iso_packets; i++) {
647             struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i];
648             if (pack->status != LIBUSB_TRANSFER_COMPLETED) {
649                 log_error("Error: pack %u status %d\n", i, pack->status);
650             }
651         }
652         usb_transfer_list_release( sco_transfer_list, transfer );
653         if( sco_shutdown ) {
654             return;
655         }
656         // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}",
657         //     transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status,
658         //     transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status,
659         //     transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status);
660         // notify upper layer if there's space for new SCO packets
661 
662         if (!usb_transfer_list_empty(sco_transfer_list)) {
663             signal_sco_can_send_now();
664         }
665         // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active);
666 #endif
667     } else {
668         log_info("usb_process_ds endpoint unknown %x", transfer->endpoint);
669     }
670 
671     if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
672 
673     if (resubmit){
674         // Re-submit transfer
675 //        transfer->user_data = NULL;
676         int r = libusb_submit_transfer(transfer);
677         if (r) {
678             log_error("Error re-submitting transfer %d", r);
679         }
680     }
681 }
682 
683 void usb_handle_pending_events() {
684     struct timeval tv = { 0 };
685     libusb_handle_events_timeout_completed(NULL, &tv, NULL);
686 }
687 
688 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) {
689 
690     UNUSED(ds);
691     UNUSED(callback_type);
692 
693    if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
694 
695     // log_info("begin usb_process_ds");
696     // always handling an event as we're called when data is ready
697     usb_handle_pending_events();
698 
699     // Handle any packet in the order that they were received
700     while (!list_empty(&handle_packet_list)) {
701         // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status);
702 
703         // pop next transfer
704         usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)list_pop_front( &handle_packet_list );
705 
706         // handle transfer
707         handle_completed_transfer(current->t);
708 
709         // handle case where libusb_close might be called by hci packet handler
710         if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
711     }
712     // log_info("end usb_process_ds");
713 }
714 
715 static void usb_process_ts(btstack_timer_source_t *timer) {
716 
717     UNUSED(timer);
718 
719     // log_info("in usb_process_ts");
720 
721     // timer is deactive, when timer callback gets called
722     usb_timer_active = 0;
723 
724     if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
725 
726     // actually handled the packet in the pollfds function
727     usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ);
728 
729     // Get the amount of time until next event is due
730     long msec = ASYNC_POLLING_INTERVAL_MS;
731 
732     // Activate timer
733     btstack_run_loop_set_timer(&usb_timer, msec);
734     btstack_run_loop_add_timer(&usb_timer);
735     usb_timer_active = 1;
736 
737     return;
738 }
739 
740 
741 static int scan_for_bt_endpoints(libusb_device *dev) {
742     int r;
743 
744     event_in_addr = 0;
745     acl_in_addr = 0;
746     acl_out_addr = 0;
747     sco_out_addr = 0;
748     sco_in_addr = 0;
749 
750     // get endpoints from interface descriptor
751     struct libusb_config_descriptor *config_descriptor;
752     r = libusb_get_active_config_descriptor(dev, &config_descriptor);
753     if (r < 0) return r;
754 
755     int num_interfaces = config_descriptor->bNumInterfaces;
756     log_info("active configuration has %u interfaces", num_interfaces);
757 
758     int i;
759     for (i = 0; i < num_interfaces ; i++){
760         const struct libusb_interface *interface = &config_descriptor->interface[i];
761         const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting;
762         log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints);
763 
764         const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint;
765 
766         for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){
767             log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes);
768 
769             switch (endpoint->bmAttributes & 0x3){
