xref: /btstack/example/spp_streamer_client.c (revision 5aed585b775dc39e6156750766f06ea5e851a5e5)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 // *****************************************************************************
39 /* EXAMPLE_START(spp_streamer_client): Client for SPP Streamer
40  *
41  * @text The SPP Streamer Clients connects to SPP Streamer and tracks the
42  * amount of received data
43  */
44 // *****************************************************************************
45 
46 #include <stdint.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <inttypes.h>
51 
52 #include "btstack.h"
53 
54 #define RFCOMM_SERVER_CHANNEL 1
55 
56 #define TEST_COD 0x1234
57 
58 typedef enum {
59     // SPP
60     W4_PEER_COD,
61     W4_SCAN_COMPLETE,
62     W4_SDP_RESULT,
63     W4_SDP_COMPLETE,
64     W4_RFCOMM_CHANNEL,
65     SENDING,
66     DONE
67 } state_t;
68 
69 static btstack_packet_callback_registration_t hci_event_callback_registration;
70 
71 static bd_addr_t peer_addr;
72 static state_t state;;
73 
74 // SPP
75 static uint16_t  rfcomm_mtu;
76 static uint16_t  rfcomm_cid = 0;
77 // static uint32_t  data_to_send =  DATA_VOLUME;
78 
79 
80 /**
81  * Find remote peer by COD
82  */
83 #define INQUIRY_INTERVAL 5
84 static void start_scan(void){
85     printf("Starting inquiry scan..\n");
86     state = W4_PEER_COD;
87     gap_inquiry_start(INQUIRY_INTERVAL);
88 }
89 static void stop_scan(void){
90     printf("Stopping inquiry scan..\n");
91     state = W4_SCAN_COMPLETE;
92     gap_inquiry_stop();
93 }
94 /*
95  * @section Track throughput
96  * @text We calculate the throughput by setting a start time and measuring the amount of
97  * data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s
98  * and reset the counter and start time.
99  */
100 
101 /* LISTING_START(tracking): Tracking throughput */
102 #define REPORT_INTERVAL_MS 3000
103 static uint32_t test_data_transferred;
104 static uint32_t test_data_start;
105 
106 static void test_reset(void){
107     test_data_start = btstack_run_loop_get_time_ms();
108     test_data_transferred = 0;
109 }
110 
111 static void test_track_transferred(int bytes_sent){
112     test_data_transferred += bytes_sent;
113     // evaluate
114     uint32_t now = btstack_run_loop_get_time_ms();
115     uint32_t time_passed = now - test_data_start;
116     if (time_passed < REPORT_INTERVAL_MS) return;
117     // print speed
118     int bytes_per_second = test_data_transferred * 1000 / time_passed;
119     printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000);
120 
121     // restart
122     test_data_start = now;
123     test_data_transferred  = 0;
124 }
125 /* LISTING_END(tracking): Tracking throughput */
126 
127 /*
128  * @section Packet Handler
129  *
130  * @text The packet handler of the combined example is just the combination of the individual packet handlers.
