1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "hci_transport_h2_libusb.c" 39 40 /* 41 * hci_transport_usb.c 42 * 43 * HCI Transport API implementation for USB 44 * 45 * Created by Matthias Ringwald on 7/5/09. 46 */ 47 48 // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size 49 // HCI Commands 0 0 0x00 Control 8/16/32/64 50 // HCI Events 0 0 0x81 Interrupt (IN) 16 51 // ACL Data 0 0 0x82 Bulk (IN) 32/64 52 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 53 // SCO Data 0 0 0x83 Isochronous (IN) 54 // SCO Data 0 0 0x03 Isochronous (Out) 55 56 #include <stdio.h> 57 #include <strings.h> 58 #include <string.h> 59 #include <unistd.h> /* UNIX standard function definitions */ 60 #include <sys/types.h> 61 62 #include <libusb.h> 63 64 #include "btstack_config.h" 65 66 #include "btstack_debug.h" 67 #include "hci.h" 68 #include "hci_transport.h" 69 70 // deal with changes in libusb API: 71 #ifdef LIBUSB_API_VERSION 72 #if LIBUSB_API_VERSION >= 0x01000106 73 // since 1.0.22, libusb_set_option replaces libusb_set_debug 74 #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level) 75 #endif 76 #endif 77 78 #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) 79 #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 80 #endif 81 82 #define ACL_IN_BUFFER_COUNT 3 83 #define EVENT_IN_BUFFER_COUNT 3 84 #define SCO_IN_BUFFER_COUNT 10 85 86 #define ASYNC_POLLING_INTERVAL_MS 1 87 88 // 89 // Bluetooth USB Transport Alternate Settings: 90 // 91 // 0: No active voice channels (for USB compliance) 92 // 1: One 8 kHz voice channel with 8-bit encoding 93 // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding 94 // 3: Three 8 kHz voice channels with 8-bit encoding 95 // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding 96 // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding 97 // --> support only a single SCO connection 98 // #define ALT_SETTING (1) 99 100 #ifdef ENABLE_SCO_OVER_HCI 101 // alt setting for 1-3 connections and 8/16 bit 102 static const int alt_setting_8_bit[] = {1,2,3}; 103 static const int alt_setting_16_bit[] = {2,4,5}; 104 105 // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets 106 // One complete SCO packet with 24 frames every 3 frames (== 3 ms) 107 #define NUM_ISO_PACKETS (3) 108 109 static const uint16_t iso_packet_size_for_alt_setting[] = { 110 0, 111 9, 112 17, 113 25, 114 33, 115 49, 116 63, 117 }; 118 #endif 119 120 // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) 121 // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload 122 #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) 123 124 // Outgoing SCO packet queue 125 // simplified ring buffer implementation 126 #define SCO_OUT_BUFFER_COUNT (8) 127 #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) 128 129 // seems to be the max depth for USB 3 130 #define USB_MAX_PATH_LEN 7 131 132 // prototypes 133 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); 134 static int usb_close(void); 135 136 typedef enum { 137 LIB_USB_CLOSED = 0, 138 LIB_USB_OPENED, 139 LIB_USB_DEVICE_OPENDED, 140 LIB_USB_INTERFACE_CLAIMED, 141 LIB_USB_TRANSFERS_ALLOCATED 142 } libusb_state_t; 143 144 // SCO packet state machine 145 typedef enum { 146 H2_W4_SCO_HEADER = 1, 147 H2_W4_PAYLOAD, 148 } H2_SCO_STATE; 149 150 static libusb_state_t libusb_state = LIB_USB_CLOSED; 151 152 // single instance 153 static hci_transport_t * hci_transport_usb = NULL; 154 155 static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; 156 157 // libusb 158 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 159 static struct libusb_device_descriptor desc; 160 #endif 161 static libusb_device_handle * handle; 162 163 static struct libusb_transfer *command_out_transfer; 164 static struct libusb_transfer *acl_out_transfer; 165 static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT]; 166 static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT]; 167 168 #ifdef ENABLE_SCO_OVER_HCI 169 170 #ifdef _WIN32 171 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" 172 #endif 173 174 // incoming SCO 175 static H2_SCO_STATE sco_state; 176 static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; 177 static uint16_t sco_read_pos; 178 static uint16_t sco_bytes_to_read; 179 static struct libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT]; 180 static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE]; 181 182 // outgoing SCO 183 static uint8_t sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE]; 184 static int sco_ring_write; // packet idx 185 static int sco_out_transfers_active; 186 static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT]; 187 static int sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT]; 188 189 // pause/resume 190 static uint16_t sco_voice_setting; 191 static int sco_num_connections; 192 static int sco_shutdown; 193 194 // dynamic SCO configuration 195 static uint16_t iso_packet_size; 196 static int sco_enabled; 197 198 #endif 199 200 // outgoing buffer for HCI Command packets 201 static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE]; 202 203 // incoming