1 /* 2 * Copyright (C) 2014 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN 24 * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "spp_streamer.c" 39 40 /* 41 * spp_streamer.c 42 */ 43 44 // ***************************************************************************** 45 /* EXAMPLE_START(spp_streamer): Performance - Stream Data over SPP (Server) 46 * 47 * @text After RFCOMM connections gets open, request a 48 * RFCOMM_EVENT_CAN_SEND_NOW via rfcomm_request_can_send_now_event(). 49 * @text When we get the RFCOMM_EVENT_CAN_SEND_NOW, send data and request another one. 50 * 51 * @text Note: To test, run the example, pair from a remote 52 * device, and open the Virtual Serial Port. 53 */ 54 // ***************************************************************************** 55 56 #include <inttypes.h> 57 #include <stdint.h> 58 #include <stdio.h> 59 #include <stdlib.h> 60 #include <string.h> 61 62 #include "btstack.h" 63 64 int btstack_main(int argc, const char * argv[]); 65 66 #define RFCOMM_SERVER_CHANNEL 1 67 68 #define TEST_COD 0x1234 69 #define NUM_ROWS 25 70 #define NUM_COLS 40 71 #define DATA_VOLUME (10 * 1000 * 1000) 72 73 static btstack_packet_callback_registration_t hci_event_callback_registration; 74 75 static uint8_t test_data[NUM_ROWS * NUM_COLS]; 76 77 // SPP 78 static uint8_t spp_service_buffer[150]; 79 80 static uint16_t spp_test_data_len; 81 static uint16_t rfcomm_mtu; 82 static uint16_t rfcomm_cid = 0; 83 // static uint32_t data_to_send = DATA_VOLUME; 84 85 /** 86 * RFCOMM can make use for ERTM. Due to the need to re-transmit packets, 87 * a large buffer is needed to still get high throughput 88 */ 89 #ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM 90 static uint8_t ertm_buffer[20000]; 91 static l2cap_ertm_config_t ertm_config = { 92 0, // ertm mandatory 93 8, // max transmit 94 2000, 95 12000, 96 1000, // l2cap ertm mtu 97 8, 98 8, 99 0, // No FCS 100 }; 101 static int ertm_buffer_in_use; 102 static void rfcomm_ertm_request_handler(rfcomm_ertm_request_t * ertm_request){ 103 printf("ERTM Buffer requested, buffer in use %u\n", ertm_buffer_in_use); 104 if (ertm_buffer_in_use) return; 105 ertm_buffer_in_use = 1; 106 ertm_request->ertm_config = &ertm_config; 107 ertm_request->ertm_buffer = ertm_buffer; 108 ertm_request->ertm_buffer_size = sizeof(ertm_buffer); 109 } 110 static void rfcomm_ertm_released_handler(uint16_t ertm_id){ 111 printf("ERTM Buffer released, buffer in use %u, ertm_id %x\n", ertm_buffer_in_use, ertm_id); 112 ertm_buffer_in_use = 0; 113 } 114 #endif 115 116 /* 117 * @section Track throughput 118 * @text We calculate the throughput by setting a start time and measuring the amount of 119 * data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s 120 * and reset the counter and start time. 121 */ 122 123 /* LISTING_START(tracking): Tracking throughput */ 124 #define REPORT_INTERVAL_MS 3000 125 static uint32_t test_data_transferred; 126 static uint32_t test_data_start; 127 128 static void test_reset(void){ 129 test_data_start = btstack_run_loop_get_time_ms(); 130 test_data_transferred = 0; 131 } 132 133 static void test_track_transferred(int bytes_sent){ 134 test_data_transferred += bytes_sent; 135 // evaluate 136 uint32_t now = btstack_run_loop_get_time_ms(); 137 uint32_t time_passed = now - test_data_start; 138 if (time_passed < REPORT_INTERVAL_MS) return; 139 // print speed 140 int bytes_per_second = test_data_transferred * 1000 / time_passed; 141 printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000); 142 143 // restart 144 test_data_start = now; 145 test_data_transferred = 0; 146 } 147 /* LISTING_END(tracking): Tracking throughput */ 148 149 150 static void spp_create_test_data(void){ 151 int x,y; 152 for (y=0;y<NUM_ROWS;y++){ 153 for (x=0;x<NUM_COLS-2;x++){ 154 test_data[y*NUM_COLS+x] = '0' + (x % 10); 155 } 156 test_data[y*NUM_COLS+NUM_COLS-2] = '\n'; 157 test_data[y*NUM_COLS+NUM_COLS-1] = '\r'; 158 } 159 } 160 161 static void spp_send_packet(void){ 162 rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len); 163 164 test_track_transferred(spp_test_data_len); 165 #if 0 166 if (data_to_send <= spp_test_data_len){ 167 printf("SPP Streamer: enough data send, closing channel\n"); 168 rfcomm_disconnect(rfcomm_cid); 169 rfcomm_cid = 0; 170 return; 171 } 172 data_to_send -= spp_test_data_len; 173 #endif 174 rfcomm_request_can_send_now_event(rfcomm_cid); 175 } 176 177 /* 178 * @section Packet Handler 179 * 180 * @text The packet handler of the combined example is just the combination of the individual packet handlers. 