770                 case LIBUSB_TRANSFER_TYPE_INTERRUPT:
771                     if (event_in_addr) continue;
772                     event_in_addr = endpoint->bEndpointAddress;
773                     log_info("-> using 0x%2.2X for HCI Events", event_in_addr);
774                     break;
775                 case LIBUSB_TRANSFER_TYPE_BULK:
776                     if (endpoint->bEndpointAddress & 0x80) {
777                         if (acl_in_addr) continue;
778                         acl_in_addr = endpoint->bEndpointAddress;
779                         log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr);
780                     } else {
781                         if (acl_out_addr) continue;
782                         acl_out_addr = endpoint->bEndpointAddress;
783                         log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr);
784                     }
785                     break;
786                 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
787                     if (endpoint->bEndpointAddress & 0x80) {
788                         if (sco_in_addr) continue;
789                         sco_in_addr = endpoint->bEndpointAddress;
790                         log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr);
791                     } else {
792                         if (sco_out_addr) continue;
793                         sco_out_addr = endpoint->bEndpointAddress;
794                         log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr);
795                     }
796                     break;
797                 default:
798                     break;
799             }
800         }
801     }
802     libusb_free_config_descriptor(config_descriptor);
803     return 0;
804 }
805 
806 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
807 
808 // list of known devices, using VendorID/ProductID tuples
809 static const uint16_t known_bluetooth_devices[] = {
810     // BCM20702A0 - DeLOCK Bluetooth 4.0
811     0x0a5c, 0x21e8,
812     // BCM20702A0 - Asus BT400
813     0x0b05, 0x17cb,
814     // BCM20702B0 - Generic USB Detuned Class 1 @ 20 MHz
815     0x0a5c, 0x22be,
816     // nRF5x Zephyr USB HCI, e.g nRF52840-PCA10056
817     0x2fe3, 0x0100,
818     0x2fe3, 0x000b,
819 };
820 
821 static int num_known_devices = sizeof(known_bluetooth_devices) / sizeof(uint16_t) / 2;
822 
823 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){
824     int i;
825     for (i=0; i<num_known_devices; i++){
826         if (known_bluetooth_devices[i*2] == vendor_id && known_bluetooth_devices[i*2+1] == product_id){
827             return 1;
828         }
829     }
830     btstack_linked_list_iterator_t it;
831     btstack_linked_list_iterator_init(&it, &usb_knwon_devices);
832     while (btstack_linked_list_iterator_has_next(&it)) {
833         usb_known_device_t * device = (usb_known_device_t *) btstack_linked_list_iterator_next(&it);
834         if (device->vendor_id != vendor_id) continue;
835         if (device->product_id != product_id) continue;
836         return 1;
837     }
838     return 0;
839 }
840 
841 // returns index of found device or -1
842 static int scan_for_bt_device(libusb_device **devs, int start_index) {
843     int i;
844     for (i = start_index; devs[i] ; i++){
845         libusb_device * dev = devs[i];
846         int r = libusb_get_device_descriptor(dev, &desc);
847         if (r < 0) {
848             log_error("failed to get device descriptor");
849             return 0;
850         }
851 
852         log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ",
853                desc.idVendor, desc.idProduct,
854                libusb_get_bus_number(dev), libusb_get_device_address(dev),
855                desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol);
856 
857         // Detect USB Dongle based Class, Subclass, and Protocol
858         // The class code (bDeviceClass) is 0xE0 – Wireless Controller.
859         // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller.
860         // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming.
861         if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) {
862             return i;
863         }
864 
865         // Detect USB Dongle based on whitelist
866         if (is_known_bt_device(desc.idVendor, desc.idProduct)) {
867             return i;
868         }
869     }
870     return -1;
871 }
872 #endif
873 
874 static int prepare_device(libusb_device_handle * aHandle){
875 
876     // get device path
877     libusb_device * device = libusb_get_device(aHandle);