buffer for HCI Events and ACL Packets 204 static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet 205 static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE]; 206 207 // For (ab)use as a linked list of received packets 208 static struct libusb_transfer *handle_packet; 209 210 static int doing_pollfds; 211 static int num_pollfds; 212 static btstack_data_source_t * pollfd_data_sources; 213 static btstack_timer_source_t usb_timer; 214 static int usb_timer_active; 215 216 static int usb_acl_out_active = 0; 217 static int usb_command_active = 0; 218 219 // endpoint addresses 220 static int event_in_addr; 221 static int acl_in_addr; 222 static int acl_out_addr; 223 static int sco_in_addr; 224 static int sco_out_addr; 225 226 // device path 227 static int usb_path_len; 228 static uint8_t usb_path[USB_MAX_PATH_LEN]; 229 230 // transport interface state 231 static int usb_transport_open; 232 233 234 #ifdef ENABLE_SCO_OVER_HCI 235 static void sco_ring_init(void){ 236 sco_ring_write = 0; 237 sco_out_transfers_active = 0; 238 } 239 static int sco_ring_have_space(void){ 240 return sco_out_transfers_active < SCO_OUT_BUFFER_COUNT; 241 } 242 #endif 243 244 void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ 245 if (len > USB_MAX_PATH_LEN || !port_numbers){ 246 log_error("hci_transport_usb_set_path: len or port numbers invalid"); 247 return; 248 } 249 usb_path_len = len; 250 memcpy(usb_path, port_numbers, len); 251 } 252 253 // 254 static void queue_transfer(struct libusb_transfer *transfer){ 255 256 // log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length); 257 258 transfer->user_data = NULL; 259 260 // insert first element 261 if (handle_packet == NULL) { 262 handle_packet = transfer; 263 return; 264 } 265 266 // Walk to end of list and add current packet there 267 struct libusb_transfer *temp = handle_packet; 268 while (temp->user_data) { 269 temp = (struct libusb_transfer*)temp->user_data; 270 } 271 temp->user_data = transfer; 272 } 273 274 LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){ 275 276 int c; 277 278 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED){ 279 log_info("shutdown, transfer %p", transfer); 280 } 281 282 283 // identify and free transfers as part of shutdown 284 #ifdef ENABLE_SCO_OVER_HCI 285 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) { 286 for (c=0;c<SCO_IN_BUFFER_COUNT;c++){ 287 if (transfer == sco_in_transfer[c]){ 288 libusb_free_transfer(transfer); 289 sco_in_transfer[c] = 0; 290 return; 291 } 292 } 293 294 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 295 if (transfer == sco_out_transfers[c]){ 296 sco_out_transfers_in_flight[c] = 0; 297 libusb_free_transfer(transfer); 298 sco_out_transfers[c] = 0; 299 return; 300 } 301 } 302 } 303 #endif 304 305 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { 306 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 307 if (transfer == event_in_transfer[c]){ 308 libusb_free_transfer(transfer); 309 event_in_transfer[c] = 0; 310 return; 311 } 312 } 313 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 314 if (transfer == acl_in_transfer[c]){ 315 libusb_free_transfer(transfer); 316 acl_in_transfer[c] = 0; 317 return; 318 } 319 } 320 return; 321 } 322 323 #ifdef ENABLE_SCO_OVER_HCI 324 // mark SCO OUT transfer as done 325 for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){ 326 if (transfer == sco_out_transfers[c]){ 327 sco_out_transfers_in_flight[c] = 0; 328 } 329 } 330 #endif 331 332 int r; 333 // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); 334 335 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { 336 queue_transfer(transfer); 337 } else if (transfer->status == LIBUSB_TRANSFER_STALL){ 338 log_info("-> Transfer stalled, trying again"); 339 r = libusb_clear_halt(handle, transfer->endpoint); 340 if (r) { 341 log_error("Error rclearing halt %d", r); 342 } 343 r = libusb_submit_transfer(transfer); 344 if (r) { 345 log_error("Error re-submitting transfer %d", r); 346 } 347 } else { 348 log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); 349 // No usable data, just resubmit packet 350 r = libusb_submit_transfer(transfer); 351 if (r) { 352 log_error("Error re-submitting transfer %d", r); 353 } 354 } 355 // log_info("end async_callback"); 356 } 357 358 359 #ifdef ENABLE_SCO_OVER_HCI 360 static int usb_send_sco_packet(uint8_t *packet, int size){ 361 int r; 362 363 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 364 365 // log_info("usb_send_acl_packet enter, size %u", size); 366 367 // store packet in free slot 368 int tranfer_index = sco_ring_write; 369 uint8_t * data = &sco_out_ring_buffer[tranfer_index * SCO_PACKET_SIZE]; 370 memcpy(data, packet, size); 371 372 // setup transfer 373 // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); 374 struct libusb_transfer * sco_transfer = sco_out_transfers[tranfer_index]; 375 libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 376 libusb_set_iso_packet_lengths(sco_transfer, iso_packet_size); 377 r = libusb_submit_transfer(sco_transfer); 378 if (r < 0) { 379 log_error("Error submitting