131  */
132 
133 static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
134     UNUSED(channel);
135 
136     bd_addr_t event_addr;
137     uint8_t   rfcomm_channel_nr;
138     uint32_t class_of_device;
139 
140 	switch (packet_type) {
141 		case HCI_EVENT_PACKET:
142 			switch (hci_event_packet_get_type(packet)) {
143 
144                 case HCI_EVENT_PIN_CODE_REQUEST:
145                     // inform about pin code request
146                     printf("Pin code request - using '0000'\n");
147                     hci_event_pin_code_request_get_bd_addr(packet, event_addr);
148                     gap_pin_code_response(event_addr, "0000");
149                     break;
150 
151                 case HCI_EVENT_USER_CONFIRMATION_REQUEST:
152                     // inform about user confirmation request
153                     printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8));
154                     printf("SSP User Confirmation Auto accept\n");
155                     break;
156 
157                 case RFCOMM_EVENT_INCOMING_CONNECTION:
158 					// data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
159                     rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr);
160                     rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet);
161                     rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet);
162                     printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr));
163                     rfcomm_accept_connection(rfcomm_cid);
164 					break;
165 
166 				case RFCOMM_EVENT_CHANNEL_OPENED:
167 					// data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
168 					if (rfcomm_event_channel_opened_get_status(packet)) {
169                         printf("RFCOMM channel open failed, status %u\n", rfcomm_event_channel_opened_get_status(packet));
170                     } else {
171                         rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet);
172                         rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet);
173                         printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu);
174                         test_reset();
175 
176                         // disable page/inquiry scan to get max performance
177                         gap_discoverable_control(0);
178                         gap_connectable_control(0);
179                     }
180 					break;
181 
182                 case RFCOMM_EVENT_CHANNEL_CLOSED:
183                     printf("RFCOMM channel closed\n");
184                     rfcomm_cid = 0;
185 
186                     // re-enable page/inquiry scan again
187                     gap_discoverable_control(1);
188                     gap_connectable_control(1);
189                     break;
190 
191                 case BTSTACK_EVENT_STATE:
192                     if (btstack_event_state_get_state(packet) != HCI_STATE_WORKING) return;
193                     start_scan();
194                     break;
195 
196                 case GAP_EVENT_INQUIRY_RESULT:
197                     if (state != W4_PEER_COD) break;
198                     class_of_device = gap_event_inquiry_result_get_class_of_device(packet);
199                     gap_event_inquiry_result_get_bd_addr(packet, event_addr);
200                     if (class_of_device == TEST_COD){
201                         memcpy(peer_addr, event_addr, 6);
202                         printf("Peer found: %s\n", bd_addr_to_str(peer_addr));
203                         stop_scan();
204                     } else {
205                         printf("Device found: %s with COD: 0x%06x\n", bd_addr_to_str(event_addr), (int) class_of_device);
206                     }
207                     break;
208 
209                 case GAP_EVENT_INQUIRY_COMPLETE:
210                     switch (state){
211                         case W4_PEER_COD:
212                             printf("Inquiry complete\n");
213                             printf("Peer not found, starting scan again\n");
214                             start_scan();
215                             break;
216                         case W4_SCAN_COMPLETE:
217                             printf("Start to connect\n");
218                             state = W4_RFCOMM_CHANNEL;
219                             rfcomm_create_channel(packet_handler, peer_addr, RFCOMM_SERVER_CHANNEL, NULL);
220                             break;
221                         default:
222                             break;
223                     }
224                     if (state == W4_PEER_COD){
225                     }
226                     break;
227 
228                 default:
229                     break;
230 			}
231             break;
232 
233         case RFCOMM_DATA_PACKET:
234             test_track_transferred(size);
235 
236 #if 0
237             printf("RCV: '");
238             for (i=0;i<size;i++){
239                 putchar(packet[i]);
240             }
241             printf("'\n");
242 #endif
243             break;
244 
245         default:
246             break;
247 	}
248 }
249 
250 /*
251  * @section Main Application Setup
252  *
253  * @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups.
254  */
255 
256 
257 /* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */
258 int btstack_main(int argc, const char * argv[]);
259 int btstack_main(int argc, const char * argv[]){
260     UNUSED(argc);
261     (void)argv;
262 
263     // register for HCI events
264     hci_event_callback_registration.callback = &packet_handler;
265     hci_add_event_handler(&hci_event_callback_registration);
266 
267     l2cap_init();
268 
269     rfcomm_init();
270     rfcomm_register_service(packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff);
271 
272     // init SDP
273     gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO);
274 
275     // turn on!
276 	hci_power_control(HCI_POWER_ON);
277 
278     return 0;
279 }
280 /* LISTING_END */
281 /* EXAMPLE_END */
282