878     usb_path_len = libusb_get_port_numbers(device, usb_path, USB_MAX_PATH_LEN);
879 
880     int r;
881     int kernel_driver_detached = 0;
882 
883     // Detach OS driver (not possible for OS X, FreeBSD, and Windows)
884 #if !defined(__APPLE__) && !defined(_WIN32) && !defined(__CYGWIN__) && !defined(__FreeBSD__)
885     r = libusb_kernel_driver_active(aHandle, 0);
886     if (r < 0) {
887         log_error("libusb_kernel_driver_active error %d", r);
888         libusb_close(aHandle);
889         return r;
890     }
891 
892     if (r == 1) {
893         r = libusb_detach_kernel_driver(aHandle, 0);
894         if (r < 0) {
895             log_error("libusb_detach_kernel_driver error %d", r);
896             libusb_close(aHandle);
897             return r;
898         }
899         kernel_driver_detached = 1;
900     }
901     log_info("libusb_detach_kernel_driver");
902 #endif
903 
904     const int configuration = 1;
905     log_info("setting configuration %d...", configuration);
906     r = libusb_set_configuration(aHandle, configuration);
907     if (r < 0) {
908         log_error("Error libusb_set_configuration: %d", r);
909         if (kernel_driver_detached){
910             libusb_attach_kernel_driver(aHandle, 0);
911         }
912         libusb_close(aHandle);
913         return r;
914     }
915 
916     // reserve access to device
917     log_info("claiming interface 0...");
918     r = libusb_claim_interface(aHandle, 0);
919     if (r < 0) {
920         log_error("Error %d claiming interface 0", r);
921         if (kernel_driver_detached){
922             libusb_attach_kernel_driver(aHandle, 0);
923         }
924         libusb_close(aHandle);
925         return r;
926     }
927 
928 #ifdef ENABLE_SCO_OVER_HCI
929     // get endpoints from interface descriptor
930     struct libusb_config_descriptor *config_descriptor;
931     r = libusb_get_active_config_descriptor(device, &config_descriptor);
932     if (r >= 0){
933         int num_interfaces = config_descriptor->bNumInterfaces;
934         if (num_interfaces > 1) {
935             r = libusb_claim_interface(aHandle, 1);
936             if (r < 0) {
937                 log_error("Error %d claiming interface 1: - disabling SCO over HCI", r);
938             } else {
939                 sco_enabled = 1;
940             }
941         } else {
942             log_info("Device has only on interface, disabling SCO over HCI");
943         }
944     }
945 #endif
946 
947     return 0;
948 }
949 
950 static libusb_device_handle * try_open_device(libusb_device * device){
951     int r;
952 
953     r = libusb_get_device_descriptor(device, &desc);
954     if (r < 0) {
955         log_error("libusb_get_device_descriptor failed!");
956         return NULL;
957     }
958     usb_vendor_id = desc.idVendor;
959     usb_product_id = desc.idProduct;
960 
961     libusb_device_handle * dev_handle;
962     r = libusb_open(device, &dev_handle);
963 
964     if (r < 0) {
965         log_error("libusb_open failed!");
966         dev_handle = NULL;
967         return NULL;
968     }
969 
970     log_info("libusb open %d, handle %p", r, dev_handle);
971 
972     // reset device (Not currently possible under FreeBSD 11.x/12.x due to usb framework)
973 #if !defined(__FreeBSD__)
974     r = libusb_reset_device(dev_handle);
975     if (r < 0) {
976         log_error("libusb_reset_device failed!");
977         libusb_close(dev_handle);
978         return NULL;
979     }
980 #endif
981     return dev_handle;
982 }
983 
984 #ifdef ENABLE_SCO_OVER_HCI
985 static int usb_sco_start(void){
986 
987     log_info("usb_sco_start");
988 
989     sco_state_machine_init();
990 
991     int alt_setting;
992     if (sco_voice_setting & 0x0020){
993         // 16-bit PCM
994         alt_setting = alt_setting_16_bit[sco_num_connections-1];
995     } else {
996         // 8-bit PCM or mSBC
997         alt_setting = alt_setting_8_bit[sco_num_connections-1];
998     }
999     // derive iso packet size from alt setting
1000     iso_packet_size = iso_packet_size_for_alt_setting[alt_setting];
1001 
1002     log_info("Switching to setting %u on interface 1..", alt_setting);
1003     int r = libusb_set_interface_alt_setting(handle, 1, alt_setting);
1004     if (r < 0) {
1005         log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r));
1006         return r;
1007     }
1008 
1009     // incoming
1010     int c;
1011     for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) {
1012 