sco transfer, %d", r); 380 return -1; 381 } 382 383 // mark slot as full 384 sco_ring_write++; 385 if (sco_ring_write == SCO_OUT_BUFFER_COUNT){ 386 sco_ring_write = 0; 387 } 388 sco_out_transfers_active++; 389 sco_out_transfers_in_flight[tranfer_index] = 1; 390 391 // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); 392 393 // notify upper stack that provided buffer can be used again 394 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 395 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 396 397 // and if we have more space for SCO packets 398 if (sco_ring_have_space()) { 399 uint8_t event_sco[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 400 packet_handler(HCI_EVENT_PACKET, &event_sco[0], sizeof(event_sco)); 401 } 402 return 0; 403 } 404 405 static void sco_state_machine_init(void){ 406 sco_state = H2_W4_SCO_HEADER; 407 sco_read_pos = 0; 408 sco_bytes_to_read = 3; 409 } 410 411 static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ 412 while (size){ 413 if (size < sco_bytes_to_read){ 414 // just store incomplete data 415 memcpy(&sco_buffer[sco_read_pos], buffer, size); 416 sco_read_pos += size; 417 sco_bytes_to_read -= size; 418 return; 419 } 420 // copy requested data 421 memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); 422 sco_read_pos += sco_bytes_to_read; 423 buffer += sco_bytes_to_read; 424 size -= sco_bytes_to_read; 425 426 // chunk read successfully, next action 427 switch (sco_state){ 428 case H2_W4_SCO_HEADER: 429 sco_state = H2_W4_PAYLOAD; 430 sco_bytes_to_read = sco_buffer[2]; 431 break; 432 case H2_W4_PAYLOAD: 433 // packet complete 434 packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); 435 sco_state_machine_init(); 436 break; 437 } 438 } 439 } 440 #endif 441 442 static void handle_completed_transfer(struct libusb_transfer *transfer){ 443 444 int resubmit = 0; 445 int signal_done = 0; 446 447 if (transfer->endpoint == event_in_addr) { 448 packet_handler(HCI_EVENT_PACKET, transfer->buffer, transfer->actual_length); 449 resubmit = 1; 450 } else if (transfer->endpoint == acl_in_addr) { 451 // log_info("-> acl"); 452 packet_handler(HCI_ACL_DATA_PACKET, transfer->buffer, transfer->actual_length); 453 resubmit = 1; 454 } else if (transfer->endpoint == 0){ 455 // log_info("command done, size %u", transfer->actual_length); 456 usb_command_active = 0; 457 signal_done = 1; 458 } else if (transfer->endpoint == acl_out_addr){ 459 // log_info("acl out done, size %u", transfer->actual_length); 460 usb_acl_out_active = 0; 461 signal_done = 1; 462 #ifdef ENABLE_SCO_OVER_HCI 463 } else if (transfer->endpoint == sco_in_addr) { 464 // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); 465 int i; 466 for (i = 0; i < transfer->num_iso_packets; i++) { 467 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 468 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 469 log_error("Error: pack %u status %d\n", i, pack->status); 470 continue; 471 } 472 if (!pack->actual_length) continue; 473 uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); 474 // printf_hexdump(data, pack->actual_length); 475 // log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length); 476 handle_isochronous_data(data, pack->actual_length); 477 } 478 resubmit = 1; 479 } else if (transfer->endpoint == sco_out_addr){ 480 int i; 481 for (i = 0; i < transfer->num_iso_packets; i++) { 482 struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; 483 if (pack->status != LIBUSB_TRANSFER_COMPLETED) { 484 log_error("Error: pack %u status %d\n", i, pack->status); 485 } 486 } 487 // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", 488 // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, 489 // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, 490 // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); 491 // notify upper layer if there's space for new SCO packets 492 493 if (sco_ring_have_space()) { 494 uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0}; 495 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 496 } 497 // decrease tab 498 sco_out_transfers_active--; 499 // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); 500 #endif 501 } else { 502 log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); 503 } 504 505 if (signal_done){ 506 // notify upper stack that provided buffer can be used again 507 uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; 508 packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); 509 } 510 511 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 512 513 if (resubmit){ 514 // Re-submit transfer 515 transfer->user_data = NULL; 516 int r = libusb_submit_transfer(transfer); 517 if (r) { 518 log_error("Error re-submitting transfer %d", r); 519 } 520 } 521 } 522 523 static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { 524 525 UNUSED(ds); 526 UNUSED(callback_type); 527 528 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 529 530 // log_info("begin usb_process_ds"); 531 // always handling an event as we're called when data is ready 532 struct timeval tv; 533 memset(&tv, 0, sizeof(struct