181 */ 182 183 static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ 184 UNUSED(channel); 185 186 bd_addr_t event_addr; 187 uint8_t rfcomm_channel_nr; 188 189 switch (packet_type) { 190 case HCI_EVENT_PACKET: 191 switch (hci_event_packet_get_type(packet)) { 192 193 case HCI_EVENT_PIN_CODE_REQUEST: 194 // inform about pin code request 195 printf("Pin code request - using '0000'\n"); 196 hci_event_pin_code_request_get_bd_addr(packet, event_addr); 197 gap_pin_code_response(event_addr, "0000"); 198 break; 199 200 case HCI_EVENT_USER_CONFIRMATION_REQUEST: 201 // inform about user confirmation request 202 printf("SSP User Confirmation Request with numeric value '%06" PRIu32 "'\n", little_endian_read_32(packet, 8)); 203 printf("SSP User Confirmation Auto accept\n"); 204 break; 205 206 case RFCOMM_EVENT_INCOMING_CONNECTION: 207 rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr); 208 rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet); 209 rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet); 210 printf("RFCOMM channel 0x%02x requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr)); 211 rfcomm_accept_connection(rfcomm_cid); 212 break; 213 214 case RFCOMM_EVENT_CHANNEL_OPENED: 215 if (rfcomm_event_channel_opened_get_status(packet)) { 216 printf("RFCOMM channel open failed, status 0x%02x\n", rfcomm_event_channel_opened_get_status(packet)); 217 } else { 218 rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet); 219 rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet); 220 printf("RFCOMM channel open succeeded. New RFCOMM Channel ID 0x%02x, max frame size %u\n", rfcomm_cid, rfcomm_mtu); 221 222 spp_test_data_len = rfcomm_mtu; 223 if (spp_test_data_len > sizeof(test_data)){ 224 spp_test_data_len = sizeof(test_data); 225 } 226 227 // disable page/inquiry scan to get max performance 228 gap_discoverable_control(0); 229 gap_connectable_control(0); 230 231 test_reset(); 232 rfcomm_request_can_send_now_event(rfcomm_cid); 233 } 234 break; 235 236 case RFCOMM_EVENT_CAN_SEND_NOW: 237 spp_send_packet(); 238 break; 239 240 case RFCOMM_EVENT_CHANNEL_CLOSED: 241 printf("RFCOMM channel closed\n"); 242 rfcomm_cid = 0; 243 244 // re-enable page/inquiry scan again 245 gap_discoverable_control(1); 246 gap_connectable_control(1); 247 break; 248 249 default: 250 break; 251 } 252 break; 253 254 case RFCOMM_DATA_PACKET: 255 test_track_transferred(size); 256 #if 0 257 // optional: print received data as ASCII text 258 printf("RCV: '"); 259 for (i=0;i<size;i++){ 260 putchar(packet[i]); 261 } 262 printf("'\n"); 263 #endif 264 break; 265 266 default: 267 break; 268 } 269 } 270 271 /* 272 * @section Main Application Setup 273 * 274 * @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups. 275 */ 276 277 278 /* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDP SPP */ 279 int btstack_main(int argc, const char * argv[]) 280 { 281 (void)argc; 282 (void)argv; 283 284 l2cap_init(); 285 286 #ifdef ENABLE_BLE 287 // Initialize LE Security Manager. Needed for cross-transport key derivation 288 sm_init(); 289 #endif 290 291 rfcomm_init(); 292 rfcomm_register_service(packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff); 293 294 #ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM 295 // setup ERTM management 296 rfcomm_enable_l2cap_ertm(&rfcomm_ertm_request_handler, &rfcomm_ertm_released_handler); 297 #endif 298 299 // init SDP, create record for SPP and register with SDP 300 sdp_init(); 301 memset(spp_service_buffer, 0, sizeof(spp_service_buffer)); 302 spp_create_sdp_record(spp_service_buffer, 0x10001, RFCOMM_SERVER_CHANNEL, "SPP Streamer"); 303 sdp_register_service(spp_service_buffer); 304 // printf("SDP service record size: %u\n", de_get_len(spp_service_buffer)); 305 306 // register for HCI events 307 hci_event_callback_registration.callback = &packet_handler; 308 hci_add_event_handler(&hci_event_callback_registration); 309 310 // short-cut to find other SPP Streamer 311 gap_set_class_of_device(TEST_COD); 312 313 gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO); 314 gap_set_local_name("SPP Streamer 00:00:00:00:00:00"); 315 gap_discoverable_control(1); 316 317 spp_create_test_data(); 318 319 // turn on! 320 hci_power_control(HCI_POWER_ON); 321 322 return 0; 323 } 324 /* LISTING_END */ 325 /* EXAMPLE_END */ 326