1013         struct libusb_transfer *transfer = usb_transfer_list_acquire( sco_transfer_list );
1014         uint8_t *data = transfer->buffer;
1015         void *user_data = transfer->user_data;
1016 
1017         // configure sco_in handlers
1018         libusb_fill_iso_transfer(transfer, handle, sco_in_addr,
1019                 data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, user_data, 0);
1020         libusb_set_iso_packet_lengths(transfer, iso_packet_size);
1021         r = libusb_submit_transfer(transfer);
1022         if (r) {
1023             log_error("Error submitting isochronous in transfer %d", r);
1024             usb_close();
1025             return r;
1026         }
1027     }
1028     return 0;
1029 }
1030 
1031 static void usb_sco_stop(void){
1032 
1033     log_info("usb_sco_stop");
1034     sco_shutdown = 1;
1035 #if 0
1036     // Free SCO transfers already in queue
1037     struct libusb_transfer* transfer = handle_packet;
1038     struct libusb_transfer* prev_transfer = NULL;
1039     while (transfer != NULL) {
1040         uint16_t c;
1041         bool drop_transfer = false;
1042         for (c=0;c<SCO_IN_BUFFER_COUNT;c++){
1043             if (transfer == sco_in_transfer[c]){
1044                 sco_in_transfer[c] = NULL;
1045                 drop_transfer = true;
1046                 break;
1047             }
1048         }
1049         for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){
1050             if (transfer == sco_out_transfers[c]){
1051                 sco_out_transfers_in_flight[c] = 0;
1052                 sco_out_transfers[c] = NULL;
1053                 drop_transfer = true;
1054                 break;
1055             }
1056         }
1057         struct libusb_transfer * next_transfer = (struct libusb_transfer *) transfer->user_data;
1058         if (drop_transfer) {
1059             log_info("Drop completed SCO transfer %p", transfer);
1060             if (prev_transfer == NULL) {
1061                 // first item
1062                 handle_packet = (struct libusb_transfer *) next_transfer;
1063             } else {
1064                 // other item
1065                 prev_transfer->user_data = (struct libusb_transfer *) next_transfer;
1066             }
1067             libusb_free_transfer(transfer);
1068         } else {
1069             prev_transfer = transfer;
1070         }
1071         transfer = next_transfer;
1072     }
1073 
1074     libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR);
1075 
1076     int c;
1077     for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) {
1078         if (sco_in_transfer[c] != NULL) {
1079             libusb_cancel_transfer(sco_in_transfer[c]);
1080         }
1081     }
1082 
1083     for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){
1084         if (sco_out_transfers_in_flight[c]) {
1085             libusb_cancel_transfer(sco_out_transfers[c]);
1086         } else {
1087             if (sco_out_transfers[c] != NULL) {
1088                 libusb_free_transfer(sco_out_transfers[c]);
1089                 sco_out_transfers[c] = 0;
1090             }
1091         }
1092     }
1093 
1094     // wait until all transfers are completed
1095     int completed = 0;
1096     while (!completed){
1097         struct timeval tv;
1098         memset(&tv, 0, sizeof(struct timeval));
1099         libusb_handle_events_timeout_completed(NULL, &tv, NULL);
1100         // check if all done
1101         completed = 1;
1102 
1103         // Cancel all synchronous transfer
1104         for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) {
1105             if (sco_in_transfer[c] != NULL){
1106                 completed = 0;
1107                 break;
1108             }
1109         }
1110 
1111         if (!completed) continue;
1112 
1113         for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){
1114             if (sco_out_transfers[c] != NULL){
1115                 completed = 0;
1116                 break;
1117             }
1118         }
1119     }
1120     sco_shutdown = 0;
1121     libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING);
1122 #endif
1123     log_info("Switching to setting %u on interface 1..", 0);
1124     int r = libusb_set_interface_alt_setting(handle, 1, 0);
1125     if (r < 0) {
1126         log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r));
1127         return;
1128     }
1129 
1130     log_info("usb_sco_stop done");
1131 }
1132 
1133 
1134 
1135 #endif
1136 
1137 void pollfd_added_cb(int fd, short events, void *user_data)
1138 {
1139     printf("add %d\n", fd);