timeval)); 534 libusb_handle_events_timeout(NULL, &tv); 535 536 // Handle any packet in the order that they were received 537 while (handle_packet) { 538 // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); 539 540 // pop next transfer 541 struct libusb_transfer * transfer = handle_packet; 542 handle_packet = (struct libusb_transfer*) handle_packet->user_data; 543 544 // handle transfer 545 handle_completed_transfer(transfer); 546 547 // handle case where libusb_close might be called by hci packet handler 548 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 549 } 550 // log_info("end usb_process_ds"); 551 } 552 553 static void usb_process_ts(btstack_timer_source_t *timer) { 554 555 UNUSED(timer); 556 557 // log_info("in usb_process_ts"); 558 559 // timer is deactive, when timer callback gets called 560 usb_timer_active = 0; 561 562 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; 563 564 // actually handled the packet in the pollfds function 565 usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); 566 567 // Get the amount of time until next event is due 568 long msec = ASYNC_POLLING_INTERVAL_MS; 569 570 // Activate timer 571 btstack_run_loop_set_timer(&usb_timer, msec); 572 btstack_run_loop_add_timer(&usb_timer); 573 usb_timer_active = 1; 574 575 return; 576 } 577 578 #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 579 580 // list of known devices, using VendorID/ProductID tuples 581 static const uint16_t known_bt_devices[] = { 582 // DeLOCK Bluetooth 4.0 583 0x0a5c, 0x21e8, 584 // Asus BT400 585 0x0b05, 0x17cb, 586 // BCM20702B0 (Generic USB Detuned Class 1 @ 20 MHz) 587 0x0a5c, 0x22be, 588 // Zephyr e.g nRF52840-PCA10056 589 0x2fe3, 0x0100, 590 }; 591 592 static int num_known_devices = sizeof(known_bt_devices) / sizeof(uint16_t) / 2; 593 594 static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ 595 int i; 596 for (i=0; i<num_known_devices; i++){ 597 if (known_bt_devices[i*2] == vendor_id && known_bt_devices[i*2+1] == product_id){ 598 return 1; 599 } 600 } 601 return 0; 602 } 603 604 static int scan_for_bt_endpoints(libusb_device *dev) { 605 int r; 606 607 event_in_addr = 0; 608 acl_in_addr = 0; 609 acl_out_addr = 0; 610 sco_out_addr = 0; 611 sco_in_addr = 0; 612 613 // get endpoints from interface descriptor 614 struct libusb_config_descriptor *config_descriptor; 615 r = libusb_get_active_config_descriptor(dev, &config_descriptor); 616 if (r < 0) return r; 617 618 int num_interfaces = config_descriptor->bNumInterfaces; 619 log_info("active configuration has %u interfaces", num_interfaces); 620 621 int i; 622 for (i = 0; i < num_interfaces ; i++){ 623 const struct libusb_interface *interface = &config_descriptor->interface[i]; 624 const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; 625 log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); 626 627 const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; 628 629 for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){ 630 log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); 631 632 switch (endpoint->bmAttributes & 0x3){ 633 case LIBUSB_TRANSFER_TYPE_INTERRUPT: 634 if (event_in_addr) continue; 635 event_in_addr = endpoint->bEndpointAddress; 636 log_info("-> using 0x%2.2X for HCI Events", event_in_addr); 637 break; 638 case LIBUSB_TRANSFER_TYPE_BULK: 639 if (endpoint->bEndpointAddress & 0x80) { 640 if (acl_in_addr) continue; 641 acl_in_addr = endpoint->bEndpointAddress; 642 log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); 643 } else { 644 if (acl_out_addr) continue; 645 acl_out_addr = endpoint->bEndpointAddress; 646 log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); 647 } 648 break; 649 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: 650 if (endpoint->bEndpointAddress & 0x80) { 651 if (sco_in_addr) continue; 652 sco_in_addr = endpoint->bEndpointAddress; 653 log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); 654 } else { 655 if (sco_out_addr) continue; 656 sco_out_addr = endpoint->bEndpointAddress; 657 log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); 658 } 659 break; 660 default: 661 break; 662 } 663 } 664 } 665 libusb_free_config_descriptor(config_descriptor); 666 return 0; 667 } 668 669 // returns index of found device or -1 670 static int scan_for_bt_device(libusb_device **devs, int start_index) { 671 int i; 672 for (i = start_index; devs[i] ; i++){ 673 libusb_device * dev = devs[i]; 674 int r = libusb_get_device_descriptor(dev, &desc); 675 if (r < 0) { 676 log_error("failed to get device descriptor"); 677 return 0; 678 } 679 680 log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", 681 desc.idVendor, desc.idProduct, 682 libusb_get_bus_number(dev), libusb_get_device_address(dev), 683 desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); 684 685 // Detect USB Dongle based Class, Subclass, and Protocol 686 // The class code (bDeviceClass) is 0xE0 – Wireless Controller. 687 // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. 688 // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. 