1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN 24 * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "spp_streamer_client.c" 39 40 /* 41 * spp_streamer_client.c 42 */ 43 44 // ***************************************************************************** 45 /* EXAMPLE_START(spp_streamer_client): Performance - Stream Data over SPP (Client) 46 * 47 * @text Note: The SPP Streamer Client scans for and connects to SPP Streamer, 48 * and measures the throughput. 49 */ 50 // ***************************************************************************** 51 52 #include <stdint.h> 53 #include <stdio.h> 54 #include <stdlib.h> 55 #include <string.h> 56 #include <inttypes.h> 57 58 #include "btstack.h" 59 60 // prototypes 61 static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size); 62 63 static uint8_t rfcomm_server_channel; 64 65 #define NUM_ROWS 25 66 #define NUM_COLS 40 67 68 #define TEST_COD 0x1234 69 70 #define TEST_MODE_SEND 1 71 #define TEST_MODE_RECEIVE 2 72 #define TEST_MODE_DUPLEX 3 73 74 // configure test mode: send only, receive only, full duplex 75 #define TEST_MODE TEST_MODE_SEND 76 77 typedef enum { 78 // SPP 79 W4_PEER_COD, 80 W4_SCAN_COMPLETE, 81 W4_SDP_RESULT, 82 W2_SEND_SDP_QUERY, 83 W4_RFCOMM_CHANNEL, 84 SENDING, 85 DONE 86 } state_t; 87 88 static uint8_t test_data[NUM_ROWS * NUM_COLS]; 89 static uint16_t spp_test_data_len; 90 91 static btstack_packet_callback_registration_t hci_event_callback_registration; 92 static btstack_context_callback_registration_t handle_sdp_client_query_request; 93 94 static bd_addr_t peer_addr; 95 static state_t state; 96 97 // SPP 98 static uint16_t rfcomm_mtu; 99 static uint16_t rfcomm_cid = 0; 100 // static uint32_t data_to_send = DATA_VOLUME; 101 102 /** 103 * RFCOMM can make use for ERTM. Due to the need to re-transmit packets, 104 * a large buffer is needed to still get high throughput 105 */ 106 #ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM 107 static uint8_t ertm_buffer[20000]; 108 static l2cap_ertm_config_t ertm_config = { 109 0, // ertm mandatory 110 8, // max transmit 111 2000, 112 12000, 113 1000, // l2cap ertm mtu 114 8, 115 8, 116 0, // No FCS 117 }; 118 static int ertm_buffer_in_use; 119 static void rfcomm_ertm_request_handler(rfcomm_ertm_request_t * ertm_request){ 120 printf("ERTM Buffer requested, buffer in use %u\n", ertm_buffer_in_use); 121 if (ertm_buffer_in_use) return; 122 ertm_buffer_in_use = 1; 123 ertm_request->ertm_config = &ertm_config; 124 ertm_request->ertm_buffer = ertm_buffer; 125 ertm_request->ertm_buffer_size = sizeof(ertm_buffer); 126 } 127 static void rfcomm_ertm_released_handler(uint16_t ertm_id){ 128 printf("ERTM Buffer released, buffer in use %u, ertm_id %x\n", ertm_buffer_in_use, ertm_id); 129 ertm_buffer_in_use = 0; 130 } 131 #endif 132 133 /** 134 * Find remote peer by COD 135 */ 136 #define INQUIRY_INTERVAL 5 137 static void start_scan(void){ 138 printf("Starting inquiry scan..\n"); 139 state = W4_PEER_COD; 140 gap_inquiry_start(INQUIRY_INTERVAL); 141 } 142 static void stop_scan(void){ 143 printf("Stopping inquiry scan..\n"); 144 state = W4_SCAN_COMPLETE; 145 gap_inquiry_stop(); 146 } 147 /* 148 * @section Track throughput 149 * @text We calculate the throughput by setting a start time and measuring the amount of 150 * data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s 151 * and reset the counter and start time. 152 */ 153 154 /* LISTING_START(tracking): Tracking throughput */ 155 #define REPORT_INTERVAL_MS 3000 156 static uint32_t test_data_transferred; 157 static uint32_t test_data_start; 158 159 static void test_reset(void){ 160 test_data_start = btstack_run_loop_get_time_ms(); 161 test_data_transferred = 0; 162 } 163 164 static void test_track_transferred(int bytes_sent){ 165 test_data_transferred += bytes_sent; 166 // evaluate 167 uint32_t now = btstack_run_loop_get_time_ms(); 168 uint32_t time_passed = now - test_data_start; 169 if (time_passed < REPORT_INTERVAL_MS) return; 170 // print speed 171 int bytes_per_second = test_data_transferred * 1000 / time_passed; 172 printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000); 173 174 // restart 175 test_data_start = now; 176 test_data_transferred = 0; 177 } 178 /* LISTING_END(tracking): Tracking throughput */ 179 180 #if (TEST_MODE & TEST_MODE_SEND) 181 static void spp_create_test_data(void){ 182 int x,y; 183 for (y=0;y<NUM_ROWS;y++){ 184 for (x=0;x<NUM_COLS-2;x++){ 185 test_data[y*NUM_COLS+x] = '0' + (x % 10); 186 } 187 test_data[y*NUM_COLS+NUM_COLS-2] = '\n'; 188 test_data[y*NUM_COLS+NUM_COLS-1] = '\r'; 189 } 190 } 191 static void spp_send_packet(void){ 192 rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len); 193 test_track_transferred(spp_test_data_len); 194 rfcomm_request_can_send_now_event(rfcomm_cid); 195 } 196 #endif 197 198 /* 199 * @section SDP Query Packet Handler 200 * 201 * @text Store RFCOMM Channel for SPP service and initiates RFCOMM connection 202 */ 203 static void handle_query_rfcomm_event(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 204 UNUSED(packet_type); 205 UNUSED(channel); 206 UNUSED(size); 207 208 switch (hci_event_packet_get_type(packet)){ 209 case SDP_EVENT_QUERY_RFCOMM_SERVICE: 210 rfcomm_server_channel = sdp_event_query_rfcomm_service_get_rfcomm_channel(packet); 211 break; 212 case SDP_EVENT_QUERY_COMPLETE: 213 if (sdp_event_query_complete_get_status(packet)){ 214 printf("SDP query failed, status 0x%02x\n", sdp_event_query_complete_get_status(packet)); 215 break; 216 } 217 if (rfcomm_server_channel == 0){ 218 printf("No SPP service found\n"); 219 break; 220 } 221 printf("SDP query done, channel 0x%02x.\n", rfcomm_server_channel); 222 rfcomm_create_channel(packet_handler, peer_addr, rfcomm_server_channel, NULL); 223 break; 224 default: 225 break; 226 } 227 } 228 229 static void handle_start_sdp_client_query(void * context){ 230 UNUSED(context); 231 if (state != W2_SEND_SDP_QUERY) return; 232 state = W4_RFCOMM_CHANNEL; 233 sdp_client_query_rfcomm_channel_and_name_for_uuid(&handle_query_rfcomm_event, peer_addr, BLUETOOTH_SERVICE_CLASS_SERIAL_PORT); 234 } 235 236 237 /* 238 * @section Gerenal Packet Handler 239 * 240 * @text Handles startup (BTSTACK_EVENT_STATE), inquiry, pairing, starts SDP query for SPP service, and RFCOMM connection 241 */ 242 243 static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 244 UNUSED(channel); 245 246 bd_addr_t event_addr; 247 uint8_t rfcomm_channel_nr; 248 uint32_t class_of_device; 249 250 switch (packet_type) { 251 case HCI_EVENT_PACKET: 252 switch (hci_event_packet_get_type(packet)) { 253 254 case BTSTACK_EVENT_STATE: 255 if (btstack_event_state_get_state(packet) != HCI_STATE_WORKING) return; 256 start_scan(); 257 break; 258 259 case GAP_EVENT_INQUIRY_RESULT: 260 if (state != W4_PEER_COD) break; 261 class_of_device = gap_event_inquiry_result_get_class_of_device(packet); 262 gap_event_inquiry_result_get_bd_addr(packet, event_addr); 263 if (class_of_device == TEST_COD){ 264 memcpy(peer_addr, event_addr, 6); 265 printf("Peer found: %s\n", bd_addr_to_str(peer_addr)); 266 stop_scan(); 267 } else { 268 printf("Device found: %s with COD: 0x%06x\n", bd_addr_to_str(event_addr), (int) class_of_device); 269 } 270 break; 271 272 case GAP_EVENT_INQUIRY_COMPLETE: 273 switch (state){ 274 case W4_PEER_COD: 275 printf("Inquiry complete\n"); 276 printf("Peer not found, starting scan again\n"); 277 start_scan(); 278 break; 279 case W4_SCAN_COMPLETE: 280 printf("Start to connect and query for SPP service\n"); 281 state = W2_SEND_SDP_QUERY; 282 handle_sdp_client_query_request.callback = &handle_start_sdp_client_query; 283 (void) sdp_client_register_query_callback(&handle_sdp_client_query_request); 284 break; 285 default: 286 break; 287 } 288 if (state == W4_PEER_COD){ 289 } 290 break; 291 292 case HCI_EVENT_PIN_CODE_REQUEST: 293 // inform about pin code request 294 printf("Pin code request - using '0000'\n"); 295 hci_event_pin_code_request_get_bd_addr(packet, event_addr); 296 gap_pin_code_response(event_addr, "0000"); 297 break; 298 299 case HCI_EVENT_USER_CONFIRMATION_REQUEST: 300 // inform about user confirmation request 301 printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8)); 302 printf("SSP User Confirmation Auto accept\n"); 303 break; 304 305 case RFCOMM_EVENT_INCOMING_CONNECTION: 306 rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr); 307 rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet); 308 rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet); 309 printf("RFCOMM channel 0x%02x requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr)); 310 rfcomm_accept_connection(rfcomm_cid); 311 break; 312 313 case RFCOMM_EVENT_CHANNEL_OPENED: 314 if (rfcomm_event_channel_opened_get_status(packet)) { 315 printf("RFCOMM channel open failed, status 0x%02x\n", rfcomm_event_channel_opened_get_status(packet)); 316 } else { 317 rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet); 318 rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet); 319 printf("RFCOMM channel open succeeded. New RFCOMM Channel ID 0x%02x, max frame size %u\n", rfcomm_cid, rfcomm_mtu); 320 test_reset(); 321 322 // disable page/inquiry scan to get max performance 323 gap_discoverable_control(0); 324 gap_connectable_control(0); 325 326 #if (TEST_MODE & TEST_MODE_SEND) 327 // configure test data 328 spp_test_data_len = rfcomm_mtu; 329 if (spp_test_data_len > sizeof(test_data)){ 330 spp_test_data_len = sizeof(test_data); 331 } 332 spp_create_test_data(); 333 state = SENDING; 334 // start sending 335 rfcomm_request_can_send_now_event(rfcomm_cid); 336 #endif 337 } 338 break; 339 340 #if (TEST_MODE & TEST_MODE_SEND) 341 case RFCOMM_EVENT_CAN_SEND_NOW: 342 spp_send_packet(); 343 break; 344 #endif 345 346 case RFCOMM_EVENT_CHANNEL_CLOSED: 347 printf("RFCOMM channel closed\n"); 348 rfcomm_cid = 0; 349 350 // re-enable page/inquiry scan again 351 gap_discoverable_control(1); 352 gap_connectable_control(1); 353 break; 354 355 356 357 default: 358 break; 359 } 360 break; 361 362 case RFCOMM_DATA_PACKET: 363 test_track_transferred(size); 364 365 #if 0 366 // optional: print received data as ASCII text 367 printf("RCV: '"); 368 for (i=0;i<size;i++){ 369 putchar(packet[i]); 370 } 371 printf("'\n"); 372 #endif 373 break; 374 375 default: 376 break; 377 } 378 } 379 380 /* 381 * @section Main Application Setup 382 * 383 * @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups. 384 */ 385 386 387 /* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */ 388 int btstack_main(int argc, const char * argv[]); 389 int btstack_main(int argc, const char * argv[]){ 390 UNUSED(argc); 391 (void)argv; 392 393 l2cap_init(); 394 395 #ifdef ENABLE_BLE 396 // Initialize LE Security Manager. Needed for cross-transport key derivation 397 sm_init(); 398 #endif 399 400 rfcomm_init(); 401 402 #ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM 403 // setup ERTM management 404 rfcomm_enable_l2cap_ertm(&rfcomm_ertm_request_handler, &rfcomm_ertm_released_handler); 405 #endif 406 407 // register for HCI events 408 hci_event_callback_registration.callback = &packet_handler; 409 hci_add_event_handler(&hci_event_callback_registration); 410 411 // init SDP 412 gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO); 413 414 // turn on! 415 hci_power_control(HCI_POWER_ON); 416 417 return 0; 418 } 419 /* LISTING_END */ 420 /* EXAMPLE_END */ 421