1140     assert(0);
1141 }
1142 
1143 void pollfd_remove_cb(int fd, void *user_data)
1144 {
1145     printf("remove %d\n", fd);
1146     assert(0);
1147 }
1148 
1149 
1150 static int usb_open(void){
1151     int r;
1152 
1153     if (usb_transport_open) return 0;
1154 
1155     // default endpoint addresses
1156     event_in_addr = 0x81; // EP1, IN interrupt
1157     acl_in_addr =   0x82; // EP2, IN bulk
1158     acl_out_addr =  0x02; // EP2, OUT bulk
1159     sco_in_addr  =  0x83; // EP3, IN isochronous
1160     sco_out_addr =  0x03; // EP3, OUT isochronous
1161 
1162     // USB init
1163     r = libusb_init(NULL);
1164     if (r < 0) return -1;
1165 
1166     libusb_state = LIB_USB_OPENED;
1167 
1168     // configure debug level
1169     libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING);
1170 
1171     libusb_device * dev = NULL;
1172 
1173 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
1174 
1175     // Use a specified device
1176     log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID);
1177     handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID);
1178 
1179     if (!handle){
1180         log_error("libusb_open_device_with_vid_pid failed!");
1181         usb_close();
1182         return -1;
1183     }
1184     log_info("libusb open %d, handle %p", r, handle);
1185 
1186     r = prepare_device(handle);
1187     if (r < 0){
1188         usb_close();
1189         return -1;
1190     }
1191 
1192     dev = libusb_get_device(handle);
1193     r = scan_for_bt_endpoints(dev);
1194     if (r < 0){
1195         usb_close();
1196         return -1;
1197     }
1198 
1199     usb_vendor_id = USB_VENDOR_ID;
1200     usb_product_id = USB_PRODUCT_ID;
1201 
1202 #else
1203     // Scan system for an appropriate devices
1204     libusb_device **devs;
1205     ssize_t num_devices;
1206 
1207     log_info("Scanning for USB Bluetooth device");
1208     num_devices = libusb_get_device_list(NULL, &devs);
1209     if (num_devices < 0) {
1210         usb_close();
1211         return -1;
1212     }
1213 
1214     if (usb_path_len){
1215         int i;
1216         for (i=0;i<num_devices;i++){
1217             uint8_t port_numbers[USB_MAX_PATH_LEN];
1218             int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN);
1219             if (len != usb_path_len) continue;
1220             if (memcmp(usb_path, port_numbers, len) == 0){
1221                 log_info("USB device found at specified path");
1222                 handle = try_open_device(devs[i]);
1223                 if (!handle) continue;
1224 
1225                 r = prepare_device(handle);
1226                 if (r < 0) {
1227                     handle = NULL;
1228                     continue;
1229                 }
1230 
1231                 dev = devs[i];
1232                 r = scan_for_bt_endpoints(dev);
1233                 if (r < 0) {
1234                     handle = NULL;
1235                     continue;
1236                 }
1237 
1238                 libusb_state = LIB_USB_INTERFACE_CLAIMED;
1239                 break;
1240             };
1241         }
1242         if (!handle){
1243             log_error("USB device with given path not found");
1244             return -1;
1245         }
1246     } else {
1247 
1248         int deviceIndex = -1;
1249         while (true){
1250             // look for next Bluetooth dongle
1251             deviceIndex = scan_for_bt_device(devs, deviceIndex+1);
1252             if (deviceIndex < 0) break;
1253 
1254             log_info("USB Bluetooth device found, index %u", deviceIndex);
1255 
1256             handle = try_open_device(devs[deviceIndex]);
1257             if (!handle) continue;
1258 
1259             r = prepare_device(handle);
1260             if (r < 0) {
1261                 handle = NULL;
1262                 continue;
1263             }
1264 
1265             dev = devs[deviceIndex];
1266             r = scan_for_bt_endpoints(dev);
1267             if (r < 0) {
1268                 handle = NULL;
1269                 continue;
1270             }
1271 
1272             libusb_state = LIB_USB_INTERFACE_CLAIMED;
1273             break;
1274         }
1275     }
1276 
1277     libusb_free_device_list(devs, 1);
1278 
1279     if (handle == 0){
1280         log_error("No USB Bluetooth device found");
1281         return -1;
1282     }
1283 
1284 #endif
1285 
1286     // allocate transfer handlers
1287     int c;
1288 
1289     default_transfer_list = usb_transfer_list_alloc(