689 // if (desc.bDeviceClass == 0xe0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01){ 690 if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { 691 return i; 692 } 693 694 // Detect USB Dongle based on whitelist 695 if (is_known_bt_device(desc.idVendor, desc.idProduct)) { 696 return i; 697 } 698 } 699 return -1; 700 } 701 #endif 702 703 static int prepare_device(libusb_device_handle * aHandle){ 704 705 // print device path 706 uint8_t port_numbers[USB_MAX_PATH_LEN]; 707 libusb_device * device = libusb_get_device(aHandle); 708 int path_len = libusb_get_port_numbers(device, port_numbers, USB_MAX_PATH_LEN); 709 printf("USB Path: "); 710 int i; 711 for (i=0;i<path_len;i++){ 712 if (i) printf("-"); 713 printf("%02x", port_numbers[i]); 714 } 715 printf("\n"); 716 717 int r; 718 int kernel_driver_detached = 0; 719 720 // Detach OS driver (not possible for OS X, FreeBSD, and WIN32) 721 #if !defined(__APPLE__) && !defined(_WIN32) && !defined(__FreeBSD__) 722 r = libusb_kernel_driver_active(aHandle, 0); 723 if (r < 0) { 724 log_error("libusb_kernel_driver_active error %d", r); 725 libusb_close(aHandle); 726 return r; 727 } 728 729 if (r == 1) { 730 r = libusb_detach_kernel_driver(aHandle, 0); 731 if (r < 0) { 732 log_error("libusb_detach_kernel_driver error %d", r); 733 libusb_close(aHandle); 734 return r; 735 } 736 kernel_driver_detached = 1; 737 } 738 log_info("libusb_detach_kernel_driver"); 739 #endif 740 741 const int configuration = 1; 742 log_info("setting configuration %d...", configuration); 743 r = libusb_set_configuration(aHandle, configuration); 744 if (r < 0) { 745 log_error("Error libusb_set_configuration: %d", r); 746 if (kernel_driver_detached){ 747 libusb_attach_kernel_driver(aHandle, 0); 748 } 749 libusb_close(aHandle); 750 return r; 751 } 752 753 // reserve access to device 754 log_info("claiming interface 0..."); 755 r = libusb_claim_interface(aHandle, 0); 756 if (r < 0) { 757 log_error("Error %d claiming interface 0", r); 758 if (kernel_driver_detached){ 759 libusb_attach_kernel_driver(aHandle, 0); 760 } 761 libusb_close(aHandle); 762 return r; 763 } 764 765 #ifdef ENABLE_SCO_OVER_HCI 766 log_info("claiming interface 1..."); 767 r = libusb_claim_interface(aHandle, 1); 768 if (r < 0) { 769 log_error("Error %d claiming interface 1: - disabling SCO over HCI", r); 770 } else { 771 sco_enabled = 1; 772 } 773 #endif 774 775 return 0; 776 } 777 778 static libusb_device_handle * try_open_device(libusb_device * device){ 779 int r; 780 781 libusb_device_handle * dev_handle; 782 r = libusb_open(device, &dev_handle); 783 784 if (r < 0) { 785 log_error("libusb_open failed!"); 786 dev_handle = NULL; 787 return NULL; 788 } 789 790 log_info("libusb open %d, handle %p", r, dev_handle); 791 792 // reset device (Not currently possible under FreeBSD 11.x/12.x due to usb framework) 793 #if !defined(__FreeBSD__) 794 r = libusb_reset_device(dev_handle); 795 if (r < 0) { 796 log_error("libusb_reset_device failed!"); 797 libusb_close(dev_handle); 798 return NULL; 799 } 800 #endif 801 return dev_handle; 802 } 803 804 #ifdef ENABLE_SCO_OVER_HCI 805 806 static int usb_sco_start(void){ 807 808 printf("usb_sco_start\n"); 809 log_info("usb_sco_start"); 810 811 sco_state_machine_init(); 812 sco_ring_init(); 813 814 int alt_setting; 815 if (sco_voice_setting & 0x0020){ 816 // 16-bit PCM 817 alt_setting = alt_setting_16_bit[sco_num_connections-1]; 818 } else { 819 // 8-bit PCM or mSBC 820 alt_setting = alt_setting_8_bit[sco_num_connections-1]; 821 } 822 // derive iso packet size from alt setting 823 iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; 824 825 log_info("Switching to setting %u on interface 1..", alt_setting); 826 int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); 827 if (r < 0) { 828 log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); 829 return r; 830 } 831 832 // incoming 833 int c; 834 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 835 sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in 836 if (!sco_in_transfer[c]) { 837 usb_close(); 838 return LIBUSB_ERROR_NO_MEM; 839 } 840 // configure sco_in handlers 841 libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr, 842 hci_sco_in_buffer[c], NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0); 843 libusb_set_iso_packet_lengths(sco_in_transfer[c], iso_packet_size); 844 r = libusb_submit_transfer(sco_in_transfer[c]); 845 if (r) { 846 log_error("Error submitting isochronous in transfer %d", r); 847 usb_close(); 848 return r; 849 } 850 } 851 852 // outgoing 853 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 854 sco_out_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts 855 sco_out_transfers_in_flight[c] = 0; 856 } 857 return 0; 858 } 859 860 static void usb_sco_stop(void){ 861 862 printf("usb_sco_stop\n"); 863 864 log_info("usb_sco_stop"); 865 sco_shutdown = 1; 866 867 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 868 869 int c; 870 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 871 libusb_cancel_transfer(sco_in_transfer[c]); 872 } 873 874 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 875 if (sco_out_transfers_in_flight[c]) { 876 libusb_cancel_transfer(sco_out_transfers[c]); 877 } else { 878 libusb_free_transfer(sco_out_transfers[c]); 879 sco_out_transfers[c] = 0; 880 } 881 } 882 883 // wait until all transfers are completed 884 int completed = 0; 885 while (!completed){ 886 struct timeval tv; 887 memset(&tv, 0, sizeof(struct timeval)); 888 libusb_handle_events_timeout(NULL, &tv); 889 // check if all done 890 completed = 1; 891 892 // Cancel all synchronous transfer 893 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 894 if (sco_in_transfer[c]){ 895 completed = 0; 896 break; 897 } 898 } 899 900 if (!completed) continue; 901 902 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 903 if (sco_out_transfers[c]){ 904 completed = 0; 905 break; 906 } 907 } 908 } 909 sco_shutdown = 0; 910 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 911 912 log_info("Switching to setting %u on interface 1..", 0); 913 int r = libusb_set_interface_alt_setting(handle, 1, 0); 914 if (r < 0) { 915 log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); 916 return; 917 } 918 919 printf("usb_sco_stop done\n"); 920 } 921 922 923 924 #endif 925 926 static int usb_open(void){ 927 int r; 928 929 if (usb_transport_open) return 0; 930 931 handle_packet = NULL; 932 933 // default endpoint addresses 934 event_in_addr = 0x81; // EP1, IN interrupt 935 acl_in_addr = 0x82; // EP2, IN bulk 936 acl_out_addr = 0x02; // EP2, OUT bulk 937 sco_in_addr = 0x83; // EP3, IN isochronous 938 sco_out_addr = 0x03; // EP3, OUT isochronous 939 940 // USB init 941 r = libusb_init(NULL); 942 if (r < 0) return -1; 943 944 libusb_state = LIB_USB_OPENED; 945 946 // configure debug level 947 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 948 949 libusb_device * dev = NULL; 950 951 #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID 952 953 // Use a specified device 954 log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); 955 handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); 956 957 if (!handle){ 958 log_error("libusb_open_device_with_vid_pid failed!"); 959 usb_close(); 960 return -1; 961 } 962 log_info("libusb open %d, handle %p", r, handle); 963 964 r = prepare_device(handle); 965 if (r < 0){ 966 usb_close(); 967 return -1; 968 } 969 970 dev = libusb_get_device(aHandle); 971 r = scan_for_bt_endpoints(dev); 972 if (r < 0){ 973 usb_close(); 974 return -1; 975 } 976 977 #else 978 // Scan system for an appropriate devices 979 libusb_device **devs; 980 ssize_t num_devices; 981 982 log_info("Scanning for USB Bluetooth device"); 983 num_devices = libusb_get_device_list(NULL, &devs); 984 if (num_devices < 0) { 985 usb_close(); 986 return -1; 987 } 988 989 if (usb_path_len){ 990 int i; 991 for (i=0;i<num_devices;i++){ 992 uint8_t port_numbers[USB_MAX_PATH_LEN]; 993 int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN); 994 if (len != usb_path_len) continue; 995 if (memcmp(usb_path, port_numbers, len) == 0){ 996 log_info("USB device found at specified path"); 997 handle = try_open_device(devs[i]); 998 if (!handle) continue; 999 1000 r = prepare_device(handle); 1001 if (r < 0) { 1002 handle = NULL; 1003 continue; 1004 } 1005 1006 dev = devs[i]; 1007 r = scan_for_bt_endpoints(dev); 1008 if (r < 0) { 1009 handle = NULL; 1010 continue; 1011 } 1012 1013 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1014 break; 1015 }; 1016 } 1017 if (!handle){ 1018 log_error("USB device with given path not found"); 1019 printf("USB device with given path not found\n"); 1020 return -1; 1021 } 1022 } else { 1023 1024 int deviceIndex = -1; 1025 while (1){ 1026 // look for next Bluetooth dongle 1027 deviceIndex = scan_for_bt_device(devs, deviceIndex+1); 1028 if (deviceIndex < 0) break; 1029 1030 log_info("USB Bluetooth device found, index %u", deviceIndex); 1031 1032 handle = try_open_device(devs[deviceIndex]); 1033 if (!handle) continue; 1034 1035 r = prepare_device(handle); 1036 if (r < 0) { 1037 handle = NULL; 1038 continue; 1039 } 1040 1041 dev = devs[deviceIndex]; 1042 r = scan_for_bt_endpoints(dev); 1043 if (r < 0) { 1044 handle = NULL; 1045 continue; 1046 } 1047 1048 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1049 break; 1050 } 1051 } 1052 1053 libusb_free_device_list(devs, 1); 1054 1055 if (handle == 0){ 1056 log_error("No USB Bluetooth device found"); 1057 return -1; 1058 } 1059 1060 #endif 1061 1062 // allocate transfer handlers 1063 int c; 1064 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1065 event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events 1066 if (!event_in_transfer[c]) { 1067 usb_close(); 1068 return LIBUSB_ERROR_NO_MEM; 1069 } 1070 } 1071 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1072 acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in 1073 if (!acl_in_transfer[c]) { 1074 usb_close(); 1075 return LIBUSB_ERROR_NO_MEM; 1076 } 1077 } 1078 1079 command_out_transfer = libusb_alloc_transfer(0); 1080 acl_out_transfer = libusb_alloc_transfer(0); 1081 1082 // TODO check for error 1083 1084 libusb_state = LIB_USB_TRANSFERS_ALLOCATED; 