1290             EVENT_OUT_BUFFER_COUNT+EVENT_IN_BUFFER_COUNT+ACL_IN_BUFFER_COUNT,
1291             0,
1292             LIBUSB_CONTROL_SETUP_SIZE + HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE ); // biggest packet ever to expect
1293 
1294 #ifdef ENABLE_SCO_OVER_HCI
1295     sco_transfer_list = usb_transfer_list_alloc(
1296             SCO_OUT_BUFFER_COUNT+SCO_IN_BUFFER_COUNT,
1297             NUM_ISO_PACKETS,
1298             SCO_PACKET_SIZE
1299             );
1300 #endif
1301 
1302     // TODO check for error
1303 
1304     libusb_state = LIB_USB_TRANSFERS_ALLOCATED;
1305 
1306     for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) {
1307         struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list );
1308         uint8_t *data = transfer->buffer;
1309         void *user_data = transfer->user_data;
1310         // configure event_in handlers
1311         libusb_fill_interrupt_transfer(transfer, handle, event_in_addr,
1312                 data, HCI_ACL_BUFFER_SIZE, async_callback, user_data, 0);
1313         r = libusb_submit_transfer(transfer);
1314         if (r) {
1315             log_error("Error submitting interrupt transfer %d", r);
1316             usb_close();
1317             return r;
1318         }
1319     }
1320 
1321     for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) {
1322         struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list );
1323         usb_transfer_list_entry_t *transfer_meta_data = (usb_transfer_list_entry_t*)transfer->user_data;
1324         uint8_t *data = transfer_meta_data->data;
1325         void *user_data = transfer->user_data;
1326         // configure acl_in handlers
1327         libusb_fill_bulk_transfer(transfer, handle, acl_in_addr,
1328                 data + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, user_data, 0) ;
1329         r = libusb_submit_transfer(transfer);
1330         if (r) {
1331             log_error("Error submitting bulk in transfer %d", r);
1332             usb_close();
1333             return r;
1334         }
1335 
1336      }
1337 
1338     // Check for pollfds functionality
1339     doing_pollfds = libusb_pollfds_handle_timeouts(NULL);
1340 
1341     libusb_set_pollfd_notifiers( NULL,  pollfd_added_cb, pollfd_remove_cb, NULL );
1342 
1343     if (doing_pollfds) {
1344         log_info("Async using pollfds:");
1345 
1346         const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL);
1347         for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++);
1348         pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds);
1349         if (!pollfd_data_sources){
1350             log_error("Cannot allocate data sources for pollfds");
1351             usb_close();
1352             return 1;
1353         }
1354         memset(pollfd_data_sources, 0, sizeof(btstack_data_source_t) * num_pollfds);
1355         for (r = 0 ; r < num_pollfds ; r++) {
1356             btstack_data_source_t *ds = &pollfd_data_sources[r];
1357             btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd);
1358             btstack_run_loop_set_data_source_handler(ds, &usb_process_ds);
1359             if( pollfd[r]->events & POLLIN )
1360                 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ);
1361             else
1362                 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_WRITE);
1363             btstack_run_loop_add_data_source(ds);
1364             log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events);
1365         }
1366         libusb_free_pollfds(pollfd);
1367     } else {
1368         log_info("Async using timers:");
1369 
1370         usb_timer.process = usb_process_ts;
1371         btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS);
1372         btstack_run_loop_add_timer(&usb_timer);
1373         usb_timer_active = 1;
1374     }
1375 
1376     usb_transport_open = 1;
1377 
1378     hci_transport_h2_libusb_emit_usb_info();
1379 
1380     btstack_data_source_t *ds = &transport_response;
1381     btstack_run_loop_set_data_source_handler(ds, &usb_transport_response_ds);
1382     btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_POLL);
1383     btstack_run_loop_add_data_source(ds);
1384     return 0;
1385 }
1386 
1387 static int usb_close(void){
1388     int c;
1389     int completed = 0;
1390 
1391     if (!usb_transport_open) return 0;
1392 
1393     log_info("usb_close");
1394 
1395     switch (libusb_state){
1396         case LIB_USB_CLOSED:
1397             break;
1398 
1399         case LIB_USB_TRANSFERS_ALLOCATED:
1400             libusb_state = LIB_USB_INTERFACE_CLAIMED;
1401 
1402             if(usb_timer_active) {
1403                 btstack_run_loop_remove_timer(&usb_timer);
1404                 usb_timer_active = 0;
1405             }
1406 
1407             if (doing_pollfds){
1408                 int r;
1409                 for (r = 0 ; r < num_pollfds ; r++) {
1410                     btstack_data_source_t *ds = &pollfd_data_sources[r];
1411                     btstack_run_loop_remove_data_source(ds);
1412                 }
1413                 free(pollfd_data_sources);
1414                 pollfd_data_sources = NULL;
1415                 num_pollfds = 0;
1416                 doing_pollfds = 0;
1417             }
1418 
1419             /* fall through */
1420 
1421         case LIB_USB_INTERFACE_CLAIMED:
1422             libusb_set_pollfd_notifiers( NULL, NULL, NULL, NULL );
1423             usb_transfer_list_cancel( default_transfer_list );
1424 #ifdef ENABLE_SCO_OVER_HCI
1425             usb_transfer_list_cancel( sco_transfer_list );
1426 #endif
1427 
1428             int in_flight_transfers = usb_transfer_list_in_flight( default_transfer_list );
1429 #ifdef ENABLE_SCO_OVER_HCI
1430             in_flight_transfers += usb_transfer_list_in_flight( sco_transfer_list );
1431 #endif
1432             while( in_flight_transfers > 0 ) {
1433                 struct timeval tv = { 0 };
1434                 libusb_handle_events_timeout(NULL, &tv);
1435 
1436                 in_flight_transfers = usb_transfer_list_in_flight( default_transfer_list );
1437 #ifdef ENABLE_SCO_OVER_HCI
1438                 in_flight_transfers += usb_transfer_list_in_flight( sco_transfer_list );
1439 #endif
1440             }
1441 
1442             usb_transfer_list_free( default_transfer_list );
1443 #ifdef ENABLE_SCO_OVER_HCI
1444             usb_transfer_list_free( sco_transfer_list );
1445 #endif
1446             sco_enabled = 0;
1447 
1448             // finally release interface
1449             libusb_release_interface(handle, 0);
1450 #ifdef ENABLE_SCO_OVER_HCI
1451             libusb_release_interface(handle, 1);
1452 #endif
1453             log_info("Libusb shutdown complete");
1454 
1455 			/* fall through */
1456 
1457         case LIB_USB_DEVICE_OPENDED:
1458             libusb_close(handle);
1459 
1460 			/* fall through */
1461 
1462         case LIB_USB_OPENED:
1463             libusb_exit(NULL);
1464             break;
1465 
1466 		default:
1467 			btstack_assert(false);
1468 			break;
1469     }
1470 
1471     libusb_state = LIB_USB_CLOSED;
1472     handle = NULL;
1473     usb_transport_open = 0;
1474 
1475     return 0;
1476 }
1477 
1478 static int acknowledge_count = 0;
1479 static void signal_acknowledge() {
1480     ++acknowledge_count;
1481     btstack_run_loop_poll_data_sources_from_irq();
1482 }
1483 
1484 static int sco_can_send_now_count = 0;
1485 static void signal_sco_can_send_now() {
1486     ++sco_can_send_now_count;
1487     btstack_run_loop_poll_data_sources_from_irq();
1488 }
1489 
1490 static void usb_transport_response_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) {
1491     UNUSED(ds);
1492     UNUSED(callback_type);
1493 //    printf("%s packet sent: %d sco can send now: %d\n", __FUNCTION__, acknowledge_count, sco_can_send_now_count);
1494     for(; acknowledge_count>0; --acknowledge_count) {
1495         static const uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0 };
1496         packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
1497     }
1498 
1499     for(; sco_can_send_now_count>0; --sco_can_send_now_count) {
1500         static const uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0 };
1501         packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
1502     }
1503 
1504 }
1505 
1506 static int usb_send_cmd_packet(uint8_t *packet, int size){
1507     int r;
1508 
1509     if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
1510 //    printf("%s( %p, %d )\n", __FUNCTION__, packet, size );
1511 
1512     struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list );
1513     uint8_t *data = transfer->buffer;
1514     void *user_data = transfer->user_data;
1515 
1516     // async
1517     libusb_fill_control_setup(data, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size);
1518     memcpy(data + LIBUSB_CONTROL_SETUP_SIZE, packet, size);
1519 
1520     // prepare transfer
1521     libusb_fill_control_transfer(transfer, handle, data, async_callback, user_data, 0);
1522 
1523     // submit transfer
1524     assert( transfer->user_data != NULL );