1085 1086 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1087 // configure event_in handlers 1088 libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr, 1089 hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1090 r = libusb_submit_transfer(event_in_transfer[c]); 1091 if (r) { 1092 log_error("Error submitting interrupt transfer %d", r); 1093 usb_close(); 1094 return r; 1095 } 1096 } 1097 1098 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1099 // configure acl_in handlers 1100 libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr, 1101 hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; 1102 r = libusb_submit_transfer(acl_in_transfer[c]); 1103 if (r) { 1104 log_error("Error submitting bulk in transfer %d", r); 1105 usb_close(); 1106 return r; 1107 } 1108 1109 } 1110 1111 #if 0 1112 // Check for pollfds functionality 1113 doing_pollfds = libusb_pollfds_handle_timeouts(NULL); 1114 #else 1115 // NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation 1116 doing_pollfds = 0; 1117 #endif 1118 1119 if (doing_pollfds) { 1120 log_info("Async using pollfds:"); 1121 1122 const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); 1123 for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); 1124 pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); 1125 if (!pollfd_data_sources){ 1126 log_error("Cannot allocate data sources for pollfds"); 1127 usb_close(); 1128 return 1; 1129 } 1130 memset(pollfd_data_sources, 0, sizeof(btstack_data_source_t) * num_pollfds); 1131 for (r = 0 ; r < num_pollfds ; r++) { 1132 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1133 btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); 1134 btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); 1135 btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); 1136 btstack_run_loop_add_data_source(ds); 1137 log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); 1138 } 1139 free(pollfd); 1140 } else { 1141 log_info("Async using timers:"); 1142 1143 usb_timer.process = usb_process_ts; 1144 btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); 1145 btstack_run_loop_add_timer(&usb_timer); 1146 usb_timer_active = 1; 1147 } 1148 1149 usb_transport_open = 1; 1150 1151 return 0; 1152 } 1153 1154 static int usb_close(void){ 1155 int c; 1156 int completed = 0; 1157 1158 if (!usb_transport_open) return 0; 1159 1160 log_info("usb_close"); 1161 1162 switch (libusb_state){ 1163 case LIB_USB_CLOSED: 1164 break; 1165 1166 case LIB_USB_TRANSFERS_ALLOCATED: 1167 libusb_state = LIB_USB_INTERFACE_CLAIMED; 1168 1169 if(usb_timer_active) { 1170 btstack_run_loop_remove_timer(&usb_timer); 1171 usb_timer_active = 0; 1172 } 1173 1174 if (doing_pollfds){ 1175 int r; 1176 for (r = 0 ; r < num_pollfds ; r++) { 1177 btstack_data_source_t *ds = &pollfd_data_sources[r]; 1178 btstack_run_loop_remove_data_source(ds); 1179 } 1180 free(pollfd_data_sources); 1181 pollfd_data_sources = NULL; 1182 num_pollfds = 0; 1183 doing_pollfds = 0; 1184 } 1185 1186 case LIB_USB_INTERFACE_CLAIMED: 1187 // Cancel all transfers, ignore warnings for this 1188 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); 1189 for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) { 1190 if (event_in_transfer[c]){ 1191 log_info("cancel event_in_transfer[%u] = %p", c, event_in_transfer[c]); 1192 libusb_cancel_transfer(event_in_transfer[c]); 1193 } 1194 } 1195 for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { 1196 if (acl_in_transfer[c]){ 1197 log_info("cancel acl_in_transfer[%u] = %p", c, acl_in_transfer[c]); 1198 libusb_cancel_transfer(acl_in_transfer[c]); 1199 } 1200 } 1201 #ifdef ENABLE_SCO_OVER_HCI 1202 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1203 if (sco_in_transfer[c]){ 1204 log_info("cancel sco_in_transfer[%u] = %p", c, sco_in_transfer[c]); 1205 libusb_cancel_transfer(sco_in_transfer[c]); 1206 } 1207 } 1208 for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1209 if (sco_out_transfers_in_flight[c]) { 1210 log_info("cancel sco_out_transfers[%u] = %p", c, sco_out_transfers[c]); 1211 libusb_cancel_transfer(sco_out_transfers[c]); 1212 } else { 1213 libusb_free_transfer(sco_out_transfers[c]); 1214 sco_out_transfers[c] = 0; 1215 } 1216 } 1217 #endif 1218 libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); 1219 1220 // wait until all transfers are completed - or 20 iterations 1221 int countdown = 20; 1222 while (!completed){ 1223 1224 if (--countdown == 0){ 1225 log_info("Not all transfers cancelled, leaking a bit."); 1226 break; 1227 } 1228 1229 struct timeval tv; 1230 memset(&tv, 0, sizeof(struct timeval)); 1231 libusb_handle_events_timeout(NULL, &tv); 1232 // check if all done 1233 completed = 1; 1234 for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){ 1235 if (event_in_transfer[c]) { 1236 log_info("event_in_transfer[%u] still active (%p)", c, event_in_transfer[c]); 1237 completed = 0; 1238 break; 1239 } 1240 } 1241 1242 if (!completed) continue; 1243 1244 for (c=0;c<ACL_IN_BUFFER_COUNT;c++){ 1245 if (acl_in_transfer[c]) { 1246 log_info("acl_in_transfer[%u] still active (%p)", c, acl_in_transfer[c]); 1247 completed = 0; 1248 break; 1249 } 1250 } 1251 1252 #ifdef ENABLE_SCO_OVER_HCI 1253 if (!completed) continue; 1254 1255 // Cancel all synchronous transfer 1256 for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { 1257 if (sco_in_transfer[c]){ 1258 log_info("sco_in_transfer[%u] still active (%p)", c, sco_in_transfer[c]); 1259 completed = 0; 1260 break; 1261 } 1262 } 1263 1264 if (!completed) continue; 1265 1266 for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){ 1267 if (sco_out_transfers[c]){ 1268 log_info("sco_out_transfers[%u] still active (%p)", c, sco_out_transfers[c]); 1269 completed = 0; 1270 break; 1271 } 1272 } 1273 sco_enabled = 0; 1274 #endif 1275 } 1276 1277 // finally release interface 1278 libusb_release_interface(handle, 0); 1279 #ifdef ENABLE_SCO_OVER_HCI 1280 libusb_release_interface(handle, 1); 1281 #endif 1282 log_info("Libusb shutdown complete"); 1283 1284 case LIB_USB_DEVICE_OPENDED: 1285 libusb_close(handle); 1286 1287 case LIB_USB_OPENED: 1288 libusb_exit(NULL); 1289 } 1290 1291 libusb_state = LIB_USB_CLOSED; 1292 handle = NULL; 1293 usb_transport_open = 0; 1294 1295 return 0; 1296 } 1297 1298 static int usb_send_cmd_packet(uint8_t *packet, int size){ 1299 int r; 1300 1301 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1302 1303 // async 1304 libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); 1305 memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size); 1306 1307 // prepare transfer 1308 int completed = 0; 1309 libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0); 1310 command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER; 1311 1312 // update stata before submitting transfer 1313 usb_command_active = 1; 1314 1315 // submit transfer 1316 r = libusb_submit_transfer(command_out_transfer); 1317 1318 if (r < 0) { 1319 usb_command_active = 0; 1320 log_error("Error submitting cmd transfer %d", r); 1321 return -1; 1322 } 1323 1324 return 0; 1325 } 1326 1327 static int usb_send_acl_packet(uint8_t *packet, int size){ 1328 int r; 1329 1330 if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; 1331 1332 // log_info("usb_send_acl_packet enter, size %u", size); 1333 1334 // prepare transfer 1335 int completed = 0; 1336 libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size, 1337 async_callback, &completed, 0); 1338 acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK; 1339 1340 // update stata before submitting transfer 1341 usb_acl_out_active = 1; 1342 1343 r = libusb_submit_transfer(acl_out_transfer); 1344 if (r < 0) { 1345 usb_acl_out_active = 0; 1346 log_error("Error submitting acl transfer, %d", r); 1347 return -1; 1348 } 1349 1350 return 0; 1351 } 1352 1353 static int usb_can_send_packet_now(uint8_t packet_type){ 1354 switch (packet_type){ 1355 case HCI_COMMAND_DATA_PACKET: 1356 return !usb_command_active; 1357 case HCI_ACL_DATA_PACKET: 1358 return !usb_acl_out_active; 1359 #ifdef ENABLE_SCO_OVER_HCI 1360 case HCI_SCO_DATA_PACKET: 1361 if (!sco_enabled) return 0; 1362 return sco_ring_have_space(); 1363 #endif 1364 default: 1365 return 0; 1366 } 1367 } 1368 1369 static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ 1370 switch (packet_type){ 1371 case HCI_COMMAND_DATA_PACKET: 1372 return usb_send_cmd_packet(packet, size); 1373 case HCI_ACL_DATA_PACKET: 1374 return usb_send_acl_packet(packet, size); 1375 #ifdef ENABLE_SCO_OVER_HCI 1376 case HCI_SCO_DATA_PACKET: 1377 if (!sco_enabled) return -1; 1378 return usb_send_sco_packet(packet, size); 1379 #endif 1380 default: 1381 return -1; 1382 } 1383 } 1384 1385 #ifdef ENABLE_SCO_OVER_HCI 1386 static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ 1387 if (!sco_enabled) return; 1388 1389 log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); 1390 1391 if (num_connections != sco_num_connections){ 1392 sco_voice_setting = voice_setting; 1393 if (sco_num_connections){ 1394 usb_sco_stop(); 1395 } 1396 sco_num_connections = num_connections; 1397 if (num_connections){ 1398 usb_sco_start(); 1399 } 1400 } 1401 } 1402 #endif 1403 1404 static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ 1405 log_info("registering packet handler"); 1406 packet_handler = handler; 1407 } 1408 1409 static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ 1410 UNUSED(packet_type); 1411 UNUSED(packet); 1412 UNUSED(size); 1413 } 1414 1415 // get usb singleton 1416 const hci_transport_t * hci_transport_usb_instance(void) { 1417 if (!hci_transport_usb) { 1418 hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); 1419 memset(hci_transport_usb, 0, sizeof(hci_transport_t)); 1420 hci_transport_usb->name = "H2_LIBUSB"; 1421 hci_transport_usb->open = usb_open; 1422 hci_transport_usb->close = usb_close; 1423 hci_transport_usb->register_packet_handler = usb_register_packet_handler; 1424 hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; 1425 hci_transport_usb->send_packet = usb_send_packet; 1426 #ifdef ENABLE_SCO_OVER_HCI 1427 hci_transport_usb->set_sco_config = usb_set_sco_config; 1428 #endif 1429 } 1430 return hci_transport_usb; 1431 } 1432