1525     r = libusb_submit_transfer(transfer);
1526 
1527     if (r < 0) {
1528         log_error("Error submitting cmd transfer %d", r);
1529         return -1;
1530     }
1531 
1532     signal_acknowledge();
1533 
1534     return 0;
1535 }
1536 
1537 static int usb_send_acl_packet(uint8_t *packet, int size){
1538     int r;
1539 
1540     if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
1541 //   printf("%s( %p, %d )\n", __FUNCTION__, packet, size );
1542     // log_info("usb_send_acl_packet enter, size %u", size);
1543 
1544     struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list );
1545     uint8_t *data = transfer->buffer;
1546 
1547     // prepare transfer
1548     memcpy( data, packet, size );
1549     libusb_fill_bulk_transfer(transfer, handle, acl_out_addr, data, size,
1550         async_callback, transfer->user_data, 0);
1551 
1552     assert( transfer->user_data != NULL );
1553     r = libusb_submit_transfer(transfer);
1554 
1555     if (r < 0) {
1556         log_error("Error submitting acl transfer, %d", r);
1557         return -1;
1558     }
1559 
1560     signal_acknowledge();
1561 
1562     return 0;
1563 }
1564 
1565 static int usb_can_send_packet_now(uint8_t packet_type){
1566     switch (packet_type){
1567         case HCI_COMMAND_DATA_PACKET: {
1568             int ret = !usb_transfer_list_empty( default_transfer_list );
1569             btstack_assert( ret == 1 );
1570 //            printf("can send now: %d\n", ret );
1571             return ret;
1572         }
1573         case HCI_ACL_DATA_PACKET: {
1574             int ret = !usb_transfer_list_empty( default_transfer_list );
1575             btstack_assert( ret == 1 );
1576 //            printf("can send now: %d\n", ret );
1577             return ret;
1578         }
1579 
1580 #ifdef ENABLE_SCO_OVER_HCI
1581         case HCI_SCO_DATA_PACKET: {
1582 //            printf("%s sco\n", __FUNCTION__);
1583             if (!sco_enabled) return 0;
1584             int ret = !usb_transfer_list_empty( sco_transfer_list );
1585             return ret;
1586         }
1587 #endif
1588         default:
1589             return 0;
1590     }
1591 }
1592 
1593 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){
1594     switch (packet_type){
1595         case HCI_COMMAND_DATA_PACKET:
1596             return usb_send_cmd_packet(packet, size);
1597         case HCI_ACL_DATA_PACKET:
1598             return usb_send_acl_packet(packet, size);
1599 #ifdef ENABLE_SCO_OVER_HCI
1600         case HCI_SCO_DATA_PACKET:
1601             if (!sco_enabled) return -1;
1602             return usb_send_sco_packet(packet, size);
1603 #endif
1604         default:
1605             return -1;
1606     }
1607 }
1608 
1609 #ifdef ENABLE_SCO_OVER_HCI
1610 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){
1611     if (!sco_enabled) return;
1612 
1613     log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections);
1614 
1615     if (num_connections != sco_num_connections){
1616         sco_voice_setting = voice_setting;
1617         if (sco_num_connections){
1618             usb_sco_stop();
1619         }
1620         sco_num_connections = num_connections;
1621         if (num_connections){
1622             usb_sco_start();
1623         }
1624     }
1625 }
1626 #endif
1627 
1628 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){
1629     log_info("registering packet handler");
1630     packet_handler = handler;
1631 }
1632 
1633 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){
1634     UNUSED(packet_type);
1635     UNUSED(packet);
1636     UNUSED(size);
1637 }
1638 
1639 // get usb singleton
1640 const hci_transport_t * hci_transport_usb_instance(void) {
1641     if (!hci_transport_usb) {
1642         hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t));
1643         memset(hci_transport_usb, 0, sizeof(hci_transport_t));
1644         hci_transport_usb->name                          = "H2_LIBUSB";
1645         hci_transport_usb->open                          = usb_open;
1646         hci_transport_usb->close                         = usb_close;
1647         hci_transport_usb->register_packet_handler       = usb_register_packet_handler;
1648         hci_transport_usb->can_send_packet_now           = usb_can_send_packet_now;
1649         hci_transport_usb->send_packet                   = usb_send_packet;
1650 #ifdef ENABLE_SCO_OVER_HCI
1651         hci_transport_usb->set_sco_config                = usb_set_sco_config;
1652 #endif
1653     }
1654     return hci_transport_usb;